自然伽马测井概要

合集下载

4自然伽马测井

4自然伽马测井
稳定核素(结构和能量不变化)
核素 不稳定核素(结构和能量发生变化并放射出射线)
不稳定核素也叫放射性核素 3核衰变
放射性核素的原子核自发释放出一种带电离子,蜕变成为另外 原子核同时放射出伽马射线的过程称为核衰变
如: 84
Po 210 82 Pb 206* 2 H e 4 ( )
82 Pb 206* 82 Pb 206 (0 .89 Mev )
三伽马射线探测(实验)
1 放电计数管 2闪烁计数管
四岩石的自然放射性
岩石的自然放射性确定于岩石所含的放射性核
素的种类和数量
岩石中的自然放射性 素核 主要是铀9( 2U23) 8 、 钍(90Th232)、锕(80Ac227)及其衰变物质和钾的 射性同位(素19K40)等组成,这些核素子 的核 原
GR

GR

sh
GR
sd

GR
目的层、泥岩层、
1S
纯砂岩、纯石灰岩的自 然伽马测井值
4.3自然伽马能谱测井
• 一自然伽马能谱
• 铀 钍 钾放射出的伽马 射线能量不同
• 如钾:1.46MEV • 铀 钍有各种能量的伽
马射线但大部分分布在 1.3MEV, • 钍在2.62MEV有一明显 峰,可作为钍的特征峰 • 铀在1.76MEV有一明显 峰,可作为铀的特征峰
自然伽马测井曲线(GR)单位:计数率(1/MIN)或API
二自然伽马测井曲线
1 自然伽马测井曲线探测范围 自然 伽马测井曲线记录的主要是仪器附近以探测器为球心 半径为30~45厘米范围内岩石放射出的自然伽马射线 2 曲线特点 1)当上下岩石相同时曲线对称; 2)在高放射性地层,曲线的极大值出现在地层中心,且随地层 厚度增加而增加,当厚度大于3倍井眼直径时极大值为一常数; 3)当厚度大于3倍井眼直径时曲线半幅点对应于地层上下界 面.

8 自然伽马测井

8 自然伽马测井
马射线有较强的穿透能力)。
★它能在任意岩层剖面,以及在井内充满高矿化度泥浆、油基泥浆
甚至空气的条件下使用(由于岩石的自然放射性与剖面上岩石的导电性 无关,与井内所充填的介质特性无关)。 自然伽马测井已成为碎屑岩剖面、碳酸盐岩剖面和用盐水泥浆钻井 地区进行测井的重要内容。
自然伽马测井
学习要点
自然伽马测井的核物理基础 岩石的放射性 自然伽马射线的探测 自然伽马测井原理
自然伽马测井的曲线特征和影响因素
自然伽马测井的地质应用
自然伽马测井
8.1 自然伽马测井的核物理基础
1、核衰变及其放射性
(1)原子的结构 矿物、岩石、石油和地层水都是由分子组成的,分子又由原子组成 ,原子的中心是原子核,离原子核较远处的核外电子,按一定的轨道绕 核运动,它是一种很微小的粒子,直径约为8-10cm。 原子:原子核[ 质子(带一个单位正电荷) + 核外电子(带一个单位负电荷) 一般地,原子是中性的,所以原子核中的质子数等于核外电子层的 电子数,这个数值叫做元素的原子序数,通常用Z表示,它决定了原子的 化学性质和在元素周期表中的位置。 原子核质子和中子的总数叫做元素的质量数,通常用A表示。 中子(不带电)]
通过探测γ射线的数量(强度)和能量(能谱),可以确
定岩石中放射性元素的数量(含量)及种类。因此放射性测井 主要分为自然伽马测井和自然伽马能谱测井。 以研究岩石中放射性元素的相对含量,即探测自然伽马射 线总强度的测井方法叫做自然伽马测井; 测定在一定能量范围内自然伽马射线的强度以区分岩石中 放射性元素的类型及其实际含量的测井方法,则叫自然伽马能
1、核衰变及其放射性
(5)放射性射线的性质
放射性物质能放出α射线,β射线和γ射线。它们各具如下性质:

