镧系元素-最详细的介绍

合集下载

稀土元素 镧系

稀土元素 镧系

稀土元素镧系镧系元素是指周期表中镧(La)到镱(Yb)这15个元素,它们统称为镧系元素。

镧系元素是稀土元素中的一类,具有独特的化学和物理性质,广泛应用于各个领域。

下面将对镧系元素进行详细介绍。

一、镧系元素的概述镧系元素是指原子核中电子的填充顺序为4f的元素,它们的外层电子结构为5d1 6s2。

镧系元素的原子序数从57到71,依次为镧、铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱。

这些元素的原子半径逐渐缩小,原子质量逐渐增加。

二、镧系元素的性质1. 化学性质镧系元素具有较强的还原性和氧化性,可以与大多数非金属和金属反应。

其中镧、铈和钇是相对稳定的,而镝、钬和铒则比较活泼。

镧系元素的化合价一般为+3,但也可表现出+2和+4的化合价。

2. 物理性质镧系元素是金属,具有良好的导电性和热导性。

它们的熔点和沸点较高,且在常温下呈固态。

镧系元素的磁性多样,有的呈铁磁性,有的呈反铁磁性,还有的呈顺磁性。

三、镧系元素的应用1. 钢铁冶炼镧系元素可用作钢铁冶炼中的合金元素,能够提高钢的强度、塑性和耐腐蚀性。

其中钕铁硼磁体是应用最广泛的稀土磁体,被广泛应用于电机、传感器、声学设备等领域。

2. 光学材料镧系元素的化合物具有良好的光学性能,可用于制备激光材料、光纤通信材料和荧光材料。

镧系元素的荧光粉被广泛应用于LED照明、荧光屏幕和激光显示器等领域。

3. 催化剂镧系元素的化合物具有良好的催化性能,可用作汽车尾气净化催化剂、石油加工催化剂和化学合成催化剂。

镧系催化剂能够提高反应速率、改善反应选择性和延长催化剂寿命。

4. 核能材料镧系元素的同位素镧-138是一种重要的核能材料,可用于核反应堆的燃料制备。

镧系元素还可用于制备核探测仪器、核医学放射性示踪剂和放射治疗药物。

5. 稀土磷光粉镧系元素的磷光粉广泛应用于荧光显示器、荧光屏幕、LED照明等领域。

镧系元素的磷光粉具有高亮度、长寿命和良好的发光特性。

6. 其他应用镧系元素还可用于制备陶瓷材料、玻璃材料、高温超导材料和磁性材料等。

镧系元素-最详细的介绍

镧系元素-最详细的介绍

(三)、+2价 有Sm2+、Eu2+、Yb2+ 、CeCl2、 NdI2、TmI2等,其中 Eu 4f76s2 ―-2e→ 4f 7 半满 Eu2+ ϕ°(Eu3+/ Eu2 +)=-0.43 V Yb 4f146s2 ―-2e→ 4f 14 全满 Yb2+ ϕ°(Yb3+/ Yb 2+)=-1.21 V +2价稀土亦如碱土Ba2+ ,与SO42-生成沉淀。 如:用Zn还原稀土,+SO42-则可分离EuSO4 (四)、配合物 +3价较硬的酸,与硬碱F-、O2- 配位稍稳定; 配位数较大是特点之一,因为其离子半径较大, 有8、9、10、12等
⑥ 高 温 超 导 , YBaCuO,Tc=90K,1987 ; LaxBayCuzOw 1986,Tc=35K,之后发现加压 可提高Tc;再后用更小的Sc取代,则无超导性, 因得不到钙钛矿型;另外之后发现 Tl2Ba2Ca2Cu3O10 也是高温超导,所以超导与f 电子无关。 ⑦ 激光晶体,1960红宝石(Al2O3:Cr3+); 1962,CaWO4:Nd3+ 输出连续激光;1964, Y3Al5O12:Nd3+ 室 温 下 连 续 输 出 ; LiNbO3: Nd3+ 自倍频晶体(1.06µm 红外,0.53µm 绿 光)。目前已知有320种激光晶体,其中290种 以稀土为激活离子。
总之,稀土将是磁、光、电等功能材料的 最佳载体。所以小平同志曾指出:“中 东有石油,中国有稀土”。我们希望能 用自己的能力完成两次飞跃: 第一次飞跃,从稀土资源大国-→生产大 国飞跃 第二次飞跃,从生产大国-→科技大国飞 跃 稀土是21世纪的“战略元素”;美国定出 25种,其中15种镧系元素,15/25;日本 40种,其中稀土17种,17/40。

