王镜岩生物化学知识点整理版
王镜岩《生物化学》第三版浓缩版(笔记)
生物化学笔记针对王镜岩等《生物化学》第三版适合以王镜岩《生物化学》第三版为考研指导教材的各高校的生物类考生备考目录第一章概述------------------------------01第二章糖类------------------------------06第三章脂类------------------------------14第四章蛋白质(注1)-------------------------21第五章酶类(注2)-------------------------38第六章核酸(注3)--------------------------------------48第七章维生素(注4)-------------------------56第八章抗生素------------------------------60第九章激素------------------------------63第十章代谢总论------------------------------68第十一章糖类代谢(注5)--------------------------------------70第十二章生物氧化------------------------------78第十三章脂类代谢(注6)--------------------------------------80第十四章蛋白质代谢(注7)-----------------------------------85第十五章核苷酸的降解和核苷酸代谢--------------91第十六章DNA的复制与修复(注8)---------------------------93第十七章RNA的合成与加工(注9)---------------------------98第十八章蛋白质的合成与运转-------------------101第十九章代谢调空-----------------------------103第二十章生物膜(补充部分)---------------------108注:(1)对应生物化学课本上册第3、4、5、6、7章。
生物化学知识点汇总(王镜岩版)
生物化学知识点汇总(王镜岩版)————————————————————————————————作者:————————————————————————————————日期:生物化学讲义(2003)孟祥红绪论(preface)一、生物化学(biochemistry)的含义:生物化学可以认为是生命的化学(chemistryoflife)。
生物化学是用化学的理论和方法来研究生命现象。
1、生物体是有哪些物质组成的?它们的结构和性质如何?容易回答。
2、这些物质在生物体内发生什么变化?是怎样变化的?变化过程中能量是怎样转换的?(即这些物质在生物体内怎样进行物质代谢和能量代谢?)大部分已解决。
3、这些物质结构、代谢和生物功能及复杂的生命现象(如生长、生殖、遗传、运动等)之间有什么关系?最复杂。
二、生物化学的分类根据不同的研究对象:植物生化;动物生化;人体生化;微生物生化从不同的研究目的上分:临床生物化学;工业生物化学;病理生物化学;农业生物化学;生物物理化学等。
糖的生物化学、蛋白质化学、核酸化学、酶学、代谢调控等。
三、生物化学的发展史1、历史背景:从十八世下半叶开始,物理学、化学、生物学取得了一系列的重要的成果(1)化学方面法国化学家拉瓦锡推翻“燃素说”并认为动物呼吸是像蜡烛一样的燃烧,只是动物体内燃烧是缓慢不发光的燃烧——生物有氧化理论的雏形瑞典化学家舍勒——发现了柠檬酸、苹果酸是生物氧化的中间代谢产物,为三羧酸循环的发现提供了线索。
(2)物理学方面:原子论、x-射线的发现。
(3)生物学方面:《物种起源——进化论》发现。
2、生物化学的诞生:在19世纪末20世纪初,生物化学才成为一门独立的科学。
德国化学家李比希:1842年撰写的《有机化学在生理与病理学上的应用》一书中,首次提出了新陈代谢名词。
另一位是德国医生霍佩赛勒:1877年他第一次提出Biochemie这个名词英文译名是Biochemistry(orBiologicalchemistry)汉语翻译成生物化学。
生物化学王镜岩朱圣庚笔记
生物化学王镜岩朱圣庚笔记
以下是《生物化学(王镜岩、朱圣庚)》的部分笔记,仅供参考:
1.1998年8月美国众议院通过了“营养标识和教育法案”,规定从1999年
11月15日起,所有在美国销售的食物外包装上都必须注明卡路里含量,并标注出5种必须标明的营养素(脂肪、饱和脂肪、胆固醇、钠和碳水化合物)。
2.酶的专一性是指一种酶只能催化一种或一类化学反应的进行,按照酶的专
一性可将酶分成三种类型:绝对专一性、相对专一性和立体异构专一性。
3.酶促反应动力学主要研究酶促反应的速率及影响酶促反应速率的各种因素。
通过米氏方程来表达速率与底物浓度之间的关系。
4.维生素是一类调节物质,它们既不是构成细胞的主要原料,也不是能量的
来源,而是一类参与机体代谢过程和生化反应的必需的有机物。
5.维生素B1又称抗脚气病维生素,是白色针状结晶或白色粉末,有微弱的特
异臭和味苦,易溶于水,遇碱易分解。