测井解释6自然伽马测井

测井解释6自然伽马测井

放射性测井1.根据岩石及其孔隙流体和井内介质(套管、水泥)的核物理性质,研究钻井地质剖面,寻找石油等矿藏,研究油田开发及油井工程的一类测井方法。

2.优点:唯一能够确定岩石及其孔隙流体化学元素含量的测井方法3.可在裸眼和套管井中进行,不受井眼介质的限制。

放射性测井放射性测井岩性、化学矿物成分孔隙度、岩性流体成分、孔隙度中子测井伽马测井密度测井6 自然伽马测井6.1 伽马测井核物理基础6.2 自然伽马测井6.3 自然伽马测井应用6.1 自然伽马核物理基础一. 核衰变及其放射性1. 原子的结构原子原子核电子质子中子6.1 自然伽马核物理基础一. 核衰变及其放射性2. 同位素和放射性核素¾核素:具有相同数量的质子和中子,并且在同一能态上的同类原子¾同位素:质子数相同,中子数不同不稳定核素(自发的改变结构和能量,放出射线)核素稳定核素(结构和能量不变化)不稳定核素也叫放射性核素不稳定同位素叫放射性同位素6.1 自然伽马核物理基础一. 核衰变及其放射性3. 核衰变放射性核素的原子核自发释放出一种带电离子,蜕变成为另外原子核同时放射出伽马射线的过程称为核衰变核衰变遵循一定规律,放射性核数随时间按指数递减的规律变化,核衰变不受外界条件的影响。

λ0e N N t⋅−=:衰变常数:衰变开始数目;:衰变后的数目其中:λ0N N6.1 自然伽马核物理基础一. 核衰变及其放射性3. 核衰变¾半衰期T 是指放射性核素的原子核数衰变至初始值一半时所需的时间。

6.1 自然伽马核物理基础一. 核衰变及其放射性4. 放射性活度和放射性比度¾放射性活度:指放射性物质在单位时间内发生衰变的原子核数单位:居里(Ci )¾放射性比度:指放射性元素的放射性活度与其质量之比单位:Ci/g6.1 自然伽马核物理基础一. 核衰变及其放射性5. 放射性射线的性质¾α射线:带正电,氦原子核流¾β射线:带负电,电子流¾γ射线:不带电,波长极短的电磁波¾α射线:电离能力最强,穿透能力最差,在空气中仅穿透2.6-11.3cm ;在岩石中只有10-3cm¾β射线:电离能力较弱,穿透能力稍强,在金属中穿透0.9mm¾γ射线:电离能力最小,穿透能力很强,在空气中穿透几百米,在岩石中几厘米到几十厘米结论:测井中主要用γ射线Photoelectric Effect 光电子(photoelectron)nAZ λρτ⋅=6.40089.0τ:光子穿过1cm 吸收物质时产生光电子的几率λ:光子的波长6.1 自然伽马核物理基础二. 伽马射线和物质的作用1. 光电效应ρ:密度,g/cm 3;Z :原子序数;A :克原子量(原子量/摩尔)AZN A eρσσ=康普顿电子(Compton electron)γ光子(Photon )σ:康普顿效应导致的光子在穿过单位距离物质时的减弱Compton Effect6.1 自然伽马核物理基础二. 伽马和物质作用2. 康普顿效应N A : 阿佛加德罗常数,6.025×1023个原子/molElectron Pair Effect正电子(positive electron )负电子(negative electron )E γ≥1.022Mev6.1 自然伽马核物理基础二. 伽马和物质作用3. 电子对效应)022.1(2−⋅=γρE Z AN Kt A K : 系数;N A : 阿佛加德罗常数,6.025×1023个原子/mol ;ρ:密度,g/cm 3;Z :原子序数;A :克原子量(原子量/摩尔);E γ:伽马光子的能量(Mev)Electron Pair Effect6.1 自然伽马核物理基础二. 伽马和物质作用3. 电子对效应τσµ++=t 物质的吸收系数:单位长度物质对伽马射线的吸收率Le I I µ−=0伽马射线射线强度衰减规律:6.1 自然伽马核物理基础二. 伽马和物质作用4. 伽马射线的吸收I 0Iρτρσρρµµ++==t m 6.1 自然伽马核物理基础三. 伽马射线的探测1. 放电计数器I 0I电离作用:带电粒子和组成物质的原子的束缚电子间产生非弹性碰撞,使束缚电子获得足够的能量成为自由电子,原子变为正离子的过程。

