有限差分法的Matlab程序(椭圆型方程)

合集下载

泊松方程的有限差分法的MATLAB实现

泊松方程的有限差分法的MATLAB实现

泊松方程的有限差分法的MATLAB实现作者:冯立伟徐涛屈福志来源:《电脑知识与技术》2017年第13期摘要:泊松方程是物理及工程应用领域中一类非常重要的方程,研究其数值求解方法具有重要意义。

给出了使用有限差分法求解泊松方程的计算方法,并讨论了使用MATLAB编写计算程序,使用数值算例和静电场实例进行了数值实验,实验结果与理论一致,检验了算法的有效性。

关键词:泊松方程;五点差分格式;有限差分法中图分类号:TP311 文献标识码:A 文章编号:1009-3044(2017)13-0233-031概述物理过程,都可用椭圆型方程来描述。

其中最典型的方程是泊松(Poisson)方程。

传热学中带有稳定热源或内部无热源的稳定温度场的温度分布、流体动力学中不可压缩流体的稳定无旋流动、弹性力学中平衡问题及电磁学中静电场的电势等均满足泊松方程,泊松方程也是数值网格生成技术所遵循的基本方程。

因此,研究其数值求解方法具有重要意义。

MATLAB是目前应用最广泛的科学和工程计算软件。

MATLAB基于矩阵运算,具有强大数值运算能力,是方便实用、功能强大的数学软件;同时,MATLAB具有强大的图形绘制功能,用户只需提供绘图数据和指定绘图方式,用很少的程序指令就可得到将计算结果转化为直观、形象的图像。

使用MAT-LAB求解微分方程已有大量的研究。

因此,近些年来,越来越多的人开始使用MATLAB来求解泊松方程。

利用MAT-LAB强大的数值计算能力和图形绘制技术,可以实现使用差分法求解泊松方程并绘制出数值解的二维、三维图像,从而可以更好地理解泊松方程解的物理意义。

本文讨论使用差分法通过MATLAB编程求解二维矩形区域上的泊松方程,并使用两个算例进行检验和对结果进行分析。

边界条件为将未知解函数在内部节点上的值按行排列,组成解向量为:3差分格式的求解为了便于使用MATLAB编写程序,将差分方程转化为矩阵形式:4数值实验算例1:为了分析和比较差分格式在不同步长下的结果,使用2范数意义下的绝对误差和相对误差作为评价指标,表1给出了步长h=0.01取不同值的绝对误差和相对误差从表1可看出随着网格步长h的减小数值解的绝对误差和相对误差在变小。

椭圆型方程

椭圆型方程

§1
差分逼近的基本概念
考虑二阶微分方程边值问题
d 2u Lu 2 qu f , a x b, dx u (a) , u (b) , (1.1) (1.2)
其中 q,f 为 [ a , b ] 上的连续函数, q 0, , 为给定常数. 将其分成等分,分点为

uh 收敛到边值问题的解 u .
对于差分方程
Lhvi fi , i 1, 2,3,L , N 1,
定义1.3
v0 vN 0 , 如果存在与网格 I h 及右端 fh 无关的常数
数 M 和 h0 , 使 || vh || M || f h ||R ,
0 h h0
称差分方程关于右端稳定.
第二章
椭圆形方程的有限差分法
有限差分法和有限元方法是解偏微分方程的两种主要数值
方法.
有限差分法:从定解问题的微分或积分形式出发,用数值 微商或数值积分导出相应的线性代数方程组. 有限元方法:从定解问题的変分形式出发,用RitzGalerkin 方法导出相应的线性代数方程组,但基函数要按
特定方式选取.
取 x(1) x0 a, x(2) x1 , 得
2
(2.9) (2.10)
W (a) W ( x1 ) 2 qudx
d2 du hi 1 hi dx 2 ( p dx ) 12 i
d 3u 2 p O ( h ) dx 3 i
于是得逼近方程 (2.1)~(2.2) 的差分方程:
ui 1 ui ui ui 1 2 p 1 Lhui pi 1 i h h h h i i 1 i 1 i 2 2 i i 1, 2,, N 1 ui 1 ui qiui fi , hi hi 1 u0 , uN

差分法求解偏微分方程MAAB

差分法求解偏微分方程MAAB

南京理工大学课程考核论文课程名称:高等数值分析论文题目:有限差分法求解偏微分方程姓名:罗晨学号:成绩:有限差分法求解偏微分方程一、主要内容1.有限差分法求解偏微分方程,偏微分方程如一般形式的一维抛物线型方程:具体求解的偏微分方程如下:2.推导五种差分格式、截断误差并分析其稳定性;3.编写MATLAB程序实现五种差分格式对偏微分方程的求解及误差分析;4.结论及完成本次实验报告的感想。

二、推导几种差分格式的过程:有限差分法(finite-differencemethods )是一种数值方法通过有限个微分方程近似求导从而寻求微分方程的近似解。

有限差分法的基本思想是把连续的定解区域用有限个离散点构成的网格来代替;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。