6.维生素C又称抗坏血酸,是无色晶体,易溶于水,水溶液呈酸性,具有强
还原性。
7.蛋白质是一切生命的物质基础,没有蛋白质就没有生命。
8.氨基酸是组成蛋白质的基本单位,在生物体内蛋白质通过特定的氨基酸序
列形成多肽链,再经过特定的化学键连接形成具有一定空间结构的蛋白质。
9.酶是由生物体产生的具有生物活性的蛋白质,能够降低生化反应所需要的
活化能,具有高度的专一性、温和的反应条件以及反应的可调控性等特点。
10.维生素是生物体正常生长和代谢所必需的微量有机物,分为脂溶性维生素
和水溶性维生素两类。
以上仅为部分内容,建议查阅教材或者查阅考研论坛等网站获取更全面和准确的信息。
王镜岩生物化学讲义47页
第一章绪论一、生物化学的定义二、生物化学研究的主要内容三、生物化学在生命科学中的地位及其它学科中的作用:强调生化课的重要性四、生物化学的学习方法五、生物化学发展简史六、生物化学的现状及其发展七、相关基础知识简介(生命的构成)第二章氨基酸与蛋白质的一级结构一.蛋白质是生命的表征,哪里有生命活动哪里就有蛋白质1.酶:作为酶的化学本质,温和、快速、专一,任何生命活动之必须,酶的另一化学本质是RNA,不过它比蛋白质差远了,种类、速度、数量。
2.免疫系统:防御系统,抗原(进入“体内”的生物大分子和有机体),发炎。
细胞免疫:T细胞本身,分化,脓细胞。
体液免疫:B细胞,释放抗体,导弹,免疫球蛋白(Ig)。
3.肌肉:肌肉的伸张和收缩靠的是肌动蛋白和肌球蛋白互动的结果,体育生化。
4.运输和储存氧气:Hb和Mb。
5.激素:含氮类激素,固醇类激素。
6.基因表达调节:操纵子学说,阻遏蛋白。
7.生长因子:EGF(表皮生长因子),NGF(神经生长因子),促使细胞分裂。
8.信息接收:激素的受体,糖蛋白,G蛋白。
9.结构成分:胶原蛋白(肌腱、筋),角蛋白(头发、指甲),膜蛋白等。
生物体就是蛋白质堆积而成,人的长相也是由蛋白质决定的。
10.精神、意识方面:记忆、痛苦、感情靠的是蛋白质的构象变化,蛋白质的构象分类是目前热门课题。
11.蛋白质是遗传物质?只有不确切的少量证据。
如库鲁病毒,怕蛋白酶而不怕核酸酶。
二.构成蛋白质的元素1.共有的元素有C、H、O、N,其次S、稀有P等2.其中N元素的含量很稳定,16%,因此,测N量就能算出蛋白质的量。
(凯氏定氮法)三.结构层次1.一级结构:AA顺序2.二级结构:主干的空间走向3.三级结构:肽链在空间的折叠和卷曲形成的形状,所有原子在空间的排布。
4.四级结构:多条肽链之间的作用。
§1.氨基酸蛋白质的结构单位、水解产物一.氨基酸的结构通式:α-碳原子,α-羧基,α-氨基氨基酸的构型:自然选择L型,D型氨基酸没有营养价值,仅存在于缬氨霉素、短杆菌肽等极少数寡肽之中,没有在蛋白质中发现。
生物化学复习(上下册)王镜岩版资料
生物化学复习第一章 糖类 1、 什么叫糖多羟基醛或多羟基酮及其聚合物和衍生物。
一般构型:D 型 四大类生物大分子:糖类、脂质、蛋白质和核酸 2、 分成哪几类单糖:是不能被水解成更小分子的糖类,也称简单糖,如葡萄糖、果糖、核糖和丙糖(三碳糖)、丁糖(四碳糖)、戊糖(五碳糖)、己糖等(六碳糖)。
寡糖(低聚糖):能水解产生少数几个单糖的糖类,如麦芽糖、蔗糖、乳糖(水解生成2分子单糖,称双糖或二糖)和棉子糖(水解生成3分子单糖)。
多糖:是水解时产生20个以上单糖分子的糖类,包括同多糖(水解时只产生一种单糖或单糖衍生物)如淀粉、糖原、壳多糖等;杂多糖(水解时产生一种以上的单糖或/和单糖衍生物)如透明质酸、半纤维素等。
3、 单糖的开链结构离最远的—OH 在左边的是L 型;在右边的是D 型 D 型和L 型是一对对映体Fischer 投影式表示单糖结构竖线表示碳链;羰基具有最小编号, 并写在投影式上端;一短横线代表手性碳上的羟基。
单糖的差向异体:这种仅一个手性碳原子的构型不同的非对映异构体称为差向异构体 4、单糖的环状结构α-异构体:半缩醛羟基与氧桥在同侧;或半缩醛羟基与C5上的羟基在链同侧 β-异构体:半缩醛羟基与氧桥在异侧;或半缩醛羟基与C5上的羟基在链异侧。
β-D-(+)-吡喃葡萄糖 β-D-(+)-呋喃葡萄糖 α-D-呋喃葡萄糖 α-D-吡喃葡葡萄糖 Fischer 式转换Haworth 式C-2差向异构C-4差向异构体α-D-吡喃葡萄糖β-D-吡喃葡萄糖β-D-吡喃葡萄糖β-L-吡喃葡萄D-型:CH2OH在环上方;L-型:CH2OH在环下方。
D-型糖中:α-异构体:半缩醛羟基在环的下方;β-异构体:半缩醛羟基在环的上方。
L-型糖中:情况相反。
β-D-呋喃果糖α -D-呋喃果糖β-D-呋喃葡萄糖D-吡喃葡萄糖β-D-吡喃葡萄糖α-D-吡喃葡萄糖5、单糖的性质(1)物理性质旋光性:当平面偏振光通过手性化合物溶液后,偏振面的方向就被旋转了一个角度。
王镜岩《生物化学》第三版浓缩版(笔记)
