操作系统实验二 (1)

合集下载

操作系统实验报告

操作系统实验报告

实验名称:操作系统进程管理实验实验目的:1. 理解操作系统进程管理的概念和原理。

2. 掌握进程的创建、调度、同步和通信机制。

3. 通过实验加深对进程管理算法的理解和应用。

实验环境:1. 操作系统:Windows 102. 编程语言:C/C++3. 开发环境:Visual Studio实验内容:一、实验一:进程的创建与终止1. 实验目的了解进程的创建和终止机制,掌握进程控制块(PCB)的结构和功能。

2. 实验步骤(1)创建一个进程,使用系统调用创建子进程;(2)设置子进程的属性,如优先级、名字等;(3)终止子进程,释放资源;(4)查看进程信息,确认进程创建和终止过程。

3. 实验代码```c#include <stdio.h>#include <sys/types.h>#include <unistd.h>int main() {pid_t pid;printf("Parent process: %d\n", getpid());pid = fork(); // 创建子进程if (pid == 0) {printf("Child process: %d\n", getpid());printf("Child process is running...\n");sleep(5); // 子进程延时5秒exit(0);} else {printf("Child process created: %d\n", pid);wait(NULL); // 等待子进程结束printf("Child process terminated.\n");}return 0;}```4. 实验结果在运行实验代码后,首先输出父进程的进程号,然后输出子进程的进程号,子进程运行5秒后结束,父进程输出子进程终止信息。

操作系统实验二实验报告

操作系统实验二实验报告

操作系统实验二实验报告一、实验目的本次操作系统实验二的主要目的是深入理解和掌握进程管理的相关概念和技术,包括进程的创建、执行、同步和通信。

通过实际编程和实验操作,提高对操作系统原理的认识,培养解决实际问题的能力。

二、实验环境本次实验使用的操作系统为 Windows 10,编程环境为 Visual Studio 2019。

三、实验内容及步骤(一)进程创建实验1、首先,创建一个新的 C++项目。

2、在项目中,使用 Windows API 函数`CreateProcess`来创建一个新的进程。

3、为新进程指定可执行文件的路径、命令行参数、进程属性等。

4、编写代码来等待新进程的结束,并获取其退出代码。

(二)进程同步实验1、设计一个生产者消费者问题的模型。

2、使用信号量来实现生产者和消费者进程之间的同步。

3、生产者进程不断生成数据并放入共享缓冲区,当缓冲区已满时等待。

4、消费者进程从共享缓冲区中取出数据进行处理,当缓冲区为空时等待。

(三)进程通信实验1、选择使用管道来实现进程之间的通信。

2、创建一个匿名管道,父进程和子进程分别读写管道的两端。

3、父进程向管道写入数据,子进程从管道读取数据并进行处理。

四、实验结果及分析(一)进程创建实验结果成功创建了新的进程,并能够获取到其退出代码。

通过观察进程的创建和执行过程,加深了对进程概念的理解。

(二)进程同步实验结果通过使用信号量,生产者和消费者进程能够正确地进行同步,避免了缓冲区的溢出和数据的丢失。

分析结果表明,信号量机制有效地解决了进程之间的资源竞争和协调问题。

(三)进程通信实验结果通过管道实现了父进程和子进程之间的数据通信。

数据能够准确地在进程之间传递,验证了管道通信的有效性。

五、遇到的问题及解决方法(一)在进程创建实验中,遇到了参数设置不正确导致进程创建失败的问题。

通过仔细查阅文档和调试,最终正确设置了参数,成功创建了进程。

(二)在进程同步实验中,出现了信号量使用不当导致死锁的情况。

操作系统实验二:银行家算法

操作系统实验二:银行家算法

操作系统实验⼆:银⾏家算法实验⼆银⾏家算法⼀、实验⽬的1、了解什么是操作系统安全状态和不安全状态;2、了解如何避免系统死锁;3、理解银⾏家算法是⼀种最有代表性的避免死锁的算法,掌握其实现原理及实现过程。

⼆、实验内容根据银⾏家算法的基本思想,编写和调试⼀个实现动态资源分配的模拟程序,并能够有效避免死锁的发⽣。

三、实验原理进程申请资源时,系统通过⼀定的算法判断本次申请是否不可能产⽣死锁(处于安全状态)。

若可能产⽣死锁(处于不安全状态),则暂不进⾏本次资源分配,以避免死锁。

算法有著名的银⾏家算法。

1、什么是系统的安全状态和不安全状态?所谓安全状态,是指如果系统中存在某种进程序列<P1,P2,…,Pn>,系统按该序列为每个进程分配其所需要的资源,直⾄最⼤需求,则最终能使每个进程都可顺利完成,称该进程序列<P1,P2,…,Pn,>为安全序列。

如果不存在这样的安全序列,则称系统处于不安全状态。

2、银⾏家算法把操作系统看作是银⾏家,操作系统管理的资源相当于银⾏家管理的资⾦,进程向操作系统请求分配资源相当于⽤户向银⾏家贷款。

为保证资⾦的安全,银⾏家规定:(1) 当⼀个顾客对资⾦的最⼤需求量不超过银⾏家现有的资⾦时就可接纳该顾客;(2) 顾客可以分期贷款,但贷款的总数不能超过最⼤需求量;(3) 当银⾏家现有的资⾦不能满⾜顾客尚需的贷款数额时,对顾客的贷款可推迟⽀付,但总能使顾客在有限的时间⾥得到贷款;(4) 当顾客得到所需的全部资⾦后,⼀定能在有限的时间⾥归还所有的资⾦。

操作系统按照银⾏家制定的规则设计的银⾏家算法为:(1)进程⾸次申请资源的分配:如果系统现存资源可以满⾜该进程的最⼤需求量,则按当前的申请量分配资源,否则推迟分配。

(2)进程在执⾏中继续申请资源的分配:若该进程已占⽤的资源与本次申请的资源之和不超过对资源的最⼤需求量,且现存资源能满⾜该进程尚需的最⼤资源量,则按当前申请量分配资源,否则推迟分配。

(3)⾄少⼀个进程能完成:在任何时刻保证⾄少有⼀个进程能得到所需的全部资源⽽执⾏到结束。

操作系统原理实验

操作系统原理实验

操作系统原理实验一、实验目的本实验旨在通过实际操作,加深对操作系统原理的理解,掌握操作系统的基本功能和调度算法。

二、实验环境1. 操作系统:Windows 102. 虚拟机软件:VirtualBox3. 实验工具:C语言编译器(如gcc)、汇编语言编译器(如nasm)、调试器(如gdb)三、实验内容1. 实验一:进程管理在这个实验中,我们将学习如何创建和管理进程。