推导差分方程的过程中需要用到的泰勒展开公式如下:()2100000000()()()()()()()......()(())1!2!!n n n f x f x f x f x f x x x x x x x o x x n +'''=+-+-++-+-(2-1)求解区域的网格划分步长参数如下:11k k k kt t x x h τ++-=⎧⎨-=⎩(2-2) 2.1古典显格式2.1.1古典显格式的推导由泰勒展开公式将(,)u x t 对时间展开得2,(,)(,)()()(())i i k i k k k uu x t u x t t t o t t t∂=+-+-∂(2-3) 当1k t t +=时有21,112,(,)(,)()()(())(,)()()i k i k i k k k k k i k i k uu x t u x t t t o t t tuu x t o tττ+++∂=+-+-∂∂=+⋅+∂(2-4)得到对时间的一阶偏导数1,(,)(,)()=()i k i k i k u x t u x t uo t ττ+-∂+∂(2-5) 由泰勒展开公式将(,)u x t 对位置展开得223,,21(,)(,)()()()()(())2!k i k i k i i k i i u uu x t u x t x x x x o x x x x∂∂=+-+-+-∂∂(2-6)当11i i x x x x +-==和时,代入式(2-6)得2231,1,1122231,1,1121(,)(,)()()()()(())2!1(,)(,)()()()()(())2!i k i k i k i i i k i i i i i k i k i k i i i k i i i iu u u x t u x t x x x x o x x x xu u u x t u x t x x x x o x x x x ++++----⎧∂∂=+-+-+-⎪⎪∂∂⎨∂∂⎪=+-+-+-⎪∂∂⎩(2-7) 因为1k k x x h +-=,代入上式得2231,,22231,,21(,)(,)()()()2!1(,)(,)()()()2!i k i k i k i k i k i k i k i ku u u x t u x t h h o h x xu u u x t u x t h h o h x x +-⎧∂∂=+⋅+⋅+⎪⎪∂∂⎨∂∂⎪=-⋅+⋅+⎪∂∂⎩(2-8) 得到对位置的二阶偏导数2211,22(,)2(,)(,)()()i k i k i k i k u x t u x t u x t uo h x h+--+∂=+∂(2-9) 将式(2-5)、(2-9)代入一般形式的抛物线型偏微分方程得(2-10)为了方便我们可以将式(2-10)写成11122k kk k k k i i i i i i u u u u u f h ατ++-⎡⎤--+-=⎢⎥⎣⎦(2-11) ()11122k k k k k k i i i i i i u u uu u f hτατ++----+=(2-12)最后得到古典显格式的差分格式为()111(12)k k k k k i i i i i u ra u r u u f ατ++-=-+++(2-13)2r hτ=其中,古典显格式的差分格式的截断误差是2()o h τ+。

matlab有限差分法

matlab有限差分法

matlab有限差分法一、前言Matlab是一种广泛应用于科学计算和工程领域的计算机软件,它具有简单易学、功能强大、易于编程等优点。

有限差分法(Finite Difference Method)是一种常用的数值解法,它将微分方程转化为差分方程,通过对差分方程进行离散化求解,得到微分方程的数值解。

本文将介绍如何使用Matlab实现有限差分法。

二、有限差分法基础1. 有限差分法原理有限差分法是一种通过将微分方程转化为离散形式来求解微分方程的数值方法。

其基本思想是将求解区域进行网格划分,然后在每个网格点上进行逼近。

假设要求解一个二阶常微分方程:$$y''(x)=f(x,y(x),y'(x))$$则可以将其转化为离散形式:$$\frac{y_{i+1}-2y_i+y_{i-1}}{h^2}=f(x_i,y_i,y'_i)$$其中$h$为网格步长,$y_i$表示在$x_i$处的函数值。

2. 一维情况下的有限差分法对于一维情况下的常微分方程:$$\frac{d^2 y}{dx^2}=f(x,y,y')$$可以使用中心差分法进行离散化:$$\frac{y_{i+1}-2y_i+y_{i-1}}{h^2}=f(x_i,y_i,y'_i)$$这个方程可以写成矩阵形式:$$A\vec{y}=\vec{b}$$其中$A$为系数矩阵,$\vec{y}$为函数值向量,$\vec{b}$为右端项向量。

三、Matlab实现有限差分法1. 一维情况下的有限差分法假设要求解的方程为:$$\frac{d^2 y}{dx^2}=-\sin(x)$$首先需要确定求解区域和网格步长。

在本例中,我们将求解区域设为$[0,2\pi]$,网格步长$h=0.01$。

则可以通过以下代码生成网格:```matlabx = 0:0.01:2*pi;```接下来需要构造系数矩阵和右端项向量。

根据上面的公式,系数矩阵应该是一个三对角矩阵,可以通过以下代码生成:```matlabn = length(x)-2;A = spdiags([-ones(n,1), 2*ones(n,1), -ones(n,1)], [-1 0 1], n, n); ```其中`spdiags`函数用于生成一个稀疏矩阵。