镧系元素和锕系元素知识总结

镧系元素和锕系元素知识总结

镧系元素和锕系元素知识总结
镧系元素是指的是镧(La)和镝(Dy)之间的元素,包括了镧、铈、镨、钕、钐、铕、钆、铽、镝、钬、铒和铥。

锕系元素是指镤(Pa)和铀(U)之间的元素,包括了镤、铀、镅、锔、锫、锎、锿、镄、钔、锘、铹和八氦。

这两个系列的元素都是内过渡金属元素,具有一些共同的特点和性质。

1. 化学性质:
- 镧系元素和锕系元素都具有较高的原子序数和较复杂的电子结构,因此在化学反应中表现出多样的化学性质。

- 这些元素的氧化态多种多样,一般有+2到+4的氧化态,也有较高的氧化态。

- 镧系元素和锕系元素都具有较强的还原性和氧化性。

2. 物理性质:
- 镧系元素和锕系元素都是铁磁性金属,具有较强的磁性。

- 这些元素的原子半径和离子半径较大,因此在金属中常以+3价状态存在。

- 镧系元素和锕系元素的原子核比较稳定,存在较多的同位素,包括放射性同位素。

3. 应用:
- 镧系元素和锕系元素在工业上有广泛的应用,尤其是镧、钇和铀等元素。

- 镧系元素广泛应用于电子产业、催化剂产业、照明产业等领域,如镧系金属在气体燃料电池中的应用和镧系氧化物作为催化剂的应用等。

- 锕系元素主要应用于核能产业,如铀和镅等元素被用作核燃料和核燃料后处理等。

神秘而罕见镧的化学奥秘

神秘而罕见镧的化学奥秘

神秘而罕见镧的化学奥秘镧是一种神秘而罕见的化学元素,它的存在却很少为人所知。

本文将带您一探镧的化学奥秘。

首先,让我们来了解一下镧的基本信息。

镧的原子序数为57,化学符号为La。

它是镧系元素中最常见的一种,属于稀土金属。

镧在自然界中较为稀少,常以化合物的形式存在。

镧的物理性质非常特殊,具有良好的延展性和导电性。

它还具有较强的磁性和反铁磁性,因此在磁学和材料科学中有重要的应用。

接下来,让我们来探讨一下镧的化学性质。

镧是一种化性较活泼的金属元素,与氧、水和酸等物质反应活跃。

与氧气反应时,镧可以形成氧化物La2O3。

此外,镧还可以与非金属元素形成多种化合物,如与卤素形成的镧氯化物(LaCl3)、镧溴化物(LaBr3)等。

这些化合物在催化剂、电池、光学器件等领域都有广泛的应用。

然而,镧最引人注目的特性之一是其在配合物中的应用。

镧离子可以与不同的配体形成稳定的配合物,这种特性使得镧在有机合成和荧光探针方面有很大的潜力。

镧配合物不仅在光谱分析、医学影像等领域发挥重要作用,还被用于发展新型荧光材料和化学传感器。

这些应用展示了镧的巨大潜力和化学奥秘。

除此之外,镧还在核能领域有着重要的应用。

镧的同位素镧-138是一种优良的热中子吸收剂,可用于核电站中的熔盐反应堆。

熔盐反应堆利用镧来控制裂变链式反应,确保反应过程的稳定性和安全性。

这种应用使得镧在核科学领域的地位愈加重要。

总而言之,镧作为一种神秘而罕见的化学元素,具有独特的物理和化学性质。

它在催化剂、荧光探针、核能等领域有着广泛的应用前景。

镧的化学奥秘还有待深入研究和探索,相信在未来的科学发展中,镧会为我们带来更多惊喜和突破。

让我们一同期待镧这个神秘元素的更多奇迹!。

稀土元素 镧系

稀土元素 镧系

稀土元素镧系
稀土元素是指在自然界中含量极少的一类元素,其中镧系元素是稀土元素中最为重要的一类。

镧系元素包括镧、铈、镨、钕、钷、铕、钐、铽、镝、钬、铒、铥和镱等15种元素,它们的化学性质相似,但物理性质却有很大的差异。

镧系元素在现代工业中有着广泛的应用,其中最为重要的是钕铁硼磁体。

钕铁硼磁体是一种高性能永磁材料,具有高磁能积、高矫顽力、高磁导率等优良性能,被广泛应用于电机、发电机、电动汽车、航空航天等领域。

而钕铁硼磁体中的主要元素就是钕和铁,而钕的含量占比最高,因此钕是镧系元素中最为重要的元素之一。

除了钕铁硼磁体,镧系元素还广泛应用于石油化工、电子、冶金、光学等领域。

例如,镧系元素可以用于制备催化剂、光学玻璃、荧光粉、电子材料等。

此外,镧系元素还可以用于医学领域,例如用于制备核医学诊断剂和治疗剂等。

然而,由于镧系元素的产量极少,且分布不均,因此其价格较高。

此外,镧系元素的开采和加工也存在环境污染等问题。

因此,如何合理利用镧系元素,保护环境,成为了一个重要的课题。

镧系元素是稀土元素中最为重要的一类元素,具有广泛的应用前景。

在利用镧系元素的过程中,需要注意环境保护和资源合理利用的问题,以实现可持续发展。

元素周期表中的镧系与锕系元素

元素周期表中的镧系与锕系元素

元素周期表中的镧系与锕系元素镧系元素和锕系元素是元素周期表中两个重要的连续元素系列。

它们在化学性质和应用中都具有独特的特点。

下面将对镧系元素和锕系元素进行详细介绍。

一、镧系元素镧系元素是指周期表中镧(La)至镤(Lr)这一系列的元素。

镧系元素具有相似的化学性质和电子结构,这是由于它们都有4f轨道的电子。

镧系元素主要包括镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)和镥(Lu)。

镧系元素具有较强的还原性和催化活性,广泛应用于催化剂、照明材料和电子器件等方面。

以镧系元素为主的合金在航天、国防等领域也有重要应用。

二、锕系元素锕系元素是指周期表中锕(Ac)至铀(U)这一系列的元素。

锕系元素的特点是其核外电子排布在5f轨道上,这使得它们具有较复杂的电子结构和较高的电子自旋磁矩。

锕系元素主要包括锕(Ac)、钍(Th)、镤(Pa)、铀(U)、镅(Np)、钚(Pu)、镎(Am)、锔(Cm)、锫(Bk)、锎(Cf)、锿(Es)、镄(Fm)、钔(Md)、锘(No)和鿃(Lr)。

锕系元素具有重要的核物理性质和广泛的应用价值。

铀是锕系元素中应用最广泛的元素,被广泛应用于核能产业和核武器制造。

锕系元素还可以用于放射性同位素的制备、放射性示踪和医学诊断等领域。

总结:镧系元素和锕系元素在元素周期表中具有重要的位置和作用。

它们的电子结构和化学性质的独特性使得它们在催化、照明、电子器件、核能产业等方面具有广泛的应用价值。

对镧系和锕系元素的深入研究有助于我们更好地理解元素周期表和探索新的材料与技术。

通过对元素周期表中镧系和锕系元素的了解,我们可以更好地认识这些元素的特性和应用,并且在科学研究和工业生产中发挥其独特作用。

希望对您有所帮助!。

镧系元素

镧系元素

原子半径/pm
187.7 182.4 182.8 182.1 181.0 180.2 204.2 180.2 178.2 177.3 176.6 175.7 174.6 194.0 173.4
Ln3+半径 /pm E q /V
106.1 -2.38
103.4 -2.34
101.3 -2.35
99.5 -2.32
97.9
-2.29
96.4
-2.30
95.0
-1.99
93.8 -2.28
92.3
-2.31
90.8
-2.29
89.4
-2.33
88.1
-2.32
86.9
-2.32
85.8
-2.22
84.8
-2.30
7Hale Waihona Puke 从上图中可以看出,镧系元素的原子半径和
离子半径在总的趋势上都随着原子序数的增加而
缩小的幅度很小,这叫做
2
3 Li