具体步骤如下:a) 创建一个C语言程序,实现一个简单的计算器功能。

该计算器能够进行基本的加减乘除运算。

b) 使用fork()系统调用创建一个子进程,并在子进程中执行计算器程序。

c) 使用wait()系统调用等待子进程的结束,并获取子进程的退出状态。

2. 实验二:内存管理在这个实验中,我们将学习如何进行内存管理。

具体步骤如下:a) 创建一个C语言程序,模拟内存分配和释放的过程。

该程序能够动态地分配和释放内存块。

b) 使用malloc()函数分配一块内存,并将其用于存储数据。

c) 使用free()函数释放已分配的内存块。

3. 实验三:文件系统在这个实验中,我们将学习如何进行文件系统的管理。

具体步骤如下:a) 创建一个C语言程序,实现一个简单的文件系统。

该文件系统能够进行文件的创建、读取、写入和删除操作。

b) 使用open()系统调用打开一个文件,并进行读取和写入操作。

c) 使用unlink()系统调用删除一个文件。

四、实验步骤1. 安装虚拟机软件VirtualBox,并创建一个虚拟机。

2. 在虚拟机中安装操作系统Windows 10。

3. 在Windows 10中安装C语言编译器、汇编语言编译器和调试器。

4. 根据实验内容,编写相应的C语言程序并保存。

5. 在命令行中使用gcc编译C语言程序,并生成可执行文件。

6. 运行可执行文件,观察程序的执行结果。

7. 根据实验要求,进行相应的操作和测试。

8. 完成实验后,整理实验报告,包括实验目的、实验环境、实验内容、实验步骤和实验结果等。

计算机操作系统实验二

计算机操作系统实验二

计算机操作系统实验二一、实验目的本实验旨在通过实际操作,深入理解和掌握计算机操作系统中的进程与线程管理。

通过实验,我们将了解进程的创建、执行、阻塞、唤醒等状态以及线程的创建、同步、通信等操作。

同时,通过实验,我们将学习如何利用进程和线程提高程序的并发性和效率。

二、实验内容1、进程管理a.进程的创建与执行:通过编程语言(如C/C++)编写一个程序,创建一个新的进程并执行。

观察和记录进程的创建、执行过程。

b.进程的阻塞与唤醒:编写一个程序,使一个进程在执行过程中发生阻塞,并观察和记录阻塞状态。

然后,通过其他进程唤醒该进程,并观察和记录唤醒过程。

c.进程的状态转换:根据实际操作,理解和分析进程的状态转换(就绪状态、阻塞状态、执行状态)以及转换的条件和过程。

2、线程管理a.线程的创建与同步:编写一个多线程程序,创建多个线程并观察和记录线程的创建过程。

同时,使用同步机制(如互斥锁或信号量)实现线程间的同步操作。

b.线程的通信:通过消息队列或其他通信机制,实现多个线程间的通信。

观察和记录线程间的通信过程以及通信对程序执行的影响。

c.线程的状态转换:根据实际操作,理解和分析线程的状态转换(新建状态、就绪状态、阻塞状态、终止状态)以及转换的条件和过程。

三、实验步骤1、按照实验内容的要求,编写相应的程序代码。

2、编译并运行程序,观察程序的执行过程。

3、根据程序的输出和实际操作情况,分析和理解进程与线程的状态转换以及进程与线程管理的相关原理。

4、修改程序代码,尝试不同的操作方式,观察程序执行结果的变化,进一步深入理解和掌握进程与线程管理。

5、完成实验报告,总结实验过程和结果,提出问题和建议。

四、实验总结通过本次实验,我们深入了解了计算机操作系统中的进程与线程管理原理和实践操作。

在实验过程中,我们不仅学习了如何利用编程语言实现进程和线程的操作,还通过实际操作观察和分析了进程与线程的状态转换以及进程与线程管理的基本原理。

操作系统实验二PPT教学课件

操作系统实验二PPT教学课件

Signal(mutex);
2020/12/0e9nd
4
2.在本程序中用于表现的图形界面说明:
在程序编译运行后会出现中间一个大的圆圈表 示公用的资源,上面一排五个矩形表示5个读者, 下面的五个矩形表示五个写入者。每个读者和写 入者都有3种状态,休息,等待和操作(读入或者 写入)分别用黑颜色,绿颜色,红颜色表示休息, 等待和操作。一旦操作者获得资源,可以进行读 或者写,我们就划一条从操作者中心到资源中心 的线,表示开始操作。
2020/12/09
5
3.演示界面:
2020/12/09
6
4.Win32程序框架:
InitApplication()函数
WinMain()函数
InitInstance()函数
结束返回
CreateOffscreen()函数 Renderscreen()函数
ReaderAndWriter() 函数
5个进程PhilosopherThread()
2020/12/09
3
Var mutex,wrt :Semaphore
Writeri:begin
Readcount: integer; Mutex:=wrt:=1;
Wait(wrt); 写数据集;
Readcount:=0;
Signal(wrt);
Parbegin
end
Readeri:begin
coend谢谢观看
Thank You For Watching
2020/12/09
8
Wait(mutex);
readcount:=readcount+1;
If readcount=1 then Wait(wrt);

操作系统实验报告实验二

操作系统实验报告实验二

操作系统实验报告实验二一、实验目的本次操作系统实验二的目的在于深入理解和掌握操作系统中的进程管理和进程调度相关知识,通过实际的编程和实验操作,观察和分析不同进程调度算法的性能和效果,提高对操作系统核心概念的理解和应用能力。

二、实验环境本次实验在 Windows 10 操作系统下进行,使用 Visual Studio 2019作为编程工具。

实验中涉及的编程语言为 C++。

三、实验内容(一)进程创建与控制编写程序实现创建多个进程,并通过进程控制原语(如创建、等待、终止等)对进程进行管理和控制。

(二)进程调度算法实现1、先来先服务(FCFS)调度算法按照进程到达的先后顺序进行调度,先到达的进程先获得 CPU 资源进行执行。

2、短作业优先(SJF)调度算法优先调度执行时间短的进程,以减少平均等待时间。

3、时间片轮转(RR)调度算法将 CPU 时间划分为固定大小的时间片,每个进程在一个时间片内执行,时间片结束后切换到下一个进程。

(三)性能评估指标1、平均等待时间所有进程等待时间的总和除以进程数量。

2、平均周转时间所有进程周转时间的总和除以进程数量。

周转时间为进程从提交到完成的时间间隔。

四、实验步骤(一)进程创建与控制1、定义进程结构体,包含进程 ID、到达时间、执行时间等信息。

2、使用系统调用或库函数创建进程。

3、在父进程中通过等待函数等待子进程结束,并获取子进程的返回状态。

(二)进程调度算法实现1、先来先服务(FCFS)调度算法按照进程到达时间的先后顺序将进程放入就绪队列。

从就绪队列中取出第一个进程进行调度执行。

2、短作业优先(SJF)调度算法计算每个进程的执行时间。

按照执行时间从小到大的顺序将进程放入就绪队列。

从就绪队列中取出执行时间最短的进程进行调度执行。

3、时间片轮转(RR)调度算法将进程按照到达时间先后顺序放入就绪队列。

为每个进程分配一个时间片,当时间片用完后,将进程放入就绪队列尾部,重新调度下一个进程。

操作系统实验二(进程管理)

