人版七年级数学(上册)辅导讲义全

合集下载

人教版七年级数学上册讲义

人教版七年级数学上册讲义

数学学习效率低的三种情况及解决方法很多同学,上课一听就会,但做题确实一做就错;更有很多同学,会做的题总因为粗心出错;还有些同学,学习心态不端正。

以上三种情况,就是导致学习效率低下的最主要原因。

现象一:一听就会,一做就错,总是在看到答案后恍然大悟很多学生在看到题目时觉得面熟,能肯定自己以前做过原题或类似的题目,但就是想不起来该怎么做,越是回忆以前做过的类似题目越是没有思路,等到答案时才大喊一声,哇,原来是这样的啊。

于是再做,发现还是不能独立的把题目完整的做出来,于是再看答案,在做。

原因:原来在做题目时没有真正理解题目的解法,只能是跟着老师的思路吧题目抄下来,没有自己动手整理,导致自己觉得会做了,其实只是在当时把题目背过了,一段时间以后就只记得题目不记得的解法了。

所以,“背题”是万万要不得的,考试的题目千千万万,背得过来吗?解决方法:在做完一道题目后,让孩子讲解给家长听,也可让同学帮你检查你对这个题目的理解还有什么欠缺,发现问题立即问老师,力争当堂把题目理解透彻。

家长可以在一两周之后把这道题目的数据换一下,在让孩子做一遍,这样就能做到让孩子彻底的掌握这种类型题目的解法,海能达到举一反三的效果。

现象二:会做,但总是粗心,不是抄错题就是算错数很多家长都反映说自己的孩子很粗心,经常把会做的题目算错,甚至有家长说孩子期末考试考了96分,丢掉的那4分全是粗心算错的,并对这个成绩很满意,还有很多学生也说,这些题目我会做就可以了,这次算错了没关系,到考试时能算对就可以了。

其实,作为多年教学经验的老师,我们告诉各位家长,会做做不对才是最可怕。

原因:粗心的原因有两个,一是心态问题,这个问题后面会详细的说。

第二个原因就是对知识掌握得不牢固,模棱两可,错误总是在你掌握不牢固的地方出现,那些看似是粗心犯的错,其实都是因为在应用知识的时候不熟练,导致出错。

解决方法:有选择的多做题目,在数学学习中,我们反对搞题海战术,但是要想学好数学,不做题目不进行针对性训练是无法把学到的知识掌握牢固的。

七年级上册第一章辅导讲义【可修改文字】

七年级上册第一章辅导讲义【可修改文字】

可编辑修改精选全文完整版七年级上册第一章辅导讲义年级:初一辅导科目:数学课时数:课题从自然数到有理数教学目的通过这堂课的复习,让学生对这章的内容有个比较清楚的了解,及掌握一些基本的概念。

教学内容一、基础知识回顾§1.1 从自然数到分数自然数有些是用来计数和测量的,而有些数用来标号或排序的。

分数可以看做两个整数相除。

分数可以与小数(有限小数和无限循环小数)互化除外。

§1.2 有理数正数和负数的概念-------- 负数是具有相反意义的量。

注意0即不是正数也不是负数,它是一个整数,它表示正数和负数的分界线。

整数有理数分数易错题例题 1 判断“一个数,如果不是负数,就是正数。

这句话的对错。

”例题2最小的正整数是------- 。

最大的负整数是-----------。

例题 3 给下面给出的各数分类。

-8.4, 22, 0.33, 0, -9, +175,47-,1.5, -0.4,0.67-, 3.0正数:负数:整数:分数:正整数负整数正分数负分数有理数正数分数零有理数正有理数零负有理数正整数正分数负整数负分数有理数:§1.3数 轴规定了原点.单位长度和正方向的直线叫做数轴。

注意:单位长度不一定每个刻度只能表示1.正方向也可以根据题意确定,不一定向右。

任何一个有理数都可以用数轴上的一个点来表示。

相反数定义:只有符号不同的两个数互为相反数。

零的相反数是零。

相反数的几何意义:在数轴上,表示互为相反数(零除外)的两个点,位于原点的两侧,并且到原点的距离相等。

常考点:a 的相反数是-a, a,b 互为相反数等价于a+b=0等价于a=-b 则|a|=|b|。

数轴在数学上的意义:数轴是研究数学的重要模型,也是数形结合思想的重要体现。

易错题例题 1 判断正误 任何有理数必定大于它的相反数。

例题 2 相反数是它本身的数是_______。

.例题 4 若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,则代数式mb a cd m ++-2的值为 ( )。

(人教版)七年级数学上册培优辅导讲义

(人教版)七年级数学上册培优辅导讲义

(—|"最新人教版七年级数学上册培优辅导讲义第1讲与有理数有关的概念考点·方法·破译1.了解负数的产生过程,能够用正、负数表示具有相反意义的量.:{…2.会进行有理的分类,体会并运用数学中的分类思想.3.理解数轴、相反数、绝对值、倒数的意义.会用数轴比较两个有理数的大小,会求一个数的相反数、绝对值、倒数.,经典·考题·赏析【例1】写出下列各语句的实际意义⑴向前-7米⑵收人-50元⑶体重增加-3千克|])【解法指导】用正、负数表示实际问题中具有相反意义的量.而相反意义的量应该包合两个要素:一是它们的意义相反.二是它们具有数量.而且必须是同类两,如“向前与自后、收入与支出、增加与减少等等”解:⑴向前-7米表示向后7米⑵收入-50元表示支出50元⑶体重增加-3千克表示体重减小3千克.【变式题组】01.如果+10%表示增加10%,那么减少8%可以记作()&};?A.-18% B.-8% C.+2% D.+8%02.(金华)如果+3吨表示运入仓库的大米吨数,那么运出5吨大米表示为( ) A.-5吨B.+5吨C.-3吨D.+3吨03.(山西)北京与纽约的时差-13(负号表示同一时刻纽约时间比北京晚).如现在是北京时间15:00,纽约时问是_ ___}·【【例2】在-227,π,0,0.033.3这四个数中有理数的个数( )A . 1个B . 2个C . 3个D . 4个【解法指导】有理数的分类:⑴按正负性分类,有理数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数负整数负有理数负份数;—(2)按整数、分数分类,有理数⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数0负整数正分数分数负分数;其中分数包括有限小数和无限循环小数,因为π=…是无限不循环小数,它不能写成分数的形式,所以π不是有理数,-227是分数,0.033.3是无限循环小数可以化成分数形式,0是整数,所以都是有理数,故选C .《)"【变式题组】01.在7,0,15,-12,-301,,-18,100,1,-3 001中,负分数为 ,整数为 ,正整数 .02.(河北秦皇岛)请把下列各数填入图中适当位置15,-19,215,-138,,-,123,!%【例3】(宁夏)有一列数为-1,12,-13,14,-15,16,…,找规律到第2007个数是 .【解法指导】从一系列的数中发现规律,首先找出不变量和变量,再依变量去发现规律.归纳去猜想,然后进行验证.解本题会有这样的规律:⑴各数的分子部是1;⑵各数的分母依次为1,2,3,4,5,6,…⑶处于奇数位置的数是负数,处于偶数位置的数是正数,所以第2007个数的分子也是1.分母是2007,并且是一个负数,故答案为-12007.。

人教版七年级数学上册辅导讲义

人教版七年级数学上册辅导讲义

人教版七年级数学上册辅导讲义-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN最新人教版 七年级数学上册培优辅导讲义第1讲 与有理数有关的概念考点·方法·破译1.了解负数的产生过程,能够用正、负数表示具有相反意义的量. 2.会进行有理的分类,体会并运用数学中的分类思想.3.理解数轴、相反数、绝对值、倒数的意义.会用数轴比较两个有理数的大小,会求一个数的相反数、绝对值、倒数.经典·考题·赏析【例1】写出下列各语句的实际意义⑴向前-7米 ⑵收人-50元 ⑶体重增加-3千克【解法指导】用正、负数表示实际问题中具有相反意义的量.而相反意义的量应该包合两个要素:一是它们的意义相反.二是它们具有数量.而且必须是同类两,如“向前与自后、收入与支出、增加与减少等等”解:⑴向前-7米表示向后7米⑵收入-50元表示支出50元⑶体重增加-3千克表示体重减小3千克. 【变式题组】01.如果+10%表示增加10%,那么减少8%可以记作( )A . -18%B . -8%C . +2%D . +8%02.(金华)如果+3吨表示运入仓库的大米吨数,那么运出5吨大米表示为( )A . -5吨B . +5吨C . -3吨D . +3吨03.(山西)北京与纽约的时差-13(负号表示同一时刻纽约时间比北京晚).如现在是北京时间15:00,纽约时问是_ ___【例2】在-227,π,0,0.033.3这四个数中有理数的个数( )A . 1个B . 2个C . 3个D . 4个【解法指导】有理数的分类:⑴按正负性分类,有理数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数负整数负有理数负份数;(2)按整数、分数分类,有理数⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数0负整数正分数分数负分数;其中分数包括有限小数和无限循环小数,因为π=3.1415926…是无限不循环小数,它不能写成分数的形式,所以π不是有理数,-227是分数,0.033.3是无限循环小数可以化成分数形式,0是整数,所以都是有理数,故选C.【变式题组】01.在7,0,15,-12,-301,31.25,-18,100,1,-3 001中,负分数为,整数为,正整数 .02.(河北秦皇岛)请把下列各数填入图中适当位置15,-19,215,-138,0.1,-5.32,123, 2.333【例3】(宁夏)有一列数为-1,12,-13,14,-15,16,…,找规律到第2007个数是 .【解法指导】从一系列的数中发现规律,首先找出不变量和变量,再依变量去发现规律.归纳去猜想,然后进行验证.解本题会有这样的规律:⑴各数的分子部是1;⑵各数的分母依次为1,2,3,4,5,6,…⑶处于奇数位置的数是负数,处于偶数位置的数是正数,所以第2007个数的分子也是1.分母是2007,并且是一个负数,故答案为-1 2007.【变式题组】01(湖北宜昌)数学解密:第一个数是3=2 +1,第二个数是5=3 +2,第三个数是9=5+4,第四个数是17=9+8…观察并猜想第六个数是 . 02.(毕节)毕达哥拉斯学派发明了一种“馨折形”填数法,如图则?填____. 03.(茂名)有一组数1,2,5,10,17,26…请观察规律,则第8个数为__ __ .【例4】(2008年河北张家口)若1+m2的相反数是-3,则m的相反数是____.【解法指导】理解相反数的代数意义和几何意义,代数意义只有符号不同的两个数叫互为相反数.几何意义:在数轴上原点的两旁且离原点的距离相等的两个点所表示的数叫互为相反数,本题m2=2,m=4,则m 的相反数-4。

