高中圆的基本性质与点圆关系 知识点及试题答案
高中圆的基本性质与点圆关系 知识点及试题答案
高中圆的基本概念与点圆关系 知识点与答案解析第一节 圆的基本概念1.圆的标准方程:222()()x a y b r (圆心(,)a b ,半径为r ) 例1 写出下列方程表示的圆的圆心和半径(1)x 2 + (y + 3)2 = 2; (2)(x + 2)2 + (y – 1)2 = a 2 (a ≠0)例2 圆心在直线x – 2y – 3 = 0上,且过A (2,–3),B (–2,–5),求圆的方程.例3 已知三点A (3,2),B (5,–3),C (–1,3),以P (2,–1)为圆心作一个圆,使A 、B 、C 三点中一点在圆外,一点在圆上,一点在圆内,求这个圆的方程.2.圆的一般方程:220x y Dx Ey F (其中2240D E F ),圆心为点)2,2(E D ——,半径2422F E D r —(Ⅰ)当2240D E F 时,方程表示一个点,这个点的坐标为(,)22D E (Ⅱ)当2240D E F 时,方程不表示任何图形。
例1:已知方程x 2+y 2+2kx+4y+3k+8=0表示一个圆,求k 的取值范围。
解: 方程x 2+y 2+2kx+4y+3k+8=0表示一个圆,∴0)83(44)2(22>+-+k k ,解得14-<>k k 或∴当14-<>k k 或时,方程x 2+y 2+2kx+4y+3k+8=0表示一个圆。
例2:若(2m2+m-1)x2+(m2-m+2)y2+m+2=0的图形表示一个圆,则m 的值是___。
答案:-3例3:求经过三点A (1,-1)、B (1,4)、C (4,-2)的圆的方程。
解:设所求圆的方程为022=++++F Ey Dx y x ,A (1,-1)、B (1,4)、C (4,-2)三点在圆上,代入圆的方程并化简,得⎪⎩⎪⎨⎧-=+--=++-=+-20241742F E D F E D F E D ,解得D =-7,E =-3,F =2∴所求圆的方程为023722=+--+y x y x 。
高二数学圆知识点
高二数学圆知识点一、圆的定义和性质圆是平面上所有到一个固定点距离相等的点的轨迹。
它有以下性质:1. 圆心:固定点叫做圆心,用字母O表示。
2. 半径:任意一条由圆心O到圆上任意一点A的线段叫做半径,用字母r表示。
3. 直径:由圆心O的两个端点确定的经过圆心的线段叫做直径,它的长度等于半径的两倍。
4. 弦:圆上任意两点的连线叫做弦。
5. 弧:两点间的弧是连接这两点的圆上的部分。
圆上除了直径之外的弦所对应的弧叫做圆弧。
圆弧可以用弧所对应的弦的两个端点来表示,如∠AOB所表示的圆弧所对应的弦是弦AB。
6. 弧长:圆弧的长度叫做弧长,用字母L表示。
7. 圆周率:π,是一个无理数,约等于3.14159。
二、圆的元素关系1. 圆心角:圆心角是一个角,顶点是圆心,两边是从圆心到圆弧上的两条弧的切线,圆心角通常用α、β、θ等字母表示。
2. 圆心角的度数:圆心角所对的圆弧的度数等于圆心角的两倍。
3. 弧度制:圆心角所对的圆弧的弧长和半径的比值叫做弧度制,用字母θ表示。
弧度制的换算公式是:θ(弧度)= L(弧长)/ r(半径)。
4. 圆内角和定理:如果一个三角形的一个顶点在圆上,那么这个三角形的其他两个顶点的对应角的和等于180度。
5. 弧与切线的关系:从圆外一点引圆的切线,切点和该点连接圆心所得的弧是切线所对应的弧。
该弧的切线与圆半径的夹角等于90度。
6. 弧所对圆心角相等的弧:两条相交的弧所对的圆心角相等。
三、圆的重要定理1. 切线定理:如果直线与圆相切,那么切点和直线连接圆心所得的线段垂直于直线。
2. 切线与半径的关系:垂直于半径的线段是一个圆的切线。
3. 弦切角定理:一个弦与切线的夹角等于弦所对的弧所对应的圆心角。
4. 垂径定理:半径垂直于弦,当且仅当该半径平分该弦。
5. 弦长定理:如果两根弦的弦长相等,则它们所对的圆内角相等。
6. 切割定理:如果一根弦平分了另一根弦,那么它们所对的弧要么相等,要么互补。
7. 环内切线定理:过一个点只能作两条切线,当且仅当这个点在两圆的圆心连线上。
第24课 圆的基本性质
(2)由 CD=83AB,可设 CD=3x,AB=8x, ∴FG=CD=3x. ∵∠AOF=∠COD,∴AF=CD=3x, ∴BG=8x-3x-3x=2x. ∵EG∥CF,∴BEEC=BGGF=23. ∵BE=4,∴AC=EC=6,∴BC=6+4=10, ∴AB= 102-62=8=8x,∴x=1,∴AF=3x=3. 在 Rt△ ACF 中,∵AF=3,AC=6, ∴CF= 32+62=3 5, 即⊙O 的直径为 3 5.
⊙O 上的一个动点,且∠ABC=45°.若 M,N 分别是
AC,BC 的中点,则 MN 的最大值是
.
【答案】
52 2
图 24-6
题型一 点和圆的位置关系
点与圆有三种位置关系:点在圆上,点在圆外,点在 圆内. 判断点与圆的位置关系主要是通过点到圆心的距 离与半径的比较.判断几个点是否在同一个圆上,主要是 看这几个点是否到某一点的距离都相等.
∴CCAE=CCBA, ∴CA2=CE·CB=CE·(CE+EB)=1×(1+3)=4, ∴CA=2(负值舍去). ∵AB 为⊙O 的直径,∴∠ACB=90°, ∴AB= CA2+CB2= 22+42=2 5, ∴⊙O 的半径为 5.
【类题演练 3】 (2019·株洲)如图 24-11,AB 为⊙O 的直 径,点 C 在⊙O 上,且 OC⊥AB,过点 C 的弦 CD 与 OB 相交于点 E,满足∠AEC=65°,连结 AD,则∠BAD =______.
图 24-10
【解析】 (1)如解图,连结 OD. ∵OC∥BD,∴∠OCB=∠DBC. ∵OB=OC,∴∠OCB=∠OBC. ∴∠OBC=∠DBC,∴∠AOC=∠COD,
︵︵ ∴AC=CD. (2)如解图,连结 AC.
︵︵ ∵AC=CD,∴∠CBA=∠CAD. 又∵∠BCA=∠ACE,∴△CBA∽△CAE,
高中数学圆与方程知识点归纳与常考题型专题练习(附解析)
高中数学圆与方程知识点归纳与常考题型专题练习(附解析) 知识点:4.1.1 圆的标准方程1、圆的标准方程:222()()x a y b r -+-=圆心为A(a,b),半径为r 的圆的方程2、点00(,)M x y 与圆222()()x a y b r -+-=的关系的判断方法:(1)2200()()x a y b -+->2r ,点在圆外(2)2200()()x a y b -+-=2r ,点在圆上(3)2200()()x a y b -+-<2r ,点在圆内4.1.2 圆的一般方程1、圆的一般方程:022=++++F Ey Dx y x ,圆心为半径为2、圆的一般方程的特点:(1)①x2和y2的系数相同,不等于0.②没有xy 这样的二次项.(2)圆的一般方程中有三个特定的系数D 、E 、F ,因之只要求出这三个系数,圆的方程就确定了.(3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显。
4.2.1 圆与圆的位置关系1、用点到直线的距离来判断直线与圆的位置关系.设直线l :0=++c by ax ,圆C :022=++++F Ey Dx y x ,圆的半径为r ,圆心)2,2(E D --到直线的距离为d ,则判别直线与圆的位置关系的依据有以下几点: (1)当r d >时,直线l 与圆C 相离;(2)当r d =时,直线l 与圆C 相切;(3)当r d <时,直线l 与圆C 相交;直线、圆的位置关系注意:1.直线与圆的位置关系 直线与圆相交,有两个公共点d R ⇔<⇔方程组有两组不同实数解(0)∆> 直线与圆相切,只有一个公共点d R ⇔=⇔方程组有唯一实数解(0)∆=直线与圆相离,没有公共点d R ⇔>⇔方程组无实数解(0)∆<2.求两圆公共弦所在直线方程的方法:将两圆方程相减。
2022年上海高中数学系列2- 圆及其性质(含答案)
2圆及其性质知识点:1.圆的方程:①标准方程:222)()(r b y a x =-+-,圆心()a b ,,半径r ;②一般方程:22220(40)x y Dx Ey F D E F ++++=+->,圆心()22D E --,,半径;③参数方程:{cos [0,2)sin x a r y b r θθπθ=+∈=+,,θ为参数2.点与圆的位置关系:点00( )P x y ,到圆222 ()()C x a y b r -+-=:圆心的距离为d =则点P 在圆外d r ⇔>;点P 在圆上d r ⇔=;点P 在圆内d r ⇔<.3.直线与圆的位置关系:圆222()()C x a y b r -+-=:的圆心到 0l Ax By C ++=:的距离22B A CBb Aa d +++=,则l 与圆C 相离0d r ⇔>⇔∆<;相切0d r ⇔=⇔∆=;相交0d r ⇔<⇔∆>.4.圆的弦长公式:5.切线公式:对于圆()()222x a y b r -+-=,若直线和圆的切点为()00,x y ,则切线方程为()()()()200x a x a y b y b r --+--=.若点()00,x y 在圆外,则方程()()0x a x a --()()20y b y b r +--=表示过两个切点的切点弦方程.6.圆与圆的位置关系:两圆圆心分别为12 O O 、,半径分别为12 r r 、,12d OO =,则圆12 O O 、外离12d r r ⇔>+;圆12 O O 、外切12d r r ⇔=+;圆12 O O 、内切12d r r ⇔=-;圆12 O O 、相交1212r r d r r ⇔-<<+;圆12 O O 、内含12d r r ⇔<-.7.两圆公共弦公式:若两圆221111:0C xy D x E y F ++++=和222222:0C x y D x E y F ++++=相交,则它们公共弦的方程为()()()1212120D D x E E y F F -+-+-=.练习:1.若直线l 将圆x y x y 22240+--=平分,且l 不通过第四象限,则l 斜率的取值范围为________.[0 2],2.过点(2 3)P ,且与圆22(1)(1)9x y +++=相切的直线方程为.3x =或724580x y -+=3.设直线30ax y -+=与圆22(1)(2)4x y -+-=相交于A B 、两点,且弦AB的长为,则实数a =.04.圆224x y +=上的点到直线43250x y -+=的距离的最小值是_____.35.过点的直线l 将圆22(2)4x y -+=分成两段弧,当劣弧所对的圆心角最小时,直线l 的斜率k =.22上海高中数学系列6.若直线y x b =+与曲线21yx -=恰有一个公共点,则实数b 的取值范围是.(1,1]{2}--7.若函数221y ax a x =+--存在零点,则实数a 的取值范围是______.3[0]3,8.若圆2244100x y x y +---=上至少有三个不同的点到直线:0l ax by +=的距离为22,则直线l 倾斜角的取值范围是.5,1212ππ⎡⎤⎢⎥⎣⎦9.已知圆O 的半径为1,,PA PB 为该圆的两条切线,,A B 为两切点,那么PA PB ⋅的最小值为.223-10.已知正方形ABCD 边长为8,BE EC = ,3DF FA =,若在正方形边上恰有6个不同的点P ,使PE PF λ⋅=,则实数λ的取值范围是.(1 8)-,【解析】以BC 为x 轴,BA 为y 轴建立空间直角坐标系.设 )P x y (,,求其轨迹方程为:223)(4)17x y λ-+-=+(.与正方形四条边有6个交点,则半径+174,5λ∈()可得(18)λ∈-,11.已知点( )P a b ,,曲线1C 的方程为21y x =-,曲线2C 的方程为221x y +=,则“点( )P a b ,在曲线1C 上”是“点(),P a b 在曲线2C 上”的(A )A.充分非必要条件B.必要非充分条件C.充分必要条件D.既非充分又非必要条件12.已知点(a ,b )是圆x 2+y 2=r 2外的一点,则直线ax +b y =r 2与圆的位置关系是(C)A.相离B.相切C.相交且不过圆心D.相交且过圆心13.若圆221:1C x y +=和圆222:680C x y x y k +---=没有公共点,则实数k 的取值范围是(D )A.(9,11)- B.(25,9)-- C.(,9)(11,)-∞-+∞U D.(25,9)(11,)--+∞U 14.