4 Be

5 B 6 C 7 N 8 O 9 F 10 Ne
硼 碳 氮氧 氟 氖
3
11 Na

12 Mg

IIIB
IVB
VB
VIB VIIB
VIII
13 Al 14 Si 15 P 16 S 17 Cl 18 Ar
IB IIB 铝 硅 磷 硫 氯 氩
4 19 K 20 Ca 21 Sc 22 Ti 23 V 24 Cr 25 Mn 26 Fe 27 Co 28 Ni 29 Cu 30 Zn 31 Ga 32 Ge 33 As 34 Se 35 Br 36 Kr
整个电子壳层依次收缩的积累造成总的镧系收缩

镧系元素

镧系元素

镧系元素在周期系中,你知道什么是镧系元素?什么是稀土元素吗?它们的电子层结构和性质有什么特点?它们在科学技术和生产中扮演了什么样的角色?“镧系元素”在周期表中从原子序数为57号的镧到原子序数为71号的镥共15种元素,它们的化学性质十分相似,都位于周期表中第ⅢB族,第6周期镧的同一格内,但它们不是同位素。

同位素的原子序数是相同的,只是质量数不同。

而这15种元素,不仅质量数不同,原子序数也不同。

称这15种元素为镧系元素,用Ln表示。

它们组成了第一内过渡系元素。

“稀土元素”镧系元素以及与镧系元素在化学性质上相近的、在镧系元素格子上方的钇和钪,共17种元素总称为稀土元素,用RE表示。

按照稀土元素的电子层结构及物理和化学性质,把钆以前的7个元素:La、Ce、Pr、Nd、Pm、Sm和Eu称为轻稀土元素或铈组稀土元素;钆和钆以后的7个元素:Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu,再加上Sc和Y共10个元素,称为重稀土元素或钇组稀土元素。

“稀土”的名称是18世纪遗留下来的。

由于当时这类矿物相当稀少,提取它们又困难,它们的氧化物又和组成土壤的金属氧化物Al2O3很相似,因此取名“稀土”。

实际上稀土元素既不“稀少”,也不像“土”。

它们在地壳中的含量为0.01534,其中丰度最大的是铈,在地壳中的含量占0.0046,其次是钇、钕、镧等。

铈在地壳中的含量比锡还高,钇比铅高,就是比较少见的铥,其总含量也比人们熟悉的银或汞多,所以稀土元素并不稀少。

这些元素全部是金属,人们有时也叫它们稀土金属。

我国稀土矿藏遍及18个省(区),是世界上储量最多的国家。

内蒙包头的白云鄂博矿是世界上最大的稀土矿。

在我国,具有重要工业意义的稀土矿物有氟碳铈矿Ce(CO3)F,独居石矿RE(PO4),它们是轻稀土的主要来源。

磷钇矿YPO4和褐钇铌矿YNbO4是重稀土的主要来源。

我们从以下几个方面来讨论镧系元素的通性:1、价电子层结构2、氧化态3、原子半径和离子半径4、离子的颜色5、离子的磁性6、标准电极7、金属单质电子层结构这是目前根据原子光谱和电子束共振实验得到的镧系元素原子的电子层结构:根据电子填充的一般规律,由于4f能级的能量介于6s和5d之间,由表Ln-1中可见,从第57号元素镧开始,新增加的电子填充在4f能级上,应该4f能级充满后再填充到5d能级上去。

镧系元素罕见而珍贵的稀土

镧系元素罕见而珍贵的稀土

镧系元素罕见而珍贵的稀土稀土元素是一类非常罕见而珍贵的化学元素,也被称为镧系元素。

它们在地壳中的含量很低,因此在过去的几十年中,稀土元素的重要性和价值逐渐被人们认识和重视起来。

本文将探讨镧系元素的特点、用途以及稀土元素产业的发展与挑战。

一、镧系元素的特点镧系元素是指周期表中的镧(La)至镱(Lu)这15个元素。

它们与其他元素相比具有一些独特的特点。

首先,稀土元素的原子半径相对较小,电子结构复杂,拥有丰富的能级和电子构型。

这赋予了它们一些特殊的化学和物理性质,如稀土元素化合物常常呈现出明亮的颜色,在光学和电子学领域有着重要应用。

其次,镧系元素具有良好的磁性。

有些稀土元素,如铽(Tb)、钆(Gd)和钐(Sm),拥有强大的磁性,被广泛应用于制造永磁材料、电机和磁性存储设备等领域。

此外,稀土元素还具有较高的化学活性和与其他元素形成复杂的化合物的倾向。

这使得镧系元素在催化剂、材料科学和生物医药等方面有重要的应用。

二、镧系元素的用途由于镧系元素的独特性质,它们在各个领域都有广泛的应用。

1. 光学与电子学领域:稀土元素是制造荧光粉和激光材料的关键成分,广泛用于LED照明、显示屏、激光器等设备。

同时,稀土元素还在光纤通信、光学传感器等领域发挥着重要作用。

2. 磁性材料领域:铽、钆和钐等稀土元素是制造永磁材料的主要元素,用于制造电机、发电机、磁性存储设备等。

稀土元素的磁性能保持时间长,能有效提高设备的性能和效率。

3. 催化剂领域:稀土元素在催化剂中发挥重要作用,能够促进化学反应的进行,并提高反应的选择性和效率。

催化剂广泛应用于化工、石油加工、汽车尾气净化等领域。

4. 新材料领域:稀土元素是许多新兴材料的关键成分,如稀土磁体材料、电池材料、生物材料等。

这些新材料具有重要的应用前景,可以推动能源、环境、医疗等领域的创新发展。

三、稀土元素产业的发展与挑战稀土元素的价值和重要性使得稀土元素产业成为许多国家的战略性产业。

然而,稀土元素产业也面临着一些挑战。

稀土元素 镧系

稀土元素 镧系

稀土元素镧系稀土元素是指元素周期表中镧系(57La以上)和钪系(21Sc到31Ga)元素,共17个元素,它们的化学和物理性质非常相似,而且在很多方面都是不可或缺的。

稀土元素的应用领域非常广泛,涉及到能源、信息、材料、环保、医疗等诸多领域,特别是高新技术领域,稀土元素的应用显得尤为重要。

镧系共有15个元素,是稀土元素中最重要的一组元素。

其中,Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu分别为镧系元素的第1到13个元素,而La和Y则分别为镧系元素的第1和15个元素。

