电机与拖动基础及MATLAB仿真绪论
电机与拖动基础及MATLAB仿真绪论
B随H迅速增大(呈直线段); 在bc段:
B随H增大的速度又较慢;
图0-3 起始磁化曲线
在cd段: 磁饱和区(又呈直线段)。
其中,a点称为跗点;拐弯点b称为膝点;c点为饱和点。
过了饱和点c,铁磁材料的磁导率趋近 0
Page 21
0.4电机中的铁磁材料及其特性
磁化曲线动画
B
膝点
饱和点
c
d
b
B f (H)
软磁材料的磁滞回线瘦窄, 剩磁、矫顽力小,如硅钢片、 铸钢等。
图0-4 磁滞回线
注:一般电机铁心采用软磁材料制成,其磁滞回线瘦窄,在进行磁路计算
时,为了简化计算,不考虑磁滞现象,而用基本磁化曲线来表示B与H之间
的关系,故通常所说的铁磁材料的磁化曲线是指基本磁化曲线。
Page 26
0.4电机中的铁磁材料及其特性
Page 18
0.4电机中的铁磁材料及其特性
铁磁材料的磁化
铁磁材料能在外磁场中呈现很强的磁性,该现象称磁化, 这是因为铁磁材料内部存在许多很小的被称为磁畴的天然 磁化区,每个磁畴可看做一微型磁铁,其示意图如图0-2 所示。
a) 磁化前
外磁场
b)磁化后
图0-2 磁畴示意图
未磁化前,磁畴随机排列,铁磁材料对外不呈磁性, 磁化后,在外磁场的作用下,磁畴沿磁场方向排列整齐, 铁磁材料呈现较强的磁性,形成了一个附加磁场叠加在外 磁场上,使合成磁场显著增强。
总评成绩:平时40%(作业+考勤+实验),考试60%。
Page 16
0.3本教材内容、课程性质、教学任务及学习方法
齐心协力 共同进步
Page 17
0.4电机中的铁磁材料及其特性 铁磁材料
MATLAB仿真技术在《电机与拖动基础》教学的应用
MATLAB仿真技术在《电机与拖动基础》教学的应用刘素芳;刘素芬【摘要】MATLAB在电机与拖动基础教学中有着十分重要的作用,诸如参数计算、曲线描绘和仿真等,文章以实例说明之.【期刊名称】《张家口职业技术学院学报》【年(卷),期】2008(021)004【总页数】3页(P61-63)【关键词】MATLAB;仿真;应用【作者】刘素芳;刘素芬【作者单位】张家口职业技术学院,河北张家口,075000;大同矿务局永定庄矿二校,山西大同,037000【正文语种】中文【中图分类】TP3191.绪论电机与拖动是电气工程及其自动化、自动化专业的一门重要专业基础课程,也是该专业后续课程《电力拖动控制系统》、《现代交流调速》学习的基础。
它涉及电磁学、动力学及数学等多门学科,概念多、理论性强和工程实践联系密切。
知识面广,内容多,尤其是工程实际知识多,用传统的课堂讲授方式来讲授这门课的最大问题在于:很难用大量的图片来介绍各种旋转电机、变压器的结构,也难以用清晰、清洁的各种波形、图形来讲授诸如旋转磁场、绕组结构和电动机过渡过程等问题。
目前,虽然有很多的实验装置可以对电机及其拖动系统的稳态运行进行较好地测试与观察。
但是,对于电机及其拖动系统的动态过程的观察和测试却不甚理想。
这是因为电机动态过渡过程,时间短、且含有很多非线性因素,常规的仪表和示波器难以满足要求,故只能从理论上定性说明,致使学生远远脱离生产实际,影响了他们对该课程的理论学习。
本文介绍了MATLAB 在电机与拖动基础教学中的主要应用,例如参数计算,曲线描绘和仿真, 并用实例说明MATLAB 软件在电机与拖动基础教学中的重要作用2.MATLAB 仿真工具箱简介MATLAB 是 MathWorks 公司开发的用于数学计算的工具软件。
Simulink 是MATLAB 中的动态仿真工具,它具有强大的矩阵运算能力、简便的绘图功能、可视化的仿真环境。
MATLAB 已成为国际上公认的最优秀数值计算和仿真分析软件。
毕业论文-MATLAB直流电机拖动的仿真探究
摘要仿真是对操控系统的参考,探究和实验有着重要的含义,MATLAB编写的语句以及simulation元器件可以进行操控系统仿真,本人用MATLAB最新版本的软件来,写出些经典的直流操控系统实行了模拟实验,出现了不一样模型的图形,对系统做的两种状态的性能实验检查。
对一样的直流电机调节速度系统,可以抽取有传函模行建立系统模形方针,根据电汽构图中建立混在一块的模块系统模形仿真和编写仿真,并阐述了各种方法的特点。
对数字pid掌握算数实行的参考,里面有容易地数字pid掌握算数和不全部积分式,微分分离式两种进行的数字PID掌握算法,探讨了利用仿真技术整理计算机掌握直流电机系统的采样时间和PID参考的方法,以获得优良的系统调速性能。
关键词:MATLAB;仿真;直流电机;调速ABSTRACTSimulation is the reference of control system, has important meaning to explore and experiment, MATLAB statements and simulation components can control system simulation, I use the latest version of the MATLAB software to write some classical dc control system implemented simulation experiment, the different model of graphics, experiments on the performance of the system to do two kinds of state inspection. The dc motor speed regulating system of the same, you can extract a transfer function model line set up system modeling approach, according to the building up of mixed vapor composition in which a module of system modeling simulation and simulation, and expounds the charac teristics of various methods.Reference in digital pid control arithmetic to somewhere inside change of digital pid control arithmetic and not all integral type, differential separate two kinds of digital pid control algorithm, discusses the use of simulation technology of computer control dc motor system sampling time and the method of pid reference, in order to obtain excellent speed regulating performance.Key Words:MATLAB;simulation;DC machine;speed regulation目录摘要 ............................................................................................................................................... I ABSTRACT ..................................................................................................................................... II 目录 . (1)1 绪论 (3)1.1研究的目标与内容 (4)2 MATLAB简介 (5)2.1 MATLAB的发展历程 (5)2.2 MATLAB平台的组成 (6)2.3 MATLAB语言的特点 (7)3 MAT LAB软件在操制系统中的仿真 (9)3.1计算机仿真技术概括 (9)3.2 计算机仿真基本概念 (9)3.3自动控制系统仿真 (9)3.4 MAT LAB在控制系统地仿真功能和含义 (10)3.5控制系统仿真里面常用的函数 (10)4 Simulink基础 (12)4.1 Simulink简介 (12)4.2常用的标准模块 (12)4.3 Simulink主要的仿真模块介绍 (14)5直流电动机直接启动仿真 (16)5.1建立仿真模型 (16)5.2模块参数设置 (16)5.3仿真参数设置 (20)5.4仿真 (20)6直流电动机在电枢串联电阻起动仿真 (22)6.1建立仿真模型 (22)6.2模块参数设置 (23)6.3仿真参数设置 (23)6.4进行仿真 (23)7直流电动机反接制动仿真 (25)7.1建立仿真模型 (26)7.2模块参数设置 (26)7.3仿真参数设置 (26)7.4仿真 (26)8 直流电动机改变励磁电流调速仿真 (28)8.1建立仿真图形 (28)8.2模块参数设置 (28)8.3仿真参数设置 (29)8.4仿真 (29)9直流电动机改变电枢电压调速仿真 (31)9.1建立仿真模型 (31)9.2模块参数设置 (33)9.3仿真参数设置 (33)9.4仿真 (33)10 晶闸管单环直流调速系统的MATLAB仿真................................................ 错误!未定义书签。
电机与拖动基础及MATLAB仿真习题答案(第四章)
4-14 一台直流电动机技术数据如下:额定功率PN=40kW ,额定电压UN=220V ,额定转速nN=1500r/min ,额定效率η=%,求电动机的额定电流和额定负载时的输入功率 解:(1)额定电流(2)输入功率4-15 一台直流发电机技术数据如下:额定功率PN=82kW ,额定电压UN=230V ,额定转速nN=970r/min ,额定效率η=90%,求发电机的额定电流和额定负载时的输入功率 解:(1)额定电流(2)输入功率4-16 已知一台直流电机极对数p=2,槽数Z 和换向片数K 均等于22,采用单叠绕组。
试求:(1)绕组各节距;(2)并联支路数。
解:(1)第一节距5424222y 1=-=±=εp z ,为短距绕组。
单叠绕组的合成节距及换向器节距均为1,即1y ==k y第二节距415y 12=-=-=y y(2)并联支路数等于磁极数,为4。
4-17 已知直流电机极数2p=6,电枢绕组总导体数N=400,电枢电流Ia=10A ,气隙每极磁通Φ=×10-2Wb ,试求:(1)采用单叠绕组时电枢所受电磁转矩;(2)绕组改为单波保持支路电流ia 不变时的电磁转矩。
解: 电枢绕组为单叠绕组时,并联支路对数a=p=3,电磁转矩 m N I a pN T a ⋅=⨯⨯⨯⨯⨯=Φ=38.1310021.0314.3240032π 如果把电枢绕组改为单波绕组, 保持支路电流a i 的数值不变,则电磁转矩也不变,仍A U P I N N N N 79.207875.022010403=⨯⨯==ηkWI U P N N 71.4579.2072201=⨯=⨯=A U P I N N N 5.35623010823=⨯==KW P P N 11.911==η为m N ⋅,因为无论是叠绕组还是波绕组,所有导体产生的电磁转矩的方向是一致的,保持支路电流a i 不变,就保持了导体电流不变,也就保持了电磁转矩不变。
第7章基于MATLAB的交流电机仿真全篇
