离散数学第一二章练习题
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10.判断下列推理是否正确,并说明理由.
(1)前提:xF ( x),xG( x) 结论:x(F(x) G(x))
(2) 有理数都是实数.有的有理数是整数. 因此,有的实数是整数.
8. 给定解释 I如下:个体域为实数集合;
f(x,y)=x-y, g(x,y)=xy, E(x,y):x=y, G(x,y):x>y,
N(x):x是自然数.在此解释下,求下列各式的值
(1)xyE( f (x, y), g(x, y))
(2)x(N(x) G(x,1) E(x,1))
(3)yzE(g( y, z), x) 9.求公式 xA( x, y) yB( x, y)的前束范式.
6.某学校有三名教授甲、乙、丙,要选派其 中的某些人出国进修. 因工作需要,选派时 必须满足以下条件: (1)若甲去,则丙也去; (2)若乙去,则丙不去; (3)若丙不去,则甲或乙中要至少去一人. 试问:学校应如何选派他们?
7.在谓词逻辑中将下列命题符号化 (1)并非所有的素数都不是偶数. (2)猫是动物,但动物不一定是猫. (3)每个人都有自己喜欢的工作.
第一、二章 习题课 1.在命题逻辑中将下列命题符号化:
(1)我们不能既划船又跑步.
(2)小王总是在图书馆看书,除非他病了 或者图书馆不开门.
2.判断公式 (P Q) (Q R) (R P) 与(P Q) (Q R) (R P)是否等值.
3.用真值表和等值演算两种方法求公式
P (Q R)的主析取范式和主合取范式.
4.将联Baidu Nhomakorabea词 ,,用 表示.
5.判断下列推理是否正确,并说明理由.
(1)前提:P Q, P Q,Q 结论:P
(2)如果甲弃权,则乙或丙至少一人将获得 出线权;如果乙获得出线权,则甲没有弃权; 如果丁获得了出线权,则丙未获出线权.所 以,如果甲弃权,则丁不能获得出线权.
(1)前提:xF ( x),xG( x) 结论:x(F(x) G(x))
(2) 有理数都是实数.有的有理数是整数. 因此,有的实数是整数.
8. 给定解释 I如下:个体域为实数集合;
f(x,y)=x-y, g(x,y)=xy, E(x,y):x=y, G(x,y):x>y,
N(x):x是自然数.在此解释下,求下列各式的值
(1)xyE( f (x, y), g(x, y))
(2)x(N(x) G(x,1) E(x,1))
(3)yzE(g( y, z), x) 9.求公式 xA( x, y) yB( x, y)的前束范式.
6.某学校有三名教授甲、乙、丙,要选派其 中的某些人出国进修. 因工作需要,选派时 必须满足以下条件: (1)若甲去,则丙也去; (2)若乙去,则丙不去; (3)若丙不去,则甲或乙中要至少去一人. 试问:学校应如何选派他们?
7.在谓词逻辑中将下列命题符号化 (1)并非所有的素数都不是偶数. (2)猫是动物,但动物不一定是猫. (3)每个人都有自己喜欢的工作.
第一、二章 习题课 1.在命题逻辑中将下列命题符号化:
(1)我们不能既划船又跑步.
(2)小王总是在图书馆看书,除非他病了 或者图书馆不开门.
2.判断公式 (P Q) (Q R) (R P) 与(P Q) (Q R) (R P)是否等值.
3.用真值表和等值演算两种方法求公式
P (Q R)的主析取范式和主合取范式.
4.将联Baidu Nhomakorabea词 ,,用 表示.
5.判断下列推理是否正确,并说明理由.
(1)前提:P Q, P Q,Q 结论:P
(2)如果甲弃权,则乙或丙至少一人将获得 出线权;如果乙获得出线权,则甲没有弃权; 如果丁获得了出线权,则丙未获出线权.所 以,如果甲弃权,则丁不能获得出线权.