下面就让我们来了解一下镧系元素的特点及应用。

一、镧系元素的特点1. 化学性质稳定:镧系元素的化学性质非常稳定,能在大气中长期保存而不被氧化。

除极少数特殊条件下会出现自然发射外,镧系元素通常不会与空气中氧气、水气等发生反应,因此在包装和保存方面可用性好。

2. 电子构型特殊:镧系元素最外层的f轨道在原子中排布特殊,因此它们的复合物具有较强的吸附能力和独特的分子构象效应。

在分析化学、生化学等方面有广泛的应用。

3. 金属活性强:镧系元素具有良好的还原性和氧化性,因此可用于催化和电化学反应中,如电池,金属合金,强磁体等。

4. 放射性:镧系元素中有一些元素具有放射性,如钷、铕、镤、钐等,分别用于医疗、放射性示踪、核反应堆等领域。

二、镧系元素的应用1. 催化剂:镧系元素具有良好的催化性能,广泛应用于化学反应、石化工业、制药工业、涂料工业等领域。

如在催化裂化技术中,用于汽油和柴油的裂解;在制造聚合物、涂料、塑料、化妆品等领域,镧系元素作为催化剂可提高生产效率和产品质量。

2. 稀土磁体:镧系元素中的铽、钕等元素具有很高的磁性,可用于制造各种强磁体,如永磁材料、电机、发电机等。

3. 电池:镧系元素可用于生产Ni-MH电池,这种电池比普通镉镍电池的容量高,使用寿命长。

4. 光学材料:镧系元素可用于制造激光、荧光材料、高压钠灯等。

镧系

镧系

2010级宁夏师范学院化学与化学工程学院学生论文镧系元素镧、铈、镨的介绍中文摘要 (1)英文摘要 (1)1镧 (2)1.1镧的基本信息 (2)1.2镧的性质 (2)1.2.1物理性质 (2)1.2.2化学性质 (3)1.3镧的发现 (3)1.4性质与稳定性 (4)1.5镧的用途 (4)1.5.1常规用途 (4)1.5.2特殊用途 (4)2 铈 (7)2.1铈的基本信息 (7)2.2铈的性质 (7)2.2.1物理性质 (7)2.2.2化学性质 (8)2.3铈的发现 (8)2.4铈的用途 (9)2.4.1一般用途 (9)2.4.2特殊用途 (10)3镨 (11)3.1镨的基本信息 (11)3.2镨的性质 (11)3.3镨的发现 (12)3.4镨的用途 (13)3.4.1一般用途 (13)3.4.2特殊用途 (14)参考文献 (15)镧系元素镧、铈、镨的介绍摘要镧系元素是第57号元素到71号元素15种元素的统称,包括镧、铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥,。

镧系元素的外层和次外层的电子构型基本相同,电子逐一填充到4f轨道上。

镧系元素也属于过渡元素,只是镧系元素新增加的电子大都填入了从外侧数第三个电子层(即4f电子层)中,所以镧系元素又可以称为4f系。

为了区别于元素周期表中的d区过渡元素,故又将镧系元素(及锕系元素)称为内过渡元素。

由于镧系元素都是金属,所以又可以和锕系元素统称为f区金属。

镧系元素用符号Ln表示。

关键词:镧、铈、镨、镧系元素。

The Introduction of Lanthanide element lanthanum, cerium, praseodymiumabstractLanthanide element number is 57 to 71 # 15 elements collectively, including lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium,. Lanthanide elements of outer layer and outer layer of have the same electron configuration, electronic filling in orbit to 4 f them one by one. Lanthanides also belongs to the transitional elements, just lanthanide new electronic tend to fill in the third shell from the outside (namely) of 4 f electronic shell, lanthanides and so can be referred to as the 4 f system. In order to distinguish it from d area transition elements in the periodic table of elements, so it will be the lanthanides (and actinide elements) is called the transition element. Because lanthanide metal, also can and actinides are collectively referred to as area f metal. Lanthanide represented by symbols Ln. Keywords:lanthanum, cerium, praseodymium,Lanthanide element1.镧镧:原子序数57,原子量138.9055,元素名来源于希腊文,原意是“隐蔽”。

镧系元素PPT课件

镧系元素PPT课件

原子半径/pm
187.7 182.4 182.8 182.1 181.0 180.2 204.2 180.2 178.2 177.3 176.6 175.7 174.6 194.0 173.4
Ln3+半径 /pm E q /V
106.1
-2.38
103.4
-2.34101.3-2.3599.5-2.32
世界上目前已发现的稀土矿物约有250多种,其中含量 较高的有60多种,实际上有开采价值的只有10多种。我国 稀土矿藏遍及十多个省,是世界上储量最多的国家。白云 鄂博矿床距包头 150 公里,它是世界上最大的稀土资源, 目前的稀土产量占全国的 60%。
具有重要工业意义的稀土矿物有磷钇矿(YPO4)、氟碳铈 (Ce(CO3)F)矿、褐钇铌矿(YNbO4)等等。
a) 镧系收缩的原因
1. 是由于4f 电子对原子核的屏蔽作用比较弱,随着原子序 数的递增,外层电子所经受的有效核电荷缓慢增加,外
电子壳层依次有所缩小。
2. 由于f 轨道的形状太分散,4f 电子互相之间的屏蔽也非常 不完全,在填充 f 电子的同时,每个4f 电子所经受的有效 核电荷也在逐渐增加,结果使得4f 壳层也逐渐缩小。
水溶液中,又能存在于固体中; ✓ 正 4 价的 Ce(IV) 具有氧化性:
✓ CeO2:不溶于酸或碱;强氧化剂(被H2O2还原) ✓ 常见的+4价铈盐有硫酸铈Ce(SO4)2·2H2O和硝酸
铈 Ce(NO3)4·3H2O。能溶于水,还能形成复盐。
如何快速分离铈?
Ce4+与其它Ln3+的差别: • CeO2·H2O在pH为时沉淀,其它Ln3+要在pH为
c) 镧系收缩的影响
➢使钇Y3+(88 pm)在离子半径的序列中落在铒Er3+(88.1 pm) 的附近,因而在自然界中常同镧系元素共生,成为稀土元 素的一员. ➢使镧系后面各族过渡元素的原子半径和离子半径分别与 相应同族上面一个元素的原子半径和离子半径极为接近: 例: IV B族的Zr4+(80 pm)和Hf4+(79 pm); V B族的Nb5+(70 pm)和Ta5+(69 pm);VI B族的Mo6+(62 pm)和W6+(62 pm), 离子半径极为接近,化学性质相似。结果造成锆与铪,铌 与钽,钼与钨这三对元素在分离上的困难. ➢第VIII族中两排铂系元素在性质上的极为相似,也是镧 系收缩所带来的影响.