7.1电力系统模块集
Simulink中可以使用电力系统仿真模块集 (SimPowerSystems)。其功能非常强大,可 以用于电路、电力电子系统、电机系统、电力 传输等过程的仿真,它提供了一种类似电路建 模的方式进行模型绘制,在仿真前将自动将其 变化成状态方程描述的系统形式,然后才能在 Simulink下进行仿真分析。 该模块集下有许多子模块集,双击每一个图标 都将打开下一级子模块集。
选择该菜单项后将得到下图所示的对话框,可以从中 填写相应的数据,控制仿真过程。
1、仿真区间设置。仿真起始、终了时间设置。 2、类型设置。步长选择:定步长、变步长。 3、仿真算法选择。
定步长算法
变步长算法
1、ode45
它是一种一步算法,对大多数仿真模型来说, 首先使用ode45来解算模型是最佳的选择,所 以在SIMULINK的算法选择中将ode45设为默认 的算法。
例1考虑如图所示的感应电机的等效电路,输入的交流 电L1=压L源2=为1.922260mVH,,50RH2=z1,.5其51它Ω,参R数3=值1为.80R31Ω=0,.4L238=Ω31,.2mH。
步骤:
1、将所需的各电路元件复制到模型编辑窗口中。(对 各元件点击左键并按住拖入即可,对重复的元件可在 编辑窗口中按右键拖动)。
>> [a,b,c,d]=power2sys('ch7ex1')%获得系统的状态方程 a= -128.8763 -844.6462 -121.3833 -896.7868 b= 267.3783 251.8325 c= 0 1.8030 d= 0
Magnitude (dB)
>> G=ss(a,b,c,d);bode(G)%绘制系统的Bode图
电机与拖动技术完整版课件全套ppt教学教程
第1章 绪论
1.2本课程在专业中的作用、任务及课程目标
(2)课程目标 本课程是一门用电磁理论解决复杂的、具体的、综合的实际问题的课程 。在电机运行中,电机内同时存在电、磁、力的相互作用。因此本课程的目 标是使学生牢固掌握基本概念、基本原理和主要特性,学会结合电机的具体 结构、应用电机基本理论分析电机及拖动的实际问题,应掌握一定的电磁计 算方法,培养学生运算能力。 要求学生重视在教学过程中安排的实验、实 习,包括参观电机厂等实践教学环节。 具体要求是:
我国的电机工业,从新中国成立以来的50多年间,建立了独立自主的完整 体系。早在1958年我国就研制成功当时世界上第一台1.2万kW双水内冷汽轮 发电机,显示了我国电机工业的迅速掘起。近些年来,随着对电机新材料的研 究以及计算机技术在电机设计、制造工艺中的应用,普通电机的性能得到提高 ,而控制电机的高可靠性、高精度、快速响应使控制系统完成各种人工无法完 成的快速复杂的精巧工作。
从20世纪20年代起,开始采用由一台电动机拖动一台生产机械的系 统,称为单电动机拖动系统。与成组拖动相比,它省去了大量的中间传动 机构,使机械结构大大简化,提高了传动效率,增强了灵活性。由于电机 与生产机械在结构上配合密切,因而可以更好地满足生产机械的要求。
第1章 绪论
1.1电机和电力拖动技术的发展及在经济技术领域中的作用
第1章 绪论
1.1电机和电力拖动技术的发展及在经济技术领域中的作用
电能是现代能源中应用最广的二次能源,它的生产、变换、传输、分配 、使用和控制都比较方便经济,而要实现电能的生产、变换和使用等都离不 开电机。电机就是一种将电能与机械能相互转换的电磁机械装置。因此,电 机一般有两种应用形式。第一种是把机械能转换为电能,称之为发电机,它 通过原动机先把各类一次能源蕴藏的能量转换为机械能,然后再把机械能转 换为电能,最后经输电、配电网络送往城市各工矿企业、家庭等各种用电场 合。第二种是把电能转换为机械能,称之为电动机,它用来驱动各种用途的 生产机械和其他装置,以满足不同的要求。电机是利用电磁感应原理工作, 它应用广泛,种类繁多,性能各异,分类方法也很多。常见的分类方法为: 按功能用途分,可分为常规电机和控制电机两大类。按照电机的结构或转速 分类,可分为变压器和旋转电机。根据电源的不同,旋转电机又分为直流电 机和交流电机两大类。交流电机又分为同步电机和异步电机两类。
电力拖动自动控制系统Matlab仿真实验报告
电力拖动自动控制系统---Matlab仿真实验报告实验一二极管单相整流电路一.【实验目的】1.通过对二极管单相整流电路的仿真,掌握由电路原理图转换成仿真电路的基本知识;2.通过实验进一步加深理解二极管单向导通的特性。
图1-1二极管单相整流电路仿真模型图二.【实验步骤和内容】1.仿真模型的建立1打开模型编辑窗口;2复制相关模块;3修改模块参数;4模块连接;2.仿真模型的运行1仿真过程的启动;2仿真参数的设置;3.观察整流输出电压、电流波形并作比较,如图1-2、1-3、1-4所示。
三.【实验总结】由于负载为纯阻性,故输出电压与电流同相位,即波形相同,但幅值不等,如图1-4所示。
图1-2整流电压输出波形图图1-3整流电流输出波形图图1-4整形电压、电流输出波形图实验二三相桥式半控整流电路一.【实验目的】1.通过对三相桥式半控整流电路的仿真,掌握由电路原理图转换成仿真电路的基本知识;2.研究三相桥式半控整流电路整流的工作原理和全过程。
二.【实验步骤和内容】1.仿真模型的建立:打开模型编辑窗口,复制相关模块,修改模块参数,模块连接。
2.仿真模型的运行;仿真过程的启动,仿真参数的设置。
相应的参数设置:(1)交流电压源参数U=100V,f=25Hz,三相电源相位依次延迟120°。
(2)晶闸管参数Rn=0.001Ω,Lon=0.0001H,Vf=0V,Rs=50Ω,Cs=250e-6F。
(3)负载参数R=10Ω,L=0H,C=inf。
(4)脉冲发生器的振幅为5V,周期为0.04s(即频率为25Hz),脉冲宽度为2。
图2-1三相桥式半控整流电路仿真模型图当α=0°时,设为0.0033s,0.0166s,0.0299s。
图2-2α=0°整流输出电压等波形图当α=60°时,触发信号初相位依次设为0.01s,0.0233s,0.0366s。
图2-3α=60°整流输出电压等波形图三.【实验总结】三相可控整流电路中,最基本的是三相半波可控整流电路,应用最为广泛的是三相桥式全控整流电路、双反星形可控整流电路以及十二脉波可控整流电路等,均可在三相半波的基础上进行分析。
34125《电机与拖动基础及MATLAB仿真》陈亚爱(程序代码)书中仿真实例Matlab程序代码
【仿真实例0-1】解:用M语言编写计算励磁电流程序如下:%磁路计算求解励磁电流问题clc%清除主程序窗口clear%清除变量空间的变量A=0.8*1e-3;%已知铁心截面积m2,1e-3表示10-3kFe=0.94;%已知铁心叠片系数Ph=1*1e-3;%需产生的磁通量Wbu0=4*pi*1e-7;%已知空气磁导率H/m,1e-7表示10-7 l1=0.08;l2=0.1;l3=0.034;l4=0.04;l5=0.1;%已知各段磁路长度mN=2000;%已知励磁绕组匝数d=0.006;%已知气隙长度mAk=kFe*A;%计算净截面积m2B=Ph/Ak;%计算铁心磁通密度uFe=1900*u0;%计算铁心磁导率Hc=B/uFe;%计算铁心磁场强度Fc=Hc*(l1+l2+l3+l4+l5);%计算铁心的磁压降Ha=Ph/u0/A;%计算气隙磁场强度Fa=Ha*d;%计算气隙的磁压降F=Fc+Fa;%计算总磁压降i=F/N;%计算励磁电流s=num2str(i);%将数字转换成字符串s1='励磁电流为:';%定义字符串s=strcat(s1,s,'A');%合并字符串disp(s);%显示计算结果程序运行结果为:励磁电流为:3.0827A【仿真实例0-2】解:计算电感系数的公式为L= μ0μr AN2/l,用M语言编写计算电感系数和绘制电感系数与相对磁导率之间关系曲线程序如下:%求解电感系数和绘制L=f(μr)曲线问题clc%清除主程序窗口clear%清除变量空间的变量u0=pi*4e-7;%已知空气磁导率H/m,1e-7表示10-7 N=400;l=0.3;d=0.005;A=8e-4;A0=8e-4;%已知匝数、铁心长度、气隙、截面积R0=d/(u0*A0);%求气隙磁阻for n=1:80;%for循环语句ur(n)=100+(10000-100)*(n-1)/100;%求相对磁导率Rm(n)=l/(ur(n)*u0*A);%求铁心磁阻R=R0+Rm(n);%求计算总磁阻L(n)=N^2/R;%求电感系数end%for循环语句的结束plot(ur,L)%绘制L=f(μr)曲线title('{\itL=f}({\it\mu}_r)关系曲线')%标题'L=f(μr)关系曲线'xlabel('铁心相对磁导率{\it\mu}_r')%设置x坐标标签“铁心相对磁导率μr”ylabel('电感系数{\itL}[H]')%设置y坐标标签“电感系数L[H]”【仿真实例0-3】解:用M语言编写拟合磁化曲线的MATLAB程序如下:%拟合与绘制磁化曲线问题clcclearHdata=[1.38,1.40,1.42,1.44,1.46,1.48,1.50,1.52,1.54,1.56,...1.58,1.60,1.62,1.64,1.66,1.69,1.71,1.74,1.76,1.78,...1.81,1.84,1.86,1.89,1.91,1.94,1.97,2.00,2.03,2.06,...2.10,2.13,2.16,2.20,2.24,2.28,2.32,2.36,2.40,2.45,...2.50,2.55,2.60,2.65,2.70,2.76,2.81,2.87,2.93,2.99,...3.06,3.13,3.19,3.26,3.33,3.41,3.49,3.57,3.65,3.74,...3.83,3.92,4.01,4.11,4.22,4.33,4.44,4.56,4.67,4.80,...4.93,5.07,5.21,5.36,5.52,5.68,5.84,6.00,6.16,6.33,...6.52,6.72,6.94,7.16,7.38,7.62,7.86,8.10,8.36,8.62,...8.90,9.20,9.50,9.80,10.1,10.5,10.9,11.3,11.7,12.1,...12.6,13.1,13.6,14.2,14.8,15.5,16.3,17.1,18.1,19.1,...20.1,21.2,22.4,23.7,25.0,26.7,28.5,30.4,32.6,35.1,...37.8,40.7,43.7,46.8,50.0,53.4,56.8,60.4,64.0,67.8];%磁场强度数据Bdata=0.40:0.01:1.69;%磁感应强度数据len=length(Hdata);%计算数组长度Hmax=Hdata(len);%提取数组最大值a=polyfit(Hdata,Bdata,13);%计算多项式拟合系数a for n=1:151%提取拟合数据Hfit(n)=Hmax*(n-1)/150;Bfit(n)=a(1)*Hfit(n)^13+a(2)*Hfit(n)^12+a(3)*Hfit(n)^11+...a(4)*Hfit(n)^10+a(5)*Hfit(n)^9+a(6)*Hfit(n)^8+a(7)*Hfit(n)^7+...a(8)*Hfit(n)^6+a(9)*Hfit(n)^5+a(10)*Hfit(n)^4+a(11)*Hfit(n)^3+...a(12)*Hfit(n)^2+a(13)*Hfit(n)+a(14);endplot(Hdata,Bdata,'*')%对原数据描点绘图hold on%保持当前坐标轴和图形plot(Hfit,Bfit)%绘制多项式拟合曲线hold