有限差分法的Matlab程序

有限差分法的Matlab程序

有限差分法的M a t l a b程序有限差分法的Matlab程序(椭圆型方程)function FD_PDE(fun,gun,a,b,c,d)% 用有限差分法求解矩形域上的Poisson方程tol=10^(-6); % 误差界N=1000; % 最大迭代次数n=20; % x轴方向的网格数m=20; % y轴方向的网格数h=(b-a)/n; % x轴方向的步长l=(d-c)/m; % y轴方向的步长for i=1:n-1x(i)=a+i*h;end % 定义网格点坐标for j=1:m-1y(j)=c+j*l;end % 定义网格点坐标u=zeros(n-1,m-1); %对u赋初值% 下面定义几个参数r=h^2/l^2;s=2*(1+r);k=1;% 应用Gauss-Seidel法求解差分方程while k<=N% 对靠近上边界的网格点进行处理% 对左上角的网格点进行处理z=(-h^2*fun(x(1),y(m-1))+gun(a,y(m-1))+r*gun(x(1),d)+r*u(1,m-2)+u(2,m-1))/s; norm=abs(z-u(1,m-1));u(1,m-1)=z;% 对靠近上边界的除第一点和最后点外网格点进行处理for i=2:n-2z=(-h^2*fun(x(i),y(m-1))+r*gun(x(i),d)+r*u(i,m-2)+u(i+1,m-1)+u(i-1,m-1))/s;if abs(u(i,m-1)-z)>norm;norm=abs(u(i,m-1)-z);endu(i,m-1)=z;end% 对右上角的网格点进行处理z=(-h^2*fun(x(n-1),y(m-1))+gun(b,y(m-1))+r*gun(x(n-1),d)+r*u(n-1,m-2)+u(n-2,m-1))/s; if abs(u(n-1,m-1)-z)>normnorm=abs(u(n-1,m-1)-z);endu(n-1,m-1)=z;% 对不靠近上下边界的网格点进行处理for j=m-2:-1:2% 对靠近左边界的网格点进行处理z=(-h^2*fun(x(1),y(j))+gun(a,y(j))+r*u(1,j+1)+r*u(1,j-1)+u(2,j))/s;if abs(u(1,j)-z)>normnorm=abs(u(1,j)-z);endu(1,j)=z;% 对不靠近左右边界的网格点进行处理for i=2:n-2z=(-h^2*fun(x(i),y(j))+u(i-1,j)+r*u(i,j+1)+r*u(i,j-1)+u(i+1,j))/s;if abs(u(i,j)-z)>normnorm=abs(u(i,j)-z);endu(i,j)=z;end% 对靠近右边界的网格点进行处理z=(-h^2*fun(x(n-1),y(j))+gun(b,y(j))+r*u(n-1,j+1)+r*u(n-1,j-1)+u(n-2,j))/s;if abs(u(n-1,j)-z)>normnorm=abs(u(n-1,j)-z);endu(n-1,j)=z;end% 对靠近下边界的网格点进行处理% 对左下角的网格点进行处理z=(-h^2*fun(x(1),y(1))+gun(a,y(1))+r*gun(x(1),c)+r*u(1,2)+u(2,1))/s;if abs(u(1,1)-z)>normnorm=abs(u(1,1)-z);endu(1,1)=z;% 对靠近下边界的除第一点和最后点外网格点进行处理for i=2:n-2z=(-h^2*fun(x(i),y(1))+r*gun(x(i),c)+r*u(i,2)+u(i+1,1)+u(i-1,1))/s;if abs(u(i,1)-z)>normnorm=abs(u(i,1)-z);endu(i,1)=z;end% 对右下角的网格点进行处理z=(-h^2*fun(x(n-1),y(1))+gun(b,y(1))+r*gun(x(n-1),c)+r*u(n-1,2)+u(n-2,1))/s;if abs(u(n-1,1)-z)>normnorm=abs(u(n-1,1)-z);endu(n-1,1)=z;% 结果输出if norm<=tolfid = fopen('FDresult.txt', 'wt');fprintf(fid,'\n********用有限差分法求解矩形域上Poisson方程的输出结果********\n\n'); fprintf(fid,'迭代次数: %d次\n\n',k);fprintf(fid,' x的值 y的值 u的值 u的真实值 |u-u(x,y)|\n');for i=1:n-1for j=1:m-1fprintf(fid, '%8.3f %8.3f %14.8f %14.8f %14.8f\n', [x(i),y(j),u(i,j),gun(x(i),y(j)),abs(u(i,j)-gun(x(i),y(j)))]);endendfclose(fid);break; % 用来结束while循环endk=k+1;endif k==N+1fid = fopen('FDresult.txt', 'wt');fprintf(fid,'超过最大迭代次数,求解失败!');fclose(fid);endclc[a1 a2 a3 a4] = textread('F:\aa.txt','%f %f %f %f');a = [a1 a2 a3];a=a';b=a4';[pa,mina,maxa,pb,minb,maxb]=premnmx(a,b);net =newrb(pa,pb,0,1.3,24,2);an =sim(net,pa);E = an - pb;m =sse(E)n = mse(E)[f1 f2 f3 f4]= textread('F:\bb.txt','%f %f %f %f');f = [f1 f2 f3];f=f';pf = tramnmx(f,mina,maxa);an2 = sim(net,pf);g =postmnmx(an2,minb,maxb);g= g';E2 = g- f4;mm =sse(E2)nn = mse(E2)。

椭圆型方程

椭圆型方程

(1.5)
注 此方程组尽管是高阶方程组,但每个方程未知数
最多有3个易于求解.
④ 对方程组 (1.4)~(1.5) 的解分析需要考虑以下几个问题:
(a) 解是否惟一? (b) 当网格无限加密时,即 h 0 时,差分解 ui
是否收敛到真解 u (xi ) ? (c) 在何种度量下收敛? (d) 收敛速度如何? 为了解决如上问题,需要给出如下说明:
于是在 xi 将方程 (1.1) 写成
u (xi1) 2u (xi ) u (xi1) h2
q(xi )
u (xi )

f
(xi )
R
i(u),
(1.3)
其中
R
i(u)


h2 12

d
4u(x) dx4

i
O(h3 ).
舍去 R i(u) 得逼近方程 (1.1) 的差分方程为:


du dx
i

hi1 2
hi

d 2u dx2
i

O(h2
)
(2.3)
p(
x i
1
)
2
u(xi ) u(xi1) hi


p
du dx i1
2

hi2 24
p
d 3u
dx3
i1
2
O(h3)


p
du dx
取 x(1) x0 a, x(2) x1 , 得
2
(2.7) (2.8)
(2.9) (2.10)
W (a) W (x1 ) 2
x1

有限差分法求解偏微分方程MATLAB

有限差分法求解偏微分方程MATLAB

南京理工大学课程考核论文课程名称:高等数值分析论文题目:有限差分法求解偏微分方程*名:**学号: 1成绩:有限差分法求解偏微分方程一、主要内容1.有限差分法求解偏微分方程,偏微分方程如一般形式的一维抛物线型方程:22(,)()u uf x t t xαα∂∂-=∂∂其中为常数具体求解的偏微分方程如下:22001(,0)sin()(0,)(1,)00u u x t x u x x u t u t t π⎧∂∂-=≤≤⎪∂∂⎪⎪⎪=⎨⎪⎪==≥⎪⎪⎩2.推导五种差分格式、截断误差并分析其稳定性;3.编写MATLAB 程序实现五种差分格式对偏微分方程的求解及误差分析;4.结论及完成本次实验报告的感想。