操作系统实验二(进程管理)

操作系统进程管理实验实验题目:(1)进程的创建编写一段程序,使用系统调用fork( )创建两个子进程。

当此程序运行时,在系统中有一个父进程和两个子进程活动。

让每一个进程在屏幕上显示一个字符:父进程显示字符“a”;子进程分别显示字符“b”和字符“c”。

试观察记录屏幕上的显示结果,并分析原因。

(2)进程的控制修改已编写的程序,将每个进程输出一个字符改为每个进程输出一句话,在观察程序执行时屏幕上出现的现象,并分析原因。

(3)编制一段程序,使其实现进程的软中断通信。

要求:使用系统调用fork( )创建两个子进程,再用系统调用signal( )让父进程捕捉键盘上来的中断信号(即按Del键);当捕捉到中断信号后,父进程调用系统调用kill( )向两个子进程发出信号,子进程捕捉到信号后分别输出下列信息后终止: Child process 1 is killed by parent! Child process 2 is killed by parent! 父进程等待两个子进程终止后,输出如下的信息后终止: Parent process is killed! 在上面的程序中增加语句signal(SIGINT, SIG_IGN)和signal(SIGQUIT, SIG_IGN),观察执行结果,并分析原因。

(4)进程的管道通信编制一段程序,实现进程的管道通信。

使用系统调用pipe( )建立一条管道线;两个进程P1和P2分别向管道各写一句话: Child 1 is sending a message! Child 2 is sending a message! 而父进程则从管道中读出来自于两个子进程的信息,显示在屏幕上。

要求父进程先接收子进程P1发来的消息,然后再接收子进程P2发来的消息。

实验源程序及报告:(1)、进程的创建#include <stdio.h>int main(int argc, char *argv[]){int pid1,pid2; /*fork first child process*/if ( ( pid1=fork() ) < 0 ){printf( "ProcessCreate Failed!");exit(-1);}if ( ( pid1=fork() ) == 0 ){printf( "b\n" );}/*fork second child process*/if ( ( pid2=fork() ) < 0 ){printf( "ProcessCreate Failed!"); exit(-1);}if ( ( pid2=fork() ) == 0 ){printf( "c\n" );}/*parent process*/else{wait(NULL);printf( "a\n" );exit(0);}return 0;}(2)、进程的控制#include <stdio.h>int main(int argc, char *argv[]){ int pid1,pid2;/*fork first child process*/if ( ( pid1=fork() ) < 0 ){printf( "ProcessCreate Failed!");exit(-1);}if ( ( pid1=fork() ) == 0 ){printf( "This is my Unix OS program!\n" ); }/*fork second child process*/if ( ( pid2=fork() ) < 0 ){printf( "ProcessCreate Failed!");exit(-1);}if ( ( pid2=fork() ) == 0 ){printf( "This is the second Child process!\n" ); }/*parent process*/else{wait(NULL);printf( "This is the Parent process\n" );exit(0);}return 0;}(3)编制一段程序,使其实现进程的软中断通信。

操作系统实验答案-实验2Linux的基本操作及vi的使用(答案)

操作系统实验答案-实验2Linux的基本操作及vi的使用(答案)

实验二Linux的基本命令操作及vi的使用实验目的:1、熟悉Linux操作系统环境2、熟悉Linux操作系统的文件结构3、熟悉Linux操作系统的基本命令4、熟悉Linux操作系统的文件组织方式5、学习使用vi编辑器建立、编辑、显示以及加工处理文本文件。

实验内容及要求:1、登陆实验室的Linux服务器。

启动电脑,进入Windows操作系统,在“开始”-〉“运行”中输入“Telnet 10.200.41。

178”,即可登陆实验室的Linux服务器.在“Login:”提示后输入“stu”+学号(如02号同学输入stu02),按下回车键。

在“Password:”提示后输入“123”(注意输入密码时屏幕上不会有“*”等符号出现,这和Windows 不同),按下回车键,若出现“[os@root os]$”或“-bash—2。

05b$”,表示已成功登陆系统,可以开始输入指令操作。

思考:(用pwd指令)查看自己登陆后位于Linux的哪个目录,写出该目录的路径,与自己周围的同学比较,看是否相同.(可查阅Linux资料了解“/home"目录的功能介绍)2、在Linux中进行以下基本操作:1)在当前目录下新建一个名为(自己姓名首字母缩写+学号后3位数)的子目录。

写出你所用的指令.(例如:mkdir zq000 )2)进入刚创建的子目录环境下.(提示:指令cd)3)在刚创建的子目录下新建一个名为abc.txt的文件。

写出你所用的指令。

(提示:新建文件的指令是touch)4)将/目录下(即根目录下)的welcome.txt文件复制到自己的子目录下,写出你所用的指令.cp –i /root/stu62/abc.txt /home/welcome.txt5)写出welcome.txt文件的内容。

(提示:用cat指令查看)Hello, Boys and girls ,welcome to the wonderful Linux world!3、在Linux中进行以下基本操作:1)进入自己的主目录。

