几何概型典型题型--约会问题
几何概型约会型问题
例1.小明家的晚报在下午5:30~6:30 之间的任何一个时间随机地被送到,小 明一家在下午6:00~7:00之间的任何 一个时间随机地开始晚餐 . 那么晚报在 晚餐开始之前被送到的概率是多少?
分析: 该题题意明确,但如何转化为数学模型 需要从实际问题中分析出存在的两个变量. 由于晚报送到和晚饭开始都是随机的,设 然后 晚报送到和晚饭开始的时间分别为 x、 y , 把这两个变量所满足的条件写成集合的形式, 把问题转化为线性规划问题进行求解.
1 1 1 7 S ABCD 1 1 1, S阴 影 1 2 2 2 8 7 S阴 影 7 8 P 所以所求概率为: S ABCD 1 8
故晚报在晚餐开始之前被送到 7 的概率是 8 .
.
反思:此类问题常会涉及两个随机变量的相互关 系,其求解的步骤为: (1)找设变量.从问题中找出两个随机变量,设为 x , y ; (2)集合表示.用( x, y )表示每次试验结果, 则可用相应的集合分别表示出全部结果 和事件 A 所包含的试验结果.一般来说,两个集合都是几个 二元一次不等式的交集. (3)作出区域.把上面的集合所表示的平面区域作 出,并求出集合 , A 对应的区域的面积. (4)计算求解.由几何概型公式求出概率.
2 2 当且仅当- ≤x-y≤ , 3 3
因此转化成面积问题,利用几何概型求解.
解:设两人分别于x时和y时到达约见地 点,要使两人能在约定时间范围内相 见,当且仅当 2 ≤ x y ≤ 2 .
3 3
两人到达约见地点所有时刻(x,y)的各 种可能结果可用图中的单位正方形内(包括 边界)的点来表示,两人能在约定的时间范 围内相见的所有时刻(x,y)的各种可能结果 可用图中的阴影部分(包括边界)来表示. 因此阴影部分与单位正方形的面积比 就反映了两人在约定时间范围内相遇的可 能性的大小,因此所求的概率为
3.3 几何概型约会型问题的汇编
《几何概型中的约会型问题》作业
1、甲乙两艘船在驶向一个不能同时停泊两艘船的港口,他们在一昼夜内的任何时刻到达该港口的可能性相等,如果甲船停泊时间为1小时,乙船停泊时间为2小时,求它们任何一艘船都不需要等待的概率。
2、小明和小雪约了星期天下午在月牙塘公园见面,由于龙泉路最近在修路,可能会堵车,
小明说他大概4:00—5:00会到,小雪说她可能4:30—5:30到,他们约定先到的等二十分钟如果另一个还没来就可以先走了,假设他们在自己估计时间内到达的可能性相等,问他们两个能相遇的概率有多大?
3、水池的容积为20 立方米,向水池注水的水龙头A和B的流速均为1立方米/小时,它
们在一昼夜内随机开的时间为0~24小时,求水池不溢水的概率。
4、某同学到公共汽车站等车上学,可乘坐8路,23路,8路车10分钟一班,23路15分钟
一班,求这位同学等车时间不超过8分钟的概率。
5、、小明和小雪两人约定星期天下午4:00—5:00之间在小西门乘公共汽车一起去学校,在
这段时间内有3班公共汽车,公车准时到达时刻分别为4∶20,4∶40,5∶00,如果他们约定,见车就乘,求他们两个同乘一车的概率?