二、推导几种差分格式的过程:有限差分法(finite-difference methods )是一种数值方法通过有限个微分方程近似求导从而寻求微分方程的近似解。

有限差分法的基本思想是把连续的定解区域用有限个离散点构成的网格来代替;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。

推导差分方程的过程中需要用到的泰勒展开公式如下:()2100000000()()()()()()()......()(())1!2!!n n n f x f x f x f x f x x x x x x x o x x n +'''=+-+-++-+- (2-1)求解区域的网格划分步长参数如下:11k k k kt t x x h τ++-=⎧⎨-=⎩ (2-2) 2.1 古典显格式2.1.1 古典显格式的推导由泰勒展开公式将(,)u x t 对时间展开得 2,(,)(,)()()(())i i k i k k k uu x t u x t t t o t t t∂=+-+-∂ (2-3) 当1k t t +=时有21,112,(,)(,)()()(())(,)()()i k i k i k k k k k i k i k uu x t u x t t t o t t tuu x t o tττ+++∂=+-+-∂∂=+⋅+∂ (2-4)得到对时间的一阶偏导数1,(,)(,)()=()i k i k i k u x t u x t uo t ττ+-∂+∂ (2-5) 由泰勒展开公式将(,)u x t 对位置展开得223,,21(,)(,)()()()()(())2!k i k i k i i k i i u uu x t u x t x x x x o x x x x∂∂=+-+-+-∂∂ (2-6)当11i i x x x x +-==和时,代入式(2-6)得2231,1,1122231,1,1121(,)(,)()()()()(())2!1(,)(,)()()()()(())2!i k i k i k i i i k i i i i i k i k i k i i i k i i i iu uu x t u x t x x x x o x x x x u u u x t u x t x x x x o x x x x ++++----⎧∂∂=+-+-+-⎪⎪∂∂⎨∂∂⎪=+-+-+-⎪∂∂⎩(2-7) 因为1k k x x h +-=,代入上式得2231,,22231,,21(,)(,)()()()2!1(,)(,)()()()2!i k i k i k i k i k i k i k i ku uu x t u x t h h o h x xu u u x t u x t h h o h x x +-⎧∂∂=+⋅+⋅+⎪⎪∂∂⎨∂∂⎪=-⋅+⋅+⎪∂∂⎩ (2-8) 得到对位置的二阶偏导数2211,22(,)2(,)(,)()()i k i k i k i k u x t u x t u x t u o h x h+--+∂=+∂ (2-9) 将式(2-5)、(2-9)代入一般形式的抛物线型偏微分方程得21112(,)(,)(,)2(,)(,)(,)()i k i k i k i k i k i k u x t u x t u x t u x t u x t f x t o h h αττ++---+⎡⎤-=++⎢⎥⎣⎦(2-10)为了方便我们可以将式(2-10)写成11122k kk k k k i i i i i i u u u u u f h ατ++-⎡⎤--+-=⎢⎥⎣⎦(2-11) ()11122k k k k k k i i i i i i u u uu u f h τατ++----+= (2-12)最后得到古典显格式的差分格式为()111(12)k k k k k i i i i i u ra u r u u f ατ++-=-+++ (2-13)2r h τ=其中,古典显格式的差分格式的截断误差是2()o h τ+。

热传导方程有限差分法的MATLAB实现

热传导方程有限差分法的MATLAB实现

热传导方程有限差分法的MATLAB实现
史策
【期刊名称】《咸阳师范学院学报》
【年(卷),期】2009(24)4
【摘要】对于有界热传导齐次方程的混合问题,用分离变量法求解往往很复杂.为了更好地理解热传导方程的解,使用MATLAB软件将方程的解用图像表示出来.通过区域转换的思想,利用MATLAB编程实现一定区域内热传导方程的有限差分方法,数值表明了方法的可行性和稳定性.
【总页数】4页(P27-29,36)
【作者】史策
【作者单位】西安建筑科技大学,理学院,陕西,西安,710055
【正文语种】中文
【中图分类】O552
【相关文献】
1.有限差分法解薛定谔方程与MATLAB实现 [J], 刘晓军
2.放射性气体扩散方程有限差分法的MATLAB实现 [J], 龙亮;张振华;姜林;周科廷;莫懿新
3.泊松方程的有限差分法的MATLAB实现 [J], 冯立伟;徐涛;屈福志
4.拉普拉斯方程有限差分法的MATLAB实现 [J], 谢焕田;吴艳
5.基于MATLAB的电磁场二维场域有限差分法分析 [J], 林向会;谢本亮
因版权原因,仅展示原文概要,查看原文内容请购买。

【毕业设计(论文)】二维热传导方程有限差分法的MATLAB实现

【毕业设计(论文)】二维热传导方程有限差分法的MATLAB实现

第1章前言1.1问题背景在史策教授的《一维热传导方程有限差分法的MATLAB实现》和曹刚教授的《一维偏微分方程的基本解》中,对偏微分方程的解得MATLAB实现问题进行过研究,但只停留在一维中,而实际中二维和三维的应用更加广泛。

诸如粒子扩散或神经细胞的动作电位。

也可以作为某些金融现象的模型,诸如布莱克-斯科尔斯模型与Ornstein-uhlenbeck过程。

热方程及其非线性的推广形式也被应用与影响分析。

在科学和技术发展过程中,科学的理论和科学的实验一直是两种重要的科学方法和手段。

虽然这两种科学方法都有十分重要的作用,但是一些研究对象往往由于他们的特性(例如太大或太小,太快或太慢)不能精确的用理论描述或用实验手段来实现。

自从计算机出现和发展以来,模拟那些不容易观察到的现象,得到实际应用所需要的数值结果,解释各种现象的规律和基本性质。

科学计算在各门自然科学和技术科学与工程科学中其越来越大的作用,在很多重要领域中成为不可缺少的重要工具。

而科学与工程计算中最重要的内容就是求解科学研究和工程技术中出现的各种各样的偏微分方程或方程组。

解偏微分方程已经成为科学与工程计算的核心内容,包括一些大型的计算和很多已经成为常规的计算。

为什么它在当代能发挥这样大的作用呢?第一是计算机本身有了很大的发展;第二是数值求解方程的计算法有了很大的发展,这两者对人们计算能力的发展都是十分重要的。

1.2问题现状近三十年来,解偏微分方程的理论和方法有了很大的发展,而且在各个学科技术的领域中应用也愈来愈广泛,在我国,偏微分方程数值解法作为一门课程,不但在计算数学专业,而且也在其他理工科专业的研究生的大学生中开设。