生物化学笔记针对王镜岩等《生物化学》第三版适合以王镜岩《生物化学》第三版为考研指导教材的各高校的生物类考生备考目录第一章概述------------------------------01第二章糖类------------------------------06第三章脂类------------------------------14第四章蛋白质(注1)-------------------------21第五章酶类(注2)-------------------------38第六章核酸(注3)--------------------------------------48第七章维生素(注4)-------------------------56第八章抗生素------------------------------60第九章激素------------------------------63第十章代谢总论------------------------------68第十一章糖类代谢(注5)--------------------------------------70第十二章生物氧化------------------------------78第十三章脂类代谢(注6)--------------------------------------80第十四章蛋白质代谢(注7)-----------------------------------85第十五章核苷酸的降解和核苷酸代谢--------------91第十六章DNA的复制与修复(注8)---------------------------93第十七章RNA的合成与加工(注9)---------------------------98第十八章蛋白质的合成与运转-------------------101第十九章代谢调空-----------------------------103第二十章生物膜(补充部分)---------------------108注:(1)对应生物化学课本上册第3、4、5、6、7章。
生化笔记王镜岩完美打印版
第一章概述第一节概述一、生物分子是生物特有的有机化合物生物分子泛指生物体特有的各类分子,它们都是有机物。
典型的细胞含有一万到十万种生物分子,其中近半数是小分子,分子量一般在500以下。
其余都是生物小分子的聚合物,分子量很大,一般在一万以上,有的高达1012,因而称为生物大分子。
构成生物大分子的小分子单元,称为构件。
氨基酸、核苷酸和单糖分别是组成蛋白质、核酸和多糖的构件。
二、生物分子具有复杂有序的结构生物分子都有自己特有的结构。
生物大分子的分子量大,构件种类多,数量大,排列顺序千变万化,因而其结构十分复杂。
估计仅蛋白质就有1010-1012种。
生物分子又是有序的,每种生物分子都有自己的结构特点,所有的生物分子都以一定的有序性(组织性)存在于生命体系中。
三、生物结构具有特殊的层次生物用少数几种生物元素(C、H、O、N、S、P)构成小分子构件,如氨基酸、核苷酸、单糖等;再用简单的构件构成复杂的生物大分子;由生物大分子构成超分子集合体;进而形成细胞器,细胞,组织,器官,系统和生物体。
生物的不同结构层次有着质的区别:低层次结构简单,没有种属专一性,结合力强;高层次结构复杂,有种属专一性,结合力弱。
生物大分子是生命的物质基础,生命是生物大分子的存在形式。
生物大分子的特殊运动体现着生命现象。
四、生物分子都行使专一的功能每种生物分子都具有专一的生物功能。
核酸能储存和携带遗传信息,酶能催化化学反应,糖能提供能量。
任何生物分子的存在,都有其特殊的生物学意义。
人们研究某种生物分子,就是为了了解和利用它的功能。
五、代谢是生物分子存在的条件代谢不仅产生了生物分子,而且使生物分子以一定的有序性处于稳定的状态中,并不断得到自我更新。
一旦代谢停止,稳定的生物分子体系就要向无序发展,在变化中解体,进入非生命世界。
六、生物分子体系有自我复制的能力遗传物质DNA能自我复制,其他生物分子在DNA 的直接或间接指导下合成。
生物分子的复制合成,是生物体繁殖的基础。
《生物化学》精要速讲 王镜岩版
1《生物化学》(第三版)精要速览第一章绪论一、生物化学的的概念:生物化学(biochemistry)是利用化学的原理与方法去探讨生命的一门科学,它是介于化学、生物学及物理学之间的一门边缘学科。
二、生物化学的发展:1.叙述生物化学阶段:是生物化学发展的萌芽阶段,其主要的工作是分析和研究生物体的组成成分以及生物体的分泌物和排泄物。
2.动态生物化学阶段:是生物化学蓬勃发展的时期。
就在这一时期,人们基本上弄清了生物体内各种主要化学物质的代谢途径。
3.分子生物学阶段:这一阶段的主要研究工作就是探讨各种生物大分子的结构与其功能之间的关系。
三、生物化学研究的主要方面:1.生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些低分子物质。
2.物质代谢:物质代谢的基本过程主要包括三大步骤:消化、吸收→中间代谢→排泄。
其中,中间代谢过程是在细胞内进行的,最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方面的内容。
3.细胞信号转导:细胞内存在多条信号转导途径,而这些途径之间通过一定的方式方式相互交织在一起,从而构成了非常复杂的信号转导网络,调控细胞的代谢、生理活动及生长分化。
4.生物分子的结构与功能:通过对生物大分子结构的理解,揭示结构与功能之间的关系。