已知圆22:(cos )(sin )1M x y θθ++-=,直线:l y kx =,下面四个命题:(1)对任意实数k 与θ,直线l 和圆M 相切;(2)对任意实数k 与θ,直线l 和圆M 有公共点;(3)对任意实数θ,必存在实数k ,使得直线l 与圆M 相切;(4)对任意实数k ,必存在实数θ,使得直线l 与圆M 相切.其中真命题为(C )A.(1)(2) B.(2)(3) C.(2)(4) D.(1)(4)15.已知方程()()0916412324222=++-++-+t y t x t y x 表示一个圆.(1)求t 的取值范围;(2)求该圆半径r 的最大值及此时圆的标准方程.解:(1)已知方程表示一个圆0422>-+⇔F E D ,即()()()0916********22>+--++t tt ,整理得01672<--t t ,171<<-∴t F E D r 42122-+=1672++-=t t 7747167372≤+⎪⎭⎫ ⎝⎛--=t 故半径r 的最大值为774,此时73=t ,圆心为⎪⎭⎫⎝⎛-4913,724则圆的标准方程为716491372422=⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-y x .16.已知直线:(21)(1)74l m x m y m +++=+,圆22:(1)(2)25C x y -+-=,(1)求证:直线l 与圆C 恒相交;(2)求出相交弦长的最小值及相应的m 值.解:(1)直线l 方程可化为(27)(4)0x y m x y +-++-=由27040x y x y +-=⎧⎨+-=⎩得31x y =⎧⎨=⎩,所以直线l 恒过定点(3,1)M ,因为点M 在圆内,所以直线l 与圆C 恒相交.(2)当CM l ⊥时,弦心距最大,弦长最小,最小值为,此时34m =-.17.已知()y x P ,为圆()()22:341C x y ++-=上任意一点.(1)求xy 6-的最值;(2)求y x 2-的最值;(3)已知()0,1-A ,()0,1B ,求22PB PA +的最值.解:(1)设xy k 6-=,则k 表示圆上点()y x P ,与点()6,0M 连线的斜率。
2022-2023学年高二上数学选择性必修第一册:圆与圆的位置关系(附答案解析)
2022-2023学年高二上数学选择性必修第一册:圆与圆的位置关系【考点梳理】考点一:两圆的位置关系及其判定(1)几何法:若两圆的半径分别为r 1,r 2,两圆连心线的长为d ,则两圆的位置关系如下:位置关系外离外切相交内切内含图示d 与r 1,r 2的关系d >r 1+r 2d =r 1+r 2|r 1-r 2|<d <r 1+r 2d =|r 1-r 2|d <|r 1-r 2|(2)代数法:设两圆的一般方程为C 1:x 2+y 2+D 1x +E 1y +F 1=0(D 21+E 21-4F 1>0),C 2:x 2+y 2+D 2x +E 2y +F 2=0(D 22+E 22-4F 2>0),联立方程得x 2+y 2+D 1x +E 1y +F 1=0,x 2+y 2+D 2x +E 2y +F 2=0,则方程组解的个数与两圆的位置关系如下:方程组解的个数2组1组0组两圆的公共点个数2个1个0个两圆的位置关系相交外切或内切外离或内含【题型归纳】题型一:判断圆与圆的位置关系1.(2021·佛山市南海区狮山高级中学高二月考)已知圆221:23460C x y x y +--+=,222:60C x y y +-=,则两圆的位置关系为()A .相离B .外切C .相交D .内切2.(2021·南昌市豫章中学高二开学考试(文))已知圆221:(1)(2)9O x y -++=,圆222:(2)(1)16O x y +++=,则这两个圆的位置关系为()A .外离B .外切C .相交D .内含3.(2021·安徽(理))圆1C :221x y +=与圆2C :()224310x y k x y +++-=(k ∈R ,0k ≠)的位置关系为()A .相交B .相离C .相切D .无法确定题型二:圆与圆的位置关系求参数范围4.(2021·南京市第十三中学高二开学考试)若圆22:5O x y +=与圆()221:()20O x m y m R -+=∈相交于A ,B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长是()A .22B .92C .4D .325.(2020·黑龙江农垦佳木斯学校高二开学考试)若两圆2222450x y ax y a +-++-=和2222230x y x ay a ++-+-=有3条公切线,则a =()A .1-或2-B .1-或5-C .2-或2D .5-或26.(2021·四川凉山·高二期末(文))已知圆221:1C x y +=和圆()()2222:20C x y r r +-=>,若圆1C 和2C 有公共点,则r 的取值范围是()A .(]0,1B .(]0,3C .[]1,3D .[)1,+∞题型三:圆与圆的位置求圆的方程7.(2020·南昌县莲塘第一中学高二月考(理))圆()()22341x y -+-=关于直线0x y +=对称的圆的方程是()A .()()22341x y ++-=B .()()22341x y -+-=C .()()22431x y ++-=D .()()22431x y +++=8.(2020·全国高二课时练习)过点(2,2)M -以及圆2250x y x -=+与圆222x y +=交点的圆的方程是().A .22151042x y x +--=B .22151042x y x +-+=C .22151042x y x ++-=D .22151042x y x +++=9.(2019·江西赣州市·南康中学高二月考)已知半径为1的动圆与定圆(x -5)2+(y +7)2=16相切,则动圆圆心的轨迹方程是()A .(x -5)2+(y +7)2=25B .(x -5)2+(y +7)2=3或(x -5)2+(y +7)2=15C .(x -5)2+(y +7)2=9D .(x -5)2+(y +7)2=25或(x -5)2+(y +7)2=9题型四:圆的公共弦长问题(参数、弦长问题)10.(2021·浙江温州市·)圆221:260O x y x y +-+=和圆222:60O x y x +-=的公共弦AB 的垂直平分线方程是()A .2330x y -+=B .2350x y --=C .3290x y --=D .3270x y -+=11.(2021·全国高二专题练习)垂直平分两圆222620x y x y +-++=,224240x y x y --++=的公共弦的直线方程为()A .3430x y --=B .4350x y ++=C .3490x y ++=D .4350x y -+=12.(2021·石泉县石泉中学高二开学考试(理))设圆1C :()()22119x y -+-=和圆2C :()()22124x y +++=交于A ,B 两点,则线段AB 的垂直平分线所在直线的方程为()A .3210x y --=B .3210x y -+=C .2330x y +-=D .2340x y ++=题型五:圆的共切线问题13.(2021·安徽池州市·高二期末(理))若圆221:2440C x y x y +---=,圆222:61020C x y x y +---=,则1C ,2C 的公切线条数为()A .1B .2C .3D .414.(2021·浙江绍兴市·高二期末)已知圆()221:2C x y m ++=与圆()222:8C x m y -+=恰有两条公切线,则实数m 的取值范围是()A .13m <<B .11m -<<C .3m >D .3<1m -<-或13m <<15.(2021·安徽滁州市·定远二中高二开学考试)两个圆221:240C x y x y +-+=与2222:245200C x y mx my m +-++-=的公切线恰好有2条,则m 的取值范围是().A .()2,0-B .()()2,02,4-C .()2,4D .()(),04,-∞+∞ 题型六:圆与圆位置关系的综合类问题16.(2021·江苏高二课时练习)已知圆C 满足:圆心在直线0x y +=上,且过圆221:210240C x y x y +-+-=与圆222:2280C x y x y +++-=的交点A ,B .(1)求弦AB 所在直线的方程;(2)求圆C 的方程.17.(2020·安庆市第二中学)已知圆C 的圆心C 在x 轴上,且圆C 与直线30x y n ++=切于点33(,)22.(1)求n 的值及圆C 的方程:(2)若圆222:(15)(0)M x y r r +-=>与圆C 相切,求直线320x y -=截圆M 弦长.【双基达标】一、单选题18.(2021·南昌市豫章中学高二开学考试(理))已知圆221:4240C x y x y ++--=,2223311:222C x y ⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭,则这两圆的公共弦长为()A .2B .22C .2D .119.(2021·河南商丘市·(文))已知圆221:4O x y +=与圆222:60O x x y ++=相交于点A ,B ,则四边形12AO BO 的面积是()A .423B .22C .42D .82320.(2021·全国)过点()0,4M -作直线l 与圆22:2660C x y x y ++-+=相切于A 、B 两点,则直线AB 的方程为()A .230x y -+=B .7180x y -+=C .2550x y -+=D .2550x y ++=21.(2021·安徽省岳西县店前中学高二期末(文))已知圆22:20M x y ay +-=(0a >)截直线0x y +=所得线段的长度为22,则圆M 与圆22:61240N x y x y +---=的位置关系是()A .内切B .外切C .相交D .相离22.(2021·江苏高二课时练习)已知圆22:2440A x y x y +---=,圆22:2220B x y x y +++-=,则两圆的公切线的条数是()A .1条B .2条C .3条D .4条23.(2020·浙江台州市·高二期中)已知圆C :222245200()x y mx my m m R +-++-=∈上存在两个点到点(1,2)A -的距离为5,则m 可能的值为()A .5B .1C .1-D .3-24.(2021·全国)已知圆221:20C x y kx y +-+=与圆222:20C x y ky ++-=的公共弦所在直线恒过点(),P a b ,且点P 在直线20mx ny --=上,则mn 的取值范围是()A .(],1-∞B .1,14⎛⎤ ⎥⎝⎦C .1,4⎡⎫+∞⎪⎢⎣⎭D .1,4⎛⎤-∞ ⎥⎝⎦25.(2021·安徽池州·高二期末(文))若圆221:2440C x y x y +---=与圆222:8120()C x y x y m m R +--+=∈外切,则m =()A .36B .38C .48D .5026.(2021·内蒙古包头市·高二月考(理))已知()()1,0,1,0A B -,圆C :()()22234x y R -+-=(0R >),若圆C 上存在点M ,使90AMB ∠=︒,则圆C 的半径R 的范围是()A .46R ≤≤B .2542R ≤≤C .442R ≤≤D .256R ≤≤27.(2021·重庆)若221:(1)(2)4C x y -+-= 与222:()()4(,)C x a y b a b R -+-=∈ 有公共点,则2224a b a b +--的最大值为()A .9B .10C .11D .12【高分突破】一:单选题28.(2021·贵溪市实验中学高二月考)若圆C 与圆22(2)(1)1x y ++-=关于原点对称,则圆C 的方程是()A .22(2)(1)1x y -++=B .22(2)(1)1x y -+-=C .22(1)(2)1x y -++=D .22(1)(2)1x y ++-=29.(2020·安徽省蚌埠第三中学(理))已知圆()()228x a y a -+-=上总存在两个点到原点的距离为2,则a 的取值范围为()A .11a -<≤B .33a -≤<C .31a -≤≤-或13a ≤≤D .31a -<<-或13a <<30.(2021·江西吉安·白鹭洲中学)若圆22:60,(0,0)M x y ax by ab a b +++--=>>平分圆22:4240N x y x y +--+=的周长,则2a b +的最小值为()A .8B .9C .16D .2031.