同时,求解热传导方程的数值算法也取得巨大进展,特别是有限差分法方面,此算法的特点是在内边界处设计不同于整体的格式,将全局的隐式计算化为局部的分段隐式计算。

而且精度上更好。

目前,在欧美各国MATLAB的使用十分普及。

在大学的数学、工程和科学系科,MATLAB苏佳园:二维热传导方程有限差分法的MATLAB实现被用作许多课程的辅助教学手段,MATLAB也成为大学生们必不可少的计算工具,甚至是一项必须掌握的基本技能。

有限差分法解方程

有限差分法解方程

有限差分法(Finite Difference Method)是一种数值方法,用于求解偏微分方程(PDEs)的近似解。

这种方法通过将连续的微分方程离散化,将其转化为一系列代数方程,从而在计算机上进行求解。

有限差分法特别适用于求解具有固定边界条件和初始条件的偏微分方程。

以下是有限差分法求解偏微分方程的基本步骤:1. 网格划分:首先,将问题的连续域划分为离散的网格点。

对于二维问题,这通常涉及到在空间和时间上进行网格划分,形成网格点的集合。

2. 离散化:使用差分公式将微分方程中的导数替换为差分。

例如,一阶导数可以用前向差分或后向差分近似,而二阶导数可以用中心差分近似。

3. 构建差分方程:在每个网格点上应用差分公式,将微分方程转化为代数方程。

对于边界条件,也需要进行相应的离散化处理。

4. 求解线性方程组:差分方程通常会导致一个线性方程组。

对于大型问题,这可能需要使用迭代方法或直接求解器来找到解。

5. 稳定性分析:在求解过程中,需要确保数值解的稳定性。

这涉及到对时间步长和空间步长的选择,以满足CFL(Courant-Friedrichs-Lewy)条件。

6. 迭代求解:对于时间依赖的问题,如热传导或波传播,可以通过时间步进方法(如显式或隐式方法)来迭代求解。

7. 结果分析:最后,分析数值解以验证其准确性,并与解析解(如果存在)进行比较。

有限差分法在处理规则区域和简单边界条件的问题时非常有效。

然而,对于具有复杂几何形状或边界条件的问题,可能需要更高级的数值方法,如有限元方法(FEM)或边界元方法(BEM)。

在实际应用中,有限差分法通常与计算机软件结合使用,如MATLAB、Python的SciPy库等,以便于高效地处理大规模问题。

热传导方程有限差分法的MATLAB实现

热传导方程有限差分法的MATLAB实现

万方数据万方数据万方数据万方数据热传导方程有限差分法的MATLAB实现作者:史策作者单位:西安建筑科技大学,理学院,陕西,西安,710055刊名:咸阳师范学院学报英文刊名:JOURNAL OF XIANYANG NORMAL UNIVERSITY年,卷(期):2009,24(4)被引用次数:0次1.曹钢,王桂珍,任晓荣.一维热传导方程的基本解[J].山东轻工业学院学报,2005,19(4):76-80.2.万正苏,方春华,张再云.关于热传导方程有限差分区域分解并行算法精度的注记[J].湖南理工学院学报(自然科学版),2007,20(3):12-14.3.StephenJ.Chapman.MATLAB编程[M].邢树军,郑碧波,译.北京:科学出版社,2008.4.田兵.用MATLAB解偏微分方程[J].阴山学刊,2006,20(4):12-13.5.王飞,裴永祥.有限差分方法的MATLAB编程[J].新疆师范大学学报(自然科学版),2003,22(4):21-27.6.王宝红.热传导方程的可视化探讨[J].忻州师范学院学报,2008,24(2):31-36.7.李先枝.热传导方程差分解法的最佳网格[J].河南大学学报(自然科学版),2004,34(3):16-18.8.赵德奎,刘勇.MATLAB在有限差分数值计算中的应用[J].四川理工学院学报,2005,18(4):61-64.9.谢焕田,吴艳.拉普拉斯有限差分法的MATLAB实现[J].四川理工学院学报,2008,21(3):1-2.10.南京大学数学系计算数学专业.偏微分方程数值解法[M].北京:科学出版社,1979.1.学位论文申卫东热传导方程有限差分区域分解算法研究2003区域分解算法是在并行机上求解偏微分方程数值解的一种较自然的方法.该方法先将偏微分方程求解区域划分为若干个子区域,然后在各个子区域并行求解.全文共五章.第一章为引言,简要介绍了热传导方程并行算法的概况及该文所讨论的基本内容.在第二章,我们在内边界点为等距分划的多子区域条件下,得到Dawson等人关于求解热传导方程区域分解算法差分解的误差估计.在第三章,我们以Saul'yev非对称格式作内边界处理,发展了新的区域分解算法,得到了差分解的先验误差估计,并与Dawson等人的算法作了比较.给出了关于算法计算精度的数值结果.在第四章,我们发展了一些新技术,在子区域的边界处采用小时间步长古典显式格式求解,构造了新的区域分解算法,得到了差分解的先验误差估计.给出了关于算法计算精度的数值结果.在第五章,我们在二维热传导方程求解上扩充了Dawson等人的区域分解算法.给出了关于算法计算精度的数值结果.第六章为该研究工作的主要结论.2.期刊论文张守慧.王文洽.ZHANG Shou-hui.WANG Wen-qia热传导方程有限差分逼近的数学Stencil及其新型迭代格式-山东大学学报(理学版)2006,41(6)将Stencil应用于偏微分方程有限元差分逼近过程,以两类差分格式为基础建立了求解热传导方程的两种新型迭代算法.此两种算法与经典的Jacobi方法同样具有并行的性质,但比Jacobi方法收敛快.给出的算例说明方法的适用性.3.期刊论文吕桂霞.马富明.Lü Guixia.Ma Fuming二维热传导方程有限差分区域分解算法-数值计算与计算机应用2006,27(2)本文讨论了一类数值求解二维热传导方程的并行差分格式.在这个算法中,通过引进内界点将求解区域分裂成若干子区域.在子区域间内界点上采用非对称格式计算,一旦这些点的值被计算出来,各子区域间的计算可完全并行.本文得到了稳定性条件和最大模误差估计.它表明我们的格式有令人满意的稳定性,并且有着较高的收敛阶.4.学位论文田源地下煤火三维数理模型正演数值模拟2006本文首先给出了几个地下煤火随空间、温度变化的动态和稳态热数学物理模型及其简化模型。