5.遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也是现代生物化学与分子生物学研究的一个重要内容。
第二章蛋白质的结构与功能一、氨基酸:1.结构特点:氨基酸(amino acid)是蛋白质分子的基本组成单位。
构成天然蛋白质分子的氨基酸约有20种,除脯氨酸为α亚氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均为Lα氨基酸。
2.分类:根据氨基酸的R 基团的极性大小可将氨基酸分为四类:①非极性中性氨基酸(8 种);②极性中性氨基酸(7 种);③酸性氨基酸(Glu 和Asp);④碱性氨基酸(Lys、Arg 和His)。
生物化学笔记(王镜岩)
赤藓糖葡萄糖甘油醛核糖甘露糖半乳糖(Gal)((Gal)二羟基丙酮核酮糖果糖讲一生物大分子:糖、脂、蛋白质(酶)、核酸、维生素、激素生物化学之父:费舍尔讲二地球上数量最多的一类有机化合物:糖类α和β吡喃葡萄糖(羟基在下为α型,在上为β型)糖原高度分支的生理意义:第三章、蛋白质20种氨基酸英文名等电点掌握氨基酸的用途、现象DNFB法PITCCys半胱氨酸Ellman反应,DTNB,二硫硝基苯甲酸Ellman反应(二硫硝基苯甲酸,DTNB)Cys与二硫硝基苯甲酸(DTNB) 或称Ellman 试剂发生硫醇-二硫化物交换反应。
反应中1 分子的Cys引起1分子的硫硝基苯甲酸的释放。
它在pH 8.0 时, 在412nm 波长处有强烈的光吸收, 因此可利用分光光度法定量测定-SH。
肽平面(酰胺平面)——由肽键周围的6个原子组成的刚性平面3.6蛋白质的纯化注:用尽可能少的步骤、尽可能短的时间。
1.前处理阶段物理法——冻融法,超声波法,均浆法,研磨法等。
酶裂解法——就是利用水解酶将细胞壁和细胞膜消化的方法,常用的水解酶有溶菌酶、葡聚糖酶、蛋白酶、糖苷酶、壳多糖酶、细胞壁溶解酶等。
其中溶菌酶主要对细菌类有作用,其他酶对酵母作用显著。
2.粗分级/粗分离根据蛋白质的①溶解性质、②大小不同、③带电状态不同/电荷多少④净化方法根据与其他化合物相互作用的蛋白质(部分蛋白质对..有特定的..)②:凝胶过滤层析常用凝胶过滤介质Sephadex:交联葡聚糖,是采用环氧氯丙烷作交联剂将右旋葡聚糖交联而成。
干粉容易膨胀,在水、盐溶液、有机溶液、碱和弱酸中化学性质稳定,可高压灭菌。
高交联度的Sephadex,其颗粒坚硬,适于高流速下操作。
Sephacryl : 烯丙基葡聚糖同N、Nˊ—甲叉双丙烯酰胺共价交联而成。
颗粒坚硬,性质比Sephadex更为稳定,可高压灭菌,在pH3~11条件下稳定,可用有机溶剂洗脱,也可用SDS、尿素及盐酸胍洗脱。
生物化学知识点汇总(王镜岩版)
生物化学知识点汇总(王镜岩版)————————————————————————————————作者:————————————————————————————————日期:生物化学讲义(2003)孟祥红绪论(preface)一、生物化学(biochemistry)的含义:生物化学可以认为是生命的化学(chemistryoflife)。
生物化学是用化学的理论和方法来研究生命现象。
1、生物体是有哪些物质组成的?它们的结构和性质如何?容易回答。
2、这些物质在生物体内发生什么变化?是怎样变化的?变化过程中能量是怎样转换的?(即这些物质在生物体内怎样进行物质代谢和能量代谢?)大部分已解决。
3、这些物质结构、代谢和生物功能及复杂的生命现象(如生长、生殖、遗传、运动等)之间有什么关系?最复杂。
二、生物化学的分类根据不同的研究对象:植物生化;动物生化;人体生化;微生物生化从不同的研究目的上分:临床生物化学;工业生物化学;病理生物化学;农业生物化学;生物物理化学等。
糖的生物化学、蛋白质化学、核酸化学、酶学、代谢调控等。
三、生物化学的发展史1、历史背景:从十八世下半叶开始,物理学、化学、生物学取得了一系列的重要的成果(1)化学方面法国化学家拉瓦锡推翻“燃素说”并认为动物呼吸是像蜡烛一样的燃烧,只是动物体内燃烧是缓慢不发光的燃烧——生物有氧化理论的雏形瑞典化学家舍勒——发现了柠檬酸、苹果酸是生物氧化的中间代谢产物,为三羧酸循环的发现提供了线索。
(2)物理学方面:原子论、x-射线的发现。
(3)生物学方面:《物种起源——进化论》发现。
2、生物化学的诞生:在19世纪末20世纪初,生物化学才成为一门独立的科学。
德国化学家李比希:1842年撰写的《有机化学在生理与病理学上的应用》一书中,首次提出了新陈代谢名词。
另一位是德国医生霍佩赛勒:1877年他第一次提出Biochemie这个名词英文译名是Biochemistry(orBiologicalchemistry)汉语翻译成生物化学。
王镜岩生物化学知识点整理版
王镜岩⽣物化学知识点整理版教学⽬标:1、掌握蛋⽩质得概念、重要性与分⼦组成。
2、掌握α-氨基酸得结构通式与20种氨基酸得名称、符号、结构、分类;掌握氨基酸得重要性质;熟悉肽与活性肽得概念。
3、掌握蛋⽩质得⼀、⼆、三、四级结构得特点及其重要化学键。
4、了解蛋⽩质结构与功能间得关系。