6、把一条长为6米的绳子截成三段,求
(1)若三段长均为整数,求能够成三角形的概率;
(2)若截成的三段长为任意值,求能够成三角形的概率。
高二数学几何概型知识及常见题型梳理
几何概型知识与常有题型梳理几何概型和古典概型是随机概率中两类主要模型,是概率观察中的要点,下边就几何概型的知识与常有题型做一梳理,以期能使读者对于这一知识点做到脉络清楚,头头是道。
一基本知识解析1.几何概型的定义:假如每个事件发生的概率只与构成该事件地区的长度(面积或体积)成比率,则称这样的概率模型为几何概率模型,简称几何概型。
2.几何概型的概率公式:构成事件 A的地区长度(面积或体积)P(A)=的地区长度(面积或体;试验的所有结果所构成积)3.几何概型的特色:1)试验中所有可能出现的结果(基本领件)有无穷多个;2)每个基本事件出现的可能性相等.4.几何概型与古典概型的比较:一方面,古典概型拥有有限性,即试验结果是可数的;而几何概型则是在试验中出现无穷多个结果,且与事件的地区长度(或面积、体积等)相关,即试验结果拥有无穷性,是不行数的。
这是两者的不一样之处;另一方面,古典概型与几何概型的试验结果都拥有等可能性,这是两者的共性。
经过以上对于几何概型的基本知识点的梳理,我们不难看出其要核是:要抓住几何概型拥有无穷性和等可能性两个特色,无穷性是指在一次试验中,基本领件的个数能够是无穷的,这是划分几何概型与古典概型的要点所在;等可能性是指每一个基本领件发生的可能性是均等的,这是解题的基本前提。
所以,用几何概型求解的概率问题和古典概型的基本思路是相同的,同属于“比率法”,即随机事件 A 的概率能够用“事件 A 包含的基本领件所占的图形的长度、面积(体积)和角度等”与“试验的基本领件所占总长度、面积(体积)和角度等”之比来表示。
下边就几何概型常有种类题作一概括梳理。
二常有题型梳理1.长度之比种类例 1. 小欲在国庆六十周年以后从某车站搭车出门观察,已知该站发往各站的客车均每小时一班,求小等车时间不多于10 分钟的概率.例 2在长为 12cm 的线段 AB 上任取一点 M,并以线段 AM 为边作正方形,求这个正方形的2与 81cm 2面积介于 36cm之间的概率.2.面积、体积之比种类例 3. ( 08 高考 6) .在平面直角坐标系xoy 中,设D是横坐标与纵坐标的绝对值均不大于 2 的点构成的地区, E 是到原点的距离不大于 1 的点构成的地区,向 D 中任意投一点,则落入 E 中的概率为。
高三数学专题复习-约会问题
数学专题复习 几何概型—“约会问题”案例:圣诞节,小花、小楠两人约定明天7时到8时之间在城北中山公园门口会面,她们约定无论谁先到达,先到者应等候另一个人一刻钟,如果15分钟之后,另一人还未到达,这时先到者即可离去,那么,请思考后回答两人见面的概率是多少?思考:1、能直接得出两人碰面的概率吗?说说你的想法。
2、两人碰面的可能结果是怎样的?与古典概型相比较谈谈你的看法。
3、 若两人碰面这个事件不是古典概型,那么如何计算两人碰面的概率。
案例分析与讨论:首先,让学生分析互相讨论,得出两人碰面这个事件的结果是无限的,而且碰面的结果只是7时到8时之间的任何一个时刻,且任一时刻的可能性是相同的。
在此基础上教师要引导学生与古典概型的特点互相比较,从而教师给出几何概型的定义。
其次,让学生思考,想法计算几何概型的概率,在这个阶段,教师可以让学生自由发挥,结合他们的知识水平,教师再加以适当的引导指正,最后得出几何概型的概率计算公式。
最后,让学生自己解决碰面的概率计算,教师再进行详细的解析,学生方可学懂学透。
下面是上述案例的概率分析:问题的解决要以x 轴和y 轴分别表示两人到达约会地点的时间,那么两人能见面的充要条件是15||≤-y x ,(如图1)由于),(y x 的所有可能结果是边长为60的正方形,可能会面的时间由图中阴影部分所表示,记“两人能见面”为事件A ,因此,两人见面的概率: 167604560)(222=-=A P 。