《操作系统》实验二

《操作系统》实验二

《操作系统》实验二一、实验目的本实验旨在加深对操作系统基本概念和原理的理解,通过实际操作,提高对操作系统设计和实现的认知。

通过实验二,我们将重点掌握进程管理、线程调度、内存管理和文件系统的基本原理和实现方法。

二、实验内容1、进程管理a.实现进程创建、撤销、阻塞、唤醒等基本操作。

b.设计一个简单的进程调度算法,如轮转法或优先级调度法。

c.实现进程间的通信机制,如共享内存或消息队列。

2、线程调度a.实现线程的创建、撤销和调度。

b.实现一个简单的线程调度算法,如协同多任务(cooperative multitasking)。

3、内存管理a.设计一个简单的分页内存管理系统。

b.实现内存的分配和回收。

c.实现一个简单的内存保护机制。

4、文件系统a.设计一个简单的文件系统,包括文件的创建、读取、写入和删除。

b.实现文件的存储和检索。

c.实现文件的备份和恢复。

三、实验步骤1、进程管理a.首先,设计一个进程类,包含进程的基本属性(如进程ID、状态、优先级等)和操作方法(如创建、撤销、阻塞、唤醒等)。

b.然后,实现一个进程调度器,根据不同的调度算法对进程进行调度。

可以使用模拟的方法,不需要真实的硬件环境。

c.最后,实现进程间的通信机制,可以通过模拟共享内存或消息队列来实现。

2、线程调度a.首先,设计一个线程类,包含线程的基本属性(如线程ID、状态等)和操作方法(如创建、撤销等)。

b.然后,实现一个线程调度器,根据不同的调度算法对线程进行调度。

同样可以使用模拟的方法。

3、内存管理a.首先,设计一个内存页框类,包含页框的基本属性(如页框号、状态等)和操作方法(如分配、回收等)。

b.然后,实现一个内存管理器,根据不同的内存保护机制对内存进行保护。

可以使用模拟的方法。

4、文件系统a.首先,设计一个文件类,包含文件的基本属性(如文件名、大小等)和操作方法(如创建、读取、写入、删除等)。

b.然后,实现一个文件系统管理器,包括文件的存储和检索功能。

操作系统实验报告

操作系统实验报告

操作系统实验报告本次操作系统实验我们使用了Linux操作系统,对实验平台进行相关操作,有了更直观的理解和掌握对操作系统的认识。

实验一:基础命令的运用在实验一中,我们使用了一些基础命令进行文件操作。

通过输入ls命令可以查看当前目录下的所有文件和文件夹,并通过输入cd命令进入指定的目录,使用pwd命令查看当前所在的目录路径。

同时,我们也学会了文件的创建,复制,删除等操作,使用touch命令可以创建新文件,使用cp和mv可以进行复制和移动文件等操作,使用rm命令可以删除指定的文件或文件夹。

实验二:进程的管理在实验二中,我们学习了进程的管理与调度。

通过命令ps -aux可以查看当前正在运行的所有进程,top命令可以即时查看当前的系统状态并了解CPU和内存的使用情况,kill命令可以终止指定的进程,nice可以改变进程的优先级。

同时,我们还学会了后台进程的管理,使用&符号可以将进程放入后台运行,使用jobs命令可以查看后台进程的状态,使用fg 命令可以将后台进程切换到前台。

实验三:文件系统的管理在实验三中,我们学习了对文件系统的管理。

使用df命令可以查看磁盘空间的使用情况,使用mkfs.ext4可以创建格式化后的磁盘分区,使用mount命令可以将指定的文件系统挂载到指定的挂载点。

同时,我们还学会了对文件和目录权限的管理,使用chmod命令可以改变文件和目录的权限,使用chown命令可以改变文件和目录的所有者,使用chgrp命令可以改变文件和目录的所属组。

实验四:进程间通信在实验四中,我们学习了进程间通信的方式。

使用管道可以实现进程间的数据传输,使用信号可以实现进程间的相互通信,使用共享内存可以实现进程间的共享数据。

同时,我们还学习了线程的创建和管理,使用pthread_create命令可以创建一个新的线程,使用pthread_join命令可以控制线程的结束,使用pthread_exit命令可以结束一个线程。

操作系统实验报告2doc

操作系统实验报告2doc

操作系统实验报告2doc操作系统实验报告2篇一:操作系统实验二实验报告操作系统实验报告——实验二:线程和管道通信实验一、实验目的通过Linux 系统中线程和管道通信机制的实验,加深对于线程控制和管道通信概念的理解,观察和体验并发进(线)程间的通信和协作的效果 ,练习利用无名管道进行进(线)程间通信的编程和调试技术。

二、实验说明1) 与线程创建、执行有关的系统调用说明线程是在共享内存中并发执行的多道执行路径,它们共享一个进程的资源,如进程程序段、文件描述符和信号等,但有各自的执行路径和堆栈。

线程的创建无需像进程那样重新申请系统资源,线程在上下文切换时也无需像进程那样更换内存映像。

多线程的并发执行即避免了多进程并发的上下文切换的开销又可以提高并发处理的效率。

pthread 库中最基本的调用。

1.pthread_create 系统调用语法:#includeInt pthread_create(pthread_t *thread,pthread_attr_t *attr,void *(*start_routine)(void *) Void *arg);pthread_create 函数创建一个新的线程。

pthread_create 在thread 中保存新线程的标识符。

Attr 决定了线程应用那种线程属性。

使用默认可给定参数 NULL; (*start_routine) 是一个指向新线程中要执行的函数的指针 arg 是新线程函数携带的参数。

Pthread_create 执行成功会返回0并在 thread 中保存线程标识符。

执行失败则返回一个非0的出错代码2.pthread_exit 系统调用语法:#includevoid pthread_exit(void *retval);pthread_exit 函数使用函数pthread_cleanup_push 调用任何用于该线程的清除处理函数,然后中止当前进程的执行,返回retval。

操作系统实验二

操作系统实验二

暨南大学本科实验报告专用纸一、实验目的通过进程的创建、撤销和运行加深对进程概念和进程并发执行的理解,明确进程与程序之间的区别。

二、实验环境及设备(一)实验室名称:计算机实验室(二)主要仪器设备:PC机、Linux操作系统环境三、实验内容(1)编写一段程序,使用系统调用fork()来创建两个子进程,并由父进程重复显示字符某字符串和自己的标识数,而子进程则重复显示某字符串和自己的标识数。

(2)编写一段程序,使用系统调用fork()来创建一个子进程。

子进程通过系统调用exec()更换自己的执行代码,显示新的代码后,调用exit()结束。

而父进程则调用waitpid()等待子进程结束,并在子进程结束后显示子进程的标识符,然后正常结束。

四、实验调试分析1、实验函数说明(1)fork()创建新进程要创建一个进程,最基本的系统调用是fork。

系统调用fork用于派生一个进程,头文件:#include <unistd.h>函数定义:int fork( void );返回值:子进程中返回0,父进程中返回子进程ID,出错返回-1函数说明:一个现有进程可以调用fork函数创建一个新进程。

由fork创建的新进程被称为子进程(child process)。

fork函数被调用一次但返回两次。

两次返回的唯一区别是子进程中返回0值而父进程中返回子进程ID。

子进程是父进程的副本,它将获得父进程数据空间、堆、栈等资源的副本。

注意,子进程持有的是上述存储空间的“副本”,这意味着父子进程间不共享这些存储空间,它们之间共享的存储空间只有代码段。

(2)exec函数族头文件:#include <unistd.h>函数族:int execl(const char *path, const char *arg, ...);int execlp(const char *file, const char *arg, ...);int execle(const char *path, const char *arg, const char *envp[]);int execv(const char *path, const char *argv[]);int execve(const char *path, const char *argv[], const char *envp[];参数说明:execl的第一个参数是包括路径的可执行文件,后面是列表参数,列表的第一个为命令path,接着为参数列表,最后必须以NULL结束。