5、熟悉蛋⽩质得重要性质与分类第⼀节蛋⽩质得分⼦组成⼀、蛋⽩质得元素(化学)组成主要有C(50%~55%)、H(6%~7%)、O(19%~24%)、N(13%~19%)、S(0%~4%)。
有些蛋⽩质还含微量得P、Fe、Cu、Zn、Mn、Co、Mo、I等。
各种蛋⽩质得含氮量很接近,平均为16%。
因此,可以⽤定氮法来推算样品中蛋⽩质得⼤致含量。
每克样品含氮克数×6、25×100=100g样品中蛋⽩质含量(g%) ⼆、蛋⽩质得基本组成单位——氨基酸蛋⽩质在酸、碱或蛋⽩酶得作⽤下,最终⽔解为游离氨基酸(amino acid),即蛋⽩质组成单体或构件分⼦。
存在于⾃然界中得氨基酸有300余种,但合成蛋⽩质得氨基酸仅20种(称编码氨基酸),最先发现得就是天门冬氨酸(1806年),最后鉴定得就是苏氨酸(1938年)。
(三)氨基酸得重要理化性质1.⼀般物理性质α-氨基酸为⽆⾊晶体,熔点⼀般在200 oC以上。
各种氨基酸在⽔中得溶解度差别很⼤(酪氨酸不溶于⽔)。
⼀般溶解于稀酸或稀碱,但不能溶解于有机溶剂,通常酒精能把氨基酸从其溶液中沉淀析出。
芳⾹族氨基酸(Tyr、Trp、Phe)有共轭双键,在近紫外区有光吸收能⼒,Tyr、Trp得吸收峰在280nm,Phe在265 nm。
由于⼤多数蛋⽩质含Tyr、Trp残基,所以测定蛋⽩质溶液280nm得光吸收值,就是分析溶液中蛋⽩质含量得快速简便得⽅法。
2.两性解离与等电点(isoelectric point, pI)氨基酸在⽔溶液或晶体状态时以两性离⼦得形式存在,既可作为酸(质⼦供体),⼜可作为碱(质⼦受体)起作⽤,就是两性电解质,其解离度与溶液得pH有关。
生物化学(王镜岩版)
(一)蛋白质的二级结构1、蛋白质主链骨架不同的多肽链,实际上就是a-碳原子上连接的侧链基团不同,如果去掉侧链基团,不同多肽链剩余的部分完全是一样的,称之为多肽链的主链骨架。
肽单位:主链骨架上的重复单位一个肽单位就是一个肽平面。
2`蛋白质二级结构的概念⏹蛋白质多肽链主链骨架在空中盘绕折叠的方式就是蛋白质的二级结构。
⏹即多肽链主链骨架的构象⏹以氢键维系以羰基氧与亚氨基氢形成氢键: -C=O - - - - H-N-3、决定主链骨架构象的因素(1)а-C原子的二面角与a-碳原子连接的两个单键旋转的角度。
(Φ:Cа-N单键旋转的角度;Ψ:Cа-C单键旋转的角度)Cа原子的二面角决定了相邻肽单位的空间位置。
(2)侧链基团的影响:⏹Cа的二面角所决定的构象能否存在,取决于两个相邻肽单位中非键合原子之间的接触距离。
⏹-R大小、极性、电荷。
二级结构的成因:(1) 肽键不能转动→肽平面(2) 一个氨基酸R 基团与前后R 基团的限制→肽平面不能任意转动(3) R 基团的大小、电荷限制→只做規律折叠→-α螺旋, -β折叠和-β转角(4) 稳定二结构的力:氢键4、几种典型的二级结构:(1)а-螺旋1951年Pauling and Corey 研究а-角蛋白时提出的。
蛋白质中含量最丰富、最常见的二级结构。
规律性构象。
а-螺旋结构要点:⏹主链骨架螺旋式盘绕。
螺旋上升一圈3.6个氨基酸残基,螺距0.54nm。
(0.15nm/aa;100º/ aa )⏹相邻螺圈间形成氢键。
氢键几乎与轴平行;氢键封闭的环包括13个原子(3.613螺旋);是由羰基氧与其后面第四个氨基酸残基的亚氨基氢形成。
⏹侧链基团伸向外侧。
侧链基团的大小和性质决定了а-螺旋能否形成和稳定性。
Pro是а-螺旋的最大破坏者;其次是Gly;极性基团连续存在时а-螺旋也不稳定。
⏹天然а-螺旋多为右旋。
(2)ß-片层结构(β-pleated sheet)⏹将α-螺旋沿长轴牵引伸展,这时,H键断裂,肽链可以较充分伸展,整个肽链形成一个锯齿状结构,几条肽链彼此平行,靠H键维系固定,就形成了片层结构⏹ß-折叠有两种形式:平行式:Φ=-119O Ψ=+113O反平行式:Φ=-139O Ψ=+135O是一种肽链相当伸展的结构。
生物化学复习(上册)王镜岩版
生物化学复习第一章 糖类 1、 什么叫糖多羟基醛或多羟基酮及其聚合物和衍生物。
一般构型:D 型 四大类生物大分子:糖类、脂质、蛋白质和核酸 2、 分成哪几类单糖:是不能被水解成更小分子的糖类,也称简单糖,如葡萄糖、果糖、核糖和丙糖(三碳糖)、丁糖(四碳糖)、戊糖(五碳糖)、己糖等(六碳糖)。
寡糖(低聚糖):能水解产生少数几个单糖的糖类,如麦芽糖、蔗糖、乳糖(水解生成2分子单糖,称双糖或二糖)和棉子糖(水解生成3分子单糖)。
多糖:是水解时产生20个以上单糖分子的糖类,包括同多糖(水解时只产生一种单糖或单糖衍生物)如淀粉、糖原、壳多糖等;杂多糖(水解时产生一种以上的单糖或/和单糖衍生物)如透明质酸、半纤维素等。
3、 单糖的开链结构离最远的—OH 在左边的是L 型;在右边的是D 型 D 型和L 型是一对对映体Fischer 投影式表示单糖结构竖线表示碳链;羰基具有最小编号, 并写在投影式上端;一短横线代表手性碳上的羟基。
单糖的差向异体:这种仅一个手性碳原子的构型不同的非对映异构体称为差向异构体 4、单糖的环状结构α-异构体:半缩醛羟基与氧桥在同侧;或半缩醛羟基与C5上的羟基在链同侧 β-异构体:半缩醛羟基与氧桥在异侧;或半缩醛羟基与C5上的羟基在链异侧。