图1课堂反馈:思考下面的问题:某人午觉醒来,发现表停了,他打开收音机,想听电台整点报时,求他等待的时间不多于10分钟的概率。
分析:某人醒来在整点间即60分钟是随机的,等待的时间不多于10分钟可以看作构成事件的区域,整点即60分钟可以看作所有结果构成的区域,因此本题的变量可以看作是时间的长度,于是可以通过长度比公式计算其概率。
可设“等待的时间不多于10分钟”这一事件记作事件A ,则6160106010)(===分钟里醒来的时间长度所有在分钟时间长度等待的时间不多于A P ;显然这是一个与长度有关的几何概型问题,问题比较简单,学生也易于理解。
几何概型中_面积型_测度典型问题例析
1 2 = 60 × 40 2
2
1 2 2 2 ×40 = 60 - 40 , 2
设“ 两人能会面 ” 为事件 A, 则 2 2 d 60 - 40 2 2 5 P (A ) = = =1 - ( ) = , 2 D 3 9 60
・14・
数理化学习 (高中版 ) 分析 : 雨点落在地图 上的 概 率 问 题 是 几 何 概 型 , 用面积比计算 . 雨点 打在 地 图 和 板 上 是 随 机 的 , 地图上有 9 个雨点痕 迹 , 板上其他位置有 18 个 雨点痕迹 , 由此计算雨点 落在地图上的概率 , 反过来推导地图面积 . 解 :由题意 , 雨点落在地图上的概率 P = 9 1 = , 又正方形板的面积为 1平方米 , 故 9 + 18 3 1 1 所求地图面积为 1 × = 平方米 . 3 3 点评 :本题有别于常规的面积型概率计算 , 设计新颖 , 不直接问事件的概率 , 而是通过随机 性先求出雨点落在地图上的概率 , 再由几何概 型的公式来求地图面积 . 江苏省张家港市暨阳高级中学 ( 215600 ) ●王 杰
上点的最近距离是 2. 2 51若抛物线 y = ax - 1 ( a > 0 ) 上存在关
●吕兆勇
几何概型中“ 面积型 ” 测度典型问题例析
解决几何概型问题的关键是利用己知条 件建立适当的几何模型 , 从建立的几何模型入 手 , 来解决概率问题 . 本文从几何概型“ 面积 型” 测度中的几个典型问题来说明如何解决此 类问题 . 例 1 在面积为 S的 △AB C内任选一点 P, 则 △PB C 的面积小于
约定见车就乘的事件所表示的区域d为图中4个黑的小方格所示所求概率约定最多等一班车的事件所表示的区域d为图中10个黑的小方格所示所求概率为1016从上面几例我们可以看出要解决面积型测度概率问题关键在于如何将文字语言转化为与之对应的图形语言在这点上需认真地体会
几何概型约会型问题H分解课件
设两人分别于x时和y时到达约见地点,要使两人在约
定时间范围内相见,当且仅当— 2 ≤x—y≤ 2,因此
3
转化成面积问题,利用几何概型求解.
3
【解】 设两人分别于x时和y时到达约见地点,要使两人
能在约定时间范围内相见,
当且仅当 2 ≤ x y ≤ 2 .
3
3
两人到达约见地点所有时刻(x,y)的各种可能结果可用图中 的单位正方形内(包括边界)的点来表示,两人能在约定的时 间范围内相见的所有时刻(x,y)的各种可能结果可用图中的 阴影部分(包括边界)来表示. 因此阴影部分与单位正方形的面积比就反映了两人在约定 时间范围内相遇的可能性的大小,因此所求的概率为
应的区域在平面直角坐标系中画出(如图所示)是大正方形.将三
班车到站的时刻在图形中画出,则甲乙两人要想同乘一班车,
必须满足 7 ≤ x ≤ 7 1 , 7 ≤ y ≤ 7 1 ;
3
3
71 ≤ x≤7 2,71 ≤ y≤7 2;
3
33
3
7 2 ≤ x ≤ 8, 7 2 ≤ y ≤ 8.
3
3
即(x,y)必须落在图形中的三个带阴影的小正方形内, 所以由几何概型的计算公式得,P= 即甲、乙同乘一车的概率为
练习:甲乙两人约定在6时到7时之间在某 处会面,并约定先到者应等候另一个人 一刻钟,到时即可离去,求两人能会面的 概率.