(2020·九龙坡区·重庆市育才中学高二月考)若圆C 的圆心在直线40x y --=上,且经过两圆22460x y x +--=和22460x y y +--=的交点,则圆C 的圆心到直线3450x y ++=的距离为()A .0B .85C .2D .18532.(2020·重庆万州区·万州外国语学校天子湖校区)圆()()221:114C x y +++=和圆()()2224:23C x y -+-=的公切线的条数为()A .1B .2C .3D .433.(2020·宁城县蒙古族中学高二月考(理))若圆()221:0O x y m m +=>与圆222:86240O x y x y +-+-=有公共点,则实数m 的取值范围为()A .()4,144B .[]4,144C .[]4,49D .(]4,14434.(2020·江西省吉水中学高二月考(理))已知圆221:0C x y kx y +--=和圆222:210C x y ky +--=的公共弦所在的直线恒过定点M ,且点M 在直线2mx ny +=上,则22m n +的最小值为()A .15B .55C .255D .4535.(2020·南昌市·江西师大附中(文))已知圆1O 的方程为()2216x y ++=,圆2O 的圆心坐标为()2,1.若两圆相交于,A B 两点,且AB 4=,则圆2O 的方程为()A .()()22216x y -+-=B .()()222122x y -+-=C .()()22216x y -+-=或()()222122x y -+-=D .()()222136x y -+-=或()()222132x y -+-=36.(2020·化州市第一中学高二月考)若圆1C :2224100x y mx ny +---=(m ,0n >)始终平分圆2C :()()22112x y +++=的周长,则12m n+的最小值为()A .92B .9C .6D .3二、多选题37.(2021·全国高二专题练习)已知两圆221x y +=和22(4)()25x y a ++-=相切,则实数a =()A .213±B .25±C .0D .以上均有可能38.(2021·全国高二期中)点P 在圆221:1C x y +=上,点Q 在圆222:68240C x y x y +-++=上,则()A .||PQ 的最小值为0B .||PQ 的最大值为7C .两个圆心所在的直线斜率为43-D .两个圆相交弦所在直线的方程为68250x y --=39.(2021·全国高二专题练习)已知圆222:210C x ax y a -++-=与圆22:4D x y +=有且仅有两条公共切线,则实数a 的取值可以是()A .3-B .3C .2D .2-40.(2021·重庆北碚区·西南大学附中)设m R ∈,过定点A 的动直线1:0l x my +=,和过定点B 的动直线23:0l mx y m --+=交于点P ,圆()()22:243C x y -+-=,则下列说法正确的有()A .直线2l 过定点(1,3)B .直线2l 与圆C 相交最短弦长为2C .动点P 的曲线与圆C 相交D .|PA |+|PB |最大值为541.(2021·全国)已知圆221:1C x y +=,圆()()()2222:340C x y r r -++=>,则()A .若圆1C 与圆2C 无公共点,则04r <<B .当=5r 时,两圆公共弦长所在直线方程为6810x y --=C .当2r =时,P 、Q 分别是圆1C 与圆2C 上的点,则PQ 的取值范围为[]28,D .当04r <<时,过直线268260x y r -+-=上任意一点分别作圆1C 、圆2C 切线,则切线长相等三、填空题42.(2021·南昌市豫章中学高二开学考试(文))两圆224210x y x y +-++=与22(2)(2)9x y ++-=的公切线有___________条.43.(2020·浙江台州市·高二期中)已知点Q 是圆221x y +=上任意一点,点(2,2)A -,点(6,4)B -,点P 满足2218PA PB +=,则PQ 的最小值为___________.44.(2021·上海高二专题练习)已知圆221:(4)(4)4C x y -+-=,圆222:(3)(5)2C x y -++=.若圆心在x 轴上的圆C 同时平分圆1C 和2C 的圆周,则圆C 的方程为______.45.(2021·台州市书生中学高二期中)已知实数x 、y 满足方程22410x y x +-+=.求:yx的取值范围为_______;y x -的最小值为________;22xy +的取值范围为__________.四、解答题46.(2021·安徽滁州市·明光市二中高二期末(理))已知圆221:(1)1C x y -+=与圆222:80C x y x m +-+=.(1)若圆1C 与圆2C 恰有3条公切线,求实数m 的值;(2)在(1)的条件下,若直线20x y n ++=被圆2C 所截得的弦长为2,求实数n 的值.47.(2020·山西高二期中)已知圆M :22210240x y ax ay +-+-=,圆N :222280x y x y +++-=.且圆M 上任意一点关于直线40x y ++=的对称点都在圆M 上.(1)求圆M 的方程;(2)证明圆M 和圆N 相交,并求两圆公共弦的长度l .48.(2021·安徽省蚌埠第三中学(文))已知圆221:2280C x y x y +++-=与圆222:210240C x y x y +-+-=相交于A 、B 两点.(1)求公共弦AB 的长;(2)求圆心在直线y x =-上,且过A 、B 两点的圆的方程;(3)求经过A 、B 两点且面积最小的圆的方程.49.(2020·全国高二课时练习)如图,在平面直角坐标系xOy中,已知点()2,4P,圆22:4O x y+=与x轴的正半轴的交点是Q,过点P的直线l与圆O交于不同的两点,A B.(1)求AB的中点M的轨迹方程;(2)设点4,03N⎛⎫⎪⎝⎭,若133MN OM=,求QAB的面积.2022-2023学年高二上数学选择性必修第一册:圆与圆的位置关系【答案详解】1.D 【详解】由题设,221:(3)(2)1C x y -+-=,222:(3)9C x y +-=,∴1(3,2)C ,2(0,3)C ,则122C C =,又121,3r r ==,∴1221C C r r =-,故两圆内切.故选:D 2.C 【详解】解:根据题意,圆221:(1)(2)9O x y -++=,圆心1(1,2)O -,半径3R =,圆222:(2)(1)16O x y +++=,圆心2(2,1)O --,半径4r =,圆心距12||10O O =,有431043-<<+,则两圆相交;故选:C .3.A 【详解】解:圆1C :221x y +=的圆心1(0,0)C ,半径为11r =,由()224310x y k x y +++-=,得222325(2)()124x k y k k +++=+,所以圆2C 的圆心为23(2,)2C k k --,半径222514r k =+,所以2222121292525411444C C k k k r r k =+=<+=++,因为2225251144k k +>+(0k ≠),所以2225251144k k >+-,所以1221C C r r >-所以两圆相交.故选:A 4.C 【详解】由题意作出图形分析得:由圆的几何性质知:当两圆在点A 处的切线互相垂直时,切线分别过对方圆心O 、1O ,则在1Rt OAO △中,5OA =,120O A =,所以15O O =,斜边上的高为半弦,且1OO AB ⊥,则11111222AO O AB S O O OA O A =⋅=⋅ ,即55202AB ⋅=⋅,所以AB 4=.故选:C.5.D 【详解】将两圆方程分别整理为:()()2229x a y -++=和()()2214x y a ++-=,则两圆圆心分别为(),2a -和()1,a -,半径分别3和2;两圆有3条公切线,∴两圆外切,∴两圆圆心距()()221232d a a =++--=+,解得:5a =-或2.故选:D.6.C 【详解】由题意可知,圆1C 的圆心为()10,0C ,半径为1,圆2C 的圆心为()20,2C ,半径为r ,所以,122C C =,由于两圆有公共点,则1211r C C r -≤≤+,即1210r r r ⎧-≤≤+⎨>⎩,解得13r ≤≤.故选:C.7.D 【详解】由圆()()22341x y -+-=的圆心坐标为()3,4A ,而()3,4A 关于直线y x =-的对称点为()4,3A '--,∴以()4,3A '--为圆心,以1为半径的圆的方程为()()22431x y +++=.故选:D .8.A 【详解】设所求的圆的方程为()2222520x y x x y λ+-++-=,把点(2,2)M -代入可得,()44524420λ+-⨯++-=,解得13λ=,所以所求圆的方程为22151042x y x +--=,故选:A 9.D 【详解】由圆A :(x-5)2+(y+7)2=16,得到A 的坐标为(5,-7),半径R=4,且圆B 的半径r=1,根据图象可知:当圆B 与圆A 内切时,圆心B 的轨迹是以A 为圆心,半径等于R-r=4-1=3的圆,则圆B 的方程为:(x-5)2+(y+7)2=9;当圆B 与圆A 外切时,圆心B 的轨迹是以A 为圆心,半径等于R+r=4+1=5的圆,则圆B 的方程为:(x-5)2+(y+7)2=25.综上,动圆圆心的轨迹方程为:(x-5)2+(y+7)2=25或(x-5)2+(y+7)2=9.故选:D .10.C 【详解】解:圆221:260O x y x y +-+=的圆心1(1,3)O -,圆222:60O x y x +-=的圆心2()3,0O ,所以12O O 的中点坐标为31(2+,30)2-+,即3(2,)2-,120(3)3312O O k --==-所以两圆的公共弦AB 的垂直平分线即是圆心12O O 所在的直线:33(2)22y x +=-,即3290x y --=,故选:C .11.B 【详解】根据题意,圆222620x y x y +-++=,其圆心为M ,则(1,3)M -,圆224240x y x y --++=,其圆心为N ,则(2,1)N -,垂直平分两圆的公共弦的直线为两圆的连心线,则直线MN 的方程为313(1)12y x --+=-+,变形可得4350x y ++=;故选:B.12.A 【详解】由题意知:12(1,1),(1,2)C C --,且12C C 垂直平分AB ,∴线段AB 的垂直平分线所在直线必过12,C C ,故直线的方程为31(1)2y x -=-,整理得3210x y --=.故选:A 13.B 【详解】依题意,圆()()221:129C x y -+-=,圆心为()1,2,半径为3;圆()()222:3536C x y -+-=,圆心为()3,5,半径为6;因为()1249133,9C C =+=∈,故圆1C ,2C 相交,有2条公切线,故选:B.14.D 【详解】由题可得圆1C 的圆心为()0,m -,半径为2,圆2C 的圆心为()0m ,,半径为22, 两圆恰有两条公切线,∴两圆相交,12232C C ∴<<,()()2212002C C m m m =-+--= ,2232m ∴<<,解得3<1m -<-或13m <<.故选:D.15.B 【详解】两个圆化为标准方程可得()()22125x y -++=,()()22220x m y m -++=,圆1C 的圆心为()11,2C -,半径15r =,圆2C 的圆心为()1,2C m m -,半径225r =,圆心距22212(1)(22)5105C C m m m m =-+-+=-+,因为两圆的公切线恰好有2条,所以两圆相交,则22555105255m m -<+<+-,解得(2,0)(2,4)m ∈-⋃.故选:B16.(1)240x y -+=;(2)圆22:6680C x y x y ++-+=.【详解】(1)因为圆221:210240C x y x y +-+-=,圆222:2280C x y x y +++-=,且它们的交点为,A B ,故AB 的直线方程为:()2222210242280x y x y x y x y +-+--+++-=,整理得到AB 的直线方程为:240x y -+=.(2)设圆C 的方程的方程为:()22228240x y x y x y λ+++-+-+=,整理得到圆()()22:222840C x y x y λλλ++++--+=,故2,12C λλ+⎛⎫-- ⎪⎝⎭,因为C 在直线0x y +=上,故2102λλ+-+-=,故4λ=,故圆22:6680C x y x y ++-+=.17.