MATLAB中的偏微分方程数值解法

MATLAB中的偏微分方程数值解法

MATLAB中的偏微分方程数值解法偏微分方程(Partial Differential Equations,PDEs)是数学中的重要概念,广泛应用于物理学、工程学、经济学等领域。

解决偏微分方程的精确解往往非常困难,因此数值方法成为求解这类问题的有效途径。

而在MATLAB中,有丰富的数值解法可供选择。

本文将介绍MATLAB中几种常见的偏微分方程数值解法,并通过具体案例加深对其应用的理解。

一、有限差分法(Finite Difference Method)有限差分法是最为经典和常用的偏微分方程数值解法之一。

它将偏微分方程的导数转化为差分方程,通过离散化空间和时间上的变量,将连续问题转化为离散问题。

在MATLAB中,使用有限差分法可以比较容易地实现对偏微分方程的数值求解。

例如,考虑一维热传导方程(Heat Equation):∂u/∂t = k * ∂²u/∂x²其中,u为温度分布随时间和空间的变化,k为热传导系数。

假设初始条件为一段长度为L的棒子上的温度分布,边界条件可以是固定温度、热交换等。

有限差分法可以将空间离散化为N个节点,时间离散化为M个时刻。

我们可以使用中心差分近似来计算二阶空间导数,从而得到以下差分方程:u(i,j+1) = u(i,j) + Δt * (k * (u(i+1,j) - 2 * u(i,j) + u(i-1,j))/Δx²)其中,i表示空间节点,j表示时间步。

Δt和Δx分别为时间和空间步长。

通过逐步迭代更新节点的温度值,我们可以得到整个时间范围内的温度分布。

而MATLAB提供的矩阵计算功能,可以大大简化有限差分法的实现过程。

二、有限元法(Finite Element Method)有限元法是另一种常用的偏微分方程数值解法,特点是适用于复杂的几何形状和边界条件。

它将求解区域离散化为多个小单元,通过构建并求解代数方程组来逼近连续问题。

在MATLAB中,我们可以使用Partial Differential Equation Toolbox提供的函数进行有限元法求解。

matlab有限差分法求解椭圆型偏微分方程

matlab有限差分法求解椭圆型偏微分方程

matlab有限差分法求解椭圆型偏微分方程
有限差分法是一种求解偏微分方程的经典数值方法,它将连续的
偏微分方程转化为离散的代数方程,从而能够使用计算机进行计算。

在 MATLAB 中,我们可以使用有限差分法来求解椭圆型偏微分方程。

椭圆型偏微分方程通常用来描述有稳态的空间分布的物理现象,
如稳态的温度分布。

其通用的数学形式为:
∇·(a(x,y)∇u(x,y)) + f(x,y) = 0
其中,u(x,y) 是要求解的函数,a(x,y) 是定义在区域Ω上的
函数,它代表了该区域内各点的材料特性,f(x,y) 是特定的源项函数。

有限差分法将区域Ω划分为离散的点集,然后通过对这些点之
间的差分运算进行逐点计算,得到离散式。

例如,可以使用中心差分
法对 u(x,y) 在某个点(x0,y0) 的二阶偏导数进行离散化,得到:(u(x0+Δx,y0) - 2u(x0,y0) + u(x0-Δx,y0)) / Δx^2
同样,对于 a(x,y)在点(x0,y0)的取值,我们也可以使用中心差
分法进行离散化:
(a(x0+Δx,y0) + a(x0,y0)) / 2
经过离散化后,我们可以将偏微分方程变为一个线性代数方程组,使用 MATLAB 的矩阵运算功能进行求解。