β-D-(+)-吡喃葡萄糖 β-D-(+)-呋喃葡萄糖 α-D-呋喃葡萄糖 α-D-吡喃葡葡萄糖C-2差向异构C-4差向异构体Fischer式转换Haworth式α-D-吡喃葡萄糖β-D-吡喃葡萄糖β-D-吡喃葡萄糖β-L-吡喃葡萄D-型:CH2OH在环上方;L-型:CH2OH在环下方。
D-型糖中:α-异构体:半缩醛羟基在环的下方;β-异构体:半缩醛羟基在环的上方。
L-型糖中:情况相反。
β-D-呋喃果糖α -D-呋喃果糖β-D-呋喃葡萄糖D-吡喃葡萄糖β-D-吡喃葡萄糖α-D-吡喃葡萄糖5、单糖的性质(1)物理性质旋光性:当平面偏振光通过手性化合物溶液后,偏振面的方向就被旋转了一个角度。
王镜岩生物化学知识点整理版
教学目标:1.掌握蛋白质的概念、重要性和分子组成。
2.掌握α-氨基酸的结构通式和20种氨基酸的名称、符号、结构、分类;掌握氨基酸的重要性质;熟悉肽和活性肽的概念。
3.掌握蛋白质的一、二、三、四级结构的特点及其重要化学键。
4.了解蛋白质结构与功能间的关系。
5.熟悉蛋白质的重要性质和分类第一节蛋白质的分子组成一、蛋白质的元素(化学)组成主要有 C(50%~55%)、H(6%~7%)、O(19%~24%)、N(13%~19%)、S(0%~4%)。
有些蛋白质还含微量的P、Fe、Cu、Zn、Mn、Co、Mo、I等。
各种蛋白质的含氮量很接近,平均为16%。
因此,可以用定氮法来推算样品中蛋白质的大致含量。
每克样品含氮克数×6.25×100=100g样品中蛋白质含量(g%)二、蛋白质的基本组成单位——氨基酸蛋白质在酸、碱或蛋白酶的作用下,最终水解为游离氨基酸(amino acid),即蛋白质组成单体或构件分子。
存在于自然界中的氨基酸有300余种,但合成蛋白质的氨基酸仅20种(称编码氨基酸),最先发现的是天门冬氨酸(1806年),最后鉴定的是苏氨酸(1938年)。
(三)氨基酸的重要理化性质1.一般物理性质α-氨基酸为无色晶体,熔点一般在200 oC以上。
各种氨基酸在水中的溶解度差别很大(酪氨酸不溶于水)。
一般溶解于稀酸或稀碱,但不能溶解于有机溶剂,通常酒精能把氨基酸从其溶液中沉淀析出。
芳香族氨基酸(Tyr、Trp、Phe)有共轭双键,在近紫外区有光吸收能力,Tyr、Trp的吸收峰在280nm,Phe在265 nm。
由于大多数蛋白质含Tyr、Trp残基,所以测定蛋白质溶液280nm的光吸收值,是分析溶液中蛋白质含量的快速简便的方法。
2.两性解离和等电点(isoelectric point, pI)氨基酸在水溶液或晶体状态时以两性离子的形式存在,既可作为酸(质子供体),又可作为碱(质子受体)起作用,是两性电解质,其解离度与溶液的pH有关。
生物化学--(王镜岩)精心整理 精要知识点速览
生物化学精要速览(希望对广大生化初学者有助)第一章绪论一、生物化学的的概念:生物化学(biochemistry)是利用化学的原理与方法去探讨生命的一门科学,它是介于化学、生物学及物理学之间的一门边缘学科。
二、生物化学的发展:1.叙述生物化学阶段:是生物化学发展的萌芽阶段,其主要的工作是分析和研究生物体的组成成分以及生物体的分泌物和排泄物。
2.动态生物化学阶段:是生物化学蓬勃发展的时期。
就在这一时期,人们基本上弄清了生物体内各种主要化学物质的代谢途径。
3.分子生物学阶段:这一阶段的主要研究工作就是探讨各种生物大分子的结构与其功能之间的关系。
三、生物化学研究的主要方面:1.生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些低分子物质。
2.物质代谢:物质代谢的基本过程主要包括三大步骤:消化、吸收→中间代谢→排泄。
其中,中间代谢过程是在细胞内进行的,最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方面的内容。
3.细胞信号转导:细胞内存在多条信号转导途径,而这些途径之间通过一定的方式方式相互交织在一起,从而构成了非常复杂的信号转导网络,调控细胞的代谢、生理活动及生长分化。
4.生物分子的结构与功能:通过对生物大分子结构的理解,揭示结构与功能之间的关系。
5.遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也是现代生物化学与分子生物学研究的一个重要内容。
第二章蛋白质的结构与功能一、氨基酸:1.结构特点:氨基酸(amino acid)是蛋白质分子的基本组成单位。
构成天然蛋白质分子的氨基酸约有20种,除脯氨酸为α-亚氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均为L-α-氨基酸。
2.分类:根据氨基酸的R基团的极性大小可将氨基酸分为四类:①非极性中性氨基酸(8种);②极性中性氨基酸(7种);③酸性氨基酸(Glu和Asp);④碱性氨基酸(Lys、Arg和His)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学目标:1、掌握蛋白质得概念、重要性与分子组成。
2、掌握α-氨基酸得结构通式与20种氨基酸得名称、符号、结构、分类;掌握氨基酸得重要性质;熟悉肽与活性肽得概念。