(1)3n =-;()2211x y -+=.(2)外切,23;内切,219.【详解】(1)圆C 与直线30x y n ++=切于点33(,)22,点33(,)22在直线30x y n ++=上,则333022n +⨯+=,解得3n =-.圆C 的圆心C 在x 轴上,设圆心为()0m ,,半径为r ,则圆C 的方程为()222x m y r -+=,所以302332m -=-,解得1m =,13113r -==+,则圆C 的方程为()2211x y -+=.(2)根据题意,()1,0C ,()0,15M ,当两圆外切时,41CM r ==+,3r =当两圆内切时,41CM r ==-,=5r ,点M 到直线320x y -=的距离215632d -⨯==+,当两圆外切时,3r =,此时弦长22229623l r d =-=-=,当两圆内切时,=5r ,此时弦长2222256219l r d =-=-=.18.C 【详解】由题意知221:4240C x y x y ++--=,222:3310C x y x y ++--=,将两圆的方程相减,得30x y +-=,所以两圆的公共弦所在直线的方程为30x y +-=.又因为圆1C 的圆心为(2,1)-,半径3r =,所以圆1C 的圆心到直线30x y +-=的距离213222d -+-==.所以这两圆的公共弦的弦长为()2222223222r d -=-=.故选:C.19.C 【详解】由圆2O -圆1O 可得,直线:AB 64x =-,即23x =-,所以22822433AB ⎛⎫=-= ⎪⎝⎭,而123O O =,所以四边形12AO BO 的面积是121182342223S AB O O =⋅=⨯⨯=.故选:C .20.B 【详解】圆C 的标准方程为()()22134x y ++-=,圆心为()1,3C -,半径为2,由圆的切线的性质可得MA AC ⊥,则()()22222=21034246MA MC -=--++-=,所以,以点M 为圆心、以MA 为半径的圆M 的方程为()22446x y ++=,将圆M 的方程与圆C 的方程作差并化简可得7180x y -+=.因此,直线AB 的方程为7180x y -+=.故选:B.21.A 【详解】圆M 的圆心为()0,M a ,半径为1,0r a a =>,圆心()0,M a 到直线0x y +=的距离为2a,所以22222222a a a ⎛⎫⎛⎫+=⇒= ⎪ ⎪ ⎪⎝⎭⎝⎭,所以()10,2,2M r =.圆N 的圆心为()3,6N ,半径27r =,215MN r r ==-,所以两个圆的位置关系是内切.故选:A 22.B 【详解】由圆22:2440A x y x y +---=可化为22(1)(2)9x y -+-=,可得圆心坐标为(1,2)A ,半径为3R =,由圆22:2220B x y x y +++-=可化为22(1)(1)4x y +++=,可得圆心坐标为(1,1)B --,半径为2r =,则圆心距为22(11)(21)13d AB ==+++=,又由5,1R r R r +=-=,所以R r AB R r -<<+,可得圆A 与圆B 相交,所以两圆公共切线的条数为2条.故选:B.23.C 【详解】以(1,2)A -为圆心,以15r =为半径的圆A :()()22125x y -++=,圆C :222245200()x y mx my m m R +-++-=∈圆心为(),2C m m -,半径225r =,圆心距()()2221225105AC m m m m =-+-+=-+,由题意可得两圆相交,即22555105255m m -<+<+-,解得()()2,02,4m ∈- .故选:C 24.A 【详解】解:由圆221 : 20C x y kx y +-+=,圆222:20C x y ky ++-=,得圆1C 与圆2C 的公共弦所在直线方程为()220k x y y +--=,求得定点()1,1P -,又()1,1P -在直线20mx ny --=上,2m n +=,即2n m =-.∴()()2211mn m m m =-=--+,∴mn 的取值范围是(],1-∞.故选:A.25.C 【详解】依题意,圆221:(1)(2)9C x y -+-=,圆222:(4)(6)52C x y m -+-=-,故22(41)(62)523m -+-=-+,解得48m =,故选C .26.A 【详解】由题意,点()()1,0,1,0A B -,因为90AMB ∠=︒,所以点M 在以AB 为直径的圆上,设AB 的中点为P 的坐标为(0,0),2AB =,所以圆P 的方程为221x y +=,又由圆()()222:34C x y R -+-=的圆心为(3,4),半径为R ,则5PC =,要使得圆C 上存在点M ,满足90AMB ∠=︒,则圆P 与圆C 由公共点,可得151R R -≤≤+,解得46R ≤≤,即圆C 的半径R 的范围是46R ≤≤.故选:A.27.C 【详解】根据题意,221:(1)(2)4C x y -+-= ,其圆心为(1,2),半径2R =,222:()()4C x a y b -+-= ,其圆心为(,)a b ,半径2r =,两圆的圆心距222212(1)(2)245C C a b a b a b =-+-=+--+,若两圆有公共点,则1204C C R r +=,即2224516a b a b +--+,则有222411a b a b +--,则2224a b a b +--的最大值为11,故选:C 28.A 【详解】由于圆22(2)(1)1x y ++-=的圆心(2,1)C '-,半径为1,圆C 与圆22(2)(1)1x y ++-=关于原点对称,故(2,1)C -、半径为1,故圆C 的方程为:22(2)(1)1x y -++=,故选:A .29.D 【详解】由圆的方程知:圆心为(),a a ,半径22r =,则圆心到原点的距离为2d a =,圆上总存在两个点到原点的距离为2,∴圆()()228x a y a -+-=与圆222x y +=相交,2222222a ∴-<<+,即2232a <<,解得:31a -<<-或13a <<.故选:D.30.A 【详解】两圆方程相减得,(4)(2)100a x b y ab +++--=,此为相交弦所在直线方程,圆N 的标准方程是22(2)(1)1x y -+-=,圆心为(2,1)N ,∴2(4)2100a b ab +++--=,121a b+=,∵0,0a b >>,∴12442(2)()4428b a b aa b a b a b a b a b+=++=++≥+⨯=,当且仅当4b a a b =即2,4a b ==时等号成立.故选:A .31.C 【详解】设两圆交点为,A B ,联立2222460460x y x x y y ⎧+--=⎨+--=⎩得1111x y =-⎧⎨=-⎩或2233x y =⎧⎨=⎩,1AB k =,则AB 中点为()1,1,过AB 两点的垂直平分线方程为()112y x x =--+=-+,联立240y x x y =-+⎧⎨--=⎩得31x y =⎧⎨=-⎩,故圆心为()3,1-,由点到直线距离公式得334525d ⨯-+==故选:C 32.D 【详解】圆1C 的圆心为()11,1C --,半径为12r =,圆2C 的圆心为()22,3C ,半径为22r =,()()221212213154C C r r =+++=>+= ,所以,两圆外离.因此,圆1C 与圆2C 的公切线条数为4.故选:D.33.B 【详解】圆()221:0O x y m m +=>,圆心()10,0O ,半径1r m =圆222:86240O x y x y +-+-=,圆心()24,3O -,27r =125O O =,两圆有公共点则:757m m -≤≤+,4144m ≤≤故选:B 34.C 【详解】由圆221:0C x y kx y +--=和圆222:210C x y ky +--=,可得圆1C 和2C 的公共弦所在的直线方程为()()210k x y y -+-=,联立2010x y y -=⎧⎨-=⎩,解得21x y =⎧⎨=⎩,即点()2,1M 又因为点M 在直线2mx ny +=上,即22m n +=,又由原点到直线22x y +=的距离为22225521d ==+,即22m n +的最小值为255.故选:C.35.C 【详解】设圆()()()2222:210O x y r r -+-=>∴直线AB 的方程为:()()()222222116x y x y r -+---+=-,即244100x y r ++-=1O ∴到直线AB 距离22410144242r r d -+--==2264d ∴-=,解得:22d =()2214232r -∴=,解得:26r =或22∴圆2O 的方程为()()22216x y -+-=或()()222122x y -+-=故选:C 36.D 【详解】把圆2C :()()22112x y +++=化为一般式,得22220x y x y +++=,又圆1C :2224100x y mx ny +---=(m ,0n >),两圆的方程相减,可得两圆的公共弦所在的直线l 的方程:()()12150m x n y ++++=.圆1C 始终平分圆2C 的周长,∴圆心()21,1C --在直线l 上,()()12150m n ∴-+-++=,即()123,213m n m n +=∴+=.()112225331212121n m m n m n m n m n m n ⎛⎫⎛⎫∴+=+⨯=+⨯ ⎪ ⎪⎝⎭⎛⎫+=++ ⎪⎝⎝⎭⎭()122152522333n m m n ⎛⎫≥+⨯=+⨯= ⎪ ⎪⎝⎭.当且仅当2322m n n m mn +=⎧⎪⎨=⎪⎩即1m n ==时,等号成立.12m n∴+的最小值为3.故选:D .37.BC 【详解】圆221x y +=的圆心为(0,0),半径为1,圆22(4)()25x y a ++-=的圆心为(4,)a -,半径为5,若两圆相切,分两种情况讨论:当两圆外切时,有222(4)(15)a -+=+,解得25a =±;当两圆内切时,有222(4)(15)a -+=-,解得0a =,综合可得:实数a 的值为0或25±.故选:BC .38.BC 【详解】解:根据题意,圆221:1C x y +=,其圆心1(0,0)C ,半径1R =,圆222:68240C x y x y +-++=,即22(3)(4)1x y -++=,其圆心2(3,4)C -,半径1r =,圆心距12||1695C C =+=,则||PO 的最小值为123C C R r --=,最大值为127C C R r ++=,故A 错误,B 正确;对于C ,圆心1(0,0)C ,圆心2(3,4)C -,则两个圆心所在的直线斜率404303k --==--,C 正确,对于D ,两圆圆心距125C C =,有122C C R r >+=,两圆外离,不存在公共弦,D 错误.故选:BC .39.CD 【详解】圆C 方程可化为:()221x a y -+=,则圆心(),0C a ,半径11r =;由圆D 方程知:圆心()0,0D ,半径22r =;圆C 与圆D 有且仅有两条公切线,∴两圆相交,又两圆圆心距d a =,2121a ∴-<<+,即13a <<,解得:31a -<<-或13a <<,可知CD 中的a 的取值满足题意.故选:CD.40.ABC 【详解】A :由230(1)(3)0l mx y m m x y --+=⇒-+-=:,有101330x x y y -=⎧⇒==⎨-=⎩,,所以直线过的定点为(1)3,,故A 正确;B :由圆的标准方程可得圆心为4(2)C ,,半径3r =,直线2l 过的定点为3(1)B ,,当2l CB ⊥时所得弦长最短,则21CM l l k k ⋅=-,又2l k m =,1CM l k =,所以1m =-,得240l x y +-=:,则圆心到直线2l 的距离为2=22d =,所以弦长为:2222r d -=,故B 正确;C :当0m =时,1203l x l y ==:,:,则点(03)P ,,此时点P 在圆C 外;当0m ≠时,由直线1l 得xm y=-,代入直线2l 中得点P 的方程为圆22135()()222N x y -+-=:,得13()22N ,,半径为10=2R ,所以圆心距3410=322NC r R <+=+,所以两圆相交.