操作系统实验

操作系统实验

操作系统实验报告(一)Linux基本操作与编程(验证性 2学时)1、实验目(de):1)熟悉Linux操作系统(de)环境和使用.2)了解LINUX系统(de)安装过程.(注:表示可选择)3)掌握Linux环境下(de)命令操作.2、实验内容:(1)完成LINUX系统(de)登录,启动终端.进行下列操作并记录结果(要求:结果以屏幕截图表示).1)运行pwd命令,确定你当前(de)工作目录.2)利用以下命令显示当前工作目录(de)内容: ls –l3)运行以下命令: ls –al4)使用mkdir命令建立一个子目录subdir.5)使用cd命令,将工作目录改到根目录(/)上.6)使用ls-l命令列出/dev(de)内容.7)使用不带参数(de)命令cd改变目录,然后用pwd命令确定你当前(de)工作目录是哪里8)使用命令cd ../..,你将工作目录移到什么地方(2)在LINUX下查看你(de)文件.1)利用cd命令,将工作目录改到你(de)主目录上.2)将工作目录改到你(de)子目录subdir,然后运行命令: date > file1 将当前日期和时间存放到新建文件file1中.3)使用cat命令查看file1文件(de)内容.4)利用man命令显示date命令(de)用法: man date5)将date命令(de)用法附加到文件file1(de)后面:man date >> file16)利用cat命令显示文件file1(de)内容.7)利用ls -l file1命令列出文件file1(de)较详细(de)信息.运行ls -l/bin 命令显示目录(de)内容.8)利用ls -l/bin|more命令行分屏显示/bin目录(de)内容.9)利用cp file1 fa命令生成文件file1(de)副本.然后利用ls -l命令查看工作目录(de)内容.10)用cd命令返回你(de)主目录,输入命令ls –l后,解释屏幕显示(de)第一列内容(de)含义.(3)编写能输出“Hello world”问候语(de)C程序,并在终端中编译、执行.要求记录所使用(de)命令及结果.操作步骤:1)在文本编辑器中,编写C程序如下:include ""main(){ printf("hello"); }2) 在终端中,用gcc命令进行编译,生成可执行文件a.gcc –o a3) 在终端中执行a (de)命令如下:./a(4)编写一个程序:显示信息“Time for Play”,并能在后台运行一段时间(自定义)后,弹出信息提醒用户.要求记录所使用(de)命令及结果.(提示:使用sleep(s)函数)3、实验结果分析:(对上述实验内容中(de)各题结果,进行分析讨论.并回答下列问题)(1)进程包括哪些特征间断性, 失去封闭性, 不可再现性, 动态性, 并发性, 独立性(2)在Linux中,如何设置前、后台命令和程序(de)执行命令后直接加 & ,这个命令就在后台执行;正在运行(de)命令,使用Ctrl+z ,就挂起; jobs命令,可以现实后台,包括挂起(de)命令;使用 bg %作业号就可以把挂起(de)命令在后台执行;使用 fg %作业号就可以把后台命令调到前台(3)你所使用(de)Linux系统(de)内核版本是多少用什么命令查看内核版本目前你所了解(de)各发行版本(de)情况如何Linux version (gcc version (Red Hat (GCC) ) 1 SMP Tue Jan 2911:48:01 EST 2013(4)你对Linux系统有什么认识linux是一款开放性(de)操作系统,也可以说成是开放(de)源代码系统,这些代码可以完全自由(de)修改可以再任何(de)计算机上去运行它,也就是“可移植性”,其次大家都知道,linux是由UNIX(de)概念所开发出来(de),所以它也继承了UNIX(de)稳定和效率(de)特点4、总结:你对本次实验有什么体会或看法.操作系统实验报告(二)文件访问权限设置与输入输出重定向(2学时)一、实验目(de)1、掌握linux(de)文件访问权限设置.2、熟悉输入输出重定向和管道操作.二、实验内容1、启动进入红帽linux系统2、设置文件权限:在用户主目录下创建目录test,进入test目录,用vi 创建文件file1,并输入任意(de)文字内容.用ls -l显示文件信息,注意文件(de)权限和所属用户和组.对文件file1设置权限,使其他用户可以对此文件进行写操作:chmod o+w file1.用ls -l查看设置结果.取消同组用户对此文件(de)读取权限:chmod g-r file1.查看设置结果.用数字形式来为文件file1设置权限,所有者可读、可写、可执行;其他用户和所属组用户只有读和执行(de)权限:chmod 755 file1.设置完成后查看设置结果.3、输入、输出重定向和管道(1) 输出重定向用ls命令显示当前目录中(de)文件列表:ls –l.使用输出重定向,把ls命令在终端上显示(de)当前目录中(de)文件列表重定向到文件list中:ls –l > list.查看文件list中(de)内容,注意在列表中会多出一个文件list,其长度为0. 这说明shell是首先创建了一个空文件,然后再运行ls命令:cat list.再次使用输出重定向,把ls命令在终端上显示(de)当前目录中(de)文件列表重定向到文件list中.这次使用追加符号>>进行重定向:ls –l >> list.查看文件list(de)内容,可以看到用>>进行重定向是把新(de)输出内容附加在文件(de)末尾,注意其中两行list文件(de)信息中文件大小(de)区别:cat list.重复命令ls –l > list.再次查看文件list中(de)内容,和前两次(de)结果相比较,注意list文件大小和创建时间(de)区别.(2) 管道who |grep root命令(de)结果是命令ls –l |wc –l结果是4、退出linux系统操作步骤:在主菜单上选择“注销” ->关闭计算机.三、实验结果与讨论(根据实验结果回答下列问题)1. 文件(de)权限如下:-rw-r—r-- 1 root root 19274 Jul 14 11:00回答:-rw-r—r-- (de)含义是什么答:是LINUX/FTP(de)简易权限表示法:对应于本用户-所在组-其他人(de)权限,每一个用执行(x)-读取(r)-写入(w)如本题若是说自己可以读取写入不可以执行,所在组和其他人只能读取.2、文件(de)所有者添加执行权限(de)命令是答:chmod u+x 、赋予所有用户读和写文件权限(de)命令是四、答:chmod a+w,a+r 个人体会(你对本次实验有什么体会或看法)操作系统实验报告(三)文件和目录管理一、实验目(de)1) 掌握在Linux系统下(de)文件和文件系统(de)概念及命令;2) 掌握Linux系统下(de)目录操作.二、实验内容1. 进入linux终端后,用命令(de)操作结果回答下列问题:1)vi(de)三种工作模式是其中不能进行直接转换(de)是什么模式到什么模式命令模式、文本输入模式、末行模式命令模式不能直接到末行模式2)在vi中退出时,保存并退出(de)操作步骤是Ese:wq3)用vi 创建myfile1文件,并在其中输入任意文字一行,创建myfile2文件,任意输入文字3行.