(完整)人教版七年级数学上册辅导讲义

(完整)人教版七年级数学上册辅导讲义

最新人教版 七年级数学上册培优辅导讲义第1讲 与有理数有关的概念考点·方法·破译1.了解负数的产生过程,能够用正、负数表示具有相反意义的量.2.会进行有理的分类,体会并运用数学中的分类思想.3.理解数轴、相反数、绝对值、倒数的意义.会用数轴比较两个有理数的大小,会求一个数的相反数、绝对值、倒数.经典·考题·赏析【例1】写出下列各语句的实际意义⑴向前-7米 ⑵收人-50元 ⑶体重增加-3千克【解法指导】用正、负数表示实际问题中具有相反意义的量.而相反意义的量应该包合两个要素:一是它们的意义相反.二是它们具有数量.而且必须是同类两,如“向前与自后、收入与支出、增加与减少等等”解:⑴向前-7米表示向后7米⑵收入-50元表示支出50元⑶体重增加-3千克表示体重减小3千克.【变式题组】01.如果+10%表示增加10%,那么减少8%可以记作( )A . -18%B . -8%C . +2%D . +8%02.(金华)如果+3吨表示运入仓库的大米吨数,那么运出5吨大米表示为( )A . -5吨B . +5吨C . -3吨D . +3吨03.(山西)北京与纽约的时差-13(负号表示同一时刻纽约时间比北京晚).如现在是北京时间15:00,纽约时问是_ ___【例2】在-227,π,0,0.033.3这四个数中有理数的个数( ) A . 1个 B . 2个 C . 3个 D . 4个【解法指导】有理数的分类:⑴按正负性分类,有理数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数负整数负有理数负份数;(2)按整数、分数分类,有理数⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数0负整数正分数分数负分数;其中分数包括有限小数和无限循环小数,因为π=3.1415926…是无限不循环小数,它不能写成分数的形式,所以π不是有理数,-227是分数,0.033.3是无限循环小数可以化成分数形式,0是整数,所以都是有理数,故选C .【变式题组】01.在7,0,15,-12,-301,31.25,-18,100,1,-3 001中,负分数为 ,整数为 ,正整数 .02.(河北秦皇岛)请把下列各数填入图中适当位置15,-19,215,-138,0.1,-5.32,123, 2.333【例3】(宁夏)有一列数为-1,12,-13,14,-15,16,…,找规律到第2007个数是 .【解法指导】从一系列的数中发现规律,首先找出不变量和变量,再依变量去发现规律.归纳去猜想,然后进行验证.解本题会有这样的规律:⑴各数的分子部是1;⑵各数的分母依次为1,2,3,4,5,6,…⑶处于奇数位置的数是负数,处于偶数位置的数是正数,所以第2007个数的分子也是1.分母是2007,并且是一个负数,故答案为-12007. 【变式题组】01(湖北宜昌)数学解密:第一个数是3=2 +1,第二个数是5=3 +2,第三个数是9=5+4,第四个数是17=9+8…观察并猜想第六个数是 .02.(毕节)毕达哥拉斯学派发明了一种“馨折形”填数法,如图则?填____.03.(茂名)有一组数1,2,5,10,17,26…请 观察规律,则第8个数为__ __ .【例4】(2008年河北张家口)若1+m 2的相反数是-3,则m 的相反数是____. 【解法指导】理解相反数的代数意义和几何意义,代数意义只有符号不同的两个数叫互为相反数.几何意义:在数轴上原点的两旁且离原点的距离相等的两个点所表示的数叫 互为相反数,本题m 2=2,m =4,则m 的相反数-4。

(人教版)七年级数学上册培优辅导讲义精编版

(人教版)七年级数学上册培优辅导讲义精编版

最新人教版 七年级数学上册培优辅导讲义第1讲 与有理数有关的概念考点·方法·破译1.了解负数的产生过程,能够用正、负数表示具有相反意义的量.2.会进行有理的分类,体会并运用数学中的分类思想.3.理解数轴、相反数、绝对值、倒数的意义.会用数轴比较两个有理数的大小,会求一个数的相反数、绝对值、倒数.经典·考题·赏析【例1】写出下列各语句的实际意义⑴向前-7米 ⑵收人-50元 ⑶体重增加-3千克【解法指导】用正、负数表示实际问题中具有相反意义的量.而相反意义的量应该包合两个要素:一是它们的意义相反.二是它们具有数量.而且必须是同类两,如“向前与自后、收入与支出、增加与减少等等”解:⑴向前-7米表示向后7米⑵收入-50元表示支出50元⑶体重增加-3千克表示体重减小3千克.【变式题组】01.如果+10%表示增加10%,那么减少8%可以记作( )A . -18%B . -8%C . +2%D . +8%02.(金华)如果+3吨表示运入仓库的大米吨数,那么运出5吨大米表示为( )A . -5吨B . +5吨C . -3吨D . +3吨03.(山西)北京与纽约的时差-13(负号表示同一时刻纽约时间比北京晚).如现在是北京时间15:00,纽约时问是_ ___【例2】在-227,π,0,0.033.3这四个数中有理数的个数( ) A . 1个 B . 2个 C . 3个 D . 4个【解法指导】有理数的分类:⑴按正负性分类,有理数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数负整数负有理数负份数;(2)按整数、分数分类,有理数⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数0负整数正分数分数负分数;其中分数包括有限小数和无限循环小数,因为π=3.1415926…是无限不循环小数,它不能写成分数的形式,所以π不是有理数,-227是分数,0.033.3是无限循环小数可以化成分数形式,0是整数,所以都是有理数,故选C .【变式题组】01.在7,0,15,-12,-301,31.25,-18,100,1,-3 001中,负分数为 ,整数为 ,正整数 .02.(河北秦皇岛)请把下列各数填入图中适当位置15,-19,215,-138,0.1,-5.32,123, 2.333【例3】(宁夏)有一列数为-1,12,-13,14,-15,16,…,找规律到第2007个数是 .【解法指导】从一系列的数中发现规律,首先找出不变量和变量,再依变量去发现规律.归纳去猜想,然后进行验证.解本题会有这样的规律:⑴各数的分子部是1;⑵各数的分母依次为1,2,3,4,5,6,…⑶处于奇数位置的数是负数,处于偶数位置的数是正数,所以第2007个数的分子也是1.分母是2007,并且是一个负数,故答案为-12007. 【变式题组】01(湖北宜昌)数学解密:第一个数是3=2 +1,第二个数是5=3 +2,第三个数是9=5+4,第四个数是17=9+8…观察并猜想第六个数是 .02.(毕节)毕达哥拉斯学派发明了一种“馨折形”填数法,如图则?填____.03.(茂名)有一组数1,2,5,10,17,26…请 观察规律,则第8个数为__ __ .【例4】(2008年河北张家口)若1+m 2的相反数是-3,则m 的相反数是____. 【解法指导】理解相反数的代数意义和几何意义,代数意义只有符号不同的两个数叫互为相反数.几何意义:在数轴上原点的两旁且离原点的距离相等的两个点所表示的数叫 互为相反数,本题m 2=2,m =4,则m 的相反数-4。

人教版数学七年级上册 课程讲义第一章:有理数的乘除法-解析版

人教版数学七年级上册 课程讲义第一章:有理数的乘除法-解析版

人教版数学七年级上册课程讲义第一章:有理数的乘除法-解析版有理数的乘除知识定位讲解用时:3分钟A 、适用范围:人教版初一,基础一般;B 、知识点概述:本讲义主要用于人教版初一新课,本节课我们要学习有理数乘除法运算法则;核心部分是有理数乘除法运算法则的运用。