3、掌握蛋白质得一、二、三、四级结构得特点及其重要化学键。
4、了解蛋白质结构与功能间得关系。
5、熟悉蛋白质得重要性质与分类第一节蛋白质得分子组成一、蛋白质得元素(化学)组成主要有C(50%~55%)、H(6%~7%)、O(19%~24%)、N(13%~19%)、S(0%~4%)。
有些蛋白质还含微量得P、Fe、Cu、Zn、Mn、Co、Mo、I等。
各种蛋白质得含氮量很接近,平均为16%。
因此,可以用定氮法来推算样品中蛋白质得大致含量。
每克样品含氮克数×6、25×100=100g样品中蛋白质含量(g%) 二、蛋白质得基本组成单位——氨基酸蛋白质在酸、碱或蛋白酶得作用下,最终水解为游离氨基酸(amino acid),即蛋白质组成单体或构件分子。
存在于自然界中得氨基酸有300余种,但合成蛋白质得氨基酸仅20种(称编码氨基酸),最先发现得就是天门冬氨酸(1806年),最后鉴定得就是苏氨酸(1938年)。
(三)氨基酸得重要理化性质1.一般物理性质α-氨基酸为无色晶体,熔点一般在200 oC以上。
各种氨基酸在水中得溶解度差别很大(酪氨酸不溶于水)。
一般溶解于稀酸或稀碱,但不能溶解于有机溶剂,通常酒精能把氨基酸从其溶液中沉淀析出。
芳香族氨基酸(Tyr、Trp、Phe)有共轭双键,在近紫外区有光吸收能力,Tyr、Trp得吸收峰在280nm,Phe在265 nm。
由于大多数蛋白质含Tyr、Trp残基,所以测定蛋白质溶液280nm得光吸收值,就是分析溶液中蛋白质含量得快速简便得方法。
2.两性解离与等电点(isoelectric point, pI)氨基酸在水溶液或晶体状态时以两性离子得形式存在,既可作为酸(质子供体),又可作为碱(质子受体)起作用,就是两性电解质,其解离度与溶液得pH有关。
在某一pH得溶液中,氨基酸解离成阳离子与阴离子得趋势与程度相等,成为兼性离子,呈电中性,此时溶液得pH称为该氨基酸得等电点。
氨基酸得pI就是由α-羧基与α-氨基得解离常数得负对数pK1与pK2决定得。
计算公式为:pI=1/2(pK1+ pK2)。
若1个氨基酸有3个可解离基团,写出它们电离式后取兼性离子两边得pK值得平均值,即为此氨基酸得等电点(酸性氨基酸得等电点取两羧基得pK值得平均值,碱性氨基酸得等电点取两氨基得pK值得平均值)。
第二节蛋白质得分子结构蛋白质就是生物大分子,结构比较复杂,人们用4个层次来描述,包括蛋白质得一级、二级、三级与四级结构。
一级结构描述得就是蛋白质得线性(或一维)结构,即共价连接得氨基酸残基得序列,又称初级或化学结构。
二级以上得结构称高级结构或构象(conformation)。
一、蛋白质得一级结构(primary structure)1953年,英国科学家F、Sanger首先测定了胰岛素(insulin)得一级结构,有51个氨基酸残基,由一条A链与一条B链组成,分子中共有3个二硫键,其中两个在A、B链之间,另一个在A链内。
蛋白质得一级结构测定或称序列分析常用得方法就是Edman 降解与重组DNA法。
Edman降解就是经典得化学方法,比较复杂。
首先要纯化一定量得待测蛋白质,分别作分子量测定、氨基酸组成分析、N-末端分析、C-末端分析;要应用不同得化学试剂或特异得蛋白内切酶水解将蛋白质裂解成大小不同得肽段,测出它们得序列,对照不同水解制成得两套肽段,找出重叠片段,最后推断蛋白质得完整序列。
重组DNA法就是基于分子克隆得分子生物学方法,比较简单而高效,不必先纯化该种蛋白质,而就是先要得到编码该种蛋白质得基因(DNA片段),测定DNA中核苷酸得序列,再按三个核苷酸编码一个氨基酸得原则推测蛋白质得完整序列。
这两种方法可以相互印证与补充。
目前,国际互联网蛋白质数据库已有3千多种一级结构清楚。
蛋白质一级结构就是空间结构与特异生物学功能得基础。
二、蛋白质得二级结构(secondary structure)蛋白质得二级结构就是指其分子中主链原子得局部空间排列,就是主链构象(不包括侧链R基团)。
构象就是分子中原子得空间排列,但这些原子得排列取决于它们绕键得旋转,构象不同于构型,一个蛋白质得构象在不破坏共价键情况下就是可以改变得。
但就是蛋白质中任一氨基酸残基得实际构象自由度就是非常有限得,在生理条件下,每种蛋白质似乎就是呈现出称为天然构象得单一稳定形状。
20世纪30年代末,L、Panling 与R、B、Corey应用X射线衍射分析测定了一些氨基酸与寡肽得晶体结构,获得了一组标准键长与键角,提出了肽单元(peptide unit)得概念, 还提出了两种主链原子得局部空间排列得分子模型(α-螺旋)与(β-折叠)。
1.肽单位肽键及其两端得α-C共6个原子处于同一平面上,组成了肽单位(所在得平面称肽键平面)。
肽键C—N键长为0、132nm,比相邻得单键(0、147nm)短,而较C=N双键(0、128nm)长,有部分双键得性质,不能自由旋转。
肽键平面上各原子呈顺反异构关系,肽键平面上得O、H以及2个α-碳原子为反式构型(trans configuration)。
主链中得Cα—C与Cα—N单键可以旋转,其旋转角φ、ψ决定了两个相邻得肽键平面相对关系。
由于肽键平面得相对旋转,使主链可以以非常多得构象出现。