镧系元素总结

镧系元素总结

镧系元素总结简介镧系元素是指周期表中镧(La)至镥(Lu)元素的集合。

这些元素也被称为稀土元素,由于其在地壳中含量较低且难以提取,因此被称为稀土。

镧系元素具有独特的化学和物理特性,广泛应用于科学研究、工业生产和医学领域。

特性1.原子结构:镧系元素的原子结构特点是外层电子结构为4f n5d16s^2,其中n代表原子序数。

这些元素的电子排布使得它们在化学性质上表现出相似的特点。

2.化学性质:镧系元素具有较强的金属性质,常为淡黄色的金属。

它们高度活泼,能与多种元素形成化合物。

镧系元素在化学反应中往往呈现多个化价态,表现出丰富的化学性质。

3.物理性质:镧系元素具有较高的熔点、沸点和密度。

它们具有良好的导电性和热导性。

镧系元素还具有磁性,在不同的温度下表现出不同的磁性行为。

4.放射性:镧系元素中的几个元素具有放射性。

其中,镧和钆具有稳定的同位素,而其他元素如镤、铕、铽等则具有放射性同位素。

应用领域1.制备材料:镧系元素广泛应用于材料科学领域。

它们在制备高温超导材料、储能材料和催化剂等方面发挥重要作用。

2.光学应用:镧系元素的化合物在光学领域具有广泛的应用。

它们的特殊发光性能使得它们成为荧光粉、荧光标记剂和激光材料的重要组成部分。

3.化学分析:镧系元素在化学分析中具有重要的作用。

它们的化学性质使得它们成为配位化合物和指示剂的理想选择。

4.核医学:镧系元素的放射性同位素被广泛应用于核医学领域。

镧系元素的放射性同位素可用于放射性示踪、放射治疗和核素扫描等。

5.环境保护:镧系元素在环境保护领域具有重要作用。

它们的催化性能使得镧系元素在废气净化和废水处理中起到重要的作用。

镧系元素列表•镧 (La)•铈 (Ce)•镨 (Pr)•钕 (Nd)•钷 (Pm)•铒 (Sm)•铽 (Eu)•镝 (Gd)•钬 (Ho)•铒 (Er)•铥 (Tm)•镱 (Yb)•镥 (Lu)结论镧系元素具有独特的化学和物理特性,广泛应用于科学研究、工业生产和医学领域。