知识梳理讲解用时:20分钟课堂精讲精练 【例题1】 对于有理数a ,b ,定义运算:“※”,a ※b=a ·b-a-b-2. (1)计算(-2)※3的值;(2)填空:4※(-2) (-2)※4(填“>”、“=”或“<”); (3)我们知道:有理数的加法运算和乘法运算满足交换律.那么,由(2)计算的结果,你认为这种运算“※”是否满足交换律?请说明理由.有理数的乘法有理数的除法 有理数的乘除混合运算1. 有理数的乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘; (2)任何数同0相乘,都得0.要点诠释: (1) 不为0的两数相乘,先确定符号,再把绝对值相乘.(2)当因数中有负号时,必须用括号括起来,如-2与-3的乘积,应列为(-2)×(-3),不应该写成-2×-3.2. 有理数的乘法法则的推广:(1)几个不等于0的数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数的个数有偶数个时,积为正; (2)几个数相乘,如果有一个因数为0,那么积就等于0. 要点诠释:(1)在有理数的乘法中,每一个乘数都叫做一个因数. (2)几个不等于0的有理数相乘,先根据负因数的个数确定积的符号,然后把各因数的绝对值相乘. (3)几个数相乘,如果有一个因数为0,那么积就等于0.反之,如果积为由于乘除是同一级运算,应按从左往右的顺序计算,一般先将除法化成乘法,然后确定积的符号,最后算出结果. 1.倒数的意义: 乘积是1的两个数互为倒数. 要点诠释:(1) “互为倒数”的两个数是互相依存的.如-2的倒数是,-2和是互相依存的; (2)0和任何数相乘都不等于1,因此0没有倒数;(3)倒数的结果必须化成最简形式,使分母中不含小数和分数; (4)互为倒数的两个数必定同号(同为正数或同为负数). 2. 有理数除法法则: 法则一:除以一个不等于0的数,等于乘这个数的倒数,即. 法则二:两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0. 要点诠释:(1)一般在不能整除的情况下应用法则一,在能整除时应用法则二方便些. (2)因为0没有倒数,所以0不能当除数. (3)法则二与有理数乘法法则相似,两数相除时先确定商的符号,再确定12-12-1(0)a b a b b ÷=≠3. 有理数的乘法运算律:(1)乘法交换律:两个数相乘,交换因数的位置,积相等,即:ab =ba . (2)乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.即:abc =(ab)c =a(bc). (3)乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.即:a(b+c)=ab+ac .要点诠释: (1)在交换因数的位置时,要连同符号一起交换. (2)乘法运算律可推广为:三个以上的有理数相乘,可以任意交换因数的位置,或者把其中的几个因数相乘.如abcd =d(ac)b .一个数同几个数A .41B .1211C .411 D .413【答案】D【解析】解:原式4133241323=⨯⨯= .故选D讲解用时:2分钟解题思路:根据有理数的乘法法则,先确定符号,然后把绝对值相乘即可. 教学建议:掌握乘法法则是解题的关键,计算时,先确定符号,然后把绝对值相乘.难度: 3 适应场景:当堂例题 例题来源:无 年份:2019【例题2】计算:(1);(2)(1-2)(2-3)(3-4)…(19-20); (3)(-5)×(-8.1)×3.14×0.【答案】(1)89-;(2)1-;(2)0.【解析】解: (1); (2)(1-2)(2-3)(3-4)…(19-20);(3)(-5)×(-8.1)×3.14×0=0.54(3)1(0.25)65⎛⎫-⨯⨯-⨯- ⎪⎝⎭54(3)1(0.25)65⎛⎫-⨯⨯-⨯- ⎪⎝⎭591936548=-⨯⨯⨯=-19-(1)(1)(1)(1)1=-⨯-⨯-⨯⋅⋅⋅⨯-=-个(1)相乘讲解用时:4分钟解题思路:几个不等于零的数相乘,首先确定积的符号,然后把绝对值相乘.因数是小数的要化为分数,是带分数的通常化为假分数,以便能约分.几个数相乘,有一个因数为零,积就为零.教学建议:强调几个不等于零的数相乘,积的符号由负因数的个数确定,与正因数的个数无关.当因数中有一个数为0时,积为0.难度: 3 适应场景:当堂例题 例题来源:无 年份:2019【练习2.1】 【答案】31- 【解析】解:3713371031()()(1)()()569756973-⨯-⨯⨯-=-⨯⨯⨯=-讲解用时:2分钟解题思路:掌握有理数乘法法则,正确运用法则,一是要体会并掌握乘法的符号规律,二是细心、稳妥、层次清楚,即先确定积的符号,后计算绝对值的积. 教学建议:强调先确定结果的符号,再运算难度: 3 适应场景:当堂练习 例题来源:无 年份:2019【例题3】运用简便方法计算:【答案】1270-【解析】解: 5105(12)6⎛⎫-⨯+ ⎪⎝⎭5105(12)6⎛⎫-⨯+ ⎪⎝⎭5105(12)6⎛⎫=--⨯+ ⎪⎝⎭(分配律)讲解用时:3分钟解题思路:根据题目特点,可以把折成,再运用乘法分配律进行计算.教学建议:引导学生观察几个因数之间的关系和特点.适当运用“凑整法”进行交换和结合.难度: 3 适应场景:当堂练习 例题来源:无 年份:2019【练习3.1】运用简便方法计算:【答案】30-【解析】解:(逆用乘法的分配律) 讲解用时:3分钟解题思路:逆用乘法分配律:ab+ac =a(b+c).教学建议:引导学生观察几个因数之间的关系和特点.适当运用运算律简化运算量难度: 3 适应场景:当堂例题 例题来源:无 年份:2019【例题4】﹣2的倒数是 ,相反数是 ,绝对值是 .510512126=-⨯-⨯51056-51056--111(5)323(6)3333-⨯+⨯+-⨯111(5)323(6)3333-⨯+⨯+-⨯11[(5)2(6)]39333⎛⎫=-++-⨯=-⨯+ ⎪⎝⎭【答案】 21-,2,2【解析】解:﹣2的倒数是21-,相反数是 2,绝对值是 2,讲解用时:3分钟解题思路:根据乘积为1的两个数互为倒数,可得一个数的倒数,根据只有符号不同的两个数互为相反数,可得一个数的相反数,根据绝对值的意义,可得一个数的绝对值.教学建议:强调倒数的概念,复习相反数和绝对值的概念.难度: 3 适应场景:当堂例题 例题来源:无 年份:2019【练习4.1】已知43-的倒数是p ,且m 、n 互为相反数,则p+m+n= .【答案】﹣36.【解析】解:依题意的:p=34-,m+n=0,所以p+m+n=34-.故答案是:34-.讲解用时:4分钟解题思路:用相反数,倒数的定义求出m+n ,p 的值,代入计算即可得到结果.教学建议:引导学生复习基础概念.难度: 3 适应场景:当堂练习 例题来源:无 年份:2019【例题5】已知a ,b ,c 都不等于零,且abcabc cc bb aa x +++=,根据a ,b ,c 的不同取值,x 有 个不同的值.【答案】3【解析】解:(1)四项都为正.(2)四项都为负.(3)二正二负.可知x 有3个不同取值.讲解用时:3分钟解题思路:根据题意abcabcc c b b a a,,,分别都可取±1,讨论这四项的取值情况可得出答案.教学建议:运用有理数的除法,难点在于讨论各项的正负情况 难度: 3 适应场景:当堂例题 例题来源:无 年份:2019【练习5.1】被除数是215-,除数是1211-,则商是 .【答案】6.【解析】解:215-⎪⎭⎫ ⎝⎛-÷1211=61112211=⎪⎭⎫⎝⎛-⨯-,故答案为:6.讲解用时:3分钟解题思路:根据题意列出算式,根据有理数的除法法则:除以一个不等于0的数,等于乘这个数的倒数进行计算即可.教学建议:此题主要考查了有理数的除法,关键是掌握有理数的除法法则.难度: 3 适应场景:当堂练习 例题来源:无 年份:2019【例题6】计算:⎪⎭⎫⎝⎛÷⎪⎭⎫ ⎝⎛-⨯32132475【答案】2-【解析】解:原式=25331475-=⨯⨯-. 讲解用时:3分钟解题思路:根据有理数的除法计算即可.教学建议:此题考查有理数的除法问题,关键是根据有理数的除法法则计算. 难度: 3 适应场景:当堂例题 例题来源:无 年份:2019【练习6.1】计算:2419211196⨯⎪⎭⎫ ⎝⎛-÷. 【答案】61- 【解析】解:原式61241932196-=⨯⨯-=.讲解用时:4分钟解题思路:原式利用乘除法则计算即可求出值. 教学建议:引导学生复习有理数的乘除法运算法则.难度: 3 适应场景:当堂练习 例题来源:无 年份:2019【例题7】小华在课外书中看到这样一道题:计算:361361187121413618712141361÷⎪⎭⎫ ⎝⎛--++⎪⎭⎫ ⎝⎛--+÷.她发现,这个算式反映的是前后两部分的和,而这两部分之间存在着某种关系,利用这种关系,她顺利地解答了这道题(1)前后两部分之间存在着什么关系?(2)先计算哪部分比较简便?并请计算比较简便的那部分. (3)利用(1)中的关系,直接写出另一部分的结果.(4)根据以上分析,求出原式的结果.【答案】313-.【解析】解:(1)前后两部分互为倒数;(2)先计算后一部分比较方便.=÷⎪⎭⎫ ⎝⎛--+36136118712141=⨯⎪⎭⎫⎝⎛--+36361187121419+3﹣14﹣1=﹣3; (3)因为前后两部分互为倒数,所以313618712141361-=⎪⎭⎫ ⎝⎛--+÷;(4)根据以上分析,可知原式()313331-=-+-=.讲解用时:3分钟解题思路:(1)根据倒数的定义可知:⎪⎭⎫⎝⎛--+÷3618712141361与36136118712141÷⎪⎭⎫ ⎝⎛--+互为倒数;(2)利用乘法的分配律可求得36136118712141÷⎪⎭⎫ ⎝⎛--+的值; (3)根据倒数的定义求解即可;(4)最后利用加法法则求解即可.教学建议:本题主要考查的是有理数的乘除运算,引导学生发现前后两项互为倒数是解题的关键.难度: 3 适应场景:当堂例题 例题来源:无 年份:2019【练习7.1】请阅读下列材料: 计算:)526110132()301(-+-÷-. 解法一:原式=61121513120152)301(61)301(101)301(32)301(=+-+-=÷--÷-+÷--÷-;解法二:原式=1013301)2165()301()]52101()6132[()301(-=⨯-=-÷-=+-+÷-; 解法三:原式的倒数为;10125320)30(52)30(61)30(101)30(32)30()526110132()301()526110132(-=+-+-=-⨯--⨯+-⨯--⨯=-⨯-+-=-÷-+- 故原式=-101-. 上述得出的结果不同,肯定有错误的解法,你认为解法 是错误的, 在正确的解法中,你认为解法 最简便. 然后请计算:)723214361()421(-+-÷-. 【答案】(1)解法一是错误的,解法二最简便;(2)141-【解析】解:解法一是错误的,解法二最简便.原式=1413)421()2165()421()]72143()3261)[(421(-=⨯-=--÷-=+-+-.讲解用时:4分钟解题思路:根据有理数除法的运算法则可以判断出上述解法的对错;解法二先把括号内化简再计算,可提高解题的效率.教学建议:注意培养学生的巧算能力难度: 3 适应场景:当堂练习 例题来源:无 年份:2019 课后作业【作业1】已知两个有理数a 、b ,如果ab <0,且a +b <0,那么( )A .a >0,b <0B .a <0,b >0C .a 、b 异号D .a 、b 异号且负数的绝对值较大【答案】D【解析】依有理数乘法法则,异号为负,故a 、b 异号,又依加法法则,异号相加取绝对值较大数的符号,可得出判断.解:由ab <0知a 、b 异号,又由a +b <0,可知异号两数之和为负,依加法法则得负数的绝对值较大,选D .讲解用时:3分钟难度: 2 适应场景:练习题 例题来源:无 年份:2019【作业2】计算: (1)3)45()27()53(÷-÷-⨯-; (2)-2.5÷)81()165(-⨯-÷(-4). 【答案】 (1)2514-;(2)41. 【解析】 解:(1)原式=25143154275331)54()27()53(-=⨯⨯⨯-=⨯-⨯-⨯-. (2)原式=41418151625)41()81()516(25=⨯⨯⨯=-⨯-⨯-⨯-. 讲解用时:4分钟难度: 4 适应场景:练习题 例题来源:无 年份:2019【作业3】已知a ,b ,c 为有理数.(1)如果ab >0,a+b >0,试确定a ,b 的正负;(2)如果ab >0,abc >0,bc <0,试确定a ,b ,c 的正负.【答案】 (1)a ,b 都为正数;(2)a ,b 为负数,c 为正数.【解析】解:(1)∵ab >0,∴a ,b 同号.又∵a+b >0,∴a ,b 都为正数.(2)∵ab >0,∴a ,b 同号.又∵abc >0,∴c >0.又∵bc <0,∴b ,c 异号,即b <0,故a <0.∴a ,b 为负数,c 为正数.讲解用时:3分钟难度: 3 适应场景:练习题 例题来源:无 年份:2019【作业4】计算:(1)3311191100399⎛⎫⎛⎫÷-÷⨯÷- ⎪ ⎪⎝⎭⎝⎭; (2)419191931393110010501001010⎡⎤⎛⎫⎛⎫⨯⨯-÷⨯⨯- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦. 【答案】(1)111000;(2)935.【解析】 (1)33111331191191310039910099101000⎛⎫⎛⎫÷-÷⨯÷-=⨯⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭. (2)419191931393110010501001010⎡⎤⎛⎫⎛⎫⨯⨯-÷⨯⨯- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦讲解用时:5分钟难度: 3 适应场景:练习题 例题来源:无 年份:2019【作业5】用简便方法计算:(1)()()11.25482510⎛⎫-⨯-⨯÷-⨯ ⎪⎝⎭; (2)151361896⎛⎫--+⨯ ⎪⎝⎭; 【答案】(1)10000;(2)16-【解析】(1)()()()151.25482548102552581010000104⎛⎫-⨯-⨯÷-⨯=-⨯⨯⨯⨯=-⨯⨯⨯= ⎪⎝⎭; 讲解用时:5分钟难度: 3 适应场景:练习题 例题来源:无 年份:2019。