需要注意的是,在实际计算中,由于矩阵求逆时存在数值不稳定的问题,因此需要对矩阵进行一
定的处理,如使用迭代法或预处理技术等。

总之,有限差分法是一种常用的求解偏微分方程的数值方法,在MATLAB 中也有相应的实现。

通过离散化连续的偏微分方程,我们能够
在计算机上高效地求解椭圆型偏微分方程,提高计算效率,解决实际
问题。

有限差分法及matlab实现

有限差分法及matlab实现

矩阵(数组)是计算机中重要的数据结构,为了方便用矩阵去存储数据,我们网格去划分空间,从而不 仅使方程化为简单的有限差分形式,而且这样的数据类型在 计算机中易于储存和运算。那么 h=k=l=1,并且令 f(x,y,z)=u(x,y,z) 就有
U i1, j , k U i−1, j , k U i , j 1, kU i , j −1, kU i , j , k1 U i , j , k−1
上述六式相加
2
3
U i1, j , k U i−1, j , k U i , j 1, kU i , j −1, kU i , j , k1 U i , j , k−1 2 2 2 ∂ U ∂ U ∂ U ⋯ = 6U i , j , k ∂ x2 ∂ y 2 ∂ z 2 2 代入 ∇ U = ρ U i1, j , k U i−1, j , k U i , j 1, kU i , j −1, kU i , j , k1 U i , j , k−1 = 6U i , j , k∇ 2 U ⋯=6U i , j ,k ρ ⋯
此即拉普拉斯方程的有限差分形式。
----- (2)式
这里,我们通过有限差分的方法,把偏微分方程在三阶精度下简化为形式易于计算的代数方程。从而使 之易于在计算机上实现。
注:有时我们需要解二维静电场,则方程退化为:
U i1, j U i−1, j U i , j 1 U i , j −1 =4U i , j
改为
v2(i,j)=(v1(i,j+1)+v1(i+1,j)+v2(i-1,j)+v2(i,j-1))/4 解释执行后,k=222;

用matlab求解超越方程的方法

用matlab求解超越方程的方法

用matlab求解超越方程的方法Matlab作为一款强大的数学软件,可以帮助我们比较轻松地解决超越方程,提供了一个快速、灵活且可靠的求解超越方程的方法。

Matlab是一种流行的计算机软件,它拥有强大的数值分析能力。

它经常用来求解复杂的函数方程,特别是有关超越方程的计算。

本文介绍使用Matlab求解超越方程的几种方法:一、用数值方法求解1、采用有限差分法(Finite Difference Method)Finite Difference Method(FDM)是以在离散的网格上对变量的数值求解来实现的。

FDM可以有效的求解多维、非线性的超越方程。

通过在网格上求解多次,可以找出方程的根。

2、采用拉格朗日插值法(Lagrange Interpolation)Lagrange Interpolation是一种数学插值方法,可以有效地解决超越方程中多维非线性方程组。

其运算速度快、精度高,且可以有效求解实际问题中出现的复杂超越方程。

二、用几何方法求解1、采用图像法(Graphics Method)使用图像法可以可视化超越方程。

当然,由于超越方程具有多个变量,因此采用图像法进行求解的难度较大。

但由于图像简单明了,它仍然是一种有效的计算方法。

2、采用微分几何(Differential Geometry)Differential Geometry是一种在曲面上进行计算的数学方法。

它有助于求解超越方程,尤其是表达形式为系统多元不等式的超越方程。

总结:Matlab是一种强大的计算软件,可以用来求解超越方程。

它有许多方法可以用于求解超越方程,包括:用数值方法求解、用几何方法求解等。

它能帮助我们解决复杂的科学问题,因此得到了广泛的应用。

利用matlab实现L型区域Possion方程的有限差分法

利用matlab实现L型区域Possion方程的有限差分法

3
MATLAB实 现
将区域分成两部分Ω1 , Ω2 , 如图所示。计算时首先在区域Ω1 内部通过差 ∩ 分格式更新区域内的值, 在两区域的交界面Γ = Ω1 Ω2 上, 先在Ω1 上使用 差分更新交界面上的值。需要用到Ω2 上值。然后将交界面上的值更新到区 域Ω2 的边界, 最后在Ω2 通过差分计算区域内部的值。
L型区域Possion方程 有限差分法的MATLAB实现∗


利用matlab实现了L型区域Possion方程的有限差分法计算, 使用二 阶中心差分格式对区域进行离散, 使用松弛迭代法对离散方程进行迭 代求解, 运行时以动画显示迭代过程。
1
L型 区 域 的Possion方 程
Possion方程 −∆u(x, y ) = −uxx − uyy = f (x, y ) u(x, y ) = 0 on ∂Ω in Ω
注: 1. ω 取值为0 < ω < 2, 不同的情况, 最佳松弛因子的取值有所不同, 本例来 说ω = 1.8 ∼ 1.9较合适。 2. getframe用于显示动画, 可以将各帧的图像存在到一个数组中, 最后使 用movie作出图画, 这里可以不用, 程序运行时就可以直接显示动画。 最后得到结果
0.4 0.3 0.2 0.1 0 0 0.2 0.4 0.6 0.8 1 1 0.8 0.6 0.4 0.2
0
Figure 2: 计算结果
5
2
有限差分法
将uxx 与uyy 用二阶差分格式代替, 得到差分方程为 ui+1,j − 2uij + ui−1,j ui,j +1 − 2uij + ui,j −1 + = fij ∆x2 ∆y 2

matlab在有限差分法数值计算中的应用

matlab在有限差分法数值计算中的应用

matlab在有限差分法数值计算中的应用1.前言有限差分法是一种常用的数值计算方法,常用于求解偏微分方程。

Matlab是一种非常强大的数值计算软件,也被广泛应用于各种科学计算中。

本文将围绕有限差分法在Matlab中的应用进行讨论。

2.有限差分法有限差分法是一种数值计算方法,通常用于求解偏微分方程。

其基本思想是将偏微分方程中的导数用差分的形式进行近似。

这样就可以把偏微分方程转化为差分方程,进而用数值方法求解。

在有限差分法中,将求解区域离散化为网格,并在网格上通过差分近似来求解偏微分方程。

有限差分法的基本思想是将导数转化为差分形式。

由于导数的定义是极限形式的,因此我们可以通过极限的概念来推导差分近似。

例如,对于函数$f(x)$,它在$x=a$处的导数为$f'(a)$,则可以表示为:$$f'(a)=\lim_{h\to0}\frac{f(a+h)-f(a)}{h}$$如果我们取一个无穷小的$h$,则可以得到:$$f'(a)\approx\frac{f(a+h)-f(a)}{h}$$这就是一个一阶中心差分近似。