自然伽马能谱测井

自然伽马能谱测井
器进行计数解谱得到相应的铀、钍、钾 的含量。
二、自然伽马能谱测井的 应用
• 一)研究储集层 • 1、储集层的分类 • 1)陆源碎屑岩储集层 • 包括砾岩、砂或砂岩、粉砂或粉砂岩 • 2)火山碎屑岩储集层 • 主要由火山碎屑构成,按颗粒大小可
• 分为集块岩和火山砂、凝灰或火山灰 • 3)碳酸盐岩碎屑储集层 • 主要是由贝壳碎片或碳酸盐岩碎屑堆
一、自然伽马能谱测井原 理
• 自然伽马能谱测井仪器的井下仪器与自 然伽马测井基本相同,将入射的伽马射 线能量的大小以脉冲的幅度大小输出, 不同的是地面仪器,自然伽马能谱测井 仪器地面部分有多道脉冲幅度分析器, 该分析器将能量分为五个能量窗。
• W1: 0.15~0.5MEV • : 0.5~1.1MEV • W3: 1.32~1.575MEV • W4: 1.65~2.39MEV • W5: 2.475~2.765MEV • 五个能量窗输出的信号分别进入5个计数
2、环境监测
• 用伽马能谱测井可对放射性矿物的开采、 加工、各类核工业和科研部门的环境进 行定期监测,主要防范铀对水体的污染。 其方法是定期在观察井中做自然伽马能 谱分析,配合取样分析,观察铀系和锕 系子体的扩散。
• 式中Th为目的层钍曲线值(ppm); Thmin为邻近不含泥质地层的钍读数 (ppm);Thmax为邻近泥岩层的钍读 数(ppm)。
• (2)用经验公式求出泥质含量的估值, 如用公式
二)研究生油层
• 这里主要讨论用自然 伽马能谱测井从粘土 岩中定性识别生油岩 和定量估算生油指标
1、定性识别生油岩
• 1)普遍泥岩的钾、铀、钍响应 • 普通粘土岩的钾、铀、钍含量都比较高,
其中钾和钍和粘土矿产的体积含量比铀 相关性好。

医学专题放射性测井之自然伽马测井

医学专题放射性测井之自然伽马测井
放射性同位素:不稳定的同位素。
放射性:不稳定核素原子核自发地释放、β、 等射线
1
3) 核衰变 核衰变:原子核自发地释放出一种带电粒子,并蜕变成另外某种原子核, 同时放出伽马射线。
核衰变常数λ:决定于该放射性核素本身的性质,其值越大衰变越快。
一种元素经过放射变成另一种元素的过程称为衰变或蜕变。
例如
88Ra226 → 86Rn212+(粒子)
关,而这几个量与沉积环境密切相关,所以可以利用J、
SP、Ra进行沉积环境分析。
29
地层对比 30
宁东2-5井
0 SP 100 0 GR 250

2 LL8 200
5录井 2 ILD 200
2050延 6
延 2100 7
延 8
2150
延 9
延 10
宁东8井
-190 SP -120 10 GR 300
14
GR(API) SN S
N
S N
SN S
砂泥岩剖面GR曲线
15
二、自然伽马测井曲线分析
探测半径:
煤、金属矿钻孔直径:d ≤ 20cm
探测半径: R=25-45cm
油气田钻孔直径:
d ≤ 30cm 探测半径: R=30-50cm
ab段:探测器远离界面,直到探测器中点离 界面的距离为R,探测器的探测范围内是低 放射性物质。
Vsh
2cSH 1 2c 1
C = 3.7 新地层 C = 2.0 老地层
应用条件: (1)不同地层中粘土矿物放射性是相同的
(2)除了粘土矿物之外,不含有其他放射性矿物
26
200
160
GRmax
120
Shale line Vsh=100%

自然伽玛测井知识介绍

自然伽玛测井知识介绍

膏盐剖 面中,石膏 层的数值最 低,泥岩最 高,砂岩在 二者之间。
用自然伽马曲线进行地层对比有如下几个 优点 (1)一般与孔隙流体无关。储层含油、含 水或含气对曲线影响不大,或根本没什么影响, 用自然电位和电阻率曲线进行对比,同一储层 由于含流体性质不同差别很大。含水时自然电 位异常幅度大,电阻率低。含油气时异常幅度 小,电阻率高。(2)与地层水和钻井液的矿化 度关系不大。(3)很容易识别风化壳,薄的页 岩等,曲线特征明显。(4)在膏盐剖面及盐水 钻井液条件下,自然电位和电阻率曲线变化较 小,就显示出了GR曲线对比的优越性。(5) 套管井也可以地层对比。
GNT-F或G型自然伽玛仪
1µg Ra-eq/ton
16.5
GNT-J或K型自然伽玛仪, GLD-K
1µg Ra-eq/ton
11.7
当自然伽马射线 穿过钻井液和仪器外 壳 进入探测器。经过 闪烁计数器,将伽 马 射线转化为电脉冲信号, 经放大器把电脉冲放大 后由电缆送到地面仪器。 地面仪 器把每分钟电 脉冲数转变成 与其成 正比例的电位差进行记 录 ,并 下仪器沿井身 移动,就连续记录出井 剖面上自然伽马强度曲 线,称为GR。
2、井的影响 (1)钻井液(泥浆密度和性能) (2)井径(井径大小) (3)套管(壁厚) (4)水泥环(水泥环厚薄) 夹在计数器和地层之间的 物质会吸收伽玛射线。
3、放射性涨落误差的影 响
在放射性源强度和测量条件不变 的情况下,在相同的时间间隔内,对 放射性射线的强度进 行反复测 量, 每次记录的数值不相同,而且总是在 某一数值附近变化, 这种现象叫放 射性涨落。 它和测量条件无关,是微观世界 的一种客观现象,并且有一定的规律。 这是由于放射性元素的各个原子核的 衰变彼此独立,衰变的次序是偶然原 因 造成的。这种现象的存在,使得 然伽曲线不光滑,有许 多起伏的变 化。 各种放射性测井都存在涨落误差。 各种放射性测井都存在涨落误差

