磁性纳米材料的特性、发展及其应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011412690 应用化学董会艳
题目纳米材料的磁学性质、发展及其应用前景
内容摘要:磁性纳米材料的特性不同于一般的磁性材料,当与磁性相关联的特征物理长度恰好出于纳米量级,以及电子平均自由路程等大致处于1~100nm量级,或磁性体的尺寸与这些特征物理长度相当时,就会呈现反常的磁学与电学性质。不同分类的磁性纳米材料有着大不相同的特性。从纳米科技诞生的那一刻起就对人类产生着深远的影响。同时磁性材料一直是国民经济,国防工业的重要支柱与基础,与此同时在信息化高度发展的今天,磁性纳米材料的地位显的更加的重要与不可替代。
关键词:磁性,纳米,磁性纳米材料,应用
Abstract:Characteristics of magnetic nanomaterials is different from the general magnetic materials and magnetic properties associated with the characteristics of the physical length of just for the nanoscale, and the electron mean free path, etc. generally in the 1 ~ 100nm orders of magnitude, or magnetic body size and characteristicsphysical length is quite showing the anomalous magnetic and electrical properties. Different classification of magnetic nanomaterials differ materially from those features. The moment of the birth of nanotechnology on humans with far-reaching impact. Magnetic materials has been an important pillar and foundation of the national economy, defense industry, at the same time in the development of information technology today, the status of magnetic nanomaterials significantly more important and irreplaceable.
Key words:Magnetic ,Nano ,Magnetic nanomaterials,Application
前言:在社会发展和科技进步的同时,磁性纳米材料的研究和应用也有了很大的突
破。磁性纳米材料在于与磁性相关联的特征物理长度恰好出于纳米量级,例如,磁单畴尺寸,超顺磁性临界尺寸以及电子平均自由路程等大致处于1~100nm量级,当磁性体的尺寸与这些特征物理长度相当时,就会呈现反常的磁学与电学性质。
当磁性微粒处于单畴尺寸时, 矫顽力将呈现极大值。铁磁材料, 如铁、钻等磁性单畴临界尺寸大约在l0 nm 量级,可以作为高矫顽力的永磁材料和磁记录材料。由于颗粒磁性与其尺寸有关, 如果尺寸进一步减小, 颗粒将在一定的温度范围内呈现出超顺磁性。利用微粒的这个特性, 人们在开始对镍纳米微粒进行低温磁性研究, 并提出磁宏观量子隧道效应的概念, 随后在60年代末期研制成了磁性液体。80 年代以后, 在理论与实验二方面, 开始研究纳米磁性微粒的磁宏观量子隧道效应,在1988 年首先在Fe/ Cr 多层膜中发现了巨磁电阻效应, 也为磁性纳米材料的研究奠定了更夯实的基础。
正文