on%保持当前坐标轴和图形title('磁化曲线')%标题'磁化曲线'xlabel('{\itH}[A/cm]')%x坐标标签“H[A/cm]”ylabel('{\itB}[T]')%y坐标标签“B[T]”【仿真实例0-4】解:用M语言编写绘制磁化曲线的MATLAB程序如下:%绘制磁化曲线问题clcclearHdata=[43,49,55,61,67,72.5,78,84,90,100,110,...123,137,155,173,192,210,240,300,395,...520,643,800,920,1100,1300,1800];%磁场强度H值Bdata=0.2:0.05:1.50;%磁感应强度B值ydata=0:0.001:1.6;%y坐标0~1.6xdata=interp1(Bdata,Hdata,ydata,'spline');%采用样条插值的方法分析数据plot(Hdata,Bdata,'*');%用'*'描点绘制磁化曲线hold on%保持当前坐标轴和图形plot(xdata,ydata);%绘制x,y坐标hold on%保持当前坐标轴和图形title('磁化曲线')%标题'磁化曲线'xlabel('{\itH}(A/m)')%x坐标标签'H(A/m)'ylabel('{\itB}(T)')%y坐标标签'B(T)'ylim([0,1.80])%y坐标标注0~1.8【仿真实例0-5】解:用M语言编写绘制磁滞回线的MATLAB程序如下:%绘制磁滞回线问题clcclearBdata=[0,0.2,0.4,0.6,0.7,0.8,0.9,1.0,0.95,0.9,0.8,...0.7,0.6,0.4,0.2,0,-0.2,-0.4,-0.6,-0.7,-0.8,...-0.9,-1.0,-0.95,-0.9,-0.8,-0.7,-0.6,-0.4,-0.2,0];%磁感应强度基本数据Hdata=[48,52,58,73,85,103,135,193,80,42,2,-18,...-29,-40,-45,-48,-52,-58,-73,-85,-103,-135,...-193,-80,-42,-2,18,29,40,45,48];%磁场强度基本数据plot(Hdata,Bdata)%绘制磁滞回线hold on%保持当前坐标轴和图形title('磁滞回线')%标题'磁滞回线'plot([-250,250],[0,0],'r-')%绘制红色x轴坐标线hold on%保持当前坐标轴和图形plot([0,0],[-1.5,1.5],'r-')%绘制红色y轴坐标线xlabel('{\itH}(A/m)')%x坐标标签'H(A/m)'ylabel('{\itB}(T)')%y坐标标签'B(T)'grid on%显示网格【仿真实例0-6】解:用M语言编写绘制基于【仿真实例0-5】磁滞回线的平均曲线的MATLAB程序如下:%绘制磁滞回线的平均曲线问题clcclearBdata=[-1.0,-0.95,-0.9,-0.8,-0.7,-0.6,-0.4,-0.2,...0,0.2,0.4,0.6,0.7,0.8,0.9,1.0,0.95,0.9,0.8,...0.7,0.6,0.4,0.2,0,-0.2,-0.4,-0.6,-0.7,-0.8,-0.9,-1.0];%磁感应强度基本数据Hdata=[-193,-80,-42,-2,18,29,40,45,48,52,58,73,85,...103,135,193,80,42,2,-18,-29,-40,-45,...-48,-52,-58,-73,-85,-103,-135,-193];%磁场强度基本数据plot(Hdata,Bdata,'linewidth',1.5)%绘制磁滞回线hold on%保持当前坐标轴和图形Bdata1=[-1.0,-0.95,-0.9,-0.8,-0.7,-0.6,-0.4,-0.2,0,0.2,0.4,0.6,0.7,0.8,0.9,1.0];Hdata1=[-193,-80,-42,-2,18,29,40,45,48,52,58,73,85,103,135,193];Bdata2=[-1.0,-0.9,-0.8,-0.7,-0.6,-0.4,-0.2,0,0.2,0.4,0.6,0.7,0.8,0.9,0.95,1.0];Hdata2=[-193,-135,-103,-85,-73,-58,-52,-48,-45,-40,-29,-18,2,42,80,193];%将数据分两组If=-1.0:.05:1.0;%重新设置磁感应强度参数Ean1=spline(Bdata1,Hdata1,If);Ean2=spline(Bdata2,Hdata2,If);%根据两组数据求If对应的样条差值plot((Ean1+Ean2)/2,If,':','linewidth',1.5)%绘制平均值曲线hold on%保持当前坐标轴和图形title('磁滞回线的平均曲线')%标题'磁滞回线的平均曲线'plot([-250,250],[0,0],'r-')%绘制红色x轴坐标线hold on%保持当前坐标轴和图形plot([0,0],[-1.5,1.5],'r-')%绘制红色y轴坐标线xlabel('{\itH}(A/m)')%x坐标标签'H(A/m)'ylabel('{\itB}(T)')%y坐标标签'B(T)'grid on%显示网格【仿真实例1-1】解:用M语言编写绘制基本磁化曲线和磁路未饱和的磁化电流曲线的MATLAB程序如下:clcclearBdata=[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1,1.1,...%磁通密度基本数据1.2,1.3,1.34,1.38,1.41,1.43,1.45,1.47,...1.48,1.49,1.495,1.5,1.55,1.6];Hdata=[5,10,20,25,40,50,60,70,90,110,150,...%磁场强度基本数据200,300,400,500,600,700,800,900,...1000,1100,1200,1700,5000,10000];B=[-Bdata,0,Bdata];%将磁通密度数据扩展为正负值H=[-Hdata,0,Hdata];%将磁场强度数据扩展为正负值B=sort(B);%对磁通密度数据进行排序H=sort(H);%对磁场强度数据进行排序subplot(2,2,1);%将窗口划分2行2列使用第1子窗口Bx=0:0.01:2*pi;%正弦函数自变量从0~2π,间隔0.01 Bsin=1.1*sin(Bx);%计算正弦磁通密度值,幅值为1.1 plot(Bx,Bsin);%绘制磁通密度正弦曲线grid on;%显示网格线xlim([0,2*pi]);%限定横坐标范围为0~2πxlabel('角度{\it\omegat}/rad');%在横坐标上标注'角度ωt/rad'ylabel('磁通密度{\itB}(T)');%在纵坐标上标注'磁通密度B(T)'subplot(2,2,2);%将窗口划分2行2列使用第2子窗口hold on%保持图形plot(H,B,'ro');%用红色'o'绘制原始数据点grid on;%显示网格线xlabel('磁场强度{\itH}/(A/m)');%在横坐标上标注'磁场强度H/(A/m)' ylabel('磁通密度{\itB}(T)');%在纵坐标上标注'磁通密度B(T)'mymodel=fittype('a*sinh(b*x)');%选择sinh为拟合模型opts=fitoptions(mymodel);%初始化设置set(opts,'Robust','LAR','Normalize','Off');%设置使用线性最小二乘法拟合Fit=fit(B',H',mymodel,opts);%拟合bt=B;%拟合曲线临时磁通密度数据ht=Fit.a.*sinh(Fit.b.*bt);%拟合曲线临时磁场强度数据plot(ht,bt);%在原始数据窗口绘制拟合曲线subplot(2,2,4);%将窗口划分2行2列使用第4子窗口hold on;%保持图形MX=1.6;%磁通密度最大值BI1=sin((-MX:0.01:MX)./MX.*pi).*MX;%磁通正弦变化HI1=Fit.a.*Fit.b.*BI1;%拟合曲线映射后的磁场强度XI1=1:length(BI1);%初始化x轴刻度XI1=XI1/length(BI1)*2*pi;%折算到0~2πplot(XI1,HI1);%绘制磁化电流曲线grid on;%显示网格线xlim([0,2*pi]);%限定横坐标显示范围xlabel('角度{\it\omegat}/rad');%在横坐标上标注'角度ωt/rad'ylabel('磁化电流{\itI}/安匝');%在纵坐标上标注'磁化电流I/安匝'【仿真实例1-2】解:用M语言编写绘制基本磁化曲线和磁路未饱和的磁化电流曲线的MATLAB程序如下:clcclearBdata=[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1,1.1,...%磁通密度基本数据1.2,1.3,1.34,1.38,1.41,1.43,1.45,1.47,...1.48,1.49,1.495,1.5,1.55,1.6];Hdata=[5,10,20,25,40,50,60,70,90,110,150,...%磁场强度基本数据200,300,400,500,600,700,800,900,...1000,1100,1200,1700,5000,10000];B=[-Bdata,0,Bdata];%将磁通密度数据扩展为正负值H=[-Hdata,0,Hdata];%将磁场强度数据扩展为正负值B=sort(B);%对磁通密度数据进行排序H=sort(H);%对磁场强度数据进行排序subplot(2,2,1);%将窗口划分2行2列使用第1子窗口Bx=0:0.01:2*pi;%正弦函数自变量从0~2π,间隔0.01 Bsin=1.5*sin(Bx);%计算正弦磁通密度值,幅值为1.5 plot(Bx,Bsin);%绘制磁通密度正弦曲线grid on;%显示网格线xlim([0,2*pi]);%限定横坐标范围为0~2πxlabel('角度{\it\omegat}/rad');%在横坐标上标注'角度ωt/rad'ylabel('磁通密度{\itB}(T)');%在纵坐标上标注'磁通密度B(T)'subplot(2,2,2);%将窗口划分2行2列使用第2子窗口hold on%保持图形plot(H,B,'ro');%用红色'o'绘制原始数据点grid on;%显示网格线xlabel('磁场强度{\itH}/(A/m)');%在横坐标上标注'磁场强度H/(A/m)' ylabel('磁通密度{\itB}(T)');%在纵坐标上标注'磁通密度B(T)' mymodel=fittype('a*sinh(b*x)');%选择sinh为拟合模型opts=fitoptions(mymodel);%初始化设置set(opts,'Robust','LAR','Normalize','Off');%设置使用线性最小二乘法拟合Fit=fit(B',H',mymodel,opts);%拟合bt=B;%拟合曲线临时磁通密度数据ht=Fit.a.*sinh(Fit.b.*bt);%拟合曲线临时磁场强度数据plot(ht,bt);%在原始数据窗口绘制拟合曲线subplot(2,2,4);%将窗口划分2行2列使用第4子窗口hold on;%保持图形MX=1.6;%磁通密度最大值BI1=sin((-MX:0.01:MX)./MX.*pi).*MX;%磁通正弦变化HI1=Fit.a.