第08章镧系元素的性质及其性质变化规律性

第08章镧系元素的性质及其性质变化规律性

第08章镧系元素的性质及其性质变化规律性镧系元素是指周期表中镧(La)至镥(Lu)这15个元素。

镧系元素有着独特的性质和变化规律,下面将从电子结构、原子半径、价态、化合价、化学性质等方面进行详细介绍。

1.电子结构镧系元素的电子结构特点是4f电子壳层中的电子数逐渐增加。

由于4f电子层的能级非常接近,4f电子在填充过程中伴随着能量的微弱变化,因此镧系元素往往具有相似的化学性质。

2.原子半径镧系元素原子半径逐渐减小,从镧到镥,原子半径减小的原因是由于原子核电荷数增加,对外层电子的吸引力增强。

3.价态和化合价镧系元素有两种主要的价态:+3和+4、镧系元素的+3价态是最常见的,这是由于具有4f电子的能级较高,它们不容易被电子接受或失去。

然而,一些较重的镧系元素,如镪(Dy)和钆(Gd),在特定条件下可以形成+4价。

由于4f电子的特殊电子结构和能级分布,镧系元素的化合价多样性较大。

镧系元素可以表现出不同的氧化态和配位数,使得它们具有多种化学性质。

4.化学性质镧系元素有着丰富的化学性质。

它们是典型的两性元素,既能形成阳离子(+3价)也能形成阴离子(-3价)。

镧系元素的(+3)氧化态在水溶液中显示出附加物、配位和光谱活性的特征。

镧系元素与非金属元素形成的化合物通常是共价化合物,显示出较高的稳定性。

而与金属元素形成的化合物通常是离子化合物,可以参与氧化还原反应。

另外,镧系元素也表现出强氧化性和催化性。

镧系元素具有活性较高的表面,并能形成氧化物薄膜,在催化剂中能促进化学反应的进行。

5.性质变化规律镧系元素的性质随着原子序数的增加而变化。

随着电荷核吸引力的增加,原子半径减小,化合能增加,原子或离子的极化能力增强,离子半径、配位数和价态的多样性增加。

此外,由于4f电子的屏蔽效应较弱,导致外层电子有较强的相互作用,形成金属键或共价键。

镧系元素的金属性和金属结构成分是由4f电子的非常特殊的能带结构所决定的。

总而言之,镧系元素在周期表中具有独特的性质和变化规律。

镧
3、在100mL镍坩埚中电解熔融50g KOH + 20g NaOH + 8g H2O + 10g La2O3的混合物。镍坩埚置于300W的 电炉中,用一支装金属箍头的玻璃温度计测量温度,厚的铂丝作为阳极稍稍浸入熔融物的液面下,坩埚作为阴极, 电压4V。温度控制在300℃直至得到清澈的熔化物,5min后,当温度达310℃时,清澈的熔融物中开始出现沉淀。 待观察到反应放热,停止加热,温度下降到290℃,持续20min后,轻轻倒出熔化物,得到晶体。熔融物在 260~280℃再次加热2.5h,能够形成较好的生产镍氢电池,这是镧最主要的应用之一。
2、主要用于制造制特种合金精密光学玻璃、高折射光学纤维板,适合做摄影机、照相机、显微镜镜头和高 级光学仪器棱镜等。还用了制造陶瓷电容器、压电陶瓷掺入剂和X射线发光材料溴氧化镧粉等。由磷铈镧矿砂萃取 或由灼烧碳酸镧或硝酸镧而得。也可以由镧的草酸盐加热分解可以制得。
谢谢观看
化学性质
化学性质
金属镧的化学性质活泼,易溶于稀酸。在空气中易氧化,新鲜的表面遇空气迅速变暗;加热能燃烧,生成氧 化物和氮化物。在氢气中加热生成氢化物,在热水中反应强烈并放出氢气。镧存在于独居石沙和氟碳铈镧矿中。 镧可直接与碳、氮、硼、硒、硅、磷、硫、卤素等反应;镧的化合物呈反磁性。高纯氧化镧可用于制造精密透镜; 镧镍合金可做储氢材料,六硼化镧广泛用作大功率电子发射阴极。
3、用作多种反应的催化剂,如掺杂氧化镉时催化一氧化碳的氧化反应,掺杂钯时催化一氧化碳加氢生成甲 烷的反应。浸渗入氧化锂或氧化锆(1%)的氧化镧可用于制造铁氧体磁体。是甲烷氧化偶联生成乙烷和乙烯的非 常有效的选择性催化剂。用于改进钛酸钡(BaTiO3)、钛酸锶(SrTiO3)铁电体的温度相依性和介电性质,以及 制造纤维光学器件和光学玻璃。

镧系元素

镧系元素

由于稀土元素半径相近,性质相似, 往往以混合矿物形式存在。
独居石、磷钇矿、氟碳铈镧矿等是 重要的稀土磷酸盐矿物。
我国的稀土储量占世界第一位。
锕系元素都具有放射性 Ac Th 锕 钍 Bk Cf 锫 锎 Pa 镤 Es 锿 U 铀 Fm 镄 Np 镎 Md 钔 Pu Am 钚 镅 No Lr 锘 铹 Cm 锔
Ln2O3 难溶于水,易溶于酸,经过灼烧 仍溶于强酸,与 Al2O3 不同。 Ln 盐类与 NaOH 反应,可以得到 (III ) Ln (OH) 3, 其碱性与碱金属和碱土金属的氢 氧化物相近,且随着原子序数的递增而有规 律减弱。
(2)其它价态化合物
除 + 3 价外,有的镧系元素也有 + 2 和 +4价。 + 4 价氧化物具有较强的氧化性,例如 PrO2 只能存在于固体中,与水作用将还原 成 +3 价。 4 PrO2 + 6 H2O —— 4 Pr (OH) 3 + O2↑
Gd Tb Dy Ho Er Tm Yb Lu 钆 铽 镝 钬 铒 铥 镱 镥 外加 Y 钇和 Sc 钪,称为钇组稀土或重稀土
稀土元素总量在地壳中的丰度为 1.53 × 10–2 %。
其中最多的是Ce,丰度为 6.8 ×10–3 % , 比 Cu 含量多,其次是 Y,Nd,La等,Pm 在地壳中仅以痕量存在。
镧系元素内层 4f 电子受晶体场影响较小, 因此,在计算磁矩时,既要考虑自旋运动的贡献, 又要考虑轨道运动的贡献。 镧系元素是良好的磁性材料。 其中,稀土—钴永磁材料是目前广发应用 的磁性材料。
22―1―2 镧系元素的重要化合物
1 氧化物和氢氧化物
(1) +3 价化合物 +3 价是镧系元素的主要价态。 除 Ce,Pr,Tb 外,镧系金属在空气 中加热均可得到 +3 价碱性氧化物 Ln2O3。

镧系元素-最详细的介绍

镧系元素-最详细的介绍
短期内大量接触镧系元素可能导致急性中毒, 出现恶心、呕吐、腹痛等症状。
慢性影响
长期接触镧系元素可能导致贫血、肝肾损伤等 慢性健康问题。
发育毒性
研究表明,镧系元素可能对胎儿和婴幼儿发育产生不良影响。
安全注意事项和使用规范
佩戴防护用品
在接触镧系元素的过程中,应佩戴化学防护 眼镜、实验服和化学防护手套。
镧系元素包括
镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽 (Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)和镥(Lu)。
特性
01
镧系元素的原子序数逐渐增加,但核外电子排布却只有两 个电子层,即K层和L层。
02
镧系元素具有类似的化学性质和物理性质,因为它们的价 电子构型相同,都是4f^n6s^2。
03
稀土元素矿是工业上提取镧系 元素的主要来源,通过分离和 提纯这些元素,可以用于各种 工业和科技领域。
02 镧系元素的物理和化学性质
物理性质
原子序数
从57(镧)到71(镥),原 子序数逐渐增加。
原子半径
随着原子序数的增加,原子 半径逐渐减小,表现出明显 的"镧系收缩"现象。
电子构型
每个镧系元素的电子构型都 是相同的,即每个元素都有 两个未充满的电子壳层 (n=4和5)。
03
镧系收缩:随着原子序数的增加,镧系元素的原子半径逐渐减 小,这是因为4f电子逐渐向5d电子跃迁,使得原子核的对外层
电子的吸引力逐渐增强。
镧系元素在自然界中的存在
01
镧系元素在地壳中的丰度较低 ,它们主要存在于稀土元素矿 中。
02
自然界中,镧系元素通常与其 他稀土元素共生,以化合物的 形式存在于矿物中。

镧系元素原子半径

镧系元素原子半径

镧系元素原子半径引言在化学元素中,镧系元素是指周期表中镧系元素的集合。

镧系元素的原子半径是指元素的原子核到其外层电子轨道最外层电子的平均距离。

原子半径是描述原子大小的一个重要参数,它对元素的物理和化学性质有着重要影响。

本文将对镧系元素的原子半径进行全面、详细、完整且深入地探讨。

镧系元素的特点1.镧系元素包括镧(La)、铈(Ce)、钕(Pr)、钐(Nd)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)和镥(Lu)共14种元素。