3-1自然伽马测井

3-1自然伽马测井

1)放射性的性质与天然放射性
依据能量守恒定律,不稳定核素的原子核,在其向低
能态的转变过程中,部分能量以某种射线形式释放,这种
现象称作放射性。不稳定核素也称放射性核素。同时,原 子核发生的变化则称作原子核衰变。 放射性核素分类:
天然
人工
2)放射性射线的性质
放射性核素放射出的射线主要有三种:
α
β
γ
α射线带正电; β射线带负电; γ射线不带电。 α粒子是氦的原子核; β粒子就是电子;γ射线为波 长极短的电磁波。
2、核素及同位素
原子核的质子数与核外电子数相等,称做原子序数Z。 原子的核子数称做质量数A,因此中子数N=A-Z。 具有相同质子数Z和中子数N的一类原子核,称为一 种核素,或把具有相同原子序数Z和质量数A的一类原子 核,称为一种核素。
核素是用它所属的化学元素的符号按下列方式表示:
A Z
X
X是元素符号
膏盐剖面等。
例如:Cw≈Cmf、纯
GR测量的是岩层的自然放射性强度(不用任何放射性源)
一、岩石的自然放射性
岩石中主要的放射性元素: U238 Th232 K40 92 90 19 岩石的自然放射性强度主要取决于其三者的比例, 其含量与岩性以及形成过程中的物理化学条件有关, 因此,岩性不同,GR不同。
中子测井
中子伽马测井
中子寿命测井 ……
核测井关心的粒子:

α粒子 β粒子
由高速运动的氦原子核组成的。它的穿透能 力最低,但电离作用最强。 高速运动的电子流。穿透能力比α粒子强,电 离作用比α粒子弱。 是波长很短的电磁波。它的穿透能力最强, 电离作用最弱。 近乎不带电的中性粒子。包括快中子、热中 子和超热中子。
温度、压 力