人教版数学七年级上讲义

人教版数学七年级上讲义

1.4.1有理数的乘法一、知识回顾:1. 约分:利用分数的基本性质,把分子、分母中的最大公约数约去,叫约分。

2. 分数乘法法则:(1)分数乘整数用分数的分子和整数相乘的积作分子,分母不变。

(2)分数乘分数分子乘分子作分子,分母乘分母作分母。

3. 倒数的定义:乘积是1的两个数互为倒数。

4. 相关运算律:(1)乘法交换律:两个数相乘,交换因数的位置,积不变,公式:ab= . (2)乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变公式:(ab)c= .1.绝对值的意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.二、新课讲授例题1.计算:(1)-;(2)-4 ×1;(3)(-2014)×0总结*.有理数的乘法法则(1)两数相乘,同号得正,异号得负,并把绝对值相乘。

(2)任何数与0相乘,都得0.例题2求下列各数的倒数:(1)-4 (2)-(3)(4) 1(5) -1总结:倒数与相反数的异同相同点:都是成对出现的不同点:(1)互为倒数的两个数乘积为1;互为相反数的两个数和为0。

(2)正数的倒数是正数,负数的倒数是负数,0没有倒数;正数的相反数是负数,负数的相反数是正数,0的相反数是0.例题3.计算:(1)-2×3×4×(-1)(2)1×(-)×(-2.5)×(-)(3)-3×(-1)×2×(-6)×0×(-2)总结*(1)几个不是0的数相乘,积的符号由负因数的个数决定,奇数个为负,偶数个为正。

(2)几个数相乘,如果其中有因数为0,那么积等于0.例题4.计算:(1)(-3)×(-)×(-)×(2)-25×8(3)(- -)×(-48)(4)1(+-)×24。

七年级数学上册培优辅导讲义(人教版)

七年级数学上册培优辅导讲义(人教版)

新人教版 七年级数学上册培优辅导讲义第1讲 与有理数有关的概念考点·方法·破译1.了解负数的产生过程,能够用正、负数表示具有相反意义的量.2.会进行有理的分类,体会并运用数学中的分类思想.3.理解数轴、相反数、绝对值、倒数的意义.会用数轴比较两个有理数的大小,会求一个数的相反数、绝对值、倒数.经典·考题·赏析【例1】写出下列各语句的实际意义⑴向前-7米 ⑵收人-50元 ⑶体重增加-3千克【解法指导】用正、负数表示实际问题中具有相反意义的量.而相反意义的量应该包合两个要素:一是它们的意义相反.二是它们具有数量.而且必须是同类两,如“向前与自后、收入与支出、增加与减少等等”解:⑴向前-7米表示向后7米⑵收入-50元表示支出50元⑶体重增加-3千克表示体重减小3千克.【变式题组】01.如果+10%表示增加10%,那么减少8%可以记作( )A . -18%B . -8%C . +2%D . +8%02.(金华)如果+3吨表示运入仓库的大米吨数,那么运出5吨大米表示为( )A . -5吨B . +5吨C . -3吨D . +3吨03.(山西)北京与纽约的时差-13(负号表示同一时刻纽约时间比北京晚).如现在是北京时间15:00,纽约时问是_ ___【例2】在-227,π,0,0.033.3这四个数中有理数的个数( ) A . 1个 B . 2个 C . 3个 D . 4个【解法指导】有理数的分类:⑴按正负性分类,有理数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数负整数负有理数负份数;(2)按整数、分数分类,有理数⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数0负整数正分数分数负分数;其中分数包括有限小数和无限循环小数,因为π=3.1415926…是无限不循环小数,它不能写成分数的形式,所以π不是有理数,-227是分数,0.033.3是无限循环小数可以化成分数形式,0是整数,所以都是有理数,故选C .【变式题组】01.在7,0,15,-12,-301,31.25,-18,100,1,-3 001中,负分数为 ,整数为 ,正整数 .02.(河北秦皇岛)请把下列各数填入图中适当位置15,-19,215,-138,0.1,-5.32,123, 2.333【例3】(宁夏)有一列数为-1,12,-13,14,-15,16,…,找规律到第2007个数是 .【解法指导】从一系列的数中发现规律,首先找出不变量和变量,再依变量去发现规律.归纳去猜想,然后进行验证.解本题会有这样的规律:⑴各数的分子部是1;⑵各数的分母依次为1,2,3,4,5,6,…⑶处于奇数位置的数是负数,处于偶数位置的数是正数,所以第2007个数的分子也是1.分母是2007,并且是一个负数,故答案为-12007. 【变式题组】01(湖北宜昌)数学解密:第一个数是3=2 +1,第二个数是5=3 +2,第三个数是9=5+4,第四个数是17=9+8…观察并猜想第六个数是 .02.(毕节)毕达哥拉斯学派发明了一种“馨折形”填数法,如图则?填____. 03.(茂名)有一组数1,2,5,10,17,26…请 观察规律,则第8个数为__ __ .【例4】(2008年河北张家口)若1+m 2的相反数是-3,则m 的相反数是____. 【解法指导】理解相反数的代数意义和几何意义,代数意义只有符号不同的两个数叫互为相反数.几何意义:在数轴上原点的两旁且离原点的距离相等的两个点所表示的数叫 互为相反数,本题m 2=2,m =4,则m 的相反数-4。

最新人教版七年级数学上册全套PPT课件-七年级数学上ppt精选全文

最新人教版七年级数学上册全套PPT课件-七年级数学上ppt精选全文
*
1.什么是负数?
我们将前面带有“-”的数叫负数,那么为什么要引入负数?通常我们在日常生活中用正数和负数分别表示怎样的量呢?.
*
中国男蓝在雅典奥运会上: 58:83负于西班牙 69:62战胜新西兰 57:82负于阿根廷 52:89负于意大利 积分:5分 67:66战胜塞黑
*
比标准重量多出5克
比标准重量少出5克
*
1.2.1有理数
*
复习与回顾:
上一节课我们讲了些什么内容?
1,正数和负数。 2,0既不是正数,也不是负数。 3,正数与负数通常用来表示具有相反意义的 量。 4,“0”所表示的意思。 5,在生产中,通常用正负数来表示允许误差;
*
1、粮食每袋标准重量是50千克,先测得甲、乙、丙三袋粮 食重量如下:52千克,49千克,49.8千克,如果超重部分 用正数表示,请用正数和负数记录甲、乙、丙三袋粮食的 超重数和不足数;
*
“不是正数的数一定是负数,不是负数的数一定是正数”的说法对吗?
答案肯定是不对的,还有0的存在.
*
在生活中,我们将海平面高度计为0米,根据图的标识,你能说出我国的最高峰珠穆朗玛峰和吐鲁番盆地的海拔高度吗?
8848
-155
类似题中0可以都有怎样的意义?
0只是一个基准,它具有丰富的意义,不是简简单单的只表示没有.
2、国际乒联在正式比赛中采用打球,对大球的直径有严格的标准,现有5个乒乓球,测量它们的直径,超过标准的毫米数记为正数,不足的记为负数,测量结果如下: A.-0.1mm B.-0.2mm C.+0.25mm D.-0.05mm E.+0.15mm 你认为应该选哪一个4,7,142,-12,0,-37, 中,负整数共有( ) A.3个 B.2个 C.1 个 D.0个

(完整)人教版七年级数学上册辅导讲义

(完整)人教版七年级数学上册辅导讲义

最新人教版 七年级数学上册培优辅导讲义第1讲 与有理数有关的概念考点·方法·破译1.了解负数的产生过程,能够用正、负数表示具有相反意义的量.2.会进行有理的分类,体会并运用数学中的分类思想.3.理解数轴、相反数、绝对值、倒数的意义.会用数轴比较两个有理数的大小,会求一个数的相反数、绝对值、倒数.经典·考题·赏析【例1】写出下列各语句的实际意义⑴向前-7米 ⑵收人-50元 ⑶体重增加-3千克【解法指导】用正、负数表示实际问题中具有相反意义的量.而相反意义的量应该包合两个要素:一是它们的意义相反.二是它们具有数量.而且必须是同类两,如“向前与自后、收入与支出、增加与减少等等”解:⑴向前-7米表示向后7米⑵收入-50元表示支出50元⑶体重增加-3千克表示体重减小3千克.【变式题组】01.如果+10%表示增加10%,那么减少8%可以记作( )A . -18%B . -8%C . +2%D . +8%02.(金华)如果+3吨表示运入仓库的大米吨数,那么运出5吨大米表示为( )A . -5吨B . +5吨C . -3吨D . +3吨03.(山西)北京与纽约的时差-13(负号表示同一时刻纽约时间比北京晚).如现在是北京时间15:00,纽约时问是_ ___【例2】在-227,π,0,0.033.3这四个数中有理数的个数( ) A . 1个 B . 2个 C . 3个 D . 4个【解法指导】有理数的分类:⑴按正负性分类,有理数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数负整数负有理数负份数;(2)按整数、分数分类,有理数⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数0负整数正分数分数负分数;其中分数包括有限小数和无限循环小数,因为π=3.1415926…是无限不循环小数,它不能写成分数的形式,所以π不是有理数,-227是分数,0.033.3是无限循环小数可以化成分数形式,0是整数,所以都是有理数,故选C .【变式题组】01.在7,0,15,-12,-301,31.25,-18,100,1,-3 001中,负分数为 ,整数为 ,正整数 .02.(河北秦皇岛)请把下列各数填入图中适当位置15,-19,215,-138,0.1,-5.32,123, 2.333【例3】(宁夏)有一列数为-1,12,-13,14,-15,16,…,找规律到第2007个数是 .【解法指导】从一系列的数中发现规律,首先找出不变量和变量,再依变量去发现规律.归纳去猜想,然后进行验证.解本题会有这样的规律:⑴各数的分子部是1;⑵各数的分母依次为1,2,3,4,5,6,…⑶处于奇数位置的数是负数,处于偶数位置的数是正数,所以第2007个数的分子也是1.分母是2007,并且是一个负数,故答案为-12007. 【变式题组】01(湖北宜昌)数学解密:第一个数是3=2 +1,第二个数是5=3 +2,第三个数是9=5+4,第四个数是17=9+8…观察并猜想第六个数是 .02.(毕节)毕达哥拉斯学派发明了一种“馨折形”填数法,如图则?填____.03.(茂名)有一组数1,2,5,10,17,26…请 观察规律,则第8个数为__ __ .【例4】(2008年河北张家口)若1+m 2的相反数是-3,则m 的相反数是____. 【解法指导】理解相反数的代数意义和几何意义,代数意义只有符号不同的两个数叫互为相反数.几何意义:在数轴上原点的两旁且离原点的距离相等的两个点所表示的数叫 互为相反数,本题m 2=2,m =4,则m 的相反数-4。