请问执行命令:cat <myfile1 >myfile2 后,myfile2中还有几行内容该命令(de)作用是用命令操作验证你(de)回答.myfile2中还有1行内容该命令(de)作用是替换myfile(de)内容4)请用至少两种不同(de)命令创建一个文本文件(),在其中写入“我是2014级学生,我正在使用Linux系统.”,记录命令及执行结果.1、Vi创建2、5)用___pwd________命令可查看所创建文件(de)绝对路径,写出它(de)绝对路径__/root_________;用___ls -l________命令查看该文件(de)类型及访问权限,其访问权限(数字和字母)分别是多少__-rw- r- - r- - 6 4 4______________.6)若将该文件(de)访问权限修改为:所有者有读写权限;其他用户只读;同组用户可读写,请写出命令,并记录结果.7)查找my开头(de)所有文件,可___find my_________命令,写出命令并记录结果8)在/home下创建子目录user,并在其中创建2个文件,名为file1和file2,file1(de)内容是/root目录(de)详细信息;file2(de)内容任意,最后将这两个文件合并为file3文件,请先写出命令序列,并在终端中验证,记录结果.2. 文件及目录操作,写出操作所使用(de)命令,并记录结果.在终端中完成下列命令操作,并记录结果在root用户主目录下创建一个mydir子目录和一个myfile文件,再在mydir下建立d1和d2两个子目录.查看mydir和myfile(de)默认权限查看当前myfile和mydir(de)权限值是多少将myfile文件分别复制到root 和dd1(de)主目录中将root主目录中(de)myfile改为yourfile通过从键盘产生一个新文件并输入I am a student查找文件是否包含student字符串三、实验结果与分析,回答下列问题:1、能够创建文件(de)命令有哪些vi 和cat>name2、能够查看当前目录(de)绝对路径(de)命令是pwd3、Linux中按用户属性将用户分成哪些类型根据文件(de)访问权限,用户又被分成哪些类型能够查看文件访问权限(de)命令是用户同组其他可读可写可执行 cat f1四、小结(本次实验(de)体会或小结)操作系统实验报告(四)作业调度算法模拟(验证性2学时)1、实验目(de):1)掌握作业调度(de)主要功能及算法.2)通过模拟作业调度算法(de)设计加深对作业管理基本原理(de)理解.3)熟悉Linux环境下应用程序(de)编程方法.2、实验内容:(1)作业调度算法(FCFS)编程模拟:编制一段程序,对所输入(de)若干作业,输入、输出数据样例如下表所示.按FCFS算法模拟调度,观察、记录并分析调度(de)输出结果情况.输入输出样例1:FCFS算法include <>include <>define SIZE 5struct Job_type{char no[2]; o,&job[i].tb,&job[i].tr);printf("输入作业顺序:\n");for(i=0;i<SIZE;i++)printf("\t%s\t%d\t%d\n",job[i].no,job[i].tb,job[i].tr);}void fcfs(){ int i,j,t=0,tw=0,tt=0;for(i=0;i<SIZE-1;i++)for(j=i+1;j<SIZE;j++)if(job[i].tb>job[j].tb){x=job[i];job[i]=job[j];job[j]=x;}printf("FCFS调度结果:\n");printf("开始时间作业号到达时间运行时间完成时间等待时间周转时间\n");for(i=0;i<SIZE;i++){printf(" %d",t);t=t+job[i].tr;tw=t-job[i].tb-job[i].tr; b; o,job[i].tb,job[i].tr,t,tw,tt);}}void main(){load();fcfs();}(2)作业调度算法(SJF)编程模拟:编程实现由短作业优先算法,分别用下面两组输入、输出数据样例进行模拟,观察分析运行结果.输入输出样例2:SJF算法输入输出A 0 4B 0 3C 0 5D 0 2E 0 1A 0 6 10 10B 0 3 6 6C 0 10 15 15D 0 1 3 3E 0 0 1 1include <>include <>define SIZE 5struct Job_type{char no[2]; o,&job[i].tb,&job[i].tr);printf("输入作业顺序:\n");for(i=0;i<SIZE;i++)printf("\t%s\t%d\t%d\n",job[i].no,job[i].tb,job[i].tr);}void sjf()n=i; pl[i].pfn=ERR;}for(i=1;i<total;i++){ pfc[i-1].next=&pfc[i];pfc[i-1].pfn=i-1;}pfc[total-1].next=NULL;pfc[total-1].pfn=total-1;freepf_head=&pfc[0];}void FIFO(int total){ int i,j;pfc_type p,t;initialize(total);busypf_head=busypf_tail=NULL;for(i=0;i<page_len;i++){if(pl[page[i]].pfn==ERR){ diseffect+=1;if(freepf_head==NULL){p=busypf_head->next;pl[busypf_head->pn].pfn=ERR; freepf_head=busypf_head;freepf_head->next=NULL;busypf_head=p;}p=freepf_head->next;freepf_head->next=NULL;freepf_head->pn=page[i];pl[page[i]].pfn=freepf_head->pfn;if(busypf_tail==NULL)busypf_head=busypf_tail=freepf_head; else{ busypf_tail->next=freepf_head;busypf_tail=freepf_head;}freepf_head=p;}}printf("FIFO:%d",diseffect);}main(){ int i; int k;printf(“请输入页(de)引用序列:\n”); for(k=0;k<page_len;k++)scanf("%d",&page[k]);for(i=4;i<=7;i++){printf("%2d page frames ",i);FIFO(i);}参考程序LRU算法,略三、实验结果分析:(对上述实验各题所使用(de)原始数据、调试数据与状态(包括出错)及最终结果进行记录并分析.)随着块数(de)增加,缺页数目也减少,4个实验中3个实验(de)块数增加到了5以后,即使块数再增加,缺页数目也是保持不变.只有实验4,块数增加到7以后,缺页数目又再次减少了四、总结:你对本次实验有什么体会或看法.。