自然伽马能谱测井原理

自然伽马能谱测井原理

自然伽玛能谱测井是一种用于地质勘探和岩石识别的方法,通过测量地下岩石中放射性元素的能谱来获取相关信息。

其原理如下:
1. 放射性元素存在:地球上的许多岩石含有放射性元素,如钍、铀和钾等。

这些元素在衰变过程中会释放出伽马射线。

2. 伽马射线的测量与分析:自然伽马能谱测井利用探测仪器(伽马探头)记录并测量地下岩石中的伽马射线强度。

该探头通常由一个或多个伽马探测器组成。

3. 能谱数据采集:伽马探头将记录到的伽马射线强度转换为能谱数据,即不同能量范围内的伽马射线计数值。

4. 分析和解释:通过对能谱数据进行分析和解释,可以得到与地下岩石特征相关的信息。

例如,不同放射性元素的能峰位置和强度可以用于鉴定岩石类型和成分。

5. 岩石识别和解释:基于能谱数据和相关模型,可以进行岩石识别和解释。

通过比较实测的能谱数据与已知的岩石库进行匹配,可以判断地下岩石的类型、组成和含量等。

自然伽马能谱测井具有广泛的应用领域,包括油气勘探、矿产资
源调查和环境监测等。

它能够提供有关地下岩石的物性参数、岩性特征和地层分布等重要信息,为地质研究和开发提供了重要参考依据。

自然伽马测井原理

自然伽马测井原理

自然伽马测井原理
自然伽马测井(Natural Gamma Ray Logging)是一种用于地质勘探和地层解释的测井方法。

其原理是通过测量地层中存在的天然伽马射线强度来获取地层的放射性元素含量,进而推断地层的成分和性质。

伽马射线是一种能够穿透物质的高能电磁辐射,常常与放射性同位素的衰变过程相关。

地层中的放射性元素如钾、铀和钍会以不同的比例存在,它们的核衰变会释放出伽马射线。

这些伽马射线的能量和强度与地层中的放射性元素含量有关。

在自然伽马测井中,测井仪器将伽马射线传感器降入井中,通过探测上下井段的伽马射线强度差异来识别地层。

伽马射线强度通常以计数率 (counts per second,cps) 的形式进行测量。


过观察伽马射线计数率的变化,可以确定地层中放射性元素的含量及其分布。

自然伽马测井可以提供许多地层信息。

例如,钾元素主要存在于黏土矿物中,可用于判断地层的砂岩和页岩含量。

铀和钍元素主要存在于砂岩中,可以用于识别砂岩体。

此外,自然伽马测井还可用于确定地层的厚度和边界、识别化石层、建立地质模型等。

需要注意的是,自然伽马测井的应用需要考虑伽马射线的穿透能力和侵入深度等因素。

不同元素对伽马射线的敏感度也不同,因此对于复杂地层,可能需要结合其他测井方法进行综合解释。

总之,自然伽马测井是一种重要的地质勘探工具,通过测量地层中的伽马射线强度,可以获取地层的放射性元素含量和地质信息,为勘探工作提供有价值的数据支持。

自然伽马测井原理

自然伽马测井原理

自然伽马测井原理自然伽马测井是一种常用的地球物理勘探技术,它通过测量地层中的自然伽马辐射来获取地层的物性参数,对地质构造和油气藏进行识别和评价。

自然伽马测井原理是基于地层中放射性元素的存在,这些元素会发出自然伽马辐射,通过测量这种辐射的强度和能量分布,可以了解地层的岩性、厚度、孔隙度等信息,为油气勘探和开发提供重要的地质信息。

自然伽马辐射是地球物理测井中常用的一种测井方法,它利用地层中含有的放射性元素(如钾、钍、铀等)所产生的自然伽马辐射进行测量。

这些放射性元素在地层中的含量和分布会影响自然伽马辐射的强度和能谱特征,因此可以通过测量自然伽马辐射来推断地层的性质。

自然伽马测井常用的测量工具是自然伽马测井仪,它能够实时测量地层中的自然伽马辐射,并将数据传输到地面进行分析和解释。

自然伽马测井原理的核心是利用地层中放射性元素的存在来获取地层的物性参数,通过测量自然伽马辐射的强度和能谱特征,可以获取地层的厚度、密度、孔隙度等信息。

在实际应用中,自然伽马测井可以用于识别地层的岩性,划分地层的界面,评价地层的孔隙度和渗透率,识别油气层和水层等。

因此,自然伽马测井在油气勘探和开发中具有重要的应用价值。

自然伽马测井原理的实现依赖于自然伽马辐射的测量和解释。

自然伽马辐射的测量需要使用自然伽马测井仪,它能够实时测量地层中的自然伽马辐射,并将数据传输到地面进行分析。

自然伽马辐射的解释则需要借助地质、物理和数学等知识,通过对自然伽马辐射数据的处理和解释,可以获取地层的物性参数,并进行地质分析和油气勘探评价。

总的来说,自然伽马测井原理是基于地层中放射性元素的存在,利用自然伽马辐射来获取地层的物性参数,为油气勘探和开发提供重要的地质信息。

通过自然伽马测井,可以实现对地层岩性、厚度、孔隙度等参数的快速获取,为油气勘探和开发提供重要的技术支持。

自然伽马测井原理的应用将进一步推动油气勘探和开发技术的进步,为油气田的发现和开发提供重要的技术手段和支持。

测井原理9-自然伽马测井资料

测井原理9-自然伽马测井资料
自然伽马测井是地球物理测井的一种重要方法,其基本原理是利用地层中天然存在的放射性元素在衰变过程中放出的伽马射线。这些放射性元素,如钾、铀、钍等,在地层中的分布和含量与地层的岩性、物性以及含油气性密切相关。伽马射线具有较强的穿透能力,能够穿过井壁和钻井液到达测井仪器。测井仪器中的伽马射线探测器能够捕捉到这些射线,并将其转换为电信号。通过记录和分析这些电信号,我们可以得到地层放射性强度的连续变化的可能情况。例如,在砂岩层中,由于放射性元素含量较低,伽马射线强度较弱,测井曲线呈现低值;而在泥岩层中,由于放射性元素含量较高,伽马射线强度较强,测井曲线呈现高值。因此,自然伽马测井在油气勘探和开发过程中具有广泛的应用价值,能够帮助我们更好地了解地层性质,指导钻井和采油作业。