事实上,肽链在构象上受到很大限制,因为主链上有1/3不能自由旋转得肽键,另外主链上有很多侧链R得影响。
蛋白质得主链骨架由许多肽键平面连接而成。
2、α-螺旋(α-helix)α-螺旋就是肽键平面通过α-碳原子得相对旋转形成得一种紧密螺旋盘绕,就是有周期得一种主链构象。
其特点就是:①螺旋每转一圈上升3、6个氨基酸残基,螺距约0、54nm(每个残基上升0、15nm,旋转100O)。
②相邻得螺圈之间形成链内氢键,氢键得取向几乎与中心轴平行。
典型α-螺旋一对氢键O与N之间共有13个原子(3、613),前后间隔3个残基。
③螺旋得走向绝大部分就是右手螺旋,残基侧链伸向外侧。
R基团得大小、荷电状态及形状均对α-螺旋得形成及稳定有影响。
3、β-折叠(β-pleated sheet)β-折叠就是一种肽链相当伸展得周期性结构。
①相邻肽键平面间折叠成110O角,呈锯齿状。
②两个以上具β-折叠得肽链或同一肽链内不同肽段相互平行排列,形成β-折叠片层,其稳定因素就是肽链间得氢键。
③逆向平行得片层结构比顺向平行得稳定。
α-螺旋与β-折叠就是蛋白质二级结构得主要形式。
毛发中得α-角蛋白与蚕丝中得丝心蛋白就是其典型,在许多球蛋白中也存在,但所占比例不一样。
胶原蛋白中存在得螺旋结构不同于一般得α-螺旋,就是由3条具有左手螺旋得链相互缠绕形成右手超螺旋分子。
链间氢键以及螺旋与超螺旋得反向盘绕维持其稳定性。
4.β-转角(β-turn)为了紧紧折叠成球蛋白得紧密形状,多肽链180O回折成发夹或β-转角。
其处由4个连续得氨基酸残基构成,常有Gly与Pro存在,稳定β-转角得作用力就是第一个氨基酸残基羰基氧(O)与第四个氨基酸残基得氨基氢(H)之间形成得氢键。
β-转角常见于连接反平行β-折叠片得端头。
5.无规卷曲(random coil)多肽链得主链呈现无确定规律得卷曲。
典型球蛋白大约一半多肽链就是这样得构象。
6.超二级结构与结构域超二级结构与结构域就是蛋白质二级至三级结构层次得一种过渡态构象。
超二级结构指蛋白质中两个或三个具有二级结构得肽段在空间上相互接近,形成一特殊得组合体,又称为模体(motif)。
通常有αα,ββ,βαβ等,例如钙结合蛋白质中得螺旋-环-螺旋模序及锌指结构。
结构域就是球状蛋白质得折叠单位,就是在超二级结构基础上进一步绕曲折叠有独特构象与部分生物学功能得结构。
对于较小得蛋白质分子或亚基,结构域与三级结构就是一个意思,即这些蛋白质就是单结构域得;对于较大得蛋白质分子或亚基,多肽链往往由两个或两个以上得相对独立得结构域缔合成三级结构。
三、蛋白质得三级结构(tertiary structure)指一条多肽链中所有原子得整体排布,包括主链与侧链。
维系三级结构得作用力主要就是次级键(疏水相互作用、静电力、氢键等)。
在序列中相隔较远得氨基酸疏水侧链相互靠近,形成“洞穴”或“口袋”状结构,结合蛋白质得辅基往往镶嵌其内,形成功能活性部位,而亲水基团则在外,这也就是球状蛋白质易溶于水得原因。
1963年Kendrew等从鲸肌红蛋白得X射线衍射图谱测定它得三级结构(153个氨基酸残基与一个血红素辅基,相对分子质量为17800)。
由A→H 8段α-螺旋盘绕折叠成球状,氨基酸残基上得疏水侧链大都在分子内部形成一个袋形空穴,血红素居于其中,富有极性及电荷得则在分子表面形成亲水得球状蛋白。
四、蛋白质得四级结构(quaternary structure)有些蛋白质得分子量很大,由2条或2条以上具有独立三级结构得多肽链通过非共价键相互结合而成,称为蛋白质得四级结构。
构成四级结构得每条多肽链称为亚基(subunit),亚基单独存在时一般没有生物学功能,构成四级结构得几个亚基可以相同或不同。
如血红蛋白(hemoglobin,Hb) 就是由两个α-亚基与两个β-亚基形成得四聚体(α2β2)。
五、蛋白质分子中得化学键蛋白质得一级结构就是由共价键形成得,如肽键与二硫键。
而维持空间构象稳定得就是非共价得次级键。
如氢键、盐键、疏水键、范德华引力等。
第三节蛋白质结构与功能得关系一、蛋白质一级结构与功能得关系(一)一级结构就是空间构象得基础20世纪60年代初,美国科学家C、Anfinsen进行牛胰核糖核酸酶得变性与复性实验,提出了蛋白质一级结构决定空间结构得命题。
核糖核酸酶由124个氨基酸残基组成,有4对二硫键。
用尿素与β-巯基乙醇处理该酶溶液,分别破坏次级键与二硫键,肽链完全伸展,变性得酶失去催化活性;当用透析方法去除变性剂后,酶活性几乎完全恢复,理化性质也与天然得酶一样。
概率计算表明,8个半胱氨酸残基结合成4对二硫键,可随机组合成105种配对方式,而事实上只形成了天然酶得构象,这说明一级结构未破坏,保持了氨基酸得排列顺序就可能回复到原来得三级结构,功能依然存在。
(二)种属差异大量实验结果证明,一级结构相似得多肽或蛋白质,其空间结构与功能也相似,不同种属得同源蛋白质有同源序列,反映其共同进化起源,通过比较可以揭示进化关系。
例如哺乳动物得胰岛素,其一级结构仅个别氨基酸差异(A链5、6、10位,B链30位),它们对生物活性调节糖代谢得生理功能不起决定作用。
从各种生物得细胞色素C(cytochrome c ) 得一级结构分析,可以了解物种进化间得关系。