2.镧系元素的原子序数从57到71,依次增加,具有相似的电子配置和化学性质。

3.镧系元素具有较高的电离能和较小的电子亲和能,属于硬碱金属。

镧系元素的原子半径镧系元素的趋势•镧系元素的原子半径随着原子序数的增加而减小。

这是由于镧系元素的电子层逐渐填充、电子屏蔽效应增强导致的。

•镧系元素的原子半径在同一周期中逐渐减小,而在同一族中逐渐增大。

这是由于原子核电荷增加,电子层数目不变的情况下,有效屏蔽不变,原子半径随着电荷增加而减小。

•镧系元素中,镧(La)的原子半径最大,而镥(Lu)的原子半径最小。

这是由于镧系元素电子层填充顺序的影响。

镧系元素的原子半径数据(单位:皮米)元素原子半径La 187Ce 181Pr 182元素原子半径Nd 181Pm 183Sm 180Eu 180Gd 180Tb 177Dy 178Ho 176Er 176Tm 175Yb 174Lu 173镧系元素原子半径的影响因素电子屏蔽效应电子屏蔽效应是指核外电子对核内电子的屏蔽作用。

镧系元素的原子半径随着电子屏蔽效应增强而减小。

镧系元素的外层电子无法有效屏蔽内层电子对核电荷的吸引力,导致原子半径逐渐减小。

原子核电荷原子核电荷是指原子的正电荷数目,即原子核所带的正电荷数。

镧系元素的原子半径随着原子核电荷的增加而减小。

原子核电荷增加,电荷吸引外层电子的能力增强,导致原子半径减小。

镧元素 用途

镧元素 用途

镧元素用途
1 镧元素的介绍
镧元素是原子序数为57的一种族内外电子构造类型的金属元素,其核素为镧176。

镧元素是属于泽克类元素里的一种,有11种自然存在同位素,质量分数237~244;镧元素是一种稀疏的轻金属,由U和235U理论情况下,原子量之比为23千分之一的金属元素,它的密度比铝分子小,质量在稀有元素之中介于铪和铯之间,其在自然界中的存在量近于极少,只有很小一部分U以及稀有定子发生核裂变时,才会产生少量的镧元素。

2 镧元素用途
(1)可以被用于原子能航空技术方面:比如在中子散射实验和重离子加速器等研究仪器中,由于其对中子的穿透能力,令镧元素非常重要,它们也在核反应堆中有着很重要的作用;
(2)用于金属锭的添加方面:镧元素的高密度,低原子量,以及良好的熔点和弹性模量,让镧元素+Cu合金锭成为铜合金中所加元素的最佳选择,用于优化铜合金锭的密度;
(3)应用于建筑材料领域:由于高原子数,低原子量以及出色的机械性质,作为建筑材料,镧元素的不锈钢中的稀有金属元素,可以帮助提升不锈钢的性能,被用于建筑结构支撑部位,令其具有更高的耐磨稳定性;
(4)光学和电子设备领域的应用:自1990年以来,随着激光和电子设备技术的进步,镧元素开始被用于制作高性能的激光体系、雷射发生芯片以及光学纤维头,它可以提供良好的热稳定性和可靠性,令设备更加耐用。

总之,镧元素具有独特的化学性质与理化性质,由于其独特的特性,其被广泛应用于原子能航空技术、金属锭添加、建筑材料、光学和电子设备等诸多领域中。

虽然它在自然界中的存在量很少,但是它却非常重要,在能源、航空和安全等各个方面都有着不可替代的重要作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