自然伽马测井原理

自然伽马测井原理

自然伽马测井原理自然伽马测井是一种测量地层中放射性元素含量的方法,通过测量地层中的自然伽马辐射强度,可以推断出地层的物性参数,如密度、孔隙度、渗透率等。

本文将介绍自然伽马测井的原理、仪器、应用及优缺点。

一、原理自然伽马辐射是指地球表面及地下物质中,由于天然放射性元素(如钾、铀、钍)的存在而产生的辐射。

这种辐射可以穿透物质,被探测器捕获后转化为电信号,再通过信号处理系统转化为伽马射线强度。

地层中的自然伽马辐射强度与地层中放射性元素的含量有关,因此可以通过测量自然伽马辐射强度来推断地层中放射性元素的含量,从而推断出地层的物性参数。

二、仪器自然伽马测井仪器主要由辐射源、探测器、信号处理系统和数据采集系统等部分组成。

辐射源通常是钚-铍源或铯-137源,探测器通常是锂离子探测器或硅探测器,信号处理系统通常是多道分析器或微机处理器,数据采集系统通常是电缆或无线传输系统。

三、应用自然伽马测井广泛应用于石油、天然气、地热、水文等领域,主要用于以下几个方面:1.测量地层中放射性元素的含量,推断地层的物性参数,如密度、孔隙度、渗透率等。

2.判断地层中矿物成分的类型和含量,如石英、长石、云母、方解石等。

3.判断地层中的岩性类型,如砂岩、泥岩、灰岩、页岩等。

4.判断地层中的构造类型,如断层、褶皱、岩浆侵入等。

5.判断地下水的分布和含量,预测水文地质条件。

四、优缺点自然伽马测井具有以下优点:1.测量范围广,可以测量地层中放射性元素的含量,推断地层的物性参数,如密度、孔隙度、渗透率等。

2.测量速度快,可以在钻井过程中进行实时测量,提高钻井效率。

3.测量精度高,可以达到0.1%的测量精度。

4.测量成本低,仪器价格相对较低,使用成本也较低。

但自然伽马测井也存在以下缺点:1.受地层中其他元素的影响,如矿物质、水等,容易受到干扰。

2.无法直接测量地层中的水含量和流速,需要通过其他方法进行补充。

3.无法测量地层中的化学元素含量,如碳、氢、氧等。

第4章-自然伽马测井讲解

第4章-自然伽马测井讲解

仪器与自然伽马测井仪基本相同, 使用NaI闪烁计数器,将入射的伽 马射线能量的大小以脉冲幅度大 小输出。地面仪器部分不同
该仪器的核心是多道脉冲幅度分 析器,该分析器将能谱分为5个能 量窗口,各窗的能量范围是:
用剥谱器对复杂谱进行解析
W1:0.15~0.5MeV W2:0.5~1.1MeV
自然伽马能谱测井测量原理


锯齿状
泥 岩
实测自然伽马测井曲线特征 7
(1)测井测量的每一点计数率的涨落误差σ1
n
如能根据多次测量确定平均值,则每次的测量读数 与平均值的误差就是σ1。采用积分线路的自然伽马 测井仪,其输出结果是在输出时刻前2τ时间内的平 均值,则曲线上任何一点的相对标准误差为:
相对误差: 1
1 2n
穿过某油田的
剖面确定第1、
2类砂岩的分布
12
砂泥岩剖面:低GR的为砂岩储集层,在厚层状态下可以用半幅点分层
碳酸盐岩剖面:低GR说明含泥质少的纯岩石,结合高孔隙度、低电阻率可划分 出储集层
3、确定泥质含量
1)、地质基础(计算条件):地层除粘土矿物外,不含其它放射性矿物时
2)相对值计算法:
IGR

GR GRmin GRmax GRmin
特征谱
19 K 40
1、铀、钍和钾的谱特征
分析谱曲线,可得岩层中所含各种放射 性元素及其含量
特征值(用以识别铀、钍、钾的特征能 量):
19 K 40-1.46MeV Th--2.62MeV U--1.76MeV
钍系
特征谱
铀—镭系
铀系、钍系、K40伽马能谱
16
岩石样品的 伽马仪器谱
虽然各种谱 峰值较多, 但三个特征 峰最易识别