人教版初中数学同步讲义七年级上册第01讲 整式(解析版)

人教版初中数学同步讲义七年级上册第01讲 整式(解析版)

D.4 个
【解答】解:代数式 ,2x3y, , ,﹣2,a,7x2+6x﹣2 中,单项式有:2x3y,﹣2,a 共 3 个.
故选:C.
【即学即练 2】
9.单项式﹣2x2y 的系数和次数分别是( )
A.3,4
B.﹣2,2
C.3,﹣2
【解答】解:﹣2x2y 的系数为﹣2,次数为 2+1=3.
故选:D.
4. 多项式的名词:
根据多项式的 次数与项数 把多项式命名为几次几项式。 题型考点:①多项式的判断。
②多项式各项的判断。 ③多项式的次数以及命名。 【即学即练 1】
(5)
书写正确;
(6)m﹣3℃前面的代数和应加括号,故原式书写错误;
符合代数式书写要求的有 3 个.
故选:C.
【即学即练 3】
3.“m 与 n 差的 3 倍”用代数式可以表示成( )
A.3m﹣n
B.m﹣3n
C.3(n﹣m)
D.3(m﹣n)
【解答】解:“m 与 n 差的 3 倍”用代数式可以表示为:3(m﹣n).
第 01 讲 整式
课程标准
①代数式及其书写要求 ②整式的概念 ③单项式 ④多项式 ⑤升幂与降幂排列
学习目标 1. 掌握代数式的概念及其书写要求,能够列简单的代 数式。 2. 掌握整式的概念并判断整式。 3. 掌握单项式及其单项式的系数与次数。 4. 掌握多项式、多项式的项、多项式的次数。 5. 能够对多项式进行升幂或降幂排列。
1. 整式的概念: 单项式 和 多项式 统称为整式。简单理解:即分母中不含
题型考点:整式的判断。
字母
的式子叫做整式。
【即学即练 1】
7.下列各式:﹣ mn,m,8, ,x2+2x+6,

人教版初中数学同步讲义七年级上册第01讲 正数与负数(解析版)

人教版初中数学同步讲义七年级上册第01讲 正数与负数(解析版)

第01讲正数与负数课程标准学习目标①正数与负数的概念②正数与负数所表示的意义1.掌握正数与负数的概念。

2.学会对正号与负号的化简。

3.掌握正数与负数所表示的意义,以及0的意义。

知识点01正数与负数的概念1.正数与负数的概念:像我们小学学过的1,20,21,5.5,120%...这样一些大于0的数叫做正数,可以在前面添加一个正号,即“+”,也可以省略。

在正数前面添加一个负号,即“-”,变成﹣1,﹣20,﹣5.5,﹣120%...这样一些小于0的数叫做负数。

负号不能省略。

0不是正数,也不是负数。

题型考点:判断一个数是正数还是负数。

【即学即练1】1.下列各数中,负数是()A.﹣1B.0C.2D.2023【解答】解:﹣1是负数,则A符合题意;0既不是正数,也不是负数,则B不符合题意;2和2023均为正数,则C,D均不符合题意;故选:A.【即学即练2】2.在﹣0.1,,3.14,﹣8,0,100,,中,正数有()个.A.1B.2C.3D.4【解答】解:,3.14,100,是正数,故选:D.知识点02正负号的化简1.正负号的化简:在判断前面存在多个符号的数是正数还是负数时,需先对符号进行化简。

方法1:遵循原则:同号为正;异号为负。

即两个符号一样时,化简为正数。

两个符号不一样时,化简为负数。

方法2:遵循原则:奇负偶正。

即若一个数前面有多个符号,则观察负号的个数,若负号个数为奇数个,则化简为负数,若负号个数为偶数个,则化简为正数。

题型考点:化简正负号。

【即学即练1】3.在﹣(+2),﹣(﹣8),﹣5,﹣|﹣3|,+(﹣4)中,负数的个数有()A.1个B.2个C.3个D.4个【解答】解:在﹣(+2),﹣(﹣8),﹣5,﹣|﹣3|,+(﹣4)中,负数有在﹣(+2),﹣5,﹣|﹣3|,+(﹣4),一共4个.故选:D.知识点03正数与负数的意义1.正负数的意义:①正数和负数可以表示2个具有相反意义的量。

若规定其中一个用正数来表示,则另一个必须用负数来表示。

人教版七年级数学上册培优辅导讲义.docx

人教版七年级数学上册培优辅导讲义.docx

最新人教版七年级数学上册培优辅导讲义第 1 讲与有理数有关的概念考点·方法·破译1.了解负数的产生过程,能够用正、负数表示具有相反意义的量 .2.会进行有理的分类,体会并运用数学中的分类思想.3.理解数轴、相反数、绝对值、倒数的意义.会用数轴比较两个有理数的大小,会求一个数的相反数、绝对值、倒数 .经典·考题·赏析【例 1 】写出下列各语句的实际意义⑴向前-7 米⑵收人-50 元⑶体重增加-3千克【解法指导】用正、负数表示实际问题中具有相反意义的量.而相反意义的量应该包合两个要素:一是它们的意义相反.二是它们具有数量.而且必须是同类两,如“向前与自后、收入与支出、增加与减少等等”解:⑴向前- 7 米表示向后7 米⑵收入- 50 元表示支出50元⑶体重增加- 3 千克表示体重减小 3 千克 .【变式题组】01 .如果+ 10% 表示增加 10% ,那么减少 8% 可以记作()A.-18%B.-8%C.+2%D.+8%02 .(金华)如果+ 3 吨表示运入仓库的大米吨数,那么运出 5 吨大米表示为 ()A.-5吨B.+5吨C.-3吨D.+3吨03 .(山西)北京与纽约的时差-13 (负号表示同一时刻纽约时间比北京晚). 如现在是北京时间15 : 00 ,纽约时问是 _ ___22 ,π,,0.0 33 .( )【例2】在-3 四个数中有理数的个数7A . 1个B . 2个C . 3个D .4 个【解法指 】有理数的分 :⑴按正 性分 ,有理数正整数 正有理数正分数;负整数 负有理数负份数正整数整数 0(2 )按整数、分数分 ,有理数负整数 ;其中分数包括正分数 分数负分数有限小数和无限循 小数,因π= 3.1415926 ⋯是无限不循 小数,它不能写成分数的形式,所以 π不是有理数,-22 .0 是是分数, 0.0 33 3 是无限循 小数可以化成分数形式, 7整数,所以都是有理数,故 C .【 式 】1 101 .在 7 ,0 ,15 ,- 2 ,- 301,31.25 ,- 8 , 100 , 1 ,-3 001 中, 分数 ,整数,正整数 .02 .(河北秦皇 ) 把下列各数填入 中适当位置 15 ,-1 2 139 ,15 ,- 8 , 0.1 ,- 5.32,123, 2.3331 11 11【例3】(宁夏) 有一列数 - 1 , ,-3, ,- 5 , ,⋯, 2 4 6找律到第2007个数是. 【解法指】从一系列的数中律,首先找出不量和量,再依量去律.去猜想,然后行 .解本会有的律:⑴各数的分子部是1;⑵各数的分母依次1,2,3,4,5,6,⋯⑶于奇数位置的数是数,于偶数位置的数是正数,所以第 2007 个数的分子也是 1 .分母是 2007 ,并且 1是一个数,故答案-.2007【式】01 (湖北宜昌)数学解密:第一个数是 3 = 2 + 1,第二个数是 5 = 3 + 2,第三个数是9 = 5 +4 ,第四个数是17= 9+ 8⋯察并猜想第六个数是.2.()达哥拉斯学派明了一种“馨折形”填数法,如?填____.03 .(茂名)有一数 1 ,2 ,5 , 10 ,17 , 26 ⋯察律,第 8 个数__ __ .【例4】( 2008年河北家口)若 1 +m的相反数是- 3 ,2m 的相反数是 ____.【解法指】理解相反数的代数意和几何意,代数意只有符号不同的两个数叫互相反数 . 几何意:在数上原点的两旁且离原点的距离相等的两个点所表示的m数叫互相反数,本2=2,m=4,m的相反数-4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新人教版 七年级数学上册培优辅导讲义第1讲 与有理数有关的概念考点·方法·破译1.了解负数的产生过程,能够用正、负数表示具有相反意义的量. 2.会进行有理的分类,体会并运用数学中的分类思想.3.理解数轴、相反数、绝对值、倒数的意义.会用数轴比较两个有理数的大小,会求一个数的相反数、绝对值、倒数. 经典·考题·赏析【例1】写出下列各语句的实际意义⑴向前-7米 ⑵收人-50元 ⑶体重增加-3千克【解法指导】用正、负数表示实际问题中具有相反意义的量.而相反意义的量应该包合两个要素:一是它们的意义相反.二是它们具有数量.而且必须是同类两,如“向前与自后、收入与支出、增加与减少等等”解:⑴向前-7米表示向后7米⑵收入-50元表示支出50元⑶体重增加-3千克表示体重减小3千克. 【变式题组】01.如果+10%表示增加10%,那么减少8%可以记作( ) A . -18% B . -8% C . +2% D . +8% 02.(金华)如果+3吨表示运入仓库的大米吨数,那么运出5吨大米表示为( )A . -5吨B . +5吨C . -3吨D . +3吨 03.(山西)北京与纽约的时差-13(负号表示同一时刻纽约时间比北京晚).如现在是北京时间15:00,纽约时问是_ 【例2】在-,π,0,0.033.3这四个数中有理数的个数( ) A . 1个 B . 2个 C . 3个 D . 4个【解法指导】有理数的分类:⑴按正负性分类,有理数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数负整数负有理数负份数; (2)按整数、分数分类,有理数⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数0负整数正分数分数负分数;其中分数包括有限小数和无限循环小数,因为π=3.1415926…是无限不循环小数,它不能写成分数的形式,所以π不是有理数,-是分数,0.033.3是无限循环小数可以化成分数形式,0是整数,所以都是有理数,故选C .【变式题组】 01.在7,0,15,-,-301,31.25,-,100,1,-3 001中,负分数为 ,整数为 ,正整数 .02.(河北秦皇岛)请把下列各数填入图中适当位置15,-,,-,0.1,-5.32,123, 2.333【例3】(宁夏)有一列数为-1,,-,,-,,…,找规律到第2007个数是 .【解法指导】从一系列的数中发现规律,首先找出不变量和变量,再依变量去发现规律.归纳去猜想,然后进行验证.解本题会有这样的规律:⑴各数的分子部是1;⑵各数的分母依次为1,2,3,4,5,6,…⑶处于奇数位置的数是负数,处于偶数位置的数是正数,所以第2007个数的分子也是1.分母是2007,并且是一个负数,故答案为-.【变式题组】01(湖北宜昌)数学解密:第一个数是3=2 +1,第二个数是5=3 +2,第三个数是9=5+4,第四个数是17=9+8…观察并猜想第六个数是 .02.(毕节)毕达哥拉斯学派发明了一种“馨折形”填数法,如图则?填. 03.(茂名)有一组数1,2,5,10,17,26…请观察规律,则第8个数为 .【例4】(2008年河北张家口)若1+的相反数是-3,则m的相反数是.【解法指导】理解相反数的代数意义和几何意义,代数意义只有符号不同的两个数叫互为相反数.几何意义:在数轴上原点的两旁且离原点的距离相等的两个点所表示的数叫互为相反数,本题=2=4,则m的相反数-4。