*sinh(Fit.b.*BI1);%拟合曲线映射后的磁场强度XI1=1:length(BI1);%初始化x轴刻度XI1=XI1/length(BI1)*2*pi;%折算到0~2πplot(XI1,HI1);%绘制磁化电流曲线grid on;%显示网格线xlim([0,2*pi]);%限定横坐标显示范围xlabel('角度{\it\omegat}/rad');%在横坐标上标注'角度ωt/rad'ylabel('磁化电流{\itI}/安匝');%在纵坐标上标注'磁化电流I/安匝'【仿真实例1-3】解:用M语言编写绘制磁滞回线的MATLAB程序如下:clcclearBdata=[0,0.2,0.4,0.6,0.7,0.8,0.9,1.0,0.95,0.9,0.8,...0.7,0.6,0.4,0.2,0,-0.2,-0.4,-0.6,-0.7,-0.8,...-0.9,-1.0,-0.95,-0.9,-0.8,-0.7,-0.6,-0.4,-0.2,0];%输入磁感应强度基本数据Hdata=[0.24,0.26,0.29,0.365,0.425,0.515,0.675,...0.965,0.4,0.21,0.01,-0.09,-0.145,-0.2,...-0.225,-0.24,-0.26,-0.29,-0.365,-0.425,...-0.515,-0.675,-0.965,-0.4,-0.21,-0.01,...0.09,0.145,0.2,0.225,0.24];%输入磁场强度基本数据MX=1.39;%磁通密度最大值H=Hdata;B=Bdata;%磁滞回线数据H=H.*10;B=B.*MX;%调整B和H的显示比例subplot(2,2,1);%将窗口划分2行2列使用第1子窗口Bx=-pi/2:0.01:3*pi/2;%磁通密度数据范围-π/2~3π/2Bsin=1.5*sin(Bx);%计算正弦值扩大1.5倍以适应磁滞回线plot(Bx,Bsin);%绘制磁通密度正弦曲线hold on;%保持图形plot([-pi/23*pi/2],[00],'r-')%用红色实线绘制磁密曲线的x坐标轴plot([00],[-22],'r-')%用红色实线绘制磁密曲线的y坐标轴grid on;%显示网格线xlim([-pi/2,3*pi/2]);%限定横坐标显示范围-π/2~3π/2 xlabel('角度{\it\omegat}/rad');%在横坐标上标注'ωt'ylabel('磁通密度{\itB}/(T)');%在纵坐标上标注'磁通密度B/(T)' subplot(2,2,2);%将窗口划分2行2列使用第2子窗口hold on;%保持图形plot(H,B,'ro');%用红色'o'绘制磁滞回线B1=B(1:8);H1=H(1:8);%第1象限数据B>0数据B2=B(8:15);H2=H(8:15);%第2象限数据B>0数据B3=B(16:23);H3=H(16:23);%第3象限数据B>0数据B4=B(23:30);H4=H(23:30);%第4象限数据B>0数据BB1=[B4,B1];HH1=[H4,H1];%磁滞回线的下分支XI1=-10:0.1:10;%设置横坐标值YI1=interp1(HH1,BB1,XI1,'spline');%用3次样条插值计算plot(XI1,YI1);%绘制插值后磁滞回线下分支BB2=[B2,B3];HH2=[H2,H3];%磁滞回线的上分支XI2=-10:0.1:10;%设置横坐标值YI2=interp1(HH2,BB2,XI2,'spline');%用3次样条插值计算plot(XI2,YI2);%绘制插值后磁滞回线上分支grid on;%显示网格线xlabel('磁场强度{\itH}/(A/m)');%在横坐标上标注'磁场强度H/(A/m)' ylabel('磁通密度{\itB}/(T)');%在纵坐标上标注'磁通密度B/(T)'xlim([-1515])%设置横坐标范围subplot(2,2,4);%将窗口划分2行2列使用第4子窗口XI1=sin((0:0.01:MX)./MX.*pi./2).*MX;%磁通密度正弦变化(0~π/2)YI1=interp1(B1,H1,XI1,'spline');%用3次样条插值计算lengthX=length(XI1)-1;%计算先前波形的横坐标长度X1=(0:lengthX);%设置横坐标范围(0~π/2)X1=X1/lengthX*pi./2;plot(X1,YI1);%绘制0~π/2上的曲线hold on;%保持图形XI2=sin((MX:0.01:2*MX)./MX.*pi./2).*MX;%磁通密度正弦变化(π/2~π)YI2=interp1(B(8:16),H(8:16),XI2,'spline');%用3次样条插值计算lengthX=length(XI2)-1;%计算先前波形的横坐标长度X2=(lengthX:2*lengthX);%设置横坐标范围(π/2~π)X2=X2/lengthX*pi./2;plot(X2,YI2);%绘制π/2~π上的曲线XI3=sin((MX:0.01:1.5*MX)./MX.*pi).*MX;%磁通密度正弦变化(π~3π/2)YI3=interp1(B3,H3,XI3,'spline');%用3次样条插值计算lengthX=length(XI3)-1;%计算先前波形的横坐标长度X3=(2*lengthX:3*lengthX);%设置横坐标范围(π~3π/2)X3=X3/lengthX*pi./2;plot(X3,YI3);%绘制π~3π/2上的曲线XI4=sin((1.5*MX:0.01:2*MX)./MX.*pi).*MX;%磁通密度正弦变化(3π/2~2π)YI4=interp1(B4,H4,XI4,'spline');%用3次样条插值计算lengthX=length(XI4)-1;%计算先前波形的横坐标长度X4=(3*lengthX:4*lengthX);%设置横坐标范围(3π/2~2π)X4=X4/lengthX*pi./2;plot(X4,YI4);%绘制3π/2~2π上的曲线grid on;%显示网格线plot([0,2*pi],[00],'r-')%用红色实线绘制磁化电流曲线的x坐标轴xlim([0,2*pi]);%限定横坐标显示范围0~2πxlabel('角度{\it\omegat}/rad');%在横坐标上标注'ωt'ylabel('磁化电流{\itI}/安匝');%在纵坐标上标注'磁化电流I/安匝'【仿真实例2-1】解:用M语言编写绘制【例2-1】功角特性曲线的MATLAB程序如下:clcclearU1=6000/sqrt(3);%定子相电压I1=57.8;%定子相电流xd=64.2;%直轴电抗xq=40.8;%交轴电抗cosfain=0.8;%cosϕN=0.8fain=acos(cosfain);%求ϕNsinfain=sin(fain);%求sinϕNpsi=atan((U1*sinfain+xq)/(U1*cosfain));%求内功率因数角ψId=I1*sin(psi)*exp(1i*pi/2-psi);%计算直轴电流分量Iq=I1*cos(psi)*exp(-psi);%计算交轴电流分量E0=abs(U1*exp(-1i*fain)-1i*Id*xd-1i*Iq*xq);%计算励磁电动势th=0:0.01:pi;%x坐标轴0~π变化x=th./pi.*180;%换算成角度Pem1=3*U1*E0/xd.*sin(th);%求基本电磁功率Pem2=1.5*U1^2*(1/xq-1/xd).*sin(2.*th);%求附加电磁功率Pem=Pem1+Pem2;%凸极电磁功率hold on;%保持当前坐标轴和图形plot(x,Pem1,'b-',x,Pem2,'b-',x,Pem,'b-')%绘制各功角特性plot([0180],[00],'r-')%用红色实现绘制x坐标轴plot([9090],[-2e510e5],'r--')%用红色虚线绘制90°对应值text(50,9e5,'Pem')%在相应位置标注“Pem”text(130,7e5,'Pem1')%在相应位置标注“Pem1”text(70,1.5e5,'Pem2')%在相应位置标注“Pem2”xlabel('Angle[°]');%横坐标标注“Angle[°]”ylabel('Power[kW]');%纵坐标标注“Power[kW]”title('三相凸极同步电动机功角特性');%标题“三相凸极同步电动机功角特性”【仿真实例2-2】解:用M语言编写绘制【例2-2】矩角特性曲线的MATLAB程序如下:clcclearU1=3464;%定子相电压E0=6378;%励磁电动势xc=64;%同步电抗n1=1000;%同步转速th=0:.01:pi;%x坐标轴0~π变化x=th./pi.*180;%换算成角度T=90*U1*E0/(xc*pi*n1).*sin(th);%求电磁转矩plot(x,T)%绘制矩角特性xlabel('Angle[°]');%横坐标标注“Angle[°]”ylabel('Torque[N\cdotm]');%纵坐标标注“Torque[N ·m]”title('三相隐极同步电动机矩角特性');%标题“三相隐极同步电动机矩角特性”【仿真实例3-1】解:根据例题3-1的解得该电动机固有机械特性方程为1230123061972.ss ..s s s s T T mm m +=+=编制绘制该电动机固有机械特性的M 文件程序如下:clc clear n1=1500;%输入同步转速s=0:0.005:1;%转差率变化范围0~1,间隔0.005T=197.6./(0.123./s+s./0.123);%计算电磁转矩Subplot(1,2,1)%按照1行2列绘制子图1plot(s,T,'k-');%绘制机械特性xlabel('转差率{\its}');%横坐标标注“转差率s ”ylabel('电磁转矩{\itT}/(N\cdotm)');%纵坐标标注“电磁转矩T /(N·m)”title('异步电动机固有机械特性{\itT}={\itf}({\its})')%标注标题“T =f (s )”n=n1.*(1-s);%计算转速Subplot(1,2,2)%按照1行2列绘制子图2plot(T,n,'k-');%绘制机械特性xlabel('电磁转矩{\itT}/(N\cdotm)');%横坐标标注“电磁转矩T /(N·m)”ylabel('转速{\itn}/(rpm)');%纵坐标标注“转速n /(rpm)”title('异步电动机固有机械特性{\itn}={\itf}({\itT})')%标注标题“n =f (T )”hold on;%保持当前坐标轴和图形【仿真实例3-2】解:用M 语言编写绘制【例3-2】人为机械特性曲线的MATLAB 程序如下:clc clear m1=3;%异步电动机相数U1=220;%定子相电压n1=1000;%输入同步转速p=2;%极对数f1=50;%电源频率r1=2.08;%定子绕组电阻r2=1.53;%转子绕组电阻折算值w1=2*pi*f1/p;%计算同步角速度,单位:rad/sx1=3.12;%定子漏电抗x2=4.25;%转子漏电抗折算值s=0:0.005:1;%设定转差率变化范围:0~1,间隔0.005n=n1.*(1-s);%计算转速T=(m1*p*U1^2*r2)./s./(w1.*((r1+r2./s).