自然伽马测井原理

自然伽马测井原理

自然伽马测井原理
自然伽马测井是一种常用的测井方法,它利用地层中天然放射性元素的辐射来获取地层信息。

自然伽马测井原理是基于地层中放射性元素的特性,通过测量地层中放射性元素的辐射强度来推断地层的性质。

本文将介绍自然伽马测井的原理及其在油田勘探中的应用。

地层中的放射性元素主要包括钍、钾和铀等,它们的放射性衰变会产生伽马射线。

当伽马射线穿过地层时,会与地层中的原子核发生相互作用,导致伽马射线的能量发生变化。

通过测量伽马射线的能量变化,可以推断地层中的放射性元素含量,从而得知地层的性质。

自然伽马测井的原理是基于伽马射线在地层中的衰减规律。

地层中的不同岩石对伽马射线的吸收能力不同,因此伽马射线在地层中的传播会受到地层岩石成分的影响。

通过测量伽马射线的衰减情况,可以推断地层的厚度、密度和岩性。

自然伽马测井在油田勘探中有着重要的应用价值。

首先,通过自然伽马测井可以获取地层的放射性元素含量,从而判断地层的含
油气性。

含油气层通常具有较高的放射性元素含量,因此可以通过自然伽马测井来识别潜在的油气层。

其次,自然伽马测井可以提供地层的密度和岩性信息,有助于评价地层的储集性能和渗透性。

最后,自然伽马测井还可以用于识别地层中的放射性矿物,对于矿产勘探具有重要意义。

总之,自然伽马测井原理是基于地层中的放射性元素的辐射特性,通过测量伽马射线的能量变化和衰减规律来推断地层的性质。

在油田勘探中,自然伽马测井具有重要的应用价值,可以帮助地质工作者更好地理解地下地层的情况,为油气勘探和开发提供重要的地质信息。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自然伽马测井
1
4.2 自然伽马测井
岩石中所含的放射性元素的种类和数量不同,放射性强度也不同。岩石的自然 伽马放射性水平主要决定于铀U、钍Th、钾K的含量。
自然伽马测井GR:通过测量岩层的自然伽马射线的强度来认识岩层的一种放射 性测井方法。是在井内测量岩层中自然存在的放射性元素核衰变过程中放射出来 的伽马射线的强度。
位移和形态畸变随之加剧。






时间常数RC对放射性测井曲线的影响
不同测井速度对自然伽马测井曲线的影响
深度位移:指根据实测自然伽马测井曲线的分层原则(如用半幅值点)定出的岩 层界面深度与实际深度之间有一偏差,而且前者比后者偏浅。
实际测井要选择合适的提升速度和仪器时间常数,同时,在整理资料时,需通过
钻井液和仪器外壳进入探测器,经过闪烁计数器,将伽马射线转化为电脉冲信
号,放大器把电脉冲放大后由电缆送到地面仪器,地面仪器把每分钟电脉冲数
转变成与其成正比例的电位差进行记录,井下仪器沿井身移动,就连续记录出
井剖面上自然伽马强度曲线,称为GR曲线,单位是脉冲/分,在仪器标准化后,
曲线单位是μR/h。现在使用API单位。
即是每一点的涨落误差范围(2σ1)加上每次测量的平均计数率的涨落误差范围
(2σ2)
8
物理意义:同一地层各点的读数n落在n 的
几率为68.3%。如果分层正确,那么该层内就
应有70%左右的读数不超出 n ,如果曲线幅
度变化超过上述范围,且超过(2.5~3)σ时,则 分层不正确,应重新分层。
高斯分布
3)、地层厚度的影响
与其它曲线的对比,将整个曲线下移一定深度(深度校正)。
6
统计
GR
SP
Hale Waihona Puke 涨落2)、放射性涨落误差的影响
放射性涨落:在放射性源强度和测量条件不 变的情况下,在相同的时间间隔内,对放射 性射线的强度进行反复测量,每次记录的数
值不相同,但总在平均值 n )附近变化
n-地层的平均计数率
它和测量条件无关,是微观世界的一种客观 现象,并且有一定的规律。这是由于放射性 元素的各个原子核的衰变彼此独立,衰变的 次序是偶然原因造成的。这种现象的存在, 使得自然伽马曲线不光滑,有许多起伏的变 化。这些起伏是放射性涨落引起的,不是由 于地层放射性元素含量变化引起的。放射性 测井曲线上读数的变化,一种是地层性质引 起的变化,用它可以划分地质剖面。另一种 变化是放射性涨落引起的。区分这两种变化 是正确解释应用的前提。放射性涨落符合统 计规律,其误差可以计算。
◆当地层足够厚时,对应曲线的幅度平均值代 表地层的真实情况。当地层很薄时,曲线的平 均值达不到代表地层的真实性质。
测值围绕平均值的变化情况及其统 计分布规律示意图
◆在砂泥岩剖面,由于地层变薄会使得泥岩的 自然伽马测井曲线值下降,砂岩层的自然伽马 曲线值上升,并且地层越薄,这种上升和下降 的幅度越大。对于地层层厚小于3d0时,应考虑 层厚的影响。
2)、总体特征
对着高放射性地层,曲线显示高读数, 并在岩层中心处出现极大值。对于厚 岩层,该极大值能很好地反映岩层的 放射性,随着岩层厚度的变薄,极大 值随之降低。 3)、曲线的对称性
上下围岩放射性含量相同时,曲线对称 于地层中点,反之,曲线不对称。
4
4)、当岩层厚度较厚时
当h大于3倍d0井径或者大于2倍探测半 径时,地层中心处的平均值为地层的 伽马射线强度值,可用曲线上最大幅 度一半的地方(半幅值点)划分岩层 的上下界面。
绝对误差: 1 n1
2 2
(2)某段地层内测量的平均记数率的涨落误差σ2
即以某一深度上一次测量的测井读数代替应由多 次重复测量计算的平均值时所带来的误差
相对误差2
1 N
v hn
绝对误差 2 n 2
vn h
N-厚度为h的地层脉冲总数
(3)放射性的涨落误差: (1 2 )
放射性测井曲线涨落误差