【变式题组】01.(四川宜宾)-5的相反数是( )A.5 B. C.-5 D.-02.已知a与b互为相反数,c与d互为倒数,则a+b+=03.如图为一个正方体纸盒的展开图,若在其中的三个正方形A、B、C 内分别填人适当的数,使得它们折成正方体.若相对的面上的两个数互为相反数,则填入正方形A、B、C内的三个数依次为( )A.- 1 ,2,0 B. 0,-2,1 C.-2,0,1 D. 2,1,0【例5】(湖北)a、b为有理数,且a>0,b<0,>a,则、-a,-b的大小顺序是( )A. b<-a<a<-b B.–a<b<a<-bC.–b<a<-a<b D.–a<a<-b<b【解法指导】理解绝对值的几何意义:一个数的绝对值就是数轴上表示a的点到原点的距离,即,用式子表示为=0)0(0)(0)a aaa a>⎧⎪=⎨⎪-<⎩(.本题注意数形结合思想,画一条数轴标出a、b,依相反数的意义标出-b,-a,故选A.【变式题组】01.推理①若a=b,则=;②若=,则a=b;③若a≠b,则≠;④若≠,则a≠b,其中正确的个数为()A. 4个 B. 3个 C. 2个 D. 1个02.a、b、c三个数在数轴上的位置如图,则++= .03.a、b、c为不等于O的有理数,则++的值可能是.【例6】(江西课改)已知-4|+-8|=0,则的值.【解法指导】本题主要考查绝对值概念的运用,因为任何有理数a的绝对值都是非负数,即≥0.所以-4|≥0,-8|≥0.而两个非负数之和为0,则两数均为0.解:因为-4|≥0,-8|≥0,又-4|+-8|=0,∴-4|=0,-8|=0即a-4=0,b-8=0,a=4,b=8.故==【变式题组】01.已知=1,=2,=3,且a>b>c,求a+b+C.02.(毕节)若-3|++2|=0,则m+2n的值为( )A.-4 B.-1 C. 0 D. 403.已知=8,=2,且-=b-a,求a和b的值【例7】(第18届迎春杯)已知(m+n)2+=m,且|2m-n-2|=0.求的值.【解法指导】本例的关键是通过分析(m+n)2+的符号,挖掘出m的符号特征,从而把问题转化为(m+n)2=0,|2m-n-2|=0,找到解题途径.解:∵(m+n)2≥0,≥O ∴(m+n)2+≥0,而(m+n)2+=m ∴ m≥0,∴(m+n)2+m=m,即(m+n)2=0∴m+n=O ①又∵|2m-n-2|=0 ∴2m-n-2=0 ②由①②得m=,n=-,∴=-【变式题组】01.已知(a+b)2++5|=b+5且|2a-b–1|=0,求a-b.02.(第16届迎春杯)已知y=-++19|+-a-96|,如果19<a<96.a≤x≤96,求y的最大值.演练巩固·反馈提高01.观察下列有规律的数…根据其规律可知第9个数是( ) A. B. C. D.02.(芜湖)-6的绝对值是( )A. 6 B.-6 C. D.-03.在-,π,8..0.3四个数中,有理数的个数为( )A. 1个 B. 2个 C. 3个 D. 4个04.若一个数的相反数为a+b,则这个数是( )A. a-b B. b-a C.–a+b D.–a-b05.数轴上表示互为相反数的两点之间距离是6,这两个数是( ) A. 0和6 B. 0和-6 C. 3和-3 D. 0和306.若-a不是负数,则a( )A.是正数 B.不是负数 C.是负数 D.不是正数07.下列结论中,正确的是( )①若a=b,则=②若a=-b,则=③若=,则a=-b ④若=,则a=bA.①② B.③④ C.①④ D.②③08.有理数a、b在数轴上的对应点的位置如图所示,则a、b,-a,的大小关系正确的是( )A.>a>-a>b B.>b>a>-aC. a>>b>-a D. a>>-a>b09.一个数在数轴上所对应的点向右移动5个单位后,得到它的相反数的对应点,则这个数是.10.已知+2|++2|=0,则= .11.a、b、c三个数在数轴上的位置如图,求+++=12.若三个不相等的有理数可以表示为1、a、a+b也可以表示成0、b、的形式,试求a、b的值.13.已知=4,=5,=6,且a>b>c,求a+b-c.14.具有非负性,也有最小值为0,试讨论:当x为有理数时,-1|+-3|有没有最小值,如果有,求出最小值;如果没有,说明理由.15.点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为.当A、B两点中有一点在原点时,不妨设点A在原点,如图1,===-当A、B 两点都不在原点时有以下三种情况:①如图2,点A、B都在原点的右边=-=-=b-a=-;②如图3,点A、B都在原点的左边,=-=-=-b-(-a)=-;③如图4,点A、B在原点的两边,=-=-=-b-(-a)=-;综上,数轴上A、B两点之间的距离=-.回答下列问题:⑴数轴上表示2和5的两点之间的距离是 , 数轴上表示-2和-5的两点之间的距离是 , 3,数轴上表示1和-3的两点之间的距离是4;⑵数轴上表示x和-1的两点分别是点A和B,则A、B之间的距离是 1|,如果=2,那么x= 1或3;⑶当代数式+1|+-2|取最小值时,相应的x的取值范围是 7.培优升级·奥赛检测01.(重庆市竞赛题)在数轴上任取一条长度为1999的线段,则此线段在这条数轴上最多能盖住的整数点的个数是( )A. 1998 B. 1999 C. 2000 D. 200102.(第18届希望杯邀请赛试题)在数轴上和有理数a、b、c对应的点的位置如图所示,有下列四个结论:①<0;②-+-=-;③(a-b)(b-c)(c -a)>0;④<1-.其中正确的结论有( )A. 4个 B. 3个 C. 2个 D. 1个03.如果a、b、c是非零有理数,且a+b+c=0.那么++ - 的所有可能的值为()A.-1 B. 1或-1 C. 2或-2 D. 0或-2 04.已知=-m,化简-1 |--2|所得结果( )A.-1 B. 1 C. 2m -3 D. 3- 2m05.如果0<p<15,那么代数式-+-15|+-p-15|在p≤x≤15的最小值( )A. 30 B. 0 C. 15 D.一个与p有关的代数式06.+1|+-2|+-3|的最小值为 .07.若a>0,b<0,使-+-=a-b成立的x取值范围 . 08.(武汉市选拔赛试题)非零整数m、n满足+-5=0所有这样的整数组(m,n)共有组09.若非零有理数m、n、p满足++=1.则= .10.(19届希望杯试题)试求-1|+-2|+-3|+…+-1997|的最小值.11.已知(+1|+-2|)(-2|++1|)(-3|++1|)=36,求x+2y+3z 的最大值和最小值.12.电子跳蚤落在数轴上的某点k0,第一步从k0向左跳1个单位得k1,第二步由k1向右跳2个单位到k2,第三步由k2向左跳3个单位到k3,第四步由k3向右跳4个单位到k4…按以上规律跳100步时,电子跳蚤落在数轴上的点k100新表示的数恰好19.94,试求k0所表示的数.13.某城镇,沿环形路上依次排列有五所小学,它们顺次有电脑15台、7台、11台、3台,14台,为使各学校里电脑数相同,允许一些小学向相邻小学调出电脑,问怎样调配才能使调出的电脑总台数最小?并求出调出电脑的最少总台数.第02讲有理数的加减法考点·方法·破译1.理解有理数加法法则,了解有理数加法的实际意义.2.准确运用有理数加法法则进行运算,能将实际问题转化为有理数的加法运算.3.理解有理数减法与加法的转换关系,会用有理数减法解决生活中的实际问题.4.会把加减混合运算统一成加法运算,并能准确求和.经典·考题·赏析【例1】(河北唐山)某天股票A开盘价18元,上午11:30跌了1.5元,下午收盘时又涨了0.3元,则股票A这天的收盘价为()A.0.3元B.16.2元C.16.8元D.18元【解法指导】将实际问题转化为有理数的加法运算时,首先将具有相反意义的量确定一个为正,另一个为负,其次在计算时正确选择加法法则,是同号相加,取相同符号并用绝对值相加,是异号相加,取绝对值较大符号,并用较大绝对值减去较小绝对值.解:18+(-1.5)+(0.3)=16.8,故选C.【变式题组】01.今年陕西省元月份某一天的天气预报中,延安市最低气温为-6℃,西安市最低气温2℃,这一天延安市的最低气温比西安低()A.8℃B.-8℃C.6℃D.2℃02.(河南)飞机的高度为2400米,上升250米,又下降了327米,这是飞机的高度为 03.(浙江)珠穆朗玛峰海拔8848m ,吐鲁番海拔高度为-155 m ,则它们的平均海拔高度为【例2】计算(-83)+(+26)+(-17)+(-26)+(+15)【解法指导】应用加法运算简化运算,-83与-17相加可得整百的数,+26与-26互为相反数,相加为0,有理数加法常见技巧有:⑴互为相反数结合一起;⑵相加得整数结合一起;⑶同分母的分数或容易通分的分数结合一起;⑷相同符号的数结合一起.解:(-83)+(+26)+(-17)+(-26)+(+15)=[(-83)+(-17)]+[(+26)+(-26)]+15=(-100)+15=-85【变式题组】 01.(-2.5)+(-312)+(-134)+(-114) 02.(-13.6)+0.26+(-2.7)+(-1.06)03.0.125+314+(-318)+1123+(-0.25)【例3】计算111112233420082009++++⨯⨯⨯⨯ 【解法指导】依111(1)1n n n n =-++进行裂项,然后邻项相消进行化简求和. 解:原式=1111111(1)()()()2233420082009-+-+-++- =111111112233420082009-+-+-++- =112009-=20082009【变式题组】 01.计算1+(-2)+3+(-4)+ … +99+(-100)02.如图,把一个面积为1的正方形等分成两个面积为12的长方形,接着把面积为12的长方形等分成两个面积为14的正方形,再把面积为14的正方形等分成两个面积为18的长方形,如此进行下去,试利用图形揭示的规律计算11111111248163264128256+++++++=. 【例4】如果a <0,b >0,a +b <0,那么下列关系中正确的是( ) A .a >b >-b >-a B .a >-a >b >-b C .b >a >-b >-a D .-a >b >-b >a【解法指导】紧扣有理数加法法则,由两加数及其和的符号,确定两加数的绝对值的大小,然后根据相反数的关系将它们在同一数轴上表示出来,即可得出结论.