向边长为 1 的正方形内随机抛掷一粒芝麻,那么 芝麻落在正方形中心和芝麻不落在正方形中心 的概率分别是多少?由此能说明什么问题?
概率为 0 的事件可能会发生,概率为 1 的事 件不一定会发生.
例1 假设你家订了一份报纸,送报人可能在早
上6:30—7:30之间把报纸送到你家,你父亲 离开家去工作的时间在早上7:00—8:00之间, 问你父亲在离开家前能得到报纸(称为事件A) 的概率是多少?
考研数学概率笔记...
第一章 事件与概率(一次半)基础班(8次 学时8×3=24小时)概率论:它是研究随机现象统计规律性的一门数学科学。
简史:起源于赌博。
17世纪法国Pascal 和Fermat 解决Mere (公平赌博)问题等并提出了排列与组合的新知识。
18世纪早期J.Bernoulli 提出了概率论历史上第一个极限定理(贝努里大数定理),19世纪初Laplace 提出了古典概率定义。
20世纪30年代Kolmogorov 建立了概率的公理化定义(19世纪末Cantor 集合论和20世纪30年代Lebesgue 测试论)。
历史上Gauss 、De Moirve 、、Chebeshev 、Liapunov 、Borel 、Khinchine 、Markov 、K.Pearson 、Fisher 、Cramer 、Wiener 、Doob 、Ito 、许宝禄、Rao 等人亦对概率统计发展作出了重要贡献。
1.1随机事件、样本空间①、②、③、④例子,称满足○a 、○b 、○c 条件的试验为随机试验,记为E ,基本事件(样本点):用e 表示;随机事件:用“A,B,…”表示;样本空间(必然事件):用S 表示。
Remark :(1)A 发生A e e i i ∈∃⇔,,e i 出现了;(2)S 引入意义。
1.2事件的关系与运算(两种语言刻划)一、六种关系:{}{}{}{}1.0,1,2,....,1000,...,0,1,2,3,4,5,0,1,2,3,4,5,....,100,7,8,9,10,11,12,,.S A B C A B C ====例观查某电话呼叫台接到的呼叫次数的随机试验,,求之间的关系二、四个运算性质:Remark :(1)两个事件互斥(互不相容) 两个事件互为对立事件;(2)A -B=B A =A -AB ;(3)事件的假设与事件的相互表示是学好概率论与数理统计的基本功。
例1 某人向一目标射击三次,A i 表示第i 次命中(i=1,2,3),B j 表示命中j 次(j=0,1,2,3),用A i 表示B j 。
高三数学专题复习-概率中的相遇问题
数学专题复习概率中相遇问题的处理方法在高考中有一类概率题型使许多考生感到吃力,那就是“相遇问题” 其实这类问题就是新课标中的新增内容一一几何概型的应用,下面用几个例子来说明这类问题的处理方法。
例1男女两人约定晚上7点至8点在某商场约会,如果女的不等男的,那么两人如期相会的概率是多
少?
分析:设男的到达时刻为x,女的到达时
刻为y,则x<y。
如图容易得出相会概率
为p -
2
例2男女两人约定晚上7点至8点在某商场约会,并约好先到的必须等候,男的要等30分钟,女的只等20分钟,那么两人如期相会的概率是
多少?
y x 30
为y ,则0 y 。
如图容易得出相会概率
1 1 60 60 — 30 30 — 40 40 为p 2
— 60 60 例3 某同学到公交车站等车上学,可乘 116路和
128路,116路公
交车8分钟一班,128路公交车10分钟一班,
求这位同学等车不超过 6 分钟的概率。
分析:设116路公交车到达时刻为x ,128路公交车到达时刻为y ,构 建面积几何概型,如图:记“ 6分钟内乘客128路或116路车”为事件A, 则A 所占区域面积为6 10 2 6 72,整个区域的面积为10 8 80。
由几何概 型概率公式得P(A) 72 -,即该同学等等车不超过6分钟的概率为0.9.