锯齿状
泥 岩
实测自然伽马测井曲线特征 7
(1)测井测量的每一点计数率的涨落误差σ1
n
如能根据多次测量确定平均值,则每次的测量读数 与平均值的误差就是σ1。采用积分线路的自然伽马 测井仪,其输出结果是在输出时刻前2τ时间内的平 均值,则曲线上任何一点的相对标准误差为:
相对误差: 1
1 2n
曲线上任何一点的计数率和真值间的偏差为:
4)、井的影响
薄泥岩层 厚砂层
薄砂层
井内钻井液的放射性强弱对数值有影响。井径 大,井内钻井液降低了岩层的数值。套管和管 外的水泥环有很强的吸收能力,也降低了曲线 的数值。在大井眼和套管井中,要做曲线校正。
厚泥岩层
地层厚度对自然伽
马曲线的影响
9
4.2.3 自然伽马曲线的应用
5)、当岩层变薄时
当 h < 3d0 时 , 受 低 放 射 性 围 岩 的 影 响 , 自然伽马幅度值对厚度h减小而减小, 岩层界面的位置移向曲线的顶端。
d0-井径
理论曲线与实际情况的差异分析
自然伽马理论曲线
理想情况:探测器在井内是进行的点测,而且每一个点上的读数是较长时间内 (>3τ)所测脉冲数的平均值。
实际测井情况(有v和τ参数):
◆仪器有一定的上提速度v,使得探测器在井内每一深度的停留时间有限
◆地面仪器中将脉冲数平均转化为连续电流的计数率电路的时间常数τ有一定
的数值,且不可能太长--记录电路的“延迟性”。
5
2、自然伽马测井曲线的影响因素
1)、测井速度v和记录仪中电路的积分时间常数τ的影响
vτ越大,曲线幅度越小,对称性越差,极值向提升方向偏移越远,即曲线的深度
4.2.1 自然伽马测井的测量原理
井下仪器包括:伽马射线探测器(将接收到的伽马射线转换成电脉冲的装置)、 供给该探测器所需的高压电源,以及将探测器输出的电脉冲进行放大的放大器等。
地面仪器主要包括:将来自地下的一连串电脉冲转换成连续电流的一整套电路,
以及记录仪和电源等。
测量原理:当井下仪器在井内由下向上提升时,来自岩层的自然伽马射线穿过
2
时间常数: RC
计数电路 输入电压
整形 计数

率计
输入 电压
输出 电压
自然伽马测井原理
积分线路输入输出特性 3
4.2.2 自然伽马测井曲线的特点
自然伽马测井的探测半径和岩 层厚度与GR曲线的解释关系
1、理论曲线特征
1)、探测范围
岩石放射的伽马射线能到达探测器的 一个以探测器中点为球心的球体,其 半径约为30~45cm。
相关文档
最新文档