^2+(x1+x2)^2));%计算电磁转矩subplot(2,2,1)%按2行2列绘制子图plot(s,T,'k');%绘制固有机械特性曲线xlabel('转差率{\its}');%横坐标标注“转差率s”ylabel('电磁转矩{\itT}/(N\cdotm)');%纵坐标标注“电磁转矩T/(N·m)”str_x=0.25;%标注字符的横坐标text(str_x,max(T),strcat('U1=',num2str(int16(U1)),'V'),'FontSize',9,'Color','black'); %标注固有机械特性曲线的电压值title('降低定子电压的人为机械特性')%标题“降低定子电压的人为机械特性”hold on;%保持当前坐标轴和图形subplot(2,2,2)%按2行2列绘制子图2plot(T,n,'k');%绘制固有机械特性曲线hold on;xlabel('电磁转矩{\itT}/(N\cdotm)');%横坐标标注“电磁转矩T/(N·m)”ylabel('转速{\itn}/(rpm)');%纵坐标标注“转速n/(rpm)”text(max(T)-20,500,strcat('U1=',num2str(int16(U1)),'V'),'FontSize',9,'Color','black'); %标注固有机械特性曲线的电压值title('降低定子电压的人为机械特性')%标题“降低定子电压的人为机械特性”str_y=500;%设定字符串的纵坐标初值for coef=0.75:-0.25:0.25;%设定降低定子电压的范围U1p=U1*coef;%降低定子电压T1=(m1*p*U1p^2*r2)./s./(w1.*((r1+r2./s).^2+(x1+x2)^2));%计算电磁转矩subplot(2,2,1)%按2行2列绘制子图1plot(s,T1,'k-');%绘制降低定子电压人为机械特性str=strcat('U1=',num2str(int16(U1p)),'V');%创建标注字符串text(str_x,max(T1)+5,str,'FontSize',9,'Color','black');%标记各曲线的电压值subplot(2,2,2)%按2行2列绘制子图2plot(T1,n,'k-');%绘制降低定子电压人为机械特性str=strcat('U1=',num2str(int16(U1p)),'V');%创建标注字符串str_y=str_y+100;%修改字符串的纵坐标值text(max(T1)-5,str_y,str,'FontSize',9,'Color','black');%标记各曲线的电压值endsubplot(2,2,3)%按2行2列绘制子图3plot(s,T,'k-');%绘制固有机械特性曲线xlabel('转差率{\its}');%横坐标标注“转差率s”ylabel('电磁转矩{\itT}/(N\cdotm)');%纵坐标标注“电磁转矩T/(N·m)”str_x=0.75;%标注字符的横坐标text(str_x,max(T)-45,strcat('r2=',num2str(r2),'\Omega'),'FontSize',9,'Color','black'); %标注固有机械特性曲线的电阻值title('改变转子电阻的人为机械特性')%标题“改变转子电阻的人为机械特性”hold on;%保持当前坐标轴和图形subplot(2,2,4)%按2行2列绘制子图4plot(T,n,'k-');%绘制固有机械特性曲线hold on;xlabel('电磁转矩{\itT}/(N\cdotm)');%横坐标标注“电磁转矩T/(N·m)”ylabel('转速{\itn}/(rpm)');%纵坐标标注“转速n/(rpm)”text(50,400,strcat('r2=',num2str(r2),'\Omega'),'FontSize',9,'Color','black');%标注固有机械特性曲线的电阻值title('改变转子电阻的人为机械特性')%标题“改变转子电阻的人为机械特性”r2p=r2;%设定改变的转子电阻的初值str_y1=400;%设定字符串的纵坐标初值for coef=1:4;%设定改变转子电阻的范围r2p=r2p+0.75;%改变转子电阻T1=(m1*p*U1^2*r2p)./s./(w1.*((r1+r2p./s).^2+(x1+x2)^2));%计算电磁转矩subplot(2,2,3)%按2行2列绘制子图3plot(s,T1,'k-');%绘制改变转子电阻人为机械特性str=strcat('r2=',num2str(r2p),'\Omega');%创建标注字符串str_y=T1(length(T1))-5;%标注字符串的纵坐标值text(str_x,str_y+11,str,'FontSize',9,'Color','black');%标记各曲线的电阻值subplot(2,2,4)%按2行2列绘制子图4plot(T1,n,'k-');%绘制改变转子电阻人为机械特性str=strcat('r2=',num2str(r2p),'\Omega');%创建标注字符串str_y1=str_y1-90;%修改字符串的纵坐标值text(50+coef*8,str_y1,str,'FontSize',9,'Color','black');%标记各曲线的电阻值end【仿真实例4-1】解:用M语言编写绘制直流发电机空载特性曲线的MATLAB程序如下:%绘制直流发电机空载特性曲线问题clcclearIfdata1=[0.0,0.5,0.7,0.8,1.0,1.2,1.5];Ifdata2=[0.0,0.5,0.7,0.8,1.0,1.2,1.5];%励磁电流I f值U0data1=[2,75,93.5,99,106,111.5,117];U0data2=[18,83.6,97.5,102.5,109.5,114,117];%空载电压U0值xdata=0:.1:1.5;%y坐标0~120ydata1=interp1(Ifdata1,U0data1,xdata,'spline');ydata2=interp1(Ifdata2,U0data2,xdata,'spline');%采用样条插值的方法分析数据plot(Ifdata1,U0data1,'*')%用'*'描点绘制空载特性hold on;%保持当前坐标轴和图形plot(Ifdata2,U0data2,'*')%绘制I f,U0坐标hold on;plot(xdata,ydata1);%绘制x,y坐标hold on;%保持当前坐标轴和图形plot(xdata,ydata2);%绘制x,y坐标hold on;%保持当前坐标轴和图形title('直流发电机空载特性')%标题'直流发电机空载特性' xlabel('{\itI}_f(A)')%x坐标标签'I f(A)'ylabel('{\itU}_0(V)')%y坐标标签'U0(V)'axis([0,2,0,120])【仿真实例4-2】解:用M语言编写绘制他励直流发电机外特性曲线的MATLAB程序如下:%绘制他励直流发电机外特性曲线问题clcclearIdata=[0,4.3,7,8.8,13,15,17];%负载电流I值Udata=[118,116,114,112.5,110,108.5,107];%负载电压U值xdata=0:1:17;%x坐标0~17ydata=interp1(Idata,Udata,xdata,'spline');%采用样条插值的方法分析数据plot(Idata,Udata,'*');%用'*'描点绘制外特性hold on%保持当前坐标轴和图形plot(xdata,ydata);%绘制x,y坐标hold on%保持当前坐标轴和图形title('他励直流发电机外特性')%标题'他励直流发电机外特性' xlabel('{\itI}(A)')%x坐标标签'I(A)'ylabel('{\itU}(V)')%y坐标标签'U(V)'axis([0,20,0,150])%设置轴线数据范围【仿真实例4-3】解:用M语言编写绘制并励直流发电机外特性曲线的MATLAB程序如下:%绘制并励直流发电机外特性曲线问题clcclearnN=1500;IfN=1.4;Rf=75;Ra=2.3;%输入发电机基本数据Ifdata=[0,0.5,0.7,0.8,1.0,1.2,1.5];%输入励磁电流U0data=[5,75,95,100,108,110,117];%输入空载电压If=0:0.01:12;%重新设置励磁参数P=polyfit(Ifdata,U0data,3);U0=polyval(P,If);%空载特性曲线拟合U=If*Rf;%计算电枢端电压Ia=(U0-U)/Ra;%计算电枢电流I=Ia-If;%计算负载电流plot(I,U)%绘制并励直流发电机外特性hold on%保持当前坐标轴和图形title('并励直流发电机外特性')%标题'并励直流发电机外特性'axis([0,20,0,120])%设置轴线数据范围xlabel('{\itI}(A)')%x坐标标签'I(A)'ylabel('{\itU}(V)')%y坐标标签'U(V)'【仿真实例4-4】解:用M语言编写仿真并励直流发电机自励过程和求稳态电压的MATLAB程序如下:%仿真并励直流发电机自励过程和求稳态电压问题%sh_ge_se_ex_ode函数的M文件function dydt=sh_ge_se_ex_ode(~,iff)%定义该M—函数为sh_ge_se_ex_ode,即%shunt_generator_self_excited_odeglobal a1a2a3a4Rf%指定全局变量Lf=40;Rf=75;%输入发电机基本数据Ifdata=[0,0.5,0.7,0.8,1.0,1.2,1.5];%输入励磁电流实验数据U0data=[5,75,95,100,108,110,117];%输入感应电动势数据a=polyfit(Ifdata,U0data,3);%曲线拟合dydt=1/Lf*(a(1)*iff^3+a(2)*iff^2+a(3)*iff^1+a(4))-Rf/Lf*iff;%列写标准形式微分方程并将感应电动势用%励磁电流的拟合多项式函数表示a1=a(1);a2=a(2);a3=a(3);a4=a(4);%给全局变量赋值%脚本M文件[t,iff]=ode23(@sh_ge_se_ex_ode,[010],[0]);%选择微分方程解算指令ode23()global a1a2a3a4Rf%指定全局变量subplot(3,1,1),%定义绘制仿真曲线1ea=a1*iff.^3+a2*iff.^2+a3*iff.^1+a4;%求感应电动势plot(iff,ea)%绘制e a=f(I f)曲线hold on%保持当前坐标轴和图形uf=Rf.*iff;%计算u fplot(iff,uf,'g')%用绿颜色绘制u f=f(i f)场阻线title('并励直流发电机自励过程')%标题'并励直流发电机自励过程'xlabel('{\itI}_f(A)')%曲线1x坐标标签'I f(A)'ylabel('{\itE}_a/{\itU}_f(V)')%曲线1y坐标标签'E a/U f(V)'axis([0,1.6,0,150])%设置x、y坐标值subplot(3,1,2)%定义绘制曲线2plot(t,iff);%绘制曲线2即i f=f(t)xlabel('{\itt}(s)')%曲线2x坐标标签't(s)'ylabel('{\itI}_f(A)')%曲线2y坐标标签'I f(A)'axis([0,5,0,2])subplot(3,1,3),%定义绘制曲线3plot(t,(a1*iff.^3+a2*iff.^2+a3*iff.^1+a4));%绘制e a曲线xlabel('{\itt}(s)')%曲线3x坐标标签't(s)'ylabel('{\ite}_a(V)')%曲线3y坐标标签'e a(V)'iff,a1*iff.^3+a2*iff.^2+a3*iff.