故C 正确;D :由10(00)l x my A +=⇒:,,当0m =时,1203l x l y ==:,:,有12l l ⊥,当0m ≠时,11l k m=-,2l k m =,则1l k 21l k =-,所以12l l ⊥,又点P 是两直线的交点,所以PA PB ⊥,所以222=10PA PB AB +=,设ABP θ∠=,则10sin 10cos PA PB θθ==,,因为0PA PB ≥≥0,,所以[0]2πθ∈,,所以10(sin cos )25sin()254PA PB πθθθ+=+=+≤,故D 错误.故选:AB 41.BCD由题意,圆221:1C x y +=的圆心为()10,0C ,半径为11r =;圆()()()2222:340C x y r r -++=>的圆心为()23,4C -,半径为r ;则圆心距为()()221203045C C =-++=;A 选项,若圆1C 与圆2C 无公共点,则只需121C C r <-或121C C r >+,解得6r >或04r <<,故A 错;B 选项,若=5r ,则圆()()222:3425C x y -++=,由221x y +=与()()223425x y -++=两式作差,可得两圆公共弦所在直线方程为6810x y --=,故B 正确;C 选项,若2r =,则()()222:344C x y -++=,此时125213C C =>+=,所以圆1C 与圆2C 相离;又P 、Q 分别是圆1C 与圆2C 上的点,所以()12121212C C PQ C C -+≤≤++,即28PQ ≤≤,故C 选项正确;D 选项,当04r <<时,由A 选项可知,两圆外离;记直线268260x y r -+-=上任意一点为()00,M x y ,则20068260x y r -+-=,所以22100MC x y =+,()()222222200000000003468256825MC x y x y x y x y x y =-++=+-++=+-++222001x y r =++-,因此切线长分别为2222110011d MC x y =-=+-,222222001d MC r x y =-=+-,即12d d =,故D 正确;故选:BCD.42.3解:圆224210x y x y +-++=整理可得:22(2)(1)4x y -++=,可得圆心1C 的坐标为:(2,1)-,半径12r =;22(2)(2)9x y ++-=的圆心2C 坐标(2,2)-,半径23r =;所以圆心距221212||(22)(21)5C C r r =+++==+,所以可得两个圆外切,所以公切线有3条,故答案为:3.43.2【详解】设(),P x y ,由2218PA PB +=可得,()()()()2222226418x y x y ++-+++-=,化简得,()()22434x y ++-=,所以点P 的轨迹为圆,圆心坐标为()4,3-,点Q 在圆221x y +=上,两圆的圆心距为()2243521-+=>+,所以两圆相离,故PQ 的最小值为5212--=.故答案为:2.44.2236x y +=【详解】由题意,圆C 与圆1C 和圆2C 的公共弦分别为圆1C 和圆2C 的直径设圆C 的圆心为(,0)x ,半径为r ,则2222(4)(04)(3)(05)24x x -+-=-++++,解得:0x =,半径22(04)(04)46r =-+-+=,故圆C 的方程为2236x y +=,故答案为:2236x y +=.45.3,3⎡⎤-⎣⎦26--743,743⎡⎤-+⎣⎦圆22410x y x +-+=的标准方程为()2223x y -+=,圆心为()2,0,半径为3.设y k x =,可得0kx y -=,则直线0kx y -=与圆()2223x y -+=有公共点,则2231k k ≤+,解得33k -≤≤,则yx的取值范围为3,3⎡⎤-⎣⎦;设y x b -=,可得0x y b -+=,则直线0x y b -+=与圆()2223x y -+=有公共点,则232b +≤,解得2626b --≤≤-+,则y x -的最小值为26--;设()2220x y r r +=>,由于()220203-+>,则原点在圆()2223x y -+=外,因为圆222x y r +=与圆()2223x y -+=有公共点,圆心距为2d =,故323r r +≤≤-,解得2323r -≤≤+,故22743743x y -≤+≤+.即22xy +的取值范围为743,743⎡⎤-+⎣⎦.故答案为:3,3⎡⎤-⎣⎦;26--;743,743⎡⎤-+⎣⎦.46.(1)12m =;(2)1n =-或7n =-.【详解】解:(1)圆221:(1)1C x y -+=,圆心1(1,0)C ,半径11r =;圆222:(4)16C x y m -+=-,圆心2(4,0)C ,半径216r m =-.因为圆1C 与圆2C 有3条公切线,所以圆1C 与圆2C 相外切,所以1212C C r r =+,即3116m =+-,解得12m =.(2)由(1)可知,圆222:(4)4C x y -+=,圆心2(4,0)C ,半径22r =.因为直线20x y n ++=与圆2C 相交,弦长是2,所以圆心2C 到直线20x y n ++=的距离222232d r ⎛⎫=-= ⎪⎝⎭,即|4|33n +=,解得1n =-或7n =-.47.解:(1)圆M :22210240x y ax ay +-+-=的圆心为(),5M a a -,由已知可得直线40x y ++=经过圆心M ,所以540a a -+=,解得1a =,则有圆M 的方程为22210240x y x y +-+-=;(2)因为圆M 的圆心为()1,5M -,半径152r =,圆N 的圆心()1,1N --,半径210r =,所以()()22115125MN =++-+=,因为5210255210-<<+,所以圆M 和圆N 相交,又由22222102402280x y x y x y x y ⎧+-+-=⎨+++-=⎩,得两圆的公共弦所在直线方程为240x y -+=,所以M 到直线240x y -+=的距离1104355d ++==,所以22211504552r d ⎛⎫=-=-= ⎪⎝⎭,解得25l =,则圆M 和圆N 的公共弦的长度25l =.48.(1)由两圆方程相减即得240x y -+=,此为公共弦AB 所在的直线方程.圆心1(1,1)C --,半径110r =.1C 到直线AB 的距离为|124|55d -++==,故公共弦长221||225AB r d =-=.(2)圆心25(1,)C -,过1C ,2C 的直线方程为115111y x ++=-++,即230x y ++=.由230x y y x ++=⎧⎨=-⎩得所求圆的圆心为()3,3-.它到AB 的距离为|364|55d --+==,∴所求圆的半径为5510+=,∴所求圆的方程为22(3)(3)10x y ++-=.(3)过A 、B 且面积最小的圆就是以AB 为直径的圆,由240230x y x y -+=⎧⎨++=⎩,得圆心(2,1)-,半径5r =.∴所求圆的方程为22(2)(1)5++-=x y .49.解:(1)连接,OM OP ,取OP 中点E ,由圆的性质知,OM AB ⊥,所以在Rt OPM △中,25OP =,且为斜边,所以M 在以OP 为直径的圆上,圆心为()1,2,半径为5r =,所以点M 的轨迹为圆,圆心为()1,2E ,半径为5r =,方程为:()()22125x y -+-=;又因为M 在已知圆内部,故与圆O 联立方程组()()22224125x y x y ⎧+=⎪⎨-+-=⎪⎩,解得两圆交点坐标为68,55⎛⎫- ⎪⎝⎭,()2,0所以点M 的轨迹方程为()()22125x y -+-=,6,25x ⎛⎫∈- ⎪⎝⎭,85y <.(2)设(),M x y ,由133MN OM =得:222241333x y x y ⎛⎫-+=+ ⎪⎝⎭,整理得:22640x y x +++=,所以M 在圆22640x y x +++=上,结合(1),M 又在圆()()22125x y -+-=,6,25x ⎛⎫∈- ⎪⎝⎭,85y <,故两圆联立方程组()()2222640125x y x x y ⎧+++=⎪⎨-+-=⎪⎩,解得:()1,1M -,所以2OM =,22AB =,OM 的斜率为1OM k =-,1AB k =直线AB 方程为:2y x =+,所以Q 点到直线AB 的距离为:4222d ==,所以QAB 的面积为142S AB d =⋅⋅=。
第24章 圆章节知识点及习题及答案
第二十四章圆章节知识点思维导图:一、圆的有关性质(一)与圆有关的概念1、定义:在一个平面内线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。
2、弦:连接圆上任意两点的线段叫做弦,经过圆心的弦,叫做直径。
3、弧:圆上任意两点间的部分(曲线)叫做圆弧,简称弧。
能够互相重合的弧叫等弧。
圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆,大于半圆的弧叫优弧;小于半圆的弧叫劣弧,由弦及其所对的弧组成的圆形叫弓形。
4、圆心角:我们把顶点在圆心的角叫做圆心角。
5、圆周角:顶点在圆上,并且两边都与圆相交的角叫做圆周角。
注意:在圆中,同一条弦所对的圆周角有无数个。
6、弦心距:从圆心到弦的距离叫弦心距。
7、同心圆、等圆:圆心相同,半径不相等的两个圆叫同心圆;能够重合的两个圆叫等圆。
8、点的轨迹:1)圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;2)垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线); 3)角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4)到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5)到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
(二)圆的性质1、对称性:圆是轴对称图形,任何一条直径所在直线都是它的对称轴;圆也是以圆点为对称中心的中心对称图形。
2、性质:①垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧;推论1 :平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;垂径定理及推论1 可理解为一个圆和一条直线具备下面五个条件中的任意两个,就可推出另外三个:①过圆心;②垂直于弦;③平分弦(不是直径);④平分弦所对的优弧;⑤平分弦所对的劣弧。
推论2:圆两条平行弦所夹的弧相等。
②圆心角定理(圆心角、弧、弦、弦心距之间的关系):在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等,所对的弦心距相等;圆心角的度数与它所对的度数相等。
(完整版)高中数学圆知识+习题总结.docx