解:∵a <0,b >0,∴a +b 是异号两数之和又a +b <0,∴a 、b 中负数的绝对值较大,∴| a |>| b | 将a 、b 、-a 、-b 表示在同一数轴上,如图,则它们的大小关系是-a >b >-b >a【变式题组】 01.若m >0,n <0,且| m |>| n |,则m +n 0.(填>、<号)02.若m <0,n >0,且| m |>| n |,则m +n 0.(填>、<号)03.已知a <0,b >0,c <0,且| c |>| b |>| a |,试比较a 、b 、c 、a+b 、a +c 的大小 【例5】425-(-33311)-(-1.6)-(-21811) 【解法指导】有理数减法的运算步骤:⑴依有理数的减法法则,把减号变为加号,并把减数变为它的相反数;⑵利用有理数的加法法则进行运算.解:425-(-33311)-(-1.6)-(-21811)=425+33311+1.6+21811=4.4+1.6+(33311+21811)=6+55=61 【变式题组】01.21511()()()()(1)32632--+---+-+02.434-(+3.85)-(-314)+(-3.15)03.178-87.21-(-43221)+1531921-12.79【例6】试看下面一列数:25、23、21、19…⑴观察这列数,猜想第10个数是多少?第n 个数是多少?⑵这列数中有多少个数是正数?从第几个数开始是负数?⑶求这列数中所有正数的和.【解法指导】寻找一系列数的规律,应该从特殊到一般,找到前面几个数的规律,通过观察推理、猜想出第n 个数的规律,再用其它的数来验证. 解:⑴第10个数为7,第n 个数为25-2(n -1)⑵∵n =13时,25-2(13-1)=1,n =14时,25-2(14-1)=-1故这列数有13个数为正数,从第14个数开始就是负数.⑶这列数中的正数为25,23,21,19,17,15,13,11,9,7,5,3,1,其和=(25+1)+(23+3)+…+(15+11)+13=26×6+13=169【变式题组】 01.(杭州)观察下列等式1-12=12,2-25=85,3-310=2710,4-417=6417…依你发现的规律,解答下列问题.⑴写出第5个等式;⑵第10个等式右边的分数的分子与分母的和是多少? 02.观察下列等式的规律9-1=8,16-4=12,25-9=16,36-16=20⑴用关于n (n ≥1的自然数)的等式表示这个规律;⑵当这个等式的右边等于2008时求n.【例7】(第十届希望杯竞赛试题)求12+(13+23)+(14+24+34)+(15+25+35+45)+ … +(150+250+…+4850+4950) 【解法指导】观察式中数的特点发现:若括号内在加上相同的数均可合并成1,由此我们采取将原式倒序后与原式相加,这样极大简化计算了.解:设S =12+(13+23)+(14+24+34)+ … +(150+250+…+4850+4950) 则有S =12+(23+13)+(34+24+14)+ … +(4950+4850+…+250+150) 将原式的和倒序再相加得2S =12+12+(13+23+23+13)+(14+24+34+34+24+14)+ … +(150+250+…+4850+4950+4950+4850+…+250+150) 即2S =1+2+3+4+…+49=49(491)2⨯+=1225∴S =12252【变式题组】01.计算2-22-23-24-25-26-27-28-29+21002.(第8届希望杯试题)计算(1-12-13-…-12003)(12+13+14+…+12003+12004)-(1-12-13-…-12004)(12+13+14+…+12003)演练巩固·反馈提高01.m 是有理数,则m +( )A .可能是负数B .不可能是负数C .必是正数D .可能是正数,也可能是负数 02.如果=3,=2,那么+为( )A . 5B .1C .1或5D .±1或±503.在1,-1,-2这三个数中,任意两数之和的最大值是( )A . 1B .0C .-1D .-3 04.两个有理数的和是正数,下面说法中正确的是( )A .两数一定都是正数B .两数都不为0C .至少有一个为负数D .至少有一个为正数 05.下列等式一定成立的是( )A .- x =0B .-x -x =0C .+|- =0D .-=006.一天早晨的气温是-6℃,中午又上升了10℃,午间又下降了8℃,则午夜气温是( )A .-4℃B .4℃C .-3℃D .-5℃ 07.若a <0,则-(-a)|等于( )A .-aB .0C .2aD .-2a 08.设x 是不等于0的有理数,则||||2x x x值为( ) A .0或1 B .0或2 C .0或-1 D .0或-2 09.(济南)2+(-2)的值为10.用含绝对值的式子表示下列各式: ⑴若a <0,b >0,则b -a =,a -b=⑵若a >b >0,则-= ⑶若a <b <0,则a -b = 11.计算下列各题:⑴23+(-27)+9+5 ⑵-5.4+0.2-0.6+0.35-0.25⑶-0.5-314+2.75-712⑷33.1-10.7-(-22.9)-|-2310|12.计算1-3+5-7+9-11+…+97-9913.某检修小组乘汽车沿公路检修线路,规定前进为正,后退为负,某天从A 地出发到收工时所走的路线(单位:千米)为:+10,-3,+4,-2,-8,+13,-7,+12,+7,+5⑴问收工时距离A 地多远?⑵若每千米耗油0.2千克,问从A 地出发到收工时共耗油多少千克?14.将1997减去它的12,再减去余下的13,再减去余下的14,再减去余下的15……以此类推,直到最后减去余下的11997,最后的得数是多少?15.独特的埃及分数:埃及同中国一样,也是世界著名的文明古国,古代埃及人处理分数与众不同,他们一般只使用分子为1的分数,例如13+115来表示25,用14+17+128表示37等等.现有90个埃及分数:12,13,14,15, (1)90,191,你能从中挑出10个,加上正、负号,使它们的和等于-1吗?培优升级·奥赛检测01.(第16届希望杯邀请赛试题)1234141524682830-+-+-+-+-+-+-等于( )A .14B .14-C .12D .12-02.自然数a 、b 、c 、d 满足21a +21b +21c +21d =1,则31a +41b +51c +61d等于( ) A .18 B .316C .732D .156403.(第17届希望杯邀请赛试题)a 、b 、c 、d 是互不相等的正整数,且=441,则a +b +c +d 值是( ) A .30 B .32 C .34 D .36 04.(第7届希望杯试题)若a =1995199519961996,b =1996199619971997,c =1997199719981998,则a 、b 、c 大小关系是( )A .a <b <cB .b <c <aC .c <b <aD .a <c <b 05.11111(1)(1)(1)(1)(1)1324351998200019992001+++++⨯⨯⨯⨯⨯的值得整数部分为( )A .1B .2C .3D .4 06.(-2)2004+3×(-2)2003的值为( )5343332313A .-22003 B .22003 C .-22004 D .22004 07.(希望杯邀请赛试题)若=m +1,则(4m +1)2004=08.12+(13+23)+(14+24+34)+ … +(160+260+…+5960)= 09.19191976767676761919-= 10.1+2-22-23-24-25-26-27-28-29+210=11.求32001×72002×132003所得数的末位数字为 12.已知(a +b)2++5|=b +5,且|2a -b -1|=0,求13.计算(11998-1)(11997-1) (11996-1) … (11001-1) (11000-1)14.请你从下表归纳出13+23+33+43+…+n3的公式并计算出13+23+33+43+…+1003的值.第03讲 有理数的乘除、乘方考点·方法·破译1.理解有理数的乘法法则以及运算律,能运用乘法法则准确地进行有理数的乘法运算,会利用运算律简化乘法运算.2.掌握倒数的概念,会运用倒数的性质简化运算.3.了解有理数除法的意义,掌握有理数的除法法则,熟练进行有理数的除法运算.4.掌握有理数乘除法混合运算的顺序,以及四则混合运算的步骤,熟练进行有理数的混合运算.5.理解有理数乘方的意义,掌握有理数乘方运算的符号法则,进一步掌握有理数的混合运算. 经典·考题·赏析【例1】计算⑴11()24⨯- ⑵1124⨯ ⑶11()()24-⨯- ⑷25000⨯⑸3713()()(1)()5697-⨯-⨯⨯-【解法指导】掌握有理数乘法法则,正确运用法则,一是要体会并掌握乘法的符号规律,二是细心、稳妥、层次清楚,即先确定积的符号,后计算绝对值的积.解:⑴11111()()24248⨯-=-⨯=- ⑵11111()24248⨯=⨯=⑶11111()()()24248-⨯-=+⨯= ⑷250000⨯=⑸3713371031()()(1)()()569756973-⨯-⨯⨯-=-⨯⨯⨯=-【变式题组】01.⑴(5)(6)-⨯- ⑵11()124-⨯ ⑶(8)(3.76)(0.125)-⨯⨯-⑷(3)(1)2(6)0(2)-⨯-⨯⨯-⨯⨯- ⑸111112(2111)42612-⨯-+-2.24(9)5025-⨯ 3.1111(2345)()2345⨯⨯⨯⨯---4.111(5)323(6)3333-⨯+⨯+-⨯【例2】已知两个有理数a 、b ,如果<0,且a +b <0,那么( )A .a >0,b <0B .a <0,b >0C .a 、b 异号D .a 、b 异号且负数的绝对值较大【解法指导】依有理数乘法法则,异号为负,故a 、b 异号,又依加法法则,异号相加取绝对值较大数的符号,可得出判断.解:由<0知a 、b 异号,又由a +b <0,可知异号两数之和为负,依加法法则得负数的绝对值较大,选D .【变式题组】01.若a +b +c =0,且b <c <0,则下列各式中,错误的是( )A .a +b >0B .b +c <0C .+>0D .a +>0 02.已知a +b >0,a -b <0,<0,则0,0,.03.(山东烟台)如果a +b <0,0b a >,则下列结论成立的是( ) A .a >0,b >0 B .a <0,b <0 C .a >0,b <0 D .a <0,b >004.