磁性纳米材料的特性不同于常规的磁性材料,其原因在于与磁性相关联的特征物理长度恰好出于纳米量级,例如,磁单畴尺寸,超顺磁性临界尺寸,交换作用长度,以及电子平均自由路程等大致处于1~100nm量级,当磁性体的尺寸与这些特征物理长度相当时,就会呈现反常的磁学与电学性质。利用这些新特性已涌现出一系列新材料,尤其在信息存储,处理与传输中已成为不可或缺的组成部分,广泛地应用于电信,自动控制,通讯,家用电器等领域,信息化发展的总趋势是向小,轻,薄以及多功能方
向进展,因而要求磁性材料向高性能,新功能方向发展。依据表述磁性材料的几个基本概念,磁性材料大致分为软磁性和硬磁性材料两大类。软磁性材料可以被很低的外磁场磁化,但当外磁场去除后其剩磁就很低,一般矫顽力Hc在400A/m到0.16A/m 之间。粒子软磁性行为在很多利用外磁场响应的相关应用领域十分重要,而硬磁性材料则在外磁场作用后总是表现出很大的剩磁,一般矫顽力Hc在10KA/m到1MA/m之间,其中矫顽力很大的即为永久磁铁,一般可以作为研究体系中的外加磁场。纳米微粒尺寸到一个临界值时,便进入超顺磁状态,矫顽力Hc趋向于0,这可归纳为以下原因:在小尺寸下,超顺磁体的磁化曲线与铁磁体不同,没有磁滞现象。当去掉外磁场后,剩磁很快消失。在普通顺磁体中,单个原子或分子的磁矩独立地沿磁场取向,而超顺磁体以包含大于10个原子的均匀磁化的单畴作为整体协同取向,所以磁化率较一般顺磁体大很多。当纳米粒子小到一定尺寸的时候,比如四氧化三铁粒子大小为十几二十纳米或更小,每一个纳米粒子都相当于一个小的磁畴。当无外加磁场,粒子(磁畴)无序排列,表现为顺次。当施加磁场,粒子按磁场排列,显示出铁磁(但比块体弱)。
纳米材料由于其组成材料的纳米粒子尺寸小,微粒表面所占有的原子数目远远多于相同质量的非纳米材料粒子表面所占有的原子数目。随着微粒的粒径变小,其表面所占粒子数目呈几何级数增加。单位质量粒子表面积的增大,表面原子数目的剧增,使原子配位数严重不足,同时高表面积带来的高表面能,使粒子表面原子极其活跃,很容易与周围的气体反映,也容易吸附气体。这一现象被称为纳米材料的表面效应。利用这一性质,人们可以在许多方面使用纳米材料来提高材料的利用率和开发纳米材料的新用途,例如,提高催化剂效率。纳米粒子尺寸下降到一定值时,费米能级附近的电子能级由连续能级变为分立能级的现象称为量子尺寸效应。Kuto曾提出公式
r=4E
f /2N(其中r为能级间距,E
f
为费米能级,N为总原子数)。宏观物质包含无限个
原子(即N ∝),则能级间距r 0,而纳米材料由于所含原子数有限,即N值较小,这就导致r有一定的值,即能级间距发生分裂,能级的平均间距与纳米晶粒中自由电子的总数成反比。纳米材料中处于分立的量子化能级汇总的电子的波动性,将直接导致纳米材料的一系列特殊性能,如特异的化学催化和光催化性能,光学非线性等。
磁性纳米材料大致可以分为四大类型:一是纳米微晶型,比如磁性纳米微晶永磁材料、磁性纳米微晶软磁材料;二是纳米颗粒型,比如磁记录介质、磁性液体、吸波材料;三是纳米有序阵列型,比如传感器、场致发光;四是纳米结构型,比如人工纳米结构材料和天然纳米结构材料。磁性纳米微晶材料可分为纳米微晶永磁材料和纳米微晶软磁材料。
永磁材料,要求磁性强,保持磁性的能力也强,同时磁性要稳定,不易受外界环境条件的影响。所以永磁材料要具有高的最大磁能积(BH)、高的剩余磁通密度(简称剩磁Br)、和高的矫顽力(Hc),如果要同时满足这三个量对温度等环境条件有较高的稳定性是很困难的,在实际情况中,只能根据不同的需要来选择适当的永磁材料。目前研究较多的是稀土永磁材料,从1967年第一代稀土永磁材料发展至今,纳米级的永磁材料其磁性能更优越,其永磁性能可以随合金的组成、含量和制造工艺等的不同而有明显变化。同时具有较高的热稳定性。随着快淬技术的发展,使一些化合物能以亚稳态形式存在。如果添加某些元素使亚稳相稳定化,使得对稀土永磁的探索不局限于二元系,利用快淬技术制得纳米晶具有较好的热稳定性、耐腐蚀性,适用于微电机等小型异型、尺寸精度要求高的永磁器件。近年来研究主要方向就是是纳米复相稀土永磁材料的研制。
软磁材料经历了晶态.非晶态、纳米微晶态的发展历程。纳米微晶金属软磁材