1. 圆的定义及方程定义 平面内与定点的距离等于定长的点的集合 (轨迹 )标准方程(x - a)2+ (y - b)2= r 2 (r > 0)圆心: (a , b),半径: rx 2+ y 2+ Dx +Ey + F = 0,(D 2+圆心: -D ,-E,一般方程22E 2- 4F > 0)半径:1D 2+E 2- 4F22. 直线与圆的位置关系 (半径为 r ,圆心到直线的距离为 d)相离 相切相交图形方程< 0= 0> 0量观点 化几何d > rd = rd < r观点3. 圆与圆的位置关系(两圆半径为r 1, r 2, d = |O 1O 2|)相离外切相交内切内含图形|r 1- r 2|< d <d > r 1+ r 2 d = r 1+ r 2 d = |r 1- r 2| d < |r 1- r 2| r 1+ r 24.弦长的 2 种求法(1) 代数法:将直线和圆的方程联立方程组,消元后得到一个一元二次方程.在判别式 > 0 的前提下,利用根与系数的关系,根据弦长公式求弦长.(2) 几何法:若弦心距为 d ,圆的半径长为 r ,则弦长 l = 2 r 2- d 2.1.圆 (x- 1)2+ (y+ 2)2= 6 与直线 2x+ y- 5= 0 的位置关系是 ()A .相切B.相交但直线不过圆心C.相交过圆心D.相离2.若直线 x- y+ 1= 0 与圆 (x-a)2+ y2= 2 有公共点,则实数 a 的取值范围为 ________.圆 (x- 3)2+ (y- 3)2= 9 上到直线3x+ 4y- 11= 0 的距离等于 1的点的个数为 ()A . 1B. 2C. 3D. 43.过原点且与直线6x- 3y+ 1= 0平行的直线 l 被圆 x2+ (y-3)2= 7所截得的弦长为________.4.若圆 C1: x2+ y2= 1 与圆 C2: x2+ y2- 6x- 8y+ m= 0 外切,则 m= ()A. 21B. 19C. 9D.- 115.若圆 x2+ y2= 4 与圆 x2+ y2+ 2ay- 6= 0(a> 0)的公共弦长为 2 3,则 a= ________.6.已知点 M 是直线 3x+ 4y- 2=0 上的动点,点 N 为圆 (x+ 1)2+ (y+ 1)2= 1 上的动点,则 |MN |的最小值是 ()A .9B. 1 5413C.5D.51与圆 x2+ y2- 2x= 15 相交于点 A,B,则弦 AB 的垂直平分线方程的斜7.若直线 y=- x- 22截式为 ________.8.已知圆 M :x2+ y2- 2ay= 0(a> 0)截直线 x+ y= 0 所得线段的长度是 2 2,则圆 M 与圆 N:(x- 1)2+ (y- 1)2= 1 的位置关系是 ()A .内切B.相交C.外切D.相离9.已知圆 C 经过点 A(2,- 1),和直线x+ y= 1 相切,且圆心在直线y=- 2x 上.(1)求圆 C 的方程;(2)已知直线 l 经过原点,并且被圆 C 截得的弦长为 2,求直线 l 的方程.。
高中圆的基本性质练习题及讲解
高中圆的基本性质练习题及讲解### 高中圆的基本性质练习题及讲解#### 练习题1:圆心与半径的关系设圆的方程为 \((x-a)^2 + (y-b)^2 = r^2\),其中 \((a, b)\) 为圆心坐标,\(r\) 为半径。
若圆上一点 \(P(x_1, y_1)\) 满足\((x_1-a)^2 + (y_1-b)^2 = r^2\),试证明 \(P\) 点在圆上。
解答:根据圆的定义,圆上任意一点到圆心的距离等于半径。
题目中已给出\(P(x_1, y_1)\) 满足圆的方程,即 \((x_1-a)^2 + (y_1-b)^2 =r^2\)。
这表明点 \(P\) 到圆心 \((a, b)\) 的距离的平方等于半径的平方,即 \(P\) 点到圆心的距离为 \(r\)。
因此,点 \(P\) 在圆上。
#### 练习题2:圆与直线的位置关系已知圆心为 \(O(0, 0)\),半径为 \(r\) 的圆,直线方程为 \(y =mx + c\)。
若圆与直线相切,求 \(c\) 的值。
解答:圆与直线相切意味着圆心到直线的距离等于半径。
圆心 \(O(0, 0)\)到直线 \(y = mx + c\) 的距离 \(d\) 可以用点到直线距离公式计算,即 \(d = \frac{|c|}{\sqrt{1+m^2}}\)。
由于圆与直线相切,所以\(d = r\)。
因此,我们有 \(\frac{|c|}{\sqrt{1+m^2}} = r\)。
解得 \(c = \pm r\sqrt{1+m^2}\)。
#### 练习题3:圆的切线性质若直线 \(y = mx + c\) 为圆 \((x-a)^2 + (y-b)^2 = r^2\) 的切线,求切线斜率 \(m\) 的范围。
解答:由于直线是圆的切线,圆心到直线的距离等于半径。
使用点到直线距离公式,我们有 \(\frac{|b - ma - c|}{\sqrt{1+m^2}} = r\)。
高中圆知识点归纳总结
高中圆知识点归纳总结圆是圆心到圆周上任意一点的距离等于半径的线段,圆的直径是圆上任意两点的距离等于半径的两倍。
圆的周长是圆的边界的长度,圆的面积是圆内部的面积。
在数学中,圆是一个非常基础的几何图形,也是许多数学问题中的基础形状之一。
本文将对高中数学中关于圆的相关知识点进行归纳总结,包括圆的定义、性质、相关定理和定理的证明等内容。
一、圆的相关知识点1. 圆的定义圆是平面上到一个定点距离等于定长的动点的轨迹。
这个定点叫做圆心,这个定长叫做半径。
2. 圆的基本性质(1)圆上任意一点到圆心的距离等于半径的长度。
(2)圆上所有点到圆心的距离都相等。
(3)圆的直径是圆的两个端点的距离等于半径的二倍。
(4)圆的周长等于直径与π的乘积。
(5)圆的面积等于半径的平方与π的乘积。
3. 圆的相关定理(1)同弧(或同角)的圆周角相等。
(2)圆内切等腰三角形。
(3)弦上的圆周角等于弦所在圆的中心角(或外角)。
(4)圆内接四边形内角和为180度。
(5)相交弦定理:相交弦这俩一半与另一半分别相乘相等。
(6)直径上的等角:直径所含角都是90度。
二、重要定理及证明1. 圆的周长和面积圆的周长C=2πr,圆的面积S=πr²。
其中r为半径,π≈3.14159。
2. 弧长与圆心角以及面积的关系(1)弧长L=θr,其中θ为圆心角的度数,r为半径。
(2)圆的面积S=θ/360*πr²,其中θ为圆心角的度数,r为半径。
3. 锥的切线定理(切割定理)如果直线L与圆C相交于点A和B,那么从点A、B作出的切线AB与L垂直(AB与弦的交角=弦的交角的一半)。
证明:设AB是切线,则AC、BC就是切线,所以∠ABC=∠ACB,所以AB⊥L。
三、常见的计算题目1. 已知圆的半径为r,求圆的周长和面积。
解:圆的周长C=2πr,圆的面积S=πr²。
2. 圆的面积为S,求圆的半径和周长。
解:圆的半径r=√(S/π),圆的周长C=2πr。
高中关于圆的试题及答案
高中关于圆的试题及答案题目一:求圆的面积和周长某圆的半径为5厘米,求该圆的面积和周长。
解答:圆的面积公式为:\[ A = \pi r^2 \]圆的周长公式为:\[ C = 2\pi r \]将半径 \( r = 5 \) 厘米代入公式计算:面积 \( A = \pi \times 5^2 = 25\pi \) 平方厘米周长 \( C = 2\pi \times 5 = 10\pi \) 厘米题目二:圆的切线问题已知点P(4,3)在圆 \( x^2 + y^2 = 25 \) 上,求过点P的圆的切线方程。
解答:首先,我们知道圆心O的坐标为(0,0),半径为5。
点P在圆上,所以OP是半径,OP的长度为5。
切线与半径垂直,因此切线的斜率与OP的斜率互为相反数的倒数。
OP 的斜率为 \( \frac{3-0}{4-0} = \frac{3}{4} \),所以切线的斜率为 \( -\frac{4}{3} \)。
切线方程为 \( y - y_1 = m(x - x_1) \),代入点P(4,3)和斜率\( m = -\frac{4}{3} \),得到:\[ y - 3 = -\frac{4}{3}(x - 4) \]化简得切线方程为:\[ 4x + 3y - 25 = 0 \]题目三:圆与直线的位置关系已知直线 \( l: 2x - 3y + 6 = 0 \) 与圆 \( C: x^2 + y^2 - 4x - 6y + 4 = 0 \),求直线l与圆C的位置关系。
解答:首先,将圆的方程化为标准形式:\[ (x-2)^2 + (y-3)^2 = 9 \]圆心C的坐标为(2,3),半径r为3。
接下来,计算圆心C到直线l的距离d:\[ d = \frac{|2\cdot2 - 3\cdot3 + 6|}{\sqrt{2^2 + (-3)^2}} = \frac{|4 - 9 + 6|}{\sqrt{13}} = \frac{1}{\sqrt{13}} \]由于 \( d < r \),即 \( \frac{1}{\sqrt{13}} < 3 \),所以直线l 与圆C相交。
高中圆的知识点
高中圆的知识点高中圆的知识点圆是数学中的基本图形之一,它在几何学、代数学、三角学等领域都有广泛应用。
在高中阶段,圆的相关知识点主要包括圆的定义、性质、判定方法、弧长与扇形面积、圆锥曲线等方面。
一、圆的定义和性质1. 定义:平面上所有到定点距离相等的点构成一个圆。
2. 性质:(1)圆心:定点称为圆心,通常用字母O表示。
(2)半径:从圆心到任意一点的距离称为半径,通常用字母r表示。
(3)直径:通过圆心并且两端点在圆上的线段称为直径,它是半径长度的两倍。
(4)弦:连接圆上任意两点的线段称为弦。
(5)切线:与圆只有一个公共点且垂直于半径的直线称为切线。
二、判定方法1. 判定一个图形是否是一个圆:若该图形满足所有到某个定点距离相等,则该图形是一个圆。
2. 判定两个图形是否相交:若两个图形有公共部分,则它们相交;否则,它们不相交。
3. 判定两个图形是否相切:若两个图形有公共部分且只有一个公共点,则它们相切;否则,它们不相切。
三、弧长与扇形面积1. 弧长:圆上任意弧的长度称为弧长,通常用字母l表示。
2. 扇形面积:由圆心和圆上两点所构成的扇形所包含的面积称为扇形面积,通常用字母S表示。
四、圆锥曲线1. 椭圆:平面上所有到两个定点距离之和等于常数的点构成一个椭圆。
2. 双曲线:平面上所有到两个定点距离之差等于常数的点构成一个双曲线。
3. 抛物线:平面上所有到定点距离等于直线距离的点构成一个抛物线。
4. 圆:平面上所有到定点距离相等的点构成一个圆。
五、习题实战1. 已知正方形ABCD中心为O,半径为r,则以O为圆心,以r为半径作一圆与正方形ABCD相切。
求该圆周长和扇形面积。
解:由于圆与正方形相切,所以正方形的对角线等于圆的直径,即2r=AB=BC=CD=DA。
又由于正方形的中心是圆的圆心,所以该圆半径也为r。
(1)周长:C=2πr=2π×r=2πr(2)扇形面积:S=1/4πr²2. 已知一个半径为5cm的圆与一条长度为12cm的线段相交,求此线段与圆弧之间所夹的面积。
高中圆的基本性质与点圆关系知识点及试题答案
高中圆的基本观点与点圆关系知识点与答案分析第一节圆的基本观点1.圆的标准方程: ( x- a) 2 + ( y - b) 2 = r 2(圆心 (a, b) ,半径为 r )例 1写出以下方程表示的圆的圆心和半径(1)x2 + ( y + 3) 2 = 2 ;(2)( x + 2)2+ ( y–1)2= a2( a≠0)例 2圆心在直线x– 2 y– 3 = 0上,且过A(2,–3),B(–2,–5),求圆的方程 .例 3 已知三点 A(3 ,2) , B(5 ,– 3) ,C( – 1,3) ,以 P(2 ,– 1) 为圆心作一个圆,使 A、B、C三点中一点在圆外,一点在圆上,一点在圆内,求这个圆的方程 .2. 圆的一般方程:x2+ y2+ Dx + Ey+ F = 0 (此中 D 2 + E2 - 4F > 0),圆心为点( —D,—E) ,半径r D 2E2—4F 222(Ⅰ)当 D2 + E2- 4F = 0时,方程表示一个点,这个点的坐标为 (- D,-E)22(Ⅱ)当 D2+ E2- 4F < 0时,方程不表示任何图形。
例 1:已知方程 x2+y2+2kx+4y+3k+8=0表示一个圆,求 k 的取值范围。
解:方程 x2+y2+2kx+4y+3k+8=0表示一个圆,∴ (2k) 2424(3k 8) 0 ,解得k 4或k1∴当 k4或 k 1时,方程 x2+y2 +2kx+4y+3k+8=0表示一个圆。
例 2:若(2m2+m-1)x2+(m2-m+2)y2+m+2=0的图形表示一个圆,则 m的值是___。
答案:- 3例 3:求经过三点 A( 1,- 1)、 B( 1,4 )、 C( 4,- 2)的圆的方程。
解:设所求圆的方程为 x 2 y2 Dx Ey F 0 ,A(1,- 1)、B(1,4 )、C(4,- 2)三点在圆上,代入圆的方程并化简,得D E F2D4E F17 ,解得D=-7,E=-3,F=24D 2E F20∴所求圆的方程为 x2y 27x3y20。
高三数学圆与圆的位置关系试题答案及解析