^1+a4;%计算励磁电流和感应电动势的数值axis([0,5,0,150])【仿真实例4-5】解:用M语言编写绘制他励直流电动机工作特性的MATLAB程序如下:%绘制他励直流电动机工作特性问题clcclearUN=220;PN=22;IaN=115;Nn=1500;%输入电动机参数Ra=0.21;%输入电枢电阻CePhiN=(UN-Ra*IaN)/Nn;%计算电动势常数C eΦNCTPhiN=9.55*CePhiN;%计算电磁转矩常数C TΦNIa=0:IaN;%电枢电流从0~额定电流I aNn=UN/CePhiN-Ra/(CePhiN)*Ia;%计算转速TN=CTPhiN*Ia;%计算电磁转矩TNP=TN*10;%为清楚起见,将电磁转矩扩大十倍显示plot(Ia,n,'b.-',Ia,TNP,'r.-');%绘制转速特性和转矩特性曲线xlabel('电枢电流{\itI}_a/A')%横坐标标签'电枢电流I a/A'ylabel('转速{\itn}/rpm,电磁转矩{\itT}/N.m')%纵坐标'转速n/rpm,电磁转矩T/N.m' text(30,1500,'转速{\itn}');%标记转速曲线text(50,500,'电磁转矩{\itT}(X10)');%标记转矩曲线【仿真实例4-6】解:用M语言编写绘制串励直流电动机工作特性的MATLAB程序如下:%绘制串励直流电动机工作特性问题clcclearUN=220;PN=22;IaN=115;Nn=1500;%输入电动机参数Ra=0.18;%输入电枢电阻Rf=0.31;%输入励磁电阻k=0.01;%输入比例常数CePhiN=(UN-(Ra+Rf)*IaN)/Nn;%计算电动势常数C eΦNCe=CePhiN/k/IaN;%计算电动势常数C eIa=0:IaN;%电枢电流从0~额定电流I aNn=UN./(Ce*k.*Ia)-(Ra+Rf)/(Ce*k);%计算转速start_p=30;%设置显示的起始点Ia_p=Ia(start_p:length(Ia));%截取电流显示区间n_p=n(start_p:length(n));%截取转速显示区间CTPhiN=9.55*CePhiN;%计算电磁转矩常数C TΦNCT=CTPhiN/k/IaN;%计算电磁转矩常数C TTN=CT*k*Ia.*Ia;%计算电磁转矩TNP=TN*30;%为清楚起见,将电磁转矩扩大三十倍显示plot(Ia_p,n_p,'b.-',Ia,TNP,'r.-');%绘制转速特性和转矩特性曲线xlabel('电枢电流{\itI}_a/A')%横坐标标签'电枢电流I a/A'ylabel('转速{\itn}/rpm,电磁转矩{\itT}/N.m')%纵坐标标签'转速n/rpm,电磁转矩T/N.m' text(40,5500,'转速\itn');%标记转速曲线text(15,1000,'电磁转矩{\itT}(X30)');%标记转矩曲线【仿真实例5-1】解:用M语言编写绘制他励直流电动机机械特性的MATLAB程序如下:clcclearPN=22,UN=220,IN=115,nN=1500,Ra=0.21;%输入铭牌数据IaN=IN;%计算电枢电流CePhiN=(UN-Ra*IaN)/nN;%计算电动势常数C eΦNCTPhiN=9.55*CePhiN;%计算电磁转矩常数C TΦNIa=0:IaN;%建立电枢电流数组n=UN/CePhiN-Ra/(CePhiN)*Ia;%计算转速T=CTPhiN*Ia;%计算电磁转矩figure(1);%建立1号图形窗口plot(T,n,'.-');%绘制固有机械特性曲线title('固有机械特性');%标题'固有机械特性'xlabel('电磁转矩{\itT}/N\cdotm');%横轴标注'电磁转矩T/N•m'ylabel('转速{\itn}/rpm');%纵轴标注'转速n/rpm'ylim([0,1800]);%限制纵轴显示范围figure(2);%建立2号图形窗口plot(T,n,'rd');%绘制固有机械特性曲线title('降低电枢电源电压的人为机械特性');%标题'降低电枢电源电压的人为机械特性' xlabel('电磁转矩{\itT}/N\cdot m');%横轴标注'电磁转矩T/N•m'ylabel('转速{\itn}/rpmin');%纵轴标注'转速n/rpm'hold on;%保持当前坐标轴和图形for jy=1:-0.25:0.25;U=UN*jy;%改变电枢电源电压n=U/CePhiN-Ra/(CePhiN*CTPhiN)*T;%计算对应不同电枢电源电压的转速plot(T,n,'-');%绘制改变电枢电源电压的人为机械特性str=strcat('{\it U}=',num2str(U),'V');%显示字符串处理y=1700*jy;%显示字符串纵坐标text(60,y,str);%给曲线标注电压值endfigure(3);%建立3号图形窗口Rc=0;%临时变量n=UN/CePhiN-(Ra+Rc)/(CePhiN*CTPhiN)*T;%计算转速plot(T,n,'rd');%绘制固有机械特性曲线title('电枢回路串电阻的人为机械特性');%标题'电枢回路串电阻的人为机械特性' xlabel('电磁转矩{\itT}/N\cdot m');%横轴标注'电磁转矩T/N•m'ylabel('转速{\itn}/rpmin');%纵轴标注'转速n/rpm'hold on;%保持当前坐标轴和图形Rc=0.02;%电枢串电阻值for Rc=0:0.5:1.9;n=UN/CePhiN-(Ra+Rc)/(CePhiN*CTPhiN)*T;%计算转速plot(T,n,'-');%绘制电枢回路串电阻的人为机械特性str=strcat('{\it R}=',num2str(Ra+Rc),'\Omega');%字符串处理y=400*(4-Rc*1.8);%显示字符串的纵坐标text(120,y,str);%给各曲线标记电阻值endylim([0,1700]);%限制纵轴显示范围figure(4);%建立4号图形窗口n=UN/CePhiN-Ra/(CePhiN*CTPhiN)*T;%计算转速plot(T,n,'rd');%绘制固有机械特性曲线title('减弱磁通的人为机械特性');%标题'减弱磁通的人为机械特性' xlabel('电磁转矩{\itT}/N\cdot m');%横轴标注'电磁转矩T/N•m'ylabel('转速{\itn}/rpmin');%纵轴标注'转速n/rpm'hold on;%保持当前坐标轴和图形for ct=0.5:0.25:1.3;CePhi=CePhiN*ct;CTPhi=CTPhiN*ct;%改变磁通值n=UN/CePhi-Ra/(CePhi*CTPhi)*T;%计算转速plot(T,n,'-');%绘制改变磁通时的人为机械特性str=strcat('{\it\phi}=',num2str(ct),'*\phi_N');%显示字符串处理y=3600-1850*ct;%显示字符串纵坐标text(120,y,str);%给各曲线标记磁通endylim([0,3600]);%限制纵坐标的显示范围。
MATLAB仿真在电机与拖动教学中的应用
种科学与工程 计算 软件 , 它 以 矩 阵 的 形 式 处 理 数据 , 具 有 强 大 的 数 值 计 算 处 理 能 力 和 方 便 实 用 的绘 图功 能 , 广 泛应用于各个领域 的分析 、 设
计 和仿 真 工 作 。S i mu l i n k是 在 MA T L B A环 境 下 ,
[ 中图分类号 ]T M 3 0 6
[ 文献标识码 ]A
[ 文章编号 ]1 6 7 3~ 8 3 1 4 ( 2 0 1 3 ) 0 5— 0 0 0 9— 0 4
电机 与 电力 拖 动 是 自动 化 等 相 关 专 业 的一
具S i m u l i n k , 成 为 当今 大 学 和 科 研 机 构 中非 常 受 欢迎 的仿 真软 件之 一 。
MA T L B A是 美 国 Ma t h Wo r k s公 司 开发 的 一
门重 要 的专 业 基 础 课 , 它不但要 求学生理解 交 、
直 流 电机 和 变 压 器 的 工 作 原 理 , 而 且 还 要 学 生
掌 握 它们 的性 能 特 点 及 工 作 特 性 等 。 然 而 该 课
[ 基金项 目]钦州 学院教 改项 目: MA T L A B仿真软件在 自动化专 业教 学中的应用研 究及 实践( 2 0 1 3 ) 【 J J G— C 1 9 ) 。 [ 作者简介 ]张 晓培 ( 1 9 8 4一 ) , 女, 河南许 昌人 , 钦州学院物理与材料科学学院教 师, 硕 士。
解, 提 高 学 生 的学 习兴 趣 , 本 文 将 MA T L B A仿 真 软件引入 电机 与电力 拖动教 学过 程 中 , 并 通 过 几 个 典 型 的实 例 阐述 了 该 软 件 在 电机 与 电力 拖 动 教 学 中的重 要 作用 。
电力拖动自动控制系统Matlab仿真实验报告
电力拖动自动控制系统---Matlab仿真实验报告实验一二极管单相整流电路一.【实验目的】1.通过对二极管单相整流电路的仿真,掌握由电路原理图转换成仿真电路的基本知识;2.通过实验进一步加深理解二极管单向导通的特性。
图1-1 二极管单相整流电路仿真模型图二.【实验步骤和内容】1.仿真模型的建立①打开模型编辑窗口;②复制相关模块;③修改模块参数;④模块连接;2.仿真模型的运行①仿真过程的启动;②仿真参数的设置;3.观察整流输出电压、电流波形并作比较,如图1-2、1-3、1-4所示。
三.【实验总结】由于负载为纯阻性,故输出电压与电流同相位,即波形相同,但幅值不等,如图1-4所示。
图1-2 整流电压输出波形图图1-3 整流电流输出波形图图1-4 整形电压、电流输出波形图实验二三相桥式半控整流电路一.【实验目的】1.通过对三相桥式半控整流电路的仿真,掌握由电路原理图转换成仿真电路的基本知识;2.研究三相桥式半控整流电路整流的工作原理和全过程。
二.【实验步骤和内容】1.仿真模型的建立:打开模型编辑窗口,复制相关模块,修改模块参数,模块连接。
2.仿真模型的运行;仿真过程的启动,仿真参数的设置。
相应的参数设置:(1)交流电压源参数U=100 V,f=25 Hz,三相电源相位依次延迟120°。
(2)晶闸管参数 Rn=0.001 Ω,Lon=0.000 1 H,Vf=0 V,Rs=50 Ω,Cs=250e-6 F。
(3)负载参数R=10 Ω,L=0 H,C=inf。
(4)脉冲发生器的振幅为5 V,周期为0.04 s (即频率为25 Hz),脉冲宽度为2。
图2-1 三相桥式半控整流电路仿真模型图当α=0°时,设为0.003 3s,0.016 6s,0.029 9 s。
图2-2 α=0°整流输出电压等波形图当α=60°时,触发信号初相位依次设为0.01s,0.0233s,0.0366s。
MATLAB软件在《电机与拖动》课程任务驱动教学法中的应用4页word文档
MATLAB软件在《电机与拖动》课程任务驱动教学法中的应用《电机与拖动》课程是电机基础和电力拖动两门课程的综合,课程理论性强,涉及的基础理论偏多;与工程实际联系紧密,一直被公认为教师难教、学生难学的“两难”课程。
传统的教学方法,采用图片、幻灯片、视频等资料介绍电机的结构、工作原理、拖动制动方法等,这很难让学生掌握和理解,同时学时有限电机与拖动课程的实验学时已经寥寥无几,教师上课时也不能为学生一一演示。
任务驱动教学法是一种能够很好应用于以实验性、实践性与操作性较强的教学内容的教学方法,它的含义是以富有趣味性,能够激发学生学习动机与好奇心的情景为基础,与教学内容紧密结合的任务为载体,使学习者在完成特定任务的过程中获得知识与技能的一种教学方法[1,2]。
