自然伽马测井概要

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

与其它曲线的对比,将整个曲线下移一定深度(深度校正)。
6
统计
GR
SP
涨落
2)、放射性涨落误差的影响
放射性涨落:在放射性源强度和测量条件不 变的情况下,在相同的时间间隔内,对放射 性射线的强度进行反复测量,每次记录的数
值不相同,但总在平均值 n )附近变化
n-地层的平均计数率
它和测量条件无关,是微观世界的一种客观 现象,并且有一定的规律。这是由于放射性 元素的各个原子核的衰变彼此独立,衰变的 次序是偶然原因造成的。这种现象的存在, 使得自然伽马曲线不光滑,有许多起伏的变 化。这些起伏是放射性涨落引起的,不是由 于地层放射性元素含量变化引起的。放射性 测井曲线上读数的变化,一种是地层性质引 起的变化,用它可以划分地质剖面。另一种 变化是放射性涨落引起的。区分这两种变化 是正确解释应用的前提。放射性涨落符合统 计规律,其误差可以计算。
5)、当岩层变薄时
当 h < 3d0 时 , 受 低 放 射 性 围 岩 的 影 响 , 自然伽马幅度值对厚度h减小而减小, 岩层界面的位置移向曲线的顶端。
d0-井径
理论曲线与实际情况的差异分析
自然伽马理论曲线
理想情况:探测器在井内是进行的点测,而且每一个点上的读数是较长时间内 (>3τ)所测脉冲数的平均值。
◆当地层足够厚时,对应曲线的幅度平均值代 表地层的真实情况。当地层很薄时,曲线的平 均值达不到代表地层的真实性质。
测值围绕平均值的变化情况及其统 计分布规律示意图
◆在砂泥岩剖面,由于地层变薄会使得泥岩的 自然伽马测井曲线值下降,砂岩层的自然伽马 曲线值上升,并且地层越薄,这种上升和下降 的幅度越大。对于地层层厚小于3d0时,应考虑 层厚的影响。
4)、井的影响
薄泥岩层 厚砂层
薄砂层
井内钻井液的放射性强弱对数值有影响。井径 大,井内钻井液降低了岩层的数值。套管和管 外的水泥环有很强的吸收能力,也降低了曲线 的数值。在大井眼和套管井中,要做曲线校正。
厚泥岩层
地层厚度对自然伽
马曲线的影响
9
4.2.3 自然伽马曲线的应用


锯齿状
泥 岩
实测自然伽马测井曲线特征 7
(1)测井测量的每一点计数率的涨落误差σ1
n
如能根据多次测量确定平均值,则每次的测量读数 与平均值的误差就是σ1。采用积分线路的自然伽马 测井仪,其输出结果是在输出时刻前2τ时间内的平 均值,则曲线上任何一点的相对标准误差为:
相对误差: 1
1 2n
曲线上任何一点的计数率和真值间的偏差为:
钻井液和仪器外壳进入探测器,经过闪烁计数器,将伽马射线转化为电脉冲信
号,放大器把电脉冲放大后由电缆送到地面仪器,地面仪器把每分钟电脉冲数
转变成与其成正比例的电位差进行记录,井下仪器沿井身移动,就连续记录出
井剖面上自然伽马强度曲线,称为GR曲线,单位是脉冲/分,在仪器标准化后,
曲线单位是μR/h。现在使用API单位。
2)、总体特征
对着高放射性地层,曲线显示高读数, 并在岩层中心处出现极大值。对于厚 岩层,该极大值能很好地反映岩层的 放射性,随着岩层厚度的变薄,极大 值随之降低。 3)、曲线的对称性
上下围岩放射性含量相同时,曲线对称 于地层中点,反之,曲线不对称。
4
4)、当岩层厚度较厚时
当h大于3倍d0井径或者大于2倍探测半 径时,地层中心处的平均值为地层的 伽马射线强度值,可用曲线上最大幅 度一半的地方(半幅值点)划分岩层 的上下界面。
自然伽马测井
1
4.2 自然Байду номын сангаас马测井
岩石中所含的放射性元素的种类和数量不同,放射性强度也不同。岩石的自然 伽马放射性水平主要决定于铀U、钍Th、钾K的含量。
自然伽马测井GR:通过测量岩层的自然伽马射线的强度来认识岩层的一种放射 性测井方法。是在井内测量岩层中自然存在的放射性元素核衰变过程中放射出来 的伽马射线的强度。
位移和形态畸变随之加剧。






时间常数RC对放射性测井曲线的影响
不同测井速度对自然伽马测井曲线的影响
深度位移:指根据实测自然伽马测井曲线的分层原则(如用半幅值点)定出的岩 层界面深度与实际深度之间有一偏差,而且前者比后者偏浅。
实际测井要选择合适的提升速度和仪器时间常数,同时,在整理资料时,需通过
4.2.1 自然伽马测井的测量原理
井下仪器包括:伽马射线探测器(将接收到的伽马射线转换成电脉冲的装置)、 供给该探测器所需的高压电源,以及将探测器输出的电脉冲进行放大的放大器等。
地面仪器主要包括:将来自地下的一连串电脉冲转换成连续电流的一整套电路,
以及记录仪和电源等。
测量原理:当井下仪器在井内由下向上提升时,来自岩层的自然伽马射线穿过
绝对误差: 1 n1
2 2
(2)某段地层内测量的平均记数率的涨落误差σ2
即以某一深度上一次测量的测井读数代替应由多 次重复测量计算的平均值时所带来的误差
相对误差2
1 N
v hn
绝对误差 2 n 2
vn h
N-厚度为h的地层脉冲总数
(3)放射性的涨落误差: (1 2 )
放射性测井曲线涨落误差
实际测井情况(有v和τ参数):
◆仪器有一定的上提速度v,使得探测器在井内每一深度的停留时间有限
◆地面仪器中将脉冲数平均转化为连续电流的计数率电路的时间常数τ有一定
的数值,且不可能太长--记录电路的“延迟性”。
5
2、自然伽马测井曲线的影响因素
1)、测井速度v和记录仪中电路的积分时间常数τ的影响
vτ越大,曲线幅度越小,对称性越差,极值向提升方向偏移越远,即曲线的深度
即是每一点的涨落误差范围(2σ1)加上每次测量的平均计数率的涨落误差范围
(2σ2)
8
物理意义:同一地层各点的读数n落在n 的
几率为68.3%。如果分层正确,那么该层内就
应有70%左右的读数不超出 n ,如果曲线幅
度变化超过上述范围,且超过(2.5~3)σ时,则 分层不正确,应重新分层。
高斯分布
3)、地层厚度的影响
2
时间常数: RC
计数电路 输入电压
整形 计数

率计
输入 电压
输出 电压
自然伽马测井原理
积分线路输入输出特性 3
4.2.2 自然伽马测井曲线的特点
自然伽马测井的探测半径和岩 层厚度与GR曲线的解释关系
1、理论曲线特征
1)、探测范围
岩石放射的伽马射线能到达探测器的 一个以探测器中点为球心的球体,其 半径约为30~45cm。
相关文档
最新文档