高三数学圆与圆的位置关系试题答案及解析1.在平面直角坐标xoy中,设圆M的半径为1,圆心在直线上,若圆M上不存在点N,使,其中A(0,3),则圆心M横坐标的取值范围 .【答案】【解析】设,由得:化简得:,表示为以为圆心,2为半径的圆,由题意得圆B与圆无交点,即或,解得圆心M横坐标的取值范围为:【考点】动点轨迹,圆与圆位置关系2.设m,n∈R,若直线l:mx+ny-1=0与x轴相交于点A,与y轴相交于点B,且l与圆x2+y2=4相交所得弦的长为2,O为坐标原点,则△AOB面积的最小值为________.【答案】3【解析】∵l与圆相交所得弦的长为2,=,∴m2+n2=≥2|mn|,∴|mn|≤.l与x轴交点A(,0),与y轴交点B(0,),∴S=·|△AOB |||=·≥×6=3.3.已知圆和两点,,若圆上存在点,使得,则的最大值为()A.B.C.D.【答案】B【解析】由题意知,点P在以原点(0,0)为圆心,以m为半径的圆上,又因为点P在已知圆上,所以只要两圆有交点即可,所以,故选B.【考点】本小题主要考查两圆的位置关系,考查数形结合思想,考查分析问题与解决问题的能力. 4.已知圆C的方程为,若以直线上任意一点为圆心,以l为半径的圆与圆C没有公共点,则k的整数值是()A.l B.0C.1D.2【答案】【解析】由题意知,直线过定点,圆与圆相离.圆心到直线大于,所以,,解得,故的整数值为,选.【考点】圆与圆的位置关系,点到直线的距离公式.5.圆:与圆:的公共弦长等于.【答案】【解析】将的方程化为标准方程得:.将两圆方程相减得公共弦所在直线的方程为:.圆心到弦的距离为,所以弦长.【考点】两圆的位置关系及弦长.6.如图,在平面直角坐标系xOy中,已知曲线C由圆弧C1和圆弧C2相接而成,两相接点M、N均在直线x=5上.圆弧C1的圆心是坐标原点O,半径为r1=13;圆弧C2过点A(29,0).(1)求圆弧C2所在圆的方程;(2)曲线C上是否存在点P,满足PA=PO?若存在,指出有几个这样的点;若不存在,请说明理由;(3)已知直线l:x-my-14=0与曲线C交于E、F两点,当EF=33时,求坐标原点O到直线l 的距离.【答案】(1)x2+y2-28x-29=0.(2)P不存在(3)【解析】(1)由题意得,圆弧C1所在圆的方程为x2+y2=169.令x=5,解得M(5,12),N(5,-12),又C2过点A(29,0),设圆弧C2所在圆方程为x2+y2+Dx+Ey+F=0,则,解得所以圆弧C2所在圆的方程为x2+y2-28x-29=0.(2)假设存在这样的点P(x,y),则由PA=PO,得(x-29)2+y2=30(x2+y2),即x2+y2+2x-29=0.由解得x=-70(舍去);由解得x=0(舍去).所以这样的点P不存在.(3)因为圆弧C1、C2所在圆的半径分别为r1=13,r2=15,因为EF>2r1,EF>2r2,所以E、F两点分别在两个圆弧上.设点O到直线l的距离为d,因为直线l恒过圆弧C2所在圆的圆心(14,0),所以EF=15+,即=18,解得d2=,所以点O到直线l的距离为.7.已知圆C1:x2+y2-2y=0,圆C2:x2+(y+1)2=4的圆心分别为C1,C2,P为一个动点,且直线PC1,PC2的斜率之积为-.(1)求动点P的轨迹M的方程;(2)是否存在过点A(2,0)的直线l与轨迹M交于不同的两点C,D,使得|C1C|=|C1D|?若存在,求直线l的方程;若不存在,请说明理由.【答案】(1)+y2=1(x≠0)(2)不存在【解析】(1)两圆的圆心坐标分别为C1(0,1),和C2(0,-1),设动点P的坐标为(x,y),则直线PC1,PC2的斜率分别为(x≠0)和 (x≠0).由已知条件得=-(x≠0),即+y2=1(x≠0).所以动点P的轨迹M的方程为+y2=1(x≠0).(2)假设存在满足条件的直线l,易知点A(2,0)在椭圆M的外部,当直线l的斜率不存在时,直线l与椭圆M无交点,此时不符合题意,所以直线l斜率存在,设为k,则直线l的方程为y=k(x-2).联立方程组得(2k2+1)x2-8k2x+8k2-2=0,①依题意Δ=-8(2k2-1)>0,解得-<k<.当-<k<时,设交点分别为C(x1,y1),D(x2,y2),CD的中点为N(x,y),则x1+x2=,则x==,所以y0=k(x-2)=k=.要使|C1C|=|C1D|,必须C1N⊥l,即k·kC1N=-1,所以k·=-1,即k2-k+=0,因为Δ1=1-4×=-1<0,∴k2-k+=0无解,所以不存在直线,使得|C1C|=|C1D|,综上所述,不存在直线l,使得|C1C|=|C1D|.8.若圆x2+y2=4与圆x2+y2+2ax-6=0(a>0)的公共弦的长为2,则a=________.【答案】1【解析】x2+y2+2ax-6=0(a>0)可知圆心为(-a,0),半径为,两圆公共弦所在方程为(x2+y2+2ax-6)-(x2+y2)=-4,即x=,所以有2-2=2解得a=1或-1(舍去).9.设集合,,若存在实数,使得,则实数的取值范围是___________.【答案】【解析】首先集合实际上是圆上的点的集合,即表示两个圆,说明这两个圆相交或相切(有公共点),由于两圆半径都是1,因此两圆圆心距不大于半径这和2,即,整理成关于的不等式:,据题意此不等式有实解,因此其判别式不大于零,即,解得.【考点】两圆位置关系及不等式有解问题.10.若点和点到直线的距离依次为和,则这样的直线有()A.条B.条C.条D.条【答案】C【解析】以点为圆心,以为半径长的圆的方程为,以点为圆心,且以为半径的圆的方程为,则直线为两圆的公切线,,即圆与圆外切,因此两圆的公切线有条,即直线有三条,故选C.【考点】1.两圆的位置关系;2.两圆的公切线11.圆与圆的位置关系为( )A.内切B.相交C.外切 D相离【答案】B【解析】两圆圆心间的距离,两圆半径的差为和为,因为,故两圆相交,选B.【考点】圆与圆的位置关系.12.若直线y=kx与圆-4x+3=0的两个交点关于直线x+y+b=0对称,则()A.k=1,b=-2B.k=1,b=2C.k=-1,b=2D.k=-1,b=-2【答案】A【解析】:若直线与圆的两个交点关于直线对称,则直线与直线垂直,故斜率互为负倒数,可知,而过弦的中点,且与弦垂直的直线必过圆心,而圆心的坐标为,代入直线得,.【考点】直线与圆的位置关系,考查学生数形结合能力.13.两圆和的位置关系是()A.相交B.外切C.内切D.外离【答案】C【解析】圆的圆心为,半径;圆的方程可以变形为,其圆心为,半径.圆心距,所以圆内切于圆.【考点】平面内两圆的位置关系.14.已知圆,直线.(Ⅰ)若与相切,求的值;(Ⅱ)是否存在值,使得与相交于两点,且(其中为坐标原点),若存在,求出,若不存在,请说明理由.【答案】(Ⅰ)(Ⅱ)m=9±2【解析】(Ⅰ)由圆方程配方得(x+1)2+(y-3)2=9,圆心为C(-1,3),半径为 r = 3, 2分若l与C相切,则得=3,∴(3m-4)2=9(1+m2),∴m =. 5分(Ⅱ)假设存在m满足题意。
《圆的基本性质》各节知识点及典型例题
圆的基本性质第一节 圆 第二节 圆的轴对称性 第三节 圆心角 第四节 圆周角 第五节 弧长及扇形的面积 第六节 侧面积及全面积 六大知识点:1、圆的概念及点与圆的位置关系2、三角形的外接圆3、垂径定理4、垂径定理的逆定理及其应用5、圆心角的概念及其性质6、圆心角、弧、弦、弦心距之间的关系 【课本相关知识点】1、圆的定义:在同一平面内,线段OP 绕它固定的一个端点O ,另一端点P 所经过的 叫做圆,定点O 叫做 ,线段OP 叫做圆的 ,以点O 为圆心的圆记作 ,读作圆O 。
2、弦和直径:连接圆上任意 叫做弦,其中经过圆心的弦叫做 , 是圆中最长的弦。
3、弧:圆上任意 叫做圆弧,简称弧。
圆的任意一条直径的两个端点把圆分成的两条弧,每一条弧都叫做 。
小于半圆的弧叫做 ,用弧两端的字母上加上“⌒”就可表示出来,大于半圆的弧叫做 ,用弧两端的字母和中间的字母,再加上“⌒”就可表示出来。
4、等圆:半径相等的两个圆叫做等圆;也可以说能够完全重合的两个圆叫做等圆5、点与圆的三种位置关系:若点P 到圆心O 的距离为d ,⊙O 的半径为R ,则:点P 在⊙O 外 ;点P 在⊙O 上 ; 点P 在⊙O 内 。
6、线段垂直平分线上的点 距离相等;到线段两端点距离相等的点在 上7、过一点可作 个圆。
过两点可作 个圆,以这两点之间的线段的 上任意一点为圆心即可。
8、过 的三点确定一个圆。
9、经过三角形三个顶点的圆叫做三角形的 ,外接圆的圆心叫做三角形的 ,这个三角形叫做圆的 。
三角形的外心是三角形三条边的【典型例题】【题型一】证明多点共圆例1、已知矩形ABCD ,如图所示,试说明:矩形ABCD 的四个顶点A 、B 、C 、D 在同一个圆上【题型二】相关概念说法的正误判断例1、(甘肃兰州中考数学)有下列四个命题:① 直径是弦;② 经过三个点一定可以作圆;③ 三角形的外心到三角形各顶点的距离都相等;④ 半径相等的两个半圆是等弧。
高考圆的知识点归纳总结
高考圆的知识点归纳总结高考数学中的圆是一个非常重要的内容,涉及到圆的定义、性质、相关定理等知识点。
下面对高考数学中与圆相关的知识点进行归纳总结,以帮助考生复习和备考。
一、圆的定义与性质1. 定义:平面上所有到一个给定点距离相等的点组成的图形,这个给定点叫做圆心,相等的距离叫做半径。
2. 性质:a. 圆上任意两点到圆心的距离相等。
b. 圆上的点与圆心构成的线段叫做半径,半径相等的两个圆叫做同心圆。
c. 圆周上的任意一条弧所对的圆心角都相等,且角的度数等于弧所对的圆心角所对的弧长所占整个圆周的比例。
二、弧长与扇形面积1. 弧长:指圆周上的一段弧的长度,计算公式为弧长 = 弧度 ×半径,其中弧度是弧所对的圆心角的度数除以360°乘以2π。
2. 扇形面积:指以圆心为顶点的两条半径和与这两条半径所夹圆弧所围成的图形的面积。
计算公式为扇形面积 = 弧度 ×半径的平方的一半。
三、相交与切线1. 相交:两个圆相交于两个不同的交点,则称它们为相交圆。
2. 切线:指与圆只有一个交点的直线。
a. 切线的性质:- 切线与半径的垂直关系:切线与半径的垂直关系,即切线与半径所构成的角为直角。
- 切线的长度关系:切线的长度等于半径和半径所构成的圆心角的弦长之和。
b. 切线定理:外切圆的切线和切点所构成的两条线段相等。
四、圆的位置关系1. 内切与外切:若两个圆的圆心之间的距离等于两个圆的半径之和,则这两个圆是相切于外面的;若两个圆的圆心之间的距离等于两个圆的半径之差,则这两个圆是相切于里面的。
2. 相离与相交:两个圆的圆心之间的距离大于两个圆的半径之和时,这两个圆是相离的;当圆心之间的距离小于两个圆的半径之和,但大于两个圆的半径之差时,这两个圆是相交的。
五、圆与直线的位置关系1. 切线与直径:切线与直径的垂直关系,即切线与直径所构成的角为直角。
2. 弦:指圆上连接两点的线段。
a. 弦的性质:- 弦的中点:弦的中点与圆心和圆心连线的中点共线。
圆各知识点总结
第24章 圆知识点总结一、 圆的基本性质1.圆的有关概念(1)圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆; 拓展:a.垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);b.角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;c.到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;d.到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
(2)圆的外部:可以看作是到定点的距离大于定长的点的集合; 圆的内部:可以看作是到定点的距离小于定长的点的集合。
(3)弦:圆上任意两点连成的线段;通过圆心的弦是直径,是圆中最长的弦,也是圆的对称轴。
(4) 弧:圆上任意两点之间的部分;以A 、B 为端点的弧记作B A(5)半圆:圆的任意一条直径的两个端点把圆分为两条弧,每一条弧都叫做半圆。
(半圆是弧,不包括直径的部分,因此求半圆的周长时不要画蛇添足。
)(6)劣弧:在同圆或等圆中,弧长小于该圆半圆的弧叫劣弧。
优弧:弧长大于该圆半圆的弧叫优弧。
(优弧通常用三个字母表示,如C AB。
) (7)同心圆:圆心相同,半径不同的两个圆叫做同心圆(8)等圆:能够重合的两个圆叫等圆,半径相等的两个圆也叫等圆. (9)弦心距:从圆心到弦的距离 2.圆的对称性:(1)圆是轴对称图形,其对称轴是任意一条过圆心的直线。
(2)圆是中心对称图形,对称中心为圆点。
3.垂径定理及其推论:定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
(2)弦的垂直平分线经过圆心,并且平分线所对的两条弧。
(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中圆的基本概念与点圆关系 知识点与答案解析
第一节 圆的基本概念
1.圆的标准方程:222()()x a y b r (圆心(,)a b ,半径为r )
例1 写出下列方程表示的圆的圆心和半径
(1)x 2 + (y + 3)2 = 2; (2)(x + 2)2 + (y – 1)2 = a 2 (a ≠0)
例2 圆心在直线x – 2y – 3 = 0上,且过A (2,–3),B (–2,–5),求圆的方程.