80 10
I y
分析:设男的到达时刻为x ,女的到达时刻
0 y 60
47 72。
数学中的约会问题
数学中的约会问题数学中的约会问题在数学中,约会问题是一个经典的问题,它涉及到时间、日期和计算等多个方面。
该问题的解决需要一定的数学知识和技巧。
下面是一些与约会问题相关的子问题以及相应的解释说明。
1. 阶乘的运算阶乘是指从1乘积到某个给定的正整数的连续整数的乘积,通常以n!表示,其中n是一个正整数。
阶乘的运算在约会问题中经常用到,特别是在计算可能的排列组合数量时。
2. 排列和组合排列是指从一组元素中取出一部分进行组合,得到不同的顺序。
组合是指从一组元素中取出一部分进行组合,不考虑顺序。
在约会问题中,排列和组合的概念常常用于计算可能的安排和选择方式。
3. 时间和日期的表示在约会问题中,时间和日期的正确表示和计算非常重要。
在数学中,通常采用24小时制和日期格式(年-月-日)进行表示。
而对于约会问题,还需考虑到星期几、季节等因素,以便更全面地解决问题。
4. 方程的求解约会问题中,有时需要通过解方程来得到正确的答案。
方程求解是数学中的基本概念,其涉及到代数、解析几何等多个领域的知识和技巧。
通过解方程,可以求得满足约束条件的变量值,从而解决约会问题。
5. 概率和统计概率和统计在约会问题中也有一定的应用。
通过统计和概率分析,可以得到一些可能的情况和结果的概率,从而为问题的解决提供参考。
概率和统计的概念和计算方法对于确定约会的时间和结果非常有帮助。
6. 优化问题约会问题有时也可以看作是一个优化问题,即找到最佳解决方案。
优化问题涉及到目标函数和约束条件的确定,以及对可能解的搜索和比较。
通过应用优化方法,可以最大程度地满足约会者的需求和要求。
7. 约会问题的变种除了常见的约会问题,还存在一些约会问题的变种,例如考虑多人约会、不同地点的约会等。
这些变种问题可能需要更加复杂的数学模型和计算方法,但基本的解决思路和技巧仍然适用。
以上是数学中的约会问题及其相关子问题的列举和解释说明。
通过运用数学知识和技巧,可以有效地解决约会问题,提高约会的效率和成功率。
高考数学复习点拨约会型几何概型问题
高考数学复习点拨约会型几何概型问题第一篇:高考数学复习点拨约会型几何概型问题谈“约会型”概率问题的求解由两个量决定的概率问题,求解时通过坐标系,借助于纵、横两轴产生公共区域的面积,结合面积产生问题的结论,我们称此类问题为“约会型”概率问题;“约会型”概率问题的求解,关键在于合理、恰当引入变量,再将具体问题“数学化”,透过数学模型,产生结论。
请看以下几例:例1、甲、乙两人约定在晚上7时到8时之间在公园门口会面,并约定先到者应等候另一个人一刻钟,这时即可离去,那么两人见面的概率是多少?解:以x轴和y轴分别表示甲、乙两人到达约会地点的时间,那么两人能见面的充要条件是|x-y|≤15,如图由于(x,y)的所有可能结果是边长为60的正方形,可能会面的时间由图中阴影部分所表示,记“两人能见面”为事件A602-4527=因此,两人见面的概率P(A)=16602点评:显然,“以x轴和y轴分别表示甲、乙两人到达约会地点的时间”很关键,由这一句,将一个实际问题引入了数学之门,进一步分析会发现:要见面x,y必须满足|x-y|≤15,于是,结论也就顺其自然的产生了。