⑥ 高 温 超 导 , YBaCuO,Tc=90K,1987 ; LaxBayCuzOw 1986,Tc=35K,之后发现加压 可提高Tc;再后用更小的Sc取代,则无超导性, 因得不到钙钛矿型;另外之后发现 Tl2Ba2Ca2Cu3O10 也是高温超导,所以超导与f 电子无关。 ⑦ 激光晶体,1960红宝石(Al2O3:Cr3+); 1962,CaWO4:Nd3+ 输出连续激光;1964, Y3Al5O12:Nd3+ 室 温 下 连 续 输 出 ; LiNbO3: Nd3+ 自倍频晶体(1.06µm 红外,0.53µm 绿 光)。目前已知有320种激光晶体,其中290种 以稀土为激活离子。
三、重要化合物
(一)、+3价 1、氧化物,mp高熔点,偏离子型晶体;从氢氧 化物、各种含氧酸盐灼烧可得,或金属单质灼 烧直接氧化也可得;通式:Ln2O3 Ln2(C2O4)3 -→ >800°C → Ln2O3 最常见的方法 Ln2O3难溶于水或碱;易溶于强酸 2、 Ln(OH)3 碱性近似于碱土,但溶解度很小,Ksp:10-19~ 10-24 ;在NH4Cl存在下加NH3·H2O可沉淀,借 此可与Mg2+等碱土离子分离。 碱性:从La3+ -→ Lu3+ 减小
稀土在地表中总含量0.0153%,相对来说(第六周期 中)较高的,但分散分布,同时总是混合存在,总 纯度也不高,如含有10%稀土的矿就算是富含矿; 由于性质相近提取分离较难,所以纯的单稀土产品 较贵。 稀土元素发现较晚,从最初发现Y于1787年,到 最后一个由铀裂变找到Pm于1947年,将近两个 世纪。 稀土资源我国最为丰富,占世界的80%,而且矿 藏分布广,从南到北十多个省区均有,品种齐全, 北偏轻稀土,南偏中重稀土。内蒙的包头市堪称 稀土之城。
3、 卤化物 F-:LnF3 在3M HNO3 中仍沉淀(鉴定方法), 其它卤化物易溶; Ln2O3 + 6NH4Cl 300°C → 2 LnCl3 + 3H2O + 6NH3 Ln3+ 也易水解,所以其结晶水盐加热脱水时需 加条件。 LnCl3 + H2O ≒ LnOCl + 2HCl LnCl3·nH2O 欲脱水要采用1 低温抽真空;2通 HCl 3加NH4Cl一起加热。
ϕ°(Sm3+/ Sm2+)=-1.55 V ϕ°(Yb3+/ Yb2+)= -1.21 ϕ°(Ce4+/ Ce3+)= +1.70 V ϕ°(Pr4+/ Pr3+)=+2.86 V
单质稀土金属有很强的还原性,仅次于碱土 金属 ϕ°(Ln3+/ Ln)=-2.52~-2.26;其性质 也类似于碱土金属。
5、 草酸盐 Ln2(C2O4)3 难溶于水又难溶于酸,以此与 其它金属离子分离开来,对于提炼稀土 有重要的意义。硝酸盐或氯化物中加 6MHNO3和H2C2O4得到。
Ln2(C2O4)3 ∆ → ―→ ―→ ―→ CO,CO2,Ln2O3 Ln2(C2O4) (CO3)2, Ln2 (CO3)3, Ln2O (CO3)2, + CO + CO +CO2
二、氧化态,+3常见态 二、氧化态,+3常见态
少数的有+2价,但在溶液中有很强的还原性,如Sm2 +、Eu2+、Yb2+ 少数的有+4价,但在溶液中有很强的氧化性,如Ce4+、 Pr4+、Tb4+ 至于为什么有少数的例外价态,与该离子的水合热等 多种因素有关;另一主要原因是离子的f亚层全满、 半满、全空最稳定有关:Eu2+ (4f 7)、Yb2+(4f 14)、 Ce4+(4 f 0)、Tb4+(4f 7)
第二十二章 稀土元素
57~71号 15个元素位于周期表的,第六周期, IIIB族,是内过渡元素,f亚层电子0~14个间, 价电子4f 0~14 5d 0~1 6s2 ,称为镧系元素;有 La Ce Pr Nd Pm Sm Eu Gd Tb Dy La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、 Ho、Er、Tm、Yb、Lu 它们加上同族的Sc、Y等17个元素叫做稀土元素; 其中La、Ce、Pr、Nd、Pm、Sm、Eu又称为轻 稀 土 , Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、 Sc、Y称为重稀土。
一、La系收缩 一、La系收缩
原子半径:La-→Lu 169pm-→158pm 减少11pm,称La系收缩 其中Eu和Yb金属半径特大,因为f电子半满 和全满时膨胀。 离子半径(+3价):La3+ 106.1 pm-→Lu3 + 84.8 pm 逐渐减小。 该收缩引起 Zr-Hf,Nb-Ta,Mo-W性 质相近;甚至Ru-Os、Rh-Ir、Pd-Pt 也相似
6、 硝酸盐 有带结晶水4、5、6个,易溶于水,同时也 溶于醇、酮、酯、胺等有机溶剂。 Ln(NO3)3 灼烧 → LnO(NO3) ―→ Ln2O3 +NO2 +NO2 随离子半径减小,分解速率加快,可达到分 级分解的分离目的。 轻稀土硝酸盐可与MI,NH4+,Mg2+,Zn2+, Ni2+,Mn2+等成溶解度很小的复盐,利用 这点可以分离轻、重组稀土。
(二)、+4价,有Ce4+、Pr4+、Tb4+其中 Ce 4f15d16s2 ―-4e→ 4f 0 全空 Ce4+ 相对稳定 Tb 4f96s2 ―-4e→ 4f 7 半满 Tb4+ Ce4+ + H2O ―→ CeO2·H2O↓ PH=0.7~1.0 时就沉淀 ,而其它Ln3+ 必须在PH =6~8 时才沉淀。所以Ce的分离比较容易。 混合稀土 Ln(OH)3 O2+H2O → Ce(OH)4 HNO3, PH=2.5→ 其余的溶解,而CeO2仍为沉淀。
4、 硫酸盐 常含结晶水,Ln2(SO4)3·8H2O,溶解度随升 温而降低;加 MI2SO4 可复,盐,但化 学式与常规的不同:
xLn2(SO4)3·y MI2SO4·zH2O x:y:z = 1:1:2 或 1:1:4 Ln2(SO4)3·8H2O ∆ → Ln2(SO4)3 ∆ → Ln2O2SO4 + 2SO2 + O2 Ln2O2SO4 ∆ →Ln2O3 + SO2 + 0.5O2
稀土元素结构特点和性能: ①4f0~4f14 独特亚层 ②大的原子磁矩、各向异性(磁性材料) ③丰富的能级跃迁(发光材料) ④大范围可变的配位数6~14(材料、生 命科学) ⑤有序变化的原子和离子半径
稀土典型应用: ① 热电子发射材料(LaB6)1951年,用于通讯 ② 石油催化裂解,生产轻质油,1962 ③ Y2O3:Eu3+ 掺杂发光材料(红光),1963; LaPO4:Ce绿光;Sr5(PO4)3Cl:Eu2+蓝光 ④ SmCo5 永磁体磁性材料,1967;Nd2Fe14B (第二代,1975),Sm2Fe17N(第三代,1985 年)。 ⑤ 储氢材料,LaNi5,253kPa, 1kg吸氢15g; 1982年利用提取Ce后的富La混合稀土镍合金, 更廉价储氢更大,并可分离和纯化氢达6个9。 通常钢瓶15Mpa储氢0.5kg。
总之,稀土将是磁、光、电等功能材料的 最佳载体。所以小平同志曾指出:“中 东有石油,中国有稀土”。我们希望能 用自己的能力完成两次飞跃: 第一次飞跃,从稀土资源大国-→生产大 国飞跃 第二次飞跃,从生产大国-→科技大国飞 跃 稀土是21世纪的“战略元素”;美国定出 25种,其中15种镧系元素,15/25;日本 40种,其中稀土17种,17/40。
镧系元素有不满的f亚层,它就蕴含着特殊性质,是 其它元素不可替代的,有着许多已发现和未发现 的特殊功能:比如过渡元素有d-d跃迁,呈现色 彩斑斓的景象;那么,f-f跃迁将会更加绚丽多 彩 , 如 现 代 彩 电 的 发 光 材 料 (Y2O3·La2O3·Gd2O3)。Fe3O4 有铁磁性(因为有 d5 ),那么f7 将会有更好的磁性;稀土磁性材料, SmCo5 ( 第 一 代 ) , Nd2Fe14B( 第 二 代 ) , Sm2Fe17N(第三代,1985年)。过渡元素有丰富 的催化性能,稀土将会有更优秀的催化特性……。
(三)、+2价 有Sm2+、Eu2+、Yb2+ 、CeCl2、 NdI2、TmI2等,其中 Eu 4f76s2 ―-2e→ 4f 7 半满 Eu2+ ϕ°(Eu3+/ Eu2 +)=-0.43 V Yb 4f146s2 ―-2e→ 4f 14 全满 Yb2+ ϕ°(Yb3+/ Yb 2+)=-1.21 V +2价稀土亦如碱土Ba2+ ,与SO42-生成沉淀。 如:用Zn还原稀土,+SO42-则可分离EuSO4 (四)、配合物 +3价较硬的酸,与硬碱F-、O2- 配位稍稳定; 配位数较大是特点之一,因为其离子半径较大, 有8、9、10、12等
相关文档
最新文档