《操作系统》实验报告(2)

《操作系统》实验报告(2)

《操作系统》实验报告(2)操作系统实验报告(2)1:实验目的本次实验旨在深入理解操作系统的进程管理和内存管理,并通过编写相应的实验程序加深对操作系统的原理和实践的理解。

2:实验环境操作系统:Windows 10开发工具:Visual Studio Code编程语言:C/C++3:实验内容3.1 进程管理3.1.1 进程的创建在操作系统中,进程创建是指从一个已经存在的进程派生出一个新进程的过程。

在本次实验中,我们使用了fork()系统调用来创建新进程,详细的创建流程如下:1:父进程调用fork()系统调用,新进程被创建并成为父进程的子进程。

2:子进程从fork()调用后开始执行,继承父进程的资源和代码。

3:父进程和子进程分别根据fork()的返回值判断当前进程是父进程还是子进程,并分别执行各自的逻辑。

3.1.2 进程的调度进程调度是操作系统的重要功能之一,旨在合理地分配 CPU 时间和资源。

在本次实验中,我们使用了简单的时间片轮转调度算法,详细的调度流程如下:1:操作系统根据进程的优先级和时间片大小进行调度,选择就绪队列中的下一个进程执行。

2:进程被调度执行,执行完当前时间片后,被放入就绪队列末尾,让出 CPU。

3:操作系统根据调度算法从就绪队列中选择下一个进程执行,重复上述步骤。

3.2 内存管理3.2.1 空闲内存的管理在操作系统中,内存管理是指对内存的合理分配和回收。

在本次实验中,我们使用了内存位图算法进行空闲内存的管理,详细的管理流程如下:1:操作系统初始化时,建立起一张内存位图,用于表示内存的分配情况。

2:对于每个请求分配内存的进程,操作系统根据位图找到合适的空闲内存块,并分配给进程使用。

3:进程释放内存时,操作系统更新内存位图,标记对应的内存块为空闲。

3.2.2 页面置换算法页面置换算法是解决物理内存不足时进行页面调度的一种重要策略。

在本次实验中,我们使用了最简单的FIFO算法进行页面置换,详细的置换流程如下:1:当物理内存不足时,操作系统根据FIFO算法,选择最早入内存的页面进行置换。

操作系统的实验二

操作系统的实验二

操作系统的实验二在学习操作系统的过程中,实验是加深理解和掌握知识的重要环节。

本次的操作系统实验二,让我对操作系统的原理和功能有了更深入的认识。

实验二的主要目标是探究进程管理和线程调度的机制。

进程和线程是操作系统中非常关键的概念,它们的有效管理和调度直接影响着系统的性能和资源利用效率。

在实验开始之前,我们需要对相关的理论知识有清晰的了解。

进程是程序在一个数据集合上的一次执行过程,它具有动态性、并发性、独立性和异步性等特征。

而线程则是进程中的一个执行单元,线程之间可以共享进程的资源,从而减少系统开销。

实验中,我们使用了特定的操作系统环境和工具来进行模拟和观察。

通过设置不同的进程和线程参数,如优先级、时间片等,来观察它们在系统中的执行情况和资源分配情况。

在进程管理部分,我们首先创建了多个进程,并为它们分配不同的资源。

例如,为某些进程分配更多的内存空间,为另一些进程分配更多的CPU 时间。

然后,我们观察这些进程的执行顺序和资源占用情况。

通过实验,我们发现,优先级较高的进程往往能够优先获得系统资源,从而更快地完成执行。

但是,如果高优先级进程一直占用资源,可能会导致低优先级进程长时间得不到执行,出现“饥饿”现象。

为了避免这种情况,操作系统通常会采用一些公平性策略,如轮转调度、多级反馈队列调度等,来确保各个进程都有机会获得资源执行。

线程调度的实验则更加复杂一些。

线程之间共享进程的资源,这使得它们的调度更加灵活和高效。

我们创建了多个线程,并为它们设置不同的优先级和执行时间。

在实验中,我们发现,当多个线程同时竞争资源时,操作系统会根据它们的优先级和等待时间来进行调度。

优先级高的线程会优先执行,但如果优先级低的线程等待时间过长,操作系统也会适时地将其调度执行,以保证系统的公平性和响应性。

此外,我们还研究了进程和线程之间的通信方式。

进程之间的通信通常需要通过共享内存、消息队列、管道等方式来实现,而线程之间由于共享进程的资源,可以直接通过共享变量等方式进行通信。

操作系统实验二实验报告

操作系统实验二实验报告

实验二处理机管理(4学时)实验目的正确理解提高处理机的利用率及改善系统性能在很大程度上取决于处理机调度性能的好坏,在操作系统中调度的实质是一种资源分配,调度算法是指根据系统的资源分配策略规定的资源分配算法,对不同的系统和系统目标,应采用不的调度算法。

(或)在多道程序或多任务系统中,系统同时处于就绪状态的进程有若干个。

也就是说能运行的进程数远远大于处理机个数。

为了使系统中的各进程能有条不紊地运行,必须选择某种调度策略,以选择一进程占用处理机。

通过本实验,加深对处理机调度的理解。

实验内容处理机管理是操作系统中非常重要的部分。

为深入理解进程管理部分的功能,设计几个调度算法,模拟实现处理机的调度。

编程模拟FCFS调度算法、SJ(P)F算法、高优先权调度算法、基于时间片轮转调度算法。

注:“基于时间片轮转调度算法模拟”为必作,其余选做。

实验准备及实验设备计算机,Tc2.0实验步骤正确理解各调度算法的基本思想;根据各调度算法定义PCB(模拟)的格式:FCFS算法和基于时间片轮转调度算法,可设PCB的格式为:高优先权调度算法可设PC为:在正确理解各调度算的基础上编写出相应的程序。

在所设计的调度程序中,针对不同算法应包含显示和打印语句,以便显示或打印程序运行的初值和运行结果:各PCB的初始状态,选中运行进程的名称、运行后各PCB状态以及每次调度时,就绪队列的进程排列顺序(针对不同算法有所不同)。

(源程序)实验结果(运行所编的模拟调度程序,所得结果略)FCFS算法比较有利于长作业(进程),而不利于短作业(进程)。

SJ(P)F算法不利于长作业(进程),该算法未考虑作业的紧迫程序,因而不能保证紧迫性作业(进程)会被及时处理,并且由于作业(进程)的长短是用户所提供的估计执行时间而定的,致使该算法不一定能真正做到短作业优先调度。

高优先权(分动态和静态优先权)调度算法即照顾了短作业,又考虑了作业到达的紧迫性。

对于静态优先权法,系统开销小,但不够精确,可能出现优先权低的作业(进程)长期没有被调度的情况;对于动态优先权(高响应比优先)法,它既照顾了短作业,又考虑了作业的先后次序,不会使长作业长期得不到服务,但每要进行调度之前,都须做响应比的计算,会增加系统开销。

Windows操作系统实验二实验报告

Windows操作系统实验二实验报告

Windows操作系统C/C++ 程序实验姓名:_____王晨璐_____学号:____1131000046____班级:____1班_____院系:___信息工程学院_____2015__年_10_月_26_日实验二Windows 2000/xp进程控制一、背景知识二、实验目的三、工具/准备工作四、实验内容与步骤请回答:Windows所创建的每个进程都是以调用CreateProcess()API函数开始和以调用TerminateProcess()或ExitProcess() API函数终止。

1. 创建进程步骤5:编译完成后,单击“Build”菜单中的“Build 2-1.exe”命令,建立2-1.exe可执行文件。

操作能否正常进行?如果不行,则可能的原因是什么?可以正常运行。

清单2-1展示的是一个简单的使用CreateProcess() API函数的例子。

首先形成简单的命令行,提供当前的EXE文件的指定文件名和代表生成克隆进程的号码。

大多数参数都可取缺省值,但是创建标志参数使用了:CREATE_NEW_CONSOLE标志,指示新进程分配它自己的控制台,这使得运行示例程序时,在任务栏上产生许多活动标记。