同样,我们还可以用其他的差分形式来表示导数。

有限差分法的核心就是建立差分方程。

在建立差分方程时,我们需要先将求解区域离散化为网格,然后在每个网格点上建立差分方程。

通常情况下,差分方程和原始的偏微分方程形式相同,只是将偏导数用差分近似来替代。

例如,对于泊松方程:$$\frac{\partial^2\phi}{\partialx^2}+\frac{\partial^2\phi}{\partial y^2}=f(x,y)$$我们可以将其离散化为网格上的差分方程:$$\frac{\phi_{i-1,j}-2\phi_{i,j}+\phi_{i+1,j}}{\Deltax^2}+\frac{\phi_{i,j-1}-2\phi_{i,j}+\phi_{i,j+1}}{\Deltay^2}=f_{i,j}$$其中,$\Delta x$和$\Delta y$表示网格的大小,$\phi_{i,j}$表示在网格点$(x_i,y_j)$处的解,$f_{i,j}$表示在网格点$(x_i,y_j)$处的源项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有限差分法的Matlab程序(椭圆型方程)
function FD_PDE(fun,gun,a,b,c,d)
% 用有限差分法求解矩形域上的Poisson方程
tol=10^(-6); % 误差界
N=1000; % 最大迭代次数
n=20; % x轴方向的网格数
m=20; % y轴方向的网格数
h=(b-a)/n; % x轴方向的步长
l=(d-c)/m; % y轴方向的步长
for i=1:n-1
x(i)=a+i*h;
end % 定义网格点坐标
for j=1:m-1
y(j)=c+j*l;
end % 定义网格点坐标
u=zeros(n-1,m-1); %对u赋初值
% 下面定义几个参数
r=h^2/l^2;
s=2*(1+r);
k=1;
% 应用Gauss-Seidel法求解差分方程
while k<=N
% 对靠近上边界的网格点进行处理
% 对左上角的网格点进行处理
z=(-h^2*fun(x(1),y(m-1))+gun(a,y(m-1))+r*gun(x(1),d)+r*u(1,m-2)+u(2,m-1))/s;
norm=abs(z-u(1,m-1));
u(1,m-1)=z;
% 对靠近上边界的除第一点和最后点外网格点进行处理
for i=2:n-2
z=(-h^2*fun(x(i),y(m-1))+r*gun(x(i),d)+r*u(i,m-2)+u(i+1,m-1)+u(i-1,m-1))/s;
if abs(u(i,m-1)-z)>norm;
norm=abs(u(i,m-1)-z);
end
u(i,m-1)=z;
end
% 对右上角的网格点进行处理
z=(-h^2*fun(x(n-1),y(m-1))+gun(b,y(m-1))+r*gun(x(n-1),d)+r*u(n-1,m-2)+u(n-2,m-1))/s;
if abs(u(n-1,m-1)-z)>norm
norm=abs(u(n-1,m-1)-z);
end
u(n-1,m-1)=z;
% 对不靠近上下边界的网格点进行处理
for j=m-2:-1:2
% 对靠近左边界的网格点进行处理
z=(-h^2*fun(x(1),y(j))+gun(a,y(j))+r*u(1,j+1)+r*u(1,j-1)+u(2,j))/s;
if abs(u(1,j)-z)>norm
norm=abs(u(1,j)-z);
end
u(1,j)=z;
% 对不靠近左右边界的网格点进行处理
for i=2:n-2
z=(-h^2*fun(x(i),y(j))+u(i-1,j)+r*u(i,j+1)+r*u(i,j-1)+u(i+1,j))/s;
if abs(u(i,j)-z)>norm
norm=abs(u(i,j)-z);
end
u(i,j)=z;
end
% 对靠近右边界的网格点进行处理
z=(-h^2*fun(x(n-1),y(j))+gun(b,y(j))+r*u(n-1,j+1)+r*u(n-1,j-1)+u(n-2,j))/s;
if abs(u(n-1,j)-z)>norm
norm=abs(u(n-1,j)-z);
end
u(n-1,j)=z;
end
% 对靠近下边界的网格点进行处理
% 对左下角的网格点进行处理
z=(-h^2*fun(x(1),y(1))+gun(a,y(1))+r*gun(x(1),c)+r*u(1,2)+u(2,1))/s;
if abs(u(1,1)-z)>norm
norm=abs(u(1,1)-z);
end
u(1,1)=z;
% 对靠近下边界的除第一点和最后点外网格点进行处理
for i=2:n-2
z=(-h^2*fun(x(i),y(1))+r*gun(x(i),c)+r*u(i,2)+u(i+1,1)+u(i-1,1))/s;
if abs(u(i,1)-z)>norm
norm=abs(u(i,1)-z);
end
u(i,1)=z;
end
% 对右下角的网格点进行处理
z=(-h^2*fun(x(n-1),y(1))+gun(b,y(1))+r*gun(x(n-1),c)+r*u(n-1,2)+u(n-2,1))/s; if abs(u(n-1,1)-z)>norm
norm=abs(u(n-1,1)-z);
end
u(n-1,1)=z;
% 结果输出
if norm<=tol
fid = fopen('FDresult.txt', 'wt');
fprintf(fid,'\n********用有限差分法求解矩形域上Poisson方程的输出结果********\n\n');
fprintf(fid,'迭代次数: %d次\n\n',k);
fprintf(fid,' x的值y的值u的值u的真实值|u-u(x,y)|\n');
for i=1:n-1
for j=1:m-1
fprintf(fid, '%8.3f %8.3f %14.8f %14.8f %14.8f\n',
[x(i),y(j),u(i,j),gun(x(i),y(j)),abs(u(i,j)-gun(x(i),y(j)))]);
end
end
fclose(fid);
break; % 用来结束while循环
end
k=k+1;
end
if k==N+1
fid = fopen('FDresult.txt', 'wt');
fprintf(fid,'超过最大迭代次数,求解失败!');
fclose(fid);
end。

相关文档
最新文档