例2、A、B两列火车都要在同一车站的同一停车位停车10分钟,假设它们在下午一时与下午二时随机到达,求这两列火车必须等待的概率;解:以x轴和y轴分别表示A、B两列火车到达的时间两列火车必须等待,则|x-y|≤10,如图由于(x,y)的所有可能结果是边长为60的正方形,可能等待的时间由图中阴影部分所表示,记“两列火车必须等待” 为事件A 602-50211=因此,这两列火车必须等待的概率是P(A)= 23660点评:本题与例1相同,“火车必须等待”,那么它们的到达时间差必须不大于10分钟,于是,将A、B两列火车到达车站的时间分别用x,y 表示,结论很快产生。
例3、小明每天早上在六点半至七点半之间离开家去学校上学,小强每天早上六点到七点之间到达小明家,约小明一同前往学校,问小强能见到小明的概率是多少?解:如图,方形区域内任何一点的横坐标表示小强的到达时间,纵坐标表示小明离开家的时间,由于区域内任意一点的出现是等可能的,因此,符合几何概型的条件;由题意,只要点落在阴影部分内,就表示小强能见到小明,即事件A发生,用心爱心专心⎧6≤x≤7⎪所以,由⎨6.5≤y≤7.5⎪y>x⎩1602-⨯30272得P(A)=,=86027即小强能见到小明的概率是。
谈谈几何概型中的会面问题
谈谈几何概型中的会面问题山东省郓城一中 曹铭 274700概率是应用数学中最重要的分支之一,在我们社会生活中的每一个角落,大到广播电视进行天气预报,科学家进行科学试验;小到你回家取钥匙开门,或是玩扑克牌游戏,都会有概率的问题存在,甚至当你和朋友约会时,也会遇到有趣的概率问题,请看: 星期天,你和朋友约好去公园,你们约定在上午八点到九点在公园门口见面,先到者等候另一个人20分钟就独自进公园,那么,你和朋友能够在门口见面的概率(称为事件A )是多少?分析:显然,你和朋友会等可能地在八点到九点之间任一时间到达公园门口,我们用图1友到达的时间,当点落到图中阴影部分时,你和朋友才能在门口见面, 那么其概率应该是图中阴影部分面积和方形区域面积的比。
P (A)=95604060222=-。
如果你和朋友约好在公园门口不见不散,那么你们当中一个人要等另一个人半个小时以上(称为事件B 分析:还是用同样的方法,如右图2所示,当点落在图中阴影部分时,你或者你的朋友要有一个人等另一个人半个小时以上。
P (B )=41603022=。
这一类问题叫做几何概型中的“会面问题”,在实际中,这一类问题是经常见到的,比如在十字路口遇 到红灯的概率,到车站等车的概率等等, 都可以用这种方法来解决。
请看下面一个例子:长途汽车站每天有甲乙两辆发往北京的长途客车,如果在白天六点到十八点12个小时以内,两车随机地到达车站等候发车,甲车需要在车站停留2个小时,乙车需要在车站停留3个小时,那么两辆车同时在车站停留等候发车(称为事件C )的概率是多少?解:如图3纵坐标表示乙车到站的时间,当点落在图中阴影部分区域时,表明甲乙两车在车站“会面”,则:P (C )=2881071229210122222=--。
图3 8989。
高一数学几何概型试题答案及解析