为了加深学生对理论知识的理解,提高学生的学习兴趣,将电机与拖动课程的一些内容设计为任务驱动教学模式中的任务,让学生自己主动学习电机工作原理并利用MATLAB软件搭建模型进行仿真,不仅有助于学生理解和掌握该课程的难点,使之不再感到抽象,而且能够调动学生的学习积极性,大大提高教学效果和质量[3-5]。
一、MATLAB介绍MATLAB是美国Math Works公司开发的一种科学与工程计算软件,具备丰富的矩阵运算、良好的人机交互、模块化的系统仿真及绘制图形曲线的功能,可以广泛应用于各个领域,受到广大工程设计人员的青睐。
在《电机与拖动》课程教学中,可以利用其Simulink工具箱中power system元件库及现有的算法程序,搭建不同的电机仿真模型,绘制各个变量曲线,使抽象的概念更加形象生动。
二、仿真任务实例――直流电机的起动任务描述:利用MATLAB软件搭建直流电机的直接起动模型,观察起动过程中直流电机转速、电枢电流、励磁电流和电磁转矩的变化过程。
学生在搭建仿真模型时,首先需要在simulink的power system元件库中找到直流电机的模型,如图1所示。
铁磁材料电机与拖动基础及MATLAB仿真
在中、小、微型电机制造方面,已独立自主开发研制成了100 多个系 列,上千品种。各种类型的电机基本上满足了生产和生活的需要。
电机与拖动基础及MATLAB仿真
Page 8
0.3本教材内容、课程性质、教学任务及学习方法
学习方法总结本课程的动力用电机包括变压器、交流异步电动机、
同步电动机、直流电机等,种类繁多,各具特性,但就其 内部电磁关系耦合过程和机电能量转换关系来说,仍有其 内在联系。基本工作原理都是建立在电磁感应定律和电磁 力定律理基论础联上系的实;际能,量注转重换做都好是本以课磁程场要为求媒的介仿,真其和电开磁设关
控制电机 (自动化专业的必修课)
电机与拖动基础及MATLAB仿真
Page 2
绪论
电机与拖动基础及MATLAB仿真
Page 3
本章内容
①电机的分类和应用 ②我国电机工业概况 ③本教材内容、课程性质、教学任务及学习方法 ④电机中的铁磁材料及其特性 ⑤常用的基本电磁定律 ⑥磁路计算仿真
电机与拖动基础及MATLAB仿真
积极思考,多做练习; 系的可相抽关象实为验电,路立参足数于,学得会出使基用本各方类程电式机和。等利效用电M路AT,LA这B仿是
共真性工方具面帮。助理解课程所涉及的知识和电机的运行特性, 在实验中学习解决实际问题的方法,注意培养解决工程
前后关联,掌握体系; 实际问题的能力。 学习中注重联系实际和创新能力的培养。
Page 4
提问
电机是指电能与机械能或电能与电能互相转换 的装置 。
普通电机的主要任务是能量转换。
电机与拖动基础及MATLAB仿真
电力拖动Matlab仿真实验指导书.docx
实验一转速反馈控制(单闭环)直流调速系统仿真一.实验目的1.研究直流电动机调速系统在转速反馈控制下的工作。
2.研究直流调速系统中速度调节器ASR的工作及其对系统响应特性的影响。
3.观察转速反馈直流调速系统在给定阶跃输入下的转速响应。
二、实验设备1.计算机;2.模拟实验装置系统;3.A/D & D/A 接口卡、扁平电缆(如下图所示)。
总线槽扁平电缆计算机A/D & D/A接口卡模拟实验装置系统三、实验原理直流电动机:额定电压UN220V ,额定电流IdN,55 A额定转速 n N1000r/ min,电动机电势系数 C e 0.192V min/ r 晶闸管整流装置输出电流可逆,装置的放大系数 K s =44,滞后时间常数 T s=0.00167s 。
电枢回路总电阻 R=1.0 Ω,电枢回路电磁时间常数 T1=0.00167s ,电力拖动系统机电时间常数 T m =0.075s 。
转速反馈系数α=0.01 V ·min/r。
对应额定转速时的给定电压 U n*10V图 1比例积分控制的直流调速系统的仿真框图四、实验内容1.仿真模型的建立进入 MATLAB,单击 MATLAB命令窗口工具栏中的SIMULINK图标,图2 SIMULINK 模块浏览器窗口(1)打开模型编辑窗口:通过单击 SIMULINK 工具栏中新模型的图标或选择 File →New→ Model 菜单项实现。
(2)复制相关模块:双击所需子模块库图标,则可打开它,以鼠标左键选中所需的子模块,拖入模型编辑窗口。
在本例中拖入模型编辑窗口的为:Source 组中的 Step 模块; Math Operations 组中的Sum模块和 Gain 模块; Continuous 组中的 Transfer Fcn模块和Integrator模块;Sinks 组中的Scope 模块;图 3模型编辑窗口(3)修改模块参数:双击模块图案,则出现关于该图案的对话框,通过修改对话框内容来设定模块的参数。
基于MATLAB的《电机与拖动基础》课程教学
他励直流电动机固有机械特性反映的是在额定状态下 电机的转速和转矩之间的关系 , 固有特性 在 的基础上改变相关参数后即为电机 的人为机械特性 。相关参数的改变对机械特性 的影响是课程教学 中
收 稿 日期 :2 1 0 0 1— 6—2 8
作者简介 :吴文进 , , 男 安徽安庆人 , 合肥工业大学在读博士研究生 , 安庆师范学院物理 与电气工程 学院讲 师, 研究方 向为新能源 利用与分布式发电技术 ; 李彦梅 , , 女 河南南 阳人 , 安庆师范学院物理与电气工程学院副教授 , 研究方 向: 现代控制理论及应用 。
2 3 三相 异 步 电动 机加 三相 电压 时的 工作 状 态 .
在 实 际的工 农业 生 产 中 , 三相 异步 电机使 用最 广泛 , 三 相 电压是 其 最 常 见 的工 作 方 式 , 加 在课 程 教
学中 , 三相异步电动机加三相 电压时的工作状态分析是重点和难点 , 学生准确理解感到 困难。在 M T A.
变化 趋势 。
・
1 2・ O
安庆师范学院学报 ( 自然科学版 )
T 呻幛f 1 o NM
T rL ^ oqI 帕 I
( )U /, a 。 恒值 时变频特 性 f
()。 , b E/ 恒值 时变频特性 f
图 2 三 相 异 步 电动 机 变 频 调 速 特 性 图
() 1 U c U : 时变频特性
21 0 2年 2月
第l 8卷第 1期
安庆师范学院学报( 自然科学版 )
J u l f n igT a h r l g ( trl ce c dt n o ma o qn e c esCol e Naua in e E i ) A e S i o
MATLAB仿真技术在《电机与电力拖动》课堂教学中的应用
教育信息技术MATLAB 仿真技术在《电机与电力拖动》课堂教学中的应用夏华凤,许胜,付焕森(泰州学院,江苏 泰州 225300)摘 要:《电机与电力拖动》课程涉及电路、磁路和机械等知识,具有较强的实践性和工程性,学习该课程,对高等数学、物理和电路的要求较高。
文章将MATLAB 仿真技术应用到《电机与电力拖动》课堂教学中,让学生在讲课途中操作制作好的实验仿真模型,一方面验证了所讲内容,同时可以根据需要自行修改一些数据反复观察分析验证结果,加深学生对所学内容的认知与理解,充分调动学生学习的主观能动性,从而提高课堂教学质量。
关键词:电机与电力拖动;MATLAB 仿真;课堂教学;主观能动性Application of MATLAB Simulation Technology Used in Classroom Teaching for the Course of Electric Machinery & Electric Power DriveXIA Hua-feng,XU Sheng,FU Huan-sen(Taizhou University,Taizhou,Jiangsu,225300)Abstract:The course of electric machinery & electric power drive covers knowledge of electric curcuit, magnetic curcuit and machinery machine,etc. It has the characteristics of strong practicality and engineering. Learning this course calls high demanding of advanced mathematics, physics and electric curcuit. The MATLAB simulation technology is used in classroom teaching for this course of electric machinery & electric power drive in this paper. During the process of classroom teaching, students can verify the talking about contents on one hand by operating the produced experiment simulation models, meanwhile, they can modify some data if they want, and then observe, analyze and verify what’s going on. By doing so, students can deepen their acknowledge and understanding of what they learned, and their subjective initiative will be fully mobilized. All in all, the classroom teaching quality is improved.Key words:Electric machinery & electric power drive ;MATLAB simulation ;Classroom teaching ; Subjective initiative 《电机与电力拖动》课程涵盖了变压器、三相交流电动机、三相交流电动机的电力拖动、直流电机和直流电机的电力拖动等内容[1],系统阐述了电磁关系、稳态分析及运行特性等的基本概念、基本理论及一般问题的理论和计算推导[2]。
第七章 MATLAB(Simulink)在电路电子电拖等课程中仿真应用
2020/5/28
甘肃农业大学工学院
6
第七章
MATLAB(Simulink)在电路、 电力电子、电拖等课程中的仿真应用
2020/5/28
甘肃农业大学工学院
7
第七章
MATLAB(Simulink)在电路、 电力电子、电拖等课程中的仿真应用
三、动态电路分析仿真
例7-3 电路如下图(a)所示,已知电容电压uC(0-)=6V,t=0时开 关闭和,求图中标出的电容电压和电容电流。
甘肃农业大学工学院
3
第七章
MATLAB(Simulink)在电路、 电力电子、电拖等课程中的仿真应用
KCL验证 1.693+0.607-2.3=0
KVL验证 -5.464-(-5.464)=0
2020/5/28
甘肃农业大学工学院
4
第七章
MATLAB(Simulink)在电路、 电力电子、电拖等课程中的仿真应用
勾选 此项
2020/5/28
甘肃农业大学工学院
13
第七章
MATLAB(Simulink)在电路、 电力电子、电拖等课程中的仿真应用
2020/5/28
可见甘肃,农业此大结学工论学院与解析方法得到的结论完全一1致4 !