(广州)下列命题正确的是( )A .若>0,则a >0,b >0B .若<0,则a <0,b <0C .若=0,则a =0或b =0D .若=0,则a =0且b=0【例3】计算⑴(72)(18)-÷- ⑵11(2)3÷- ⑶13()()1025-÷ ⑷0(7)÷- 【解法指导】进行有理数除法运算时,若不能整除,应用法则1,先把除法转化成乘法,再确定符号,然后把绝对值相乘,要注意除法与乘法互为逆运算.若能整除,应用法则2,可直接确定符号,再把绝对值相除.解:⑴(72)(18)72184-÷-=÷= ⑵17331(2)1()1()3377÷-=÷-=⨯-=- ⑶131255()()()()10251036-÷=-⨯=- ⑷0(7)0÷-= 【变式题组】01.⑴(32)(8)-÷- ⑵112(1)36÷- ⑶10(2)3÷- ⑷13()(1)78÷-02.⑴12933÷⨯ ⑵311()(3)(1)3524-⨯-÷-÷ ⑶530()35÷-⨯03.113()(10.2)(3)245÷-+-÷⨯-【例4】(茂名)若实数a 、b 满足0a b a b+=,则abab =.【解法指导】依绝对值意义进行分类讨论,得出a 、b 的取值范围,进一步代入结论得出结果. 解:当>0,2(0,0)2(0,0)a b a b a b a b >>⎧+=⎨-<<⎩;当<0,0a b a b+=,∴<0,从而ab ab =-1.【变式题组】01.若k 是有理数,则(+k)÷k 的结果是( )A .正数B .0C .负数D .非负数 02.若A .b 都是非零有理数,那么ab a b a b ab++的值是多少?03.如果0x y x y+=,试比较x y-与xy 的大小.【例5】已知223(2),1x y =-=-⑴求2008xy的值; ⑵求32008x y 的值.【解法指导】n a 表示n 个a 相乘,根据乘方的符号法则,如果a 为正数,正数的任何次幂都是正数,如果a 是负数,负数的奇次幂是负数,负数的偶次幂是正数.解:∵223(2),1x y =-=- ⑴当2,1x y ==-时,200820082(1)2xy =-= 当2,1x y =-=-时,20082008(2)(1)2xy =-⨯-=-⑵当2,1x y ==-时,332008200828(1)x y ==-,2,1x y =-=-时,3320082008(2)8(1)x y -==-- 【变式题组】01.(北京)若2(2)0m n m -+-=,则n m 的值是.02.已知x 、y 互为倒数,且绝对值相等,求()n n x y --的值,这里n 是正整数.【例6】(安徽)2007年我省为135万名农村中小学生免费提供教科书,减轻了农民的负担,135万用科学记数法表示为( )A .0.135×106B .1.35×106C .0.135×107D .1.35×107【解法指导】将一个数表示为科学记数法的a×10n 的形式,其中a 的整数位数是1位.故答案选B .【变式题组】 01.(武汉)武汉市今年约有103000名学生参加中考,103000用科学记数法表示为( )A .1.03×105B .0.103×105C .10.3×104D .103×103 02.(沈阳)沈阳市计划从2008年到2012年新增林地面积253万亩,253万亩用科学记数法表示正确的是( )A .25.3×105亩B .2.53×106亩C .253×104亩D .2.53×107亩 【例7】(上海竞赛)222222221299110050002200500010050009999005000k k k ++⋅⋅⋅++⋅⋅⋅+-+-+-+-+ 【解法指导】找出21005000k k -+的通项公式=22(50)50k -+ 原式=2222222222221299(150)50(250)50(50)50(9950)50k k ++⋅⋅⋅++⋅⋅⋅+-+-+-+-+=222222222222199298[][](150)50(9950)50(250)50(9850)50++++⋅⋅⋅+-+-+-+-+ 222222222495150[](4950)50(5150)50(5050)50++-+-+-+ =49222+1++⋅⋅⋅+个=99【变式题组】 13333+++=( )2+4+6++10042+4+6++10062+4+6++10082+4+6++2006⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅A .31003B .31004C .1334D .110002.(第10届希望杯试题)已知111111111.2581120411101640+++++++=求111111112581120411101640---+--++的值.演练巩固·反馈提高01.三个有理数相乘,积为负数,则负因数的个数为( )A .1个B .2个C .3个D .1个或3个02.两个有理数的和是负数,积也是负数,那么这两个数( )A .互为相反数B .其中绝对值大的数是正数,另一个是负数C .都是负数D .其中绝对值大的数是负数,另一个是正数03.已知>0,a >0,<0,则下列结论正确的是( )A .b <0,c >0B .b >0,c <0C .b <0,c <0D .b >0,c >004.若=,则( )A .>0B .≥0C .a <0,b <0D .<0 05.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,则代数式a bm cd m+-+的值为( )A .-3 B .1 C .±3 D .-3或106.若a >1a,则a 的取值范围( )A .a >1B .0<a <1C .a >-1D .-1<a <0或a >107.已知a 、b 为有理数,给出下列条件:①a +b =0;②a -b =0;③<0;④1a b=-,其中能判断a 、b 互为相反数的个数是( )A .1个B .2个C .3个D .4个 08.若≠0,则a b a b+的取值不可能为( )A .0B .1C .2D .-2 09.1110(2)(2)-+-的值为( )A .-2B .(-2)21C .0D .-21010.(安徽)2010年一季度,全国城镇新增就业人数289万人,用科学记数法表示289万正确的是( )A .2.89×107B .2.89×106C .2.89×105D .2.89×10411.已知4个不相等的整数a 、b 、c 、d ,它们的积=9,则a +b +c +d =. 12.21221(1)(1)(1)n n n +--+-+-(n 为自然数)=.13.如果2x yx y +=,试比较x y-与的大小. 14.若a 、b 、c 为有理数且1a b ca b c ++=-,求abcabc的值.15.若a 、b 、c 均为整数,且321a b c a -+-=.求a c c b b a -+-+-的值.培优升级·奥赛检测01.已知有理数x 、y 、z 两两不相等,则,,x y y z z xy z z x x y------中负数的个数是( ) A .1个 B .2个 C .3个 D .0个或2个02.计算12345211,213,217,2115,2131-=-=-=-=-=⋅⋅⋅归纳各计算结果中的个位数字规律,猜测201021-的个位数字是( ) A .1 B .3 C .7 D .5 03.已知23450ab c d e <,下列判断正确的是( )A .<0B .24e <0C .2<0D .4e <0 04.若有理数x 、y 使得,,,x x y x y xy y+-这四个数中的三个数相等,则-的值是( )A .12-B .0C .12D .3205.若A =248163264(21)(21)(21)(21)(21)(21)(21)+++++++,则A -1996的末位数字是( ) A .0 B .1 C .7 D .9 06.如果20012002()1,()1a b a b +=--=,则20032003a b +的值是( )A .2B .1C .0D .-107.已知5544332222,33,55,66a b c d ====,则a 、b 、c 、d 大小关系是( )A .a >b >c >dB .a >b >d >cC .b >a >c >dD .a >d >b >c08.已知a 、b 、c 都不等于0,且a b c abc a b c abc +++的最大值为m ,最小值为n ,则2005()m n +=. 09.(第13届“华杯赛”试题)从下面每组数中各取一个数将它们相乘,那么所有这样的乘积的总和是.第一组:15,3,4.25,5.753-第二组:112,315- 第三组:52.25,,412- 10.一本书的页码从1记到n ,把所有这些页码加起来,其中有一页码被错加了两次,结果得出了不正确的和2002,这个被加错了两次的页码是多少?11.(湖北省竞赛试题)观察下列规律排成一列数:11,12,21,13,22,31,14,23,32,41,15,24,23,42,51,16,…(*),在(*)中左起第m 个数记为F(m),当F(m)=12001时,求m 的值和这m 个数的积.12.图中显示的填数“魔方”只填了一部分,将下列9个数:11,,1,2,4,8,16,32,6442填入方格中,使得所有行列及对角线上各数相乘的积相等,求x 的值.32 x6413.(第12届“华杯赛”试题)已知m 、n 都是正整数,并且111111(1)(1)(1)(1)(1)(1);2233A m m =-+-+⋅⋅⋅-+ 111111(1)(1)(1)(1)(1)(1).2233B n n=-+-+⋅⋅⋅-+证明:⑴11,;22m n A B m n ++== ⑵126A B -=,求m 、n 的值.第04讲 整式考点·方法·破译1.掌握单项式及单项式的系数、次数的概念.2.掌握多项式及多项式的项、常数项及次数等概念. 3.掌握整式的概念,会判断一个代数式是否为整式.4.了解整式读、写的约定俗成的一般方法,会根据给出的字母的值求多项式的值.经典·考题·赏析【例1是请指出它的系数与次数.【解法指导】理解单项式的概念:由数与字母的乘积组成的代数式,单独一个数或一个字母也是单项式,数字的次数为0,是常数,单项式中所有字母指数和叫单项式次数.解:⑴不是,因为代数式中出现了加法运算;⑵不是,因为代数式是与x 的商;⑶是,它的系数为π,次数为2;⑷是,它的系数为3,次数2为3.【变式题组】01。

相关文档
最新文档