高一数学几何概型试题答案及解析1.已知实数x,y满足0≤x≤2π,|y|≤1则任意取期中的x,y使y>cosx的概率为()A.B.C.D.无法确定【答案】A【解析】0≤x≤2π,|y|≤1所对应的平面区域如下图中长方形所示,“0≤x≤2π,|y|≤1,且y>cosx”对应平面区域如下图中蓝色阴影所示:根据余弦曲线的对称性可知,蓝色部分的面积为长方形面积的一半,故满足“0≤x≤2π,|y|≤1,且y>cosx”的概率P=.故选A.【考点】几何概型.2.甲、乙两人约定某天晚上7:00~8:00之间在某处会面,并约定甲早到应等乙半小时,而乙早到无需等待即可离去,那么两人能会面的概率是()A.B.C.D.【答案】C【解析】设甲到达会面处的时该为7点x分钟,则,设乙到达会面处的时该为7点y分钟,则;根据题意知所有可能情况为不等式组,两人能会面则必须满足,画出不等式组所表示的平面区域:,则所求的概率为:,故选C.【考点】几何概率.3.向如图中所示正方形内随机地投掷飞镖,飞镖落在阴影部分的概率为 ().A.B.C.D.【答案】C【解析】观察这个图可知:阴影部分是一个小三角形,在直线AB的方程为6x-3y-4=0中,令x=1得A(1,),令y=-1得B(,-1).∴三角形ABC的面积为S=AC×BC=×(1+)(1-)=,则飞镖落在阴影部分(三角形ABC的内部)的概率是:P=.故选C.【考点】几何概型.4.在区间(0,1)中随机地取出两个数,则两数之和小于的概率是【答案】【解析】设在区间(0,1)中随机地取出的两个数为,满足条件的为图中阴影部分,所以概率为阴影部分面积:总面积=.【考点】几何概型.5.有四个游戏盘面积相等,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )【答案】A【解析】第一个转盘中奖的概率为;第二个转盘中奖的概率为;第三个转盘中奖的概率为;第四个转盘中奖的概率为,所以中奖最高为A。
3.4 几何概型
返回
事件A发生的条件是0 事件A发生的条件是0<x-y<6或0<y-x<6,即图中阴影部分, 6,即图中阴影部分, 即图中阴影部分 则μΩ=242,μA=242-182. µ A 24 2 − 182 7 = = , ∴P(A)= 2 µ 24 16 7 即这两艘船中至少有一艘在停靠时必须等待的概率是 .
返回
学点一 与长度有关的几何概型的求法 某公共汽车站每隔5分钟有一辆车通过( 某公共汽车站每隔5分钟有一辆车通过(假设每一辆车带走 站上的所有乘客),乘客到达汽车站的时间是任意的, ),乘客到达汽车站的时间是任意的 站上的所有乘客),乘客到达汽车站的时间是任意的,求乘客 候车时间不超过3分钟的概率. 候车时间不超过3分钟的概率. 【分析】本题考查与长度有关的几何概型的求法. 分析】本题考查与长度有关的几何概型的求法. 【解析】这是一个几何概型问题.记A=“候车时间不超 解析】这是一个几何概型问题. 候车时间不超 过3分钟”.以x表示乘客到车站的时刻,以t表示乘客到车 分钟” 表示乘客到车站的时刻, 站后来到的第一辆汽车的时刻,作图3 站后来到的第一辆汽车的时刻,作图3-4-3.据题意,乘客必 3.据题意, 据题意 然在[ 5,t 内来到车站, ={x 然在[t-5,t]内来到车站,故Ω={x|t-5<x≤t}.
解:按照约定,两人在6点到7点之间任何时刻到达会面点 按照约定,两人在6点到7 是等可能的,因此是一个几何概型,设甲、 是等可能的,因此是一个几何概型,设甲、乙两人到达的时间 为x,y,则|x-y|≤15是能够会面的先决条件. |≤15是能够会面的先决条件. 是能够会面的先决条件 以x和y分别表示甲、乙两人到达约会地点的时间,则两 分别表示甲、乙两人到达约会地点的时间, 人能够会面的充要条件是| 人能够会面的充要条件是|x-y|≤15.