第七章
MATLAB(Simulink)在电路、 电力电子、电拖等课程中的仿真应用
四、正弦交流电路仿真 例7-4 有一正弦交流电路如下图所示,R=10Ω,L=600mH, us=17320sin(314t),仿真时间区段为0-0.2s,开关在t=0.01s时 闭合,试观察电流的变化过程。
正弦激励下电路的瞬态响应、正弦稳态响应和全响应
2020/5/28
甘肃农业大学工学院
第1章 变压器 《电机与拖动基础及MATLAB仿真》课件
Page 18
1.1概述
1.1.4变压器的铭牌数据和主要系列 1.变压器的铭牌数据
额定容量SN 额定容量是变压器额定工作条件下输出能力的保证值,
指额定视在功率,单位:伏安(VA)或千伏安(kVA)或兆伏安 (MVA)。
一般容量在630kVA以下的为小型电力变压器;800~ 6300kVA的为中型电力变压器;8000~63000kVA为大型电力变 压器;90000kVA及以上的为特大型电力变压器。
按铁心结构分类,变压器有心式和壳式两种。
a)心式变压器
b)壳式变压器
图1-1 心式变压器和壳式变压器
电机与拖动基础及MATLAB仿真
Page 9
1.1概述 1.1.1变压器的用途与分类
变压器 输配电用的 供特殊电源用 供测量用的 用于自动 用于通 用 途 电力变压器 的特种变压器 仪用变压器 控制系统 信系统
U U
1 2
E1 E2
U1 U2
E1 E2
N1 N2
k
(1-4)
电机与拖动基础及MATLAB仿真
Page 13
1.1概述 1.1.3变压器主要结构
变压器主要有: 铁芯、绕组、油箱、
附件等组成。
电机与拖动基础及MATLAB仿真
Page 14
1.1概述
1.1.3变压器主要结构
铁心
铁心是变压器的磁路部分,由铁心柱(柱上套装绕组)、 铁轭(连接铁心以形成闭合磁路)组成,为减小涡流和磁滞损 耗,提高磁路导磁性,铁心通常采用厚度为0.27mm ~0.35mm的 硅钢片涂绝缘漆交错叠成,变压器硅钢片叠法如图1-4所示。
我国生产的各种变压器系列产品有:S7、SL7、S9、 SC8等。其中SC8型为环氧树脂浇注干式变压器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
提问
电机是指电能与机械能或电能与电能互相转换 的装置 。
普通电机的主要任务是能量转换。
Page 4
0.1电机的分类和应用
电机的分类
直流
直流发电机
动力设备类
电机
交流
控制电机
直流电动机 异步电动机
旋转电机
同步发电机
同步电机 同步电动机
变压器
调相机
Page 5
0.1电机的分类和应用
电机的应用
能量转换 场
全电流定律 大磁通
电流
小电流
铁心 铁心增磁功能
电磁感 应定律
Page 9
0.3本教材内容、课程性质、教学任务及学习方法
教学任务 通过课程的学习,掌握常用交、直流电机及变压器的基
本结构、工作原理、运行性能仿真和实验方法;了解交直流 电力拖动的基础知识,掌握异步电动机的特性分析、起制动 方法和交流机基本的调速方法;掌握他励直流电动机起制动 及调速等各种运行状态的静动态特性和参数计算;熟悉常用 控制电机的原理和特性,学会选择电动机容量的方法,熟悉 MATLAB仿真软件在电机与拖动系统中的应用技术。
Page 10
0.3本教材内容、课程性质、教学任务及学习方法
教学任务 为后续专业基础课和专业课的学习准备必要的基础知
识,提高分析问题、解决问题的能力,也为从事自动化及 电气工程技术工作和科学研究奠定初步基础。
Page 11
0.3本教材内容、课程性质、教学任务及学习方法
学习方法总结本课程的动力用电机包括变压器、交流异步电动机、
自动控制原理 现代控制理论
自动化仪表及装置
现代电力电子技术
智能仪器
控制 系统 中的 各部 分与 相应 的知 识域 对应 关系
系统仿真 电机及拖动基础 运动控制系统 机器人技术
检测技术 先进传感变换技术
Page 13
0.3本教材内容、课程性质、教学任务及学习器
磁
耦合
电机
Page 8
0.3本教材内容、课程性质、教学任务及学习方法
课程性质 “电机与拖动基础”课程属电气工程及其自动化
或 电类专业的专业技术基础课,学习过程中需用到“高 等数学”、“大学物理”、“电路”、“模拟电子技 术”等 课程的本知课识程。虽是基础课,但又具有专业课程性质,讲 授的内容是电机方面非常具体、实际的问题。因此, 该课程具有内容涉及面广,理论性强,实践性强,综 合性强等特点。
共真性工方具面帮。助理解课程所涉及的知识和电机的运行特性, 在实验中学习解决实际问题的方法,注意培养解决工程
前后关联,掌握体系; 实际问题的能力。 学习中注重联系实际和创新能力的培养。
在实际运行着的电机中,电、磁、力、热等物理定律同时起 作用,互相制约,分析解决这种复杂问题时,往往需忽略一些
联系实际,创新设计。 次的要误矛差盾在,允在抓许学住的习主范中要围应矛 内将盾 ,变加 在压以 工器解程、决上交,是流只允电要许机所的、得,直结这流果与电正以机确前的,所相引学似起课性
在大型交直流电机制造方面,已研制出2×5000kW 的直流电动机、 4700kW的直流发电机、42MW的同步电动机。
在中、小、微型电机制造方面,已独立自主开发研制成了100 多个系 列,上千品种。各种类型的电机基本上满足了生产和生活的需要。
Page 7
0.3本教材内容、课程性质、教学任务及学习方法
降压各变种压控器制电机
Page 6
0.2我国电机工业概况
建国后经过60多年的发展,已建立了全国性的研究实验基地,培养了 一大批从事研究、制造电机的专家和工程技术人员,有了统一的国家标准 和系列产品。
在大型发电设备制造方面,已研制出600MW水氢氢冷汽轮发电机、 300MW的双水内冷和全氢冷汽轮发电机、650MW的核电机组、700MW的 水轮发电机,电力变压器的最大容量已达到840MVA、电压最高为750kV。
本教材内容
“电机与拖动基础以及MATLAB仿真”教材,把“ 电机学”和“电力拖动基础”两门课内容整合为一, 同时结合仿真技术,加入了MATLAB仿真技术在电机 与电力拖动系统应用的实例。
本教材以电力拖动系统中应用最广泛的电机和电力 拖动为重点,从使用的角度介绍交、直流电机、变压 器、控制电机的基本结构、工作原理、主要工作特性 、电力拖动系统的运行特性以及MATLAB仿真软件在 电机与拖动系统中的应用技术等。
同步电动机、直流电机等,种类繁多,各具特性,但就其 内部电磁关系耦合过程和机电能量转换关系来说,仍有其 内在联系。基本工作原理都是建立在电磁感应定律和电磁 力定律理基论础联上系的实;际能,量注转重换做都好是本以课磁程场要为求媒的介仿,真其和电开磁设关
积极思考,多做练习; 系的可相抽关象实为验电,路立参足数于,学得会出使基用本各方类程电式机和。等利效用电M路AT,LA这B仿是
本课程的章节和内容
绪论 第1章 第2章 第3章 第4章 第5章 第6章 第7章
变压器
三相交流电动机
三相交流电动机的电力拖动
直流电机
直流电动机的电力拖动
驱动和控制微电机 电动机容量的选择
控制电机 (自动化专业的必修课)
Page 1
绪论
Page 2
本章内容
①电机的分类和应用 ②我国电机工业概况 ③本教材内容、课程性质、教学任务及学习方法 ④电机中的铁磁材料及其特性 ⑤常用的基本电磁定律 ⑥磁路计算仿真
程中解有决机问地题统理一想起化来、,单注一意化课有程很内大容区的别内,在学联习系时,需形有成足学够习的本 认识。课学程习鲜中明要的多主思线考,、只多要联学系好、了多变练压习器,,逐对步交体流会电。机和直流
电机的内容就比较容易掌握了。学习中注意前后关联,掌 握知识体系。
Page 12
0.3本教材内容、课程性质、教学任务及学习方法
电能生产——由同步发电机产生;
高压输电——由升压变压器将发电机发出的电压升 高到输电电压再输送;
降压用电——由降压变压器将输来的高压电降为所 需低电压,供给用电设备;
生产机械的拖动——由各种电动机或电力拖动系统
连接实发现电;机
与电网相连
的封控闭制母环氧系1线0树k统脂V级浇中S注C干(的连B式)1接变信0型压发号器三电转相机6交0换与0流M—电电W动—S网1汽机1的由无系轮励列升各磁发50压调种~电压2变0电机控0压力0K制变器V压A电双器的绕机组高完压出成线。端