例3 已知三点A (3,2),B (5,–3),C (–1,3),以P (2,–1)为圆心作一个圆,使
A 、
B 、
C 三点中一点在圆外,一点在圆上,一点在圆内,求这个圆的方程.
2.圆的一般方程:2
20x y Dx Ey F (其中2240D E F ),圆心为点)2,2(E D ——,半径2
422F E D r —
(Ⅰ)当2
240D E F 时,方程表示一个点,这个点的坐标为(,)22
D E (Ⅱ)当2240D E F 时,方程不表示任何图形。
例1:已知方程x 2+y 2+2kx+4y+3k+8=0表示一个圆,求k 的取值范围。
解: 方程x 2+y 2+2kx+4y+3k+8=0表示一个圆,
∴0)83(44)2(22>+-+k k ,解得14-<>k k 或
∴当14-<>k k 或时,方程x 2+y 2+2kx+4y+3k+8=0表示一个圆。
例2:若(2m2+m-1)x2+(m2-m+2)y2+m+2=0的图形表示一个圆,则m 的值是___。
答案:-3
例3:求经过三点A (1,-1)、B (1,4)、C (4,-2)的圆的方程。
解:设所求圆的方程为022=++++F Ey Dx y x ,
A (1,-1)、
B (1,4)、
C (4,-2)三点在圆上,代入圆的方程并化简,得
⎪⎩
⎪⎨⎧-=+--=++-=+-20241742F E D F E D F E D ,解得D =-7,E =-3,F =2
∴所求圆的方程为023722=+--+y x y x 。
例4:若实数y x ,满足042422=--++y x y x ,则22y x +的最大值是__________。
解:由042422=--++y x y x ,得9)1()2(22=-++y x
∴点P(x, y)在以(-2,1)为圆心,半径r=3的圆C 上,
5)10()20(||22=-++=OC ,
∴原点到圆上的点P(x, y)之间的最大距离为|OC |+r =5+3
∴22y x +的最大值为5614)35(2+=+。
3.圆的一般方程的特点:
(1)①x 2和y 2的系数相同,不等于0。
②没有xy 这样的二次项。
(2)圆的一般方程中有三个特定的系数D 、E 、F ,只要求出这三个系数,圆的方程就确定了。
(3)与圆的标准方程相比较,代数特征明显,而圆的标准方程几何特征较明显。
4.圆的一般方程变形
如果220Ax Bxy Cy Dx Ey F 是圆,一定有(1)A=C 0;(2)B=0;(3)D2+E2-4AF>0。
反之,也成立。
例1:判断下列二元二次方程是否表示圆的方程?如果是,请求出圆的圆心及半径。
2
22214441290244412110x y x y x y x y
例2:方程x 2+y 2+4mx-2y+5m=0表示圆时, m 的取值范围是( D )
A. 114m
B. 1m
C. 14m
D. 14m 或1m 例3:如果圆的方程为x 2+y 2+kx+2y+k 2=0,那么当圆面积最大时圆心坐标为( )
A.(-1,1)
B.(1,-1)
C.(-1,0)
D.(0,-1)
例4:圆0sin 2cos 222=+-+θθay ax y x 的圆心坐标为 ,半径为 .
例5:方程x 2+y 2-2(m+3)x+2(1-4m 2)y+16m 4+9=0表示一个圆。
1:求实数m 的范围。
2:求该圆半径r 的范围。
3:求圆心C 的轨迹的普通方程。
解:(1)方程表示圆的充要条件是2240D E F ,即:
4(m +3)2+4(1-4m 2)2-4(16m 4+9)>0,
解之得-71
<m <1.
(2)2
422F E D r — ,得到r 的取值范围
(3)设圆心为(x ,y ),
则
消去m 得:y =4(x -3)2-1,
∵-71
<m <1,
∴720
<x <4,
即轨迹为:y =4(x -3)2-1(720
<x <4)。
例6:已知实数y x ,满足等式9)3()4(22=++-y x ,求y x +的最值。
第二节 点与圆的关系
1.点00(,)M x y 与圆2
22()()x a y b r 的关系的判断方法 (1)220
0()()x a y b >2r ,点在圆外 (2)220
0()()x a y b =2r ,点在圆上 (3)220
0()()x a y b <2r ,点在圆内
例1:ABC 的三个顶点的坐标是(5,1),(7,3),(2,8),A B C 求它的外接圆的方程。
解析:用待定系数法确定a b r 、、三个参数。
例2:已知圆经过点(1,1)A 和(2,2)B ,且圆心在:10l x y 上,求圆的标准方程。
解析:圆心为C 的圆经过点(1,1)A 和(2,2)B ,由于圆心C 与A,B 两点的距离相等,所以圆心C 在AB 的垂直平分线m 上,又圆心C 在直线l 上,因此圆心C 是直线l 与直线m 的交点,半径长等于CA 或CB 。
例3:写出圆心为(2,3)A -半径长等于5的圆的方程,并判断点12(5,7),(5,1)M M ---是否在这个圆上。
2.圆的对称性问题:圆的对称性问题可以转化为原点的对称性,而圆的半径r 相等。
例1:求x 2+y 2+4x-12y+39=0关于直线3x-4y-5=0的对称圆方程
解析:圆方程可以转化为(x+2)2+(y-6)2=1,圆心O(-2,6),半径为1。
设圆心关于直线的对称点O'(a,b) ,OO'和直线3x-4y-5=0对称,因此有:
解得
所求圆的方程为
223226()()155x y 。
3.与圆有关的轨迹方程
方法一:代入转移求轨迹方程
的轨迹方程。
的中点求线段上运动在圆端点的端点已知线段M AB y x A B AB ,4)1(),3,4(22 如: 方法二:参数法求轨迹方程
求圆心的轨迹方程。
表示的曲线是不同的圆——方程取不同的非零实数时,当03322222 a ay ax y x a 方法三:充分利用韦达定理
如:设O 为坐标原点,曲线x 2+y 2+2x-6y+1=0上有两点P,Q,满足关于直线x+my+4=0对称,又满足OP ·OQ =0,求直线PQ 的方程。
解:曲线方程为(x+1)2+(y -3)2=9表示圆心为(-1,3),半径为3的圆. ∵点P 、Q 在圆上且关于直线x+my+4=0对称,
∴圆心(-1,3)在直线上.代入得m=-1。
∵直线PQ 与直线y=x+4垂直,
∴设P (x 1,y 1)、Q (x 2,y 2),PQ 方程为y=-x+b.
将直线y=-x+b 代入圆方程,得2x 2+2(4-b )x+b 2-6b+1=0.
Δ=4(4-b )2-4×2×(b 2-6b+1)>0,得2-32<b<2+32。
由韦达定理得x 1+x 2=-(4-b ),x 1·x 2=2162 b b
—。
y 1·y 2=b 2-b (x 1+x 2)+x 1·x 2=2
162 b b —+4b. ∵OP ·OQ =0,∴x 1x 2+y 1y 2=0,
即b 2-6b+1+4b=0.
解得b=1∈(2-32,2+32)。
∴所求的直线方程为y=-x+1。
4.圆中的最值思想
(1)形如y b m x a 的最值问题,转化为动直线斜率的问题;
(2)形如m=ax+by 的最值问题,转化为动直线截距的最值问题;
(3)形如m=(x-a)2+(y-b)2最值问题,转化为两点间距离的平方最值问题。
如:已知点P (x,y )是圆(x+2)2+y 2 =1上任意一点。
(1)求P 到直线3x+4y+12=0的距离的最大值和最小值;
(2)求x-2y 的最大值和最小值;
(3)求21y x 的最大值和最小值。
解:(1)圆心C (-2,0)到到直线3x+4y+12=0的距离为: 223*(2)4*0126
534d ∴所以P 到直线距离的最大值为d+r=65+1=115,最小值为d-r=65-1=1
5。
(2)设t=x-2y,
∵直线x-2y-t=0与圆(x+2)2+y 2 =1有公共点 ∴圆心到直线的距离小于等于半径
(3)设2
1y k x ,则直线kx-y-k+2=0与圆(x+2)2+y 2 =1有公共点 ∴圆心到直线的距离小于等于半径。