然后该克隆进程的创建方法关闭传递过来的句柄并返回main() 函数。

在关闭程序之前,每一进程的执行主线程暂停一下,以便让用户看到其中的至少一个窗口。

CreateProcess() 函数有10个核心参数?本实验程序中设置的各个参数的值是:a. LPCSTR lpApplivetionName szFllenameb. LPCSTR lpCommandLine szCmdLinec. LPSECURITY_ATTRIBUTES lpProcessAttributes NULLd. LPSECURITY_ATTRIBUTES lpThreadAttributes NULLe.BOOL bInherithandle Falsef. DWORD dwCreationFlage CREATE_NEW_CONSOLEg. LPVOID ipEnvironment NULLh. LPCTSTR lpCurrentDirectory NULLI. STARTUPINFO lp startupinfo &siJ. LPPROCESS_INFORMATION lpProcessInformation &pi 程序运行时屏幕显示的信息是:提示:部分程序在Visual C++环境完成编译、链接之后,还可以在Windows 2000/xp的“命令提示符”状态下尝试执行该程序,看看与在可视化界面下运行的结果有没有不同?为什么?界面是一样的2. 正在运行的进程步骤10:编译完成后,单击“Build”菜单中的“Build 2-2.exe”命令,建立2-2.exe可执行文件。

操作系统实验二进程调度

操作系统实验二进程调度

操作系统实验二进程调度摘要:进程调度是操作系统中重要的功能之一,可以决定进程的优先级和执行顺序。

本实验主要介绍了进程调度的概念、不同的调度算法以及如何实现进程调度。

一、概念介绍进程调度是操作系统中的一项重要功能,用于决定哪个进程能够在处理器上运行。

在操作系统中存在多个进程需要同时运行,而处理器资源有限,因此需要通过进程调度来合理地安排进程的执行顺序,提高系统的效率。

进程调度的目标是使系统的吞吐量最大化、响应时间最短、资源利用率最高等。

常见的调度策略包括先来先服务(FCFS)、最短作业优先(SJF)、时间片轮转、优先级调度等。

二、调度算法介绍1.先来先服务(FCFS)先来先服务(FCFS)是最简单的调度算法,按照进程到达的顺序进行调度,先到达的进程先执行。

FCFS算法不考虑进程的优先级和执行时间,容易导致平均等待时间长。

2.最短作业优先(SJF)最短作业优先(SJF)调度算法按照进程所需的CPU时间进行排序,优先调度所需时间最短的进程。

SJF算法可以减少平均等待时间,但可能会导致长作业等待时间过长。

3.时间片轮转时间片轮转是一种抢占式调度策略,将处理器的使用权分割为若干个时间片,每个进程在一个时间片内运行,如果时间片用完仍未运行完,则将该进程放到队列的末尾,并让下一个进程运行。

时间片轮转算法保证了公平性和响应时间,但可能会导致上下文切换次数过多。

4.优先级调度优先级调度是根据进程的优先级进行调度,优先级高的进程先执行。

优先级可以根据进程类型、实时性等因素确定,不同的操作系统可能有不同的优先级范围和策略。

三、实验步骤1.定义进程结构:定义进程结构体,包含进程ID、进程状态、优先级、执行时间等信息。

2.初始化进程队列:将所有进程按照到达的先后顺序加入到进程队列中。

3.实现调度算法:根据不同的调度算法,实现相应的进程调度算法代码。

可以使用循环遍历进程队列,并根据不同的调度策略决定下一个要执行的进程。

4.执行进程调度:在每个时间片结束后,根据调度算法选取下一个要执行的进程,并更新进程的状态和执行时间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)为每个进程任意确定一个要求运行时间和到达 时间。
(3)按照进程到达的先后顺序排成一个循环队列。 再设一个队首指针指向第一个到达进程的首址。 (4)执行处理机调度时,开始选择队首的第一个进 程运行。另外再设一个当前运行进程指针,指向当 前正运行的进程。 (5)由于本实验是模拟实验,所以对被选中进程并 不实际启动运行,而只是执行:
(1)选中运行进程的名、运行后各进程控制块状态; (2)计算平均周转时间和带权平均周转时间。

总结收获体会及对该题解的改进意见和见解
输入
时间片
作业号 到达时间
1
A 0 B 1 C 2 D 3 4 E服务时间43524
完成时间=开始时间+服务时间 周转时间=完成时间-到达时间 带权周转时间=周转时间/服务时间
(7)若就绪队列不空,则重复上述的(5)和(6) 步骤直到所有进程都运行完为止。 (8)在所设计的调度程序中,应包含显示或打印语 句。以便显示或打印每次选中进程的名称及运行 一次后队列的变化情况。
数据结构:
typedef struct pcb /*进程控制块定义*/
{ char pname[N]; /*进程名*/
①估计运行时间减1个时间片;
②输出当前运行进程的名字。
用这两个操作来模拟进程的一次运行。
(6)进程运行一次后,以后的调度则将当前指针依 次下移一个位置,指向下一个进程,即调整运行 指针指向该进程的链接指针所指进程,即指示应 运行进程。同时还应判断该进程的剩余运行时间 是否为零。若不为零,则等待下一轮的运行;若 该进程的剩余运行时间为零,则将该进程的运行 状态置为完成态C,并退出循环队列。
输出
运行时刻: 运行进程名: 运行后状态: 1 A R 2 B R 3 A R 4 C R 5 B R 6 D R 7 A R 8 E R
9 10 11 12 13 14 15 16 17 18 C B D A E C E C E C
R C R C R R R R C C
操作系统实验二
时间片轮转调度算法
的实现
(1)假设系统有5个进程,每个进 程用一个进程控制块PCB来代表, PCB的格式如右图所示。其中:
进程名:即进程标识。
进程名 链接指针 到达时间 估计运行时间 进程状态
链接指针:指出下一个到达进程的进程控制块首地址。按 照进程到达的顺序排队。系统设置一个队头和队尾指针分 别指向第一个和最后一个进程。新生成的进程放队尾。 估计运行时间:可由设计者任意指定一个时间值。 到达时间:进程创建时的系统时间或由用户指定。调度时, 总是选择到达时间最早的进程。 进程状态:为简单起见,这里假定进程有两种状态:就绪 和完成。并假定进程一创建就处于就绪状态,用R表示。 当一个进程运行结束时,就将其置成完成态,用C表示。
int runtime;
char state; }PCB;
/*服务时间*/
/*进程状态*/
int arrivetime; /*到达时间*/ struct pcb *next;/*联接指针*/
实验要求:



给出程序中使用的数据结构及符号说明 给出程序流程图和源程序,源程序中要附有详 细的注释 输入:时间片,五个进程的进程名、到达时间、 服务时间 输出:打印程序运行时的初值和运行结果,要 求如下:
相关文档
最新文档