见面的问题
见面的问题1、甲乙两人相约见面,并约定第一人到达后,等15分钟不见第二人就可以离去,假设他们都在10点到10点半的任何一时间来到见面地点,则两人见面的概率是多少?解:设甲、乙到达时间为x,y。
则一般0<=x<=30,0<=y<=30符合条件为|x-y|<=15,可解得p=1-1/4=3/4=75%建立直角坐标系。
x轴代表甲到达的时刻,y轴代表乙到达的时刻。
以10点为原点,则在边长为30的正方形中,任意一点的值都可代表甲乙到达的时刻(这里以边长3的正方形)。
两人在15分钟内见面的点如下阴影:则见面的概率即用阴影面积除以整个面积,即得0.75。
2、在(0,1)间随机选择两个数,这两个数对应的点把(0,1)之间的线段分成了三段,试求这三条线段能构成三角形的概率。
解:设这两个数为x,y,并且0<x<y<1,则这三个线段分别为:x,y-x,1-y,由三角形边长性质,有:x+(y-x)>1-yx+(1-y)>y-x(y-x)+(1-y)>x得:y-x<1/2,x<1/2,y>1/2,画得可行域面积为1/8,而总面积为1,所以概率为1/83、甲乙两人约定在6时到7时之间在某处会面,并约定先到者等候另一方15分钟,过时即可离去,求两个人会面的概率,解1:能见面的概率是这个区域和总区域比值见面的区域面积为:正方形面积-两个三角形面积=60*60-2*1/2*45*45=3600-2025=1575所以见面的概率为1575/3600=43.75%解2:设甲到的时间为X,乙到的时间为Y,则满足6<=X<=7,6<=Y<=7,作图,满足|X-Y|<=0.25的面积占总面积的多少则是概率,,是7/16。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抽样
一、选择题
1 .(2013年高考湖南(文3))某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为
120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了
一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=___()
A.9 B.10 C.12 D.13
本题考查分层抽样方法的应用。
因为从丙车间的产品中抽取了3件,所以抽查比例为=,所以甲车间抽取6件,乙车间抽取4件,所以共抽取36413
++=件,60:320:1
选D.
2.(2013年高考江西卷(文5))总体编号为01,02,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右
依次选取两个数字,则选出来的第5个个体的编号为
()A.08 B.07 C.02 D.01
本题考查随机数的使用和求值。
从随机数表第1行的第5列和第6列数字开始由左到右
依次选取两个数字中小于20的编号依次为08,02,14,07,02,01,。
其中第二个和第四个都
是02,重复。
所以第5个个体的编号为01。
故选D。
3.(2013年高考陕西卷(理))某单位有840名职工, 现采用系统抽样方法, 抽取42人做问
卷调查, 将840人按1, 2, , 840随机编号, 则抽取的42人中, 编号落入区间[481, 720]
的人数为()A.11 B.12 C.13 D.14
使用系统抽样方法,从840人中抽取42人,即从20人抽取1人。
,所以从编号1~480
的人中,恰好抽取24人,接着从编号481~720共240人中抽取12人。
故选B
4 .(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD版))某班级有50名学
生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验
中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为
88,93,93,88,93.下列说法一定正确的是()A.这种抽样方法是一种分层抽样B.这种抽样方法是一种系统抽样
C.这五名男生成绩的方差大于这五名女生成绩的方差
D.该班级男生成绩的平均数小于该班女生成绩的平均数
对A选项,分层抽样要求男女生总人数之比=男女生抽样人数之比,所以A选项错。
对B选项,系统抽样要求先对个体进行编号再抽样,所以B选项错。
对C选项,男生方差为8,女生方差为6。
所以C选项正确。
对D选项,男生平均成绩为90,女生平均成绩为91。
所以D选项错。
所以选C 5.(2013年高考湖南卷(理))某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用
的抽样方法是()A.抽签法B.随机数法C.系统抽样法D.分层抽样法
本题考查抽样方法的判断。
由于男生和女生存在性别差异,所以宜采用的抽样方法是分
层抽样法,选D.
7.(2013年高考新课标1(理))为了解某地区的中小学生视力情况,拟从该地区的中小学生
中抽取部分学生进行调查,事先已了解到该地区小学.初中.高中三个学段学生的视力情
况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是()A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样
我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,
而事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男
女生视力情况差异不大.
了解某地区中小学生的视力情况,按学段分层抽样,这种方式具有代表性,比较合理.故
选C.
三、解答题
8.(2013年高考陕西卷(文))
有7位歌手(1至7号)参加一场歌唱比赛, 由500名大众评委现场投票决定歌手名次,
(Ⅰ) 为了调查评委对7位歌手的支持状况, 现用分层抽样方法从各组中抽取若干评委, 其中从B组中抽取了6人. 请将其余各组抽取的人数填入下表.
解: (Ⅰ) 按相同的比例从不同的组中抽取人数.
从B组100人中抽取6人,即从50人中抽取3人,
从100人中抽取6人,从150人中抽取9人.。