2018高考全国2卷文科数学带答案

合集下载

2018文科数学高考真题全国卷Ⅱ试卷及答案详解-最全word版本

2018文科数学高考真题全国卷Ⅱ试卷及答案详解-最全word版本

2018年普通高等学校招生全国统一考试文科数学一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.()i 23i += A .32i -B .32i +C .32i --D .32i -+2.已知集合{}1,3,5,7A =,{}2,3,4,5B =,则AB =A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,73.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A .0.6B .0.5C .0.4D .0.36.双曲线22221(0,0)x y a b a b-=>>3A .2y x =±B .3y x =±C .2y = D .3y = 7.在ABC △中,5cos 2C =1BC =,5AC =,则AB = A .42B 30C 29D .258.为计算11111123499100S =-+-++-,设计了如图的程序框图,则在空白框中应填入A .1i i =+B .2i i =+ C.3i i =+D .4i i =+9.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 A B C D 10.若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知1F ,2F 是椭圆C的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C的离心率为 A .1 B .2C D 112.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)f f f ++(50)f ++=A .50-B .0C .2D .50二、填空题:本题共4小题,每小题5分,共20分. 13.曲线2ln y x =在点(1,0)处的切线方程为__________.14.若,x y 满足约束条件250,230,50,x y x y x +-⎧⎪-+⎨⎪-⎩≥≥≤ 则z x y =+的最大值为__________.15.已知5π1tan()45α-=,则tan α=__________. 16.已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30︒,若SAB △的面积为8,则该圆锥的体积为__________.三、解答题:共70分。

2018高考全国2卷文科数学带答案

2018高考全国2卷文科数学带答案

绝密★启用前2018年普通高等学校招生全国统一考试文科数学本试卷共23题.共150分.共4页。

考试结束后.将本试卷和答题卡一并交回。

注意事项:1.答题前.考生先将自己的姓名、准考证号码填写清楚.将条形码准确粘贴在条形码区域内。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写.字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答.超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.作图可先使用铅笔画出.确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁.不要折叠、不要弄破、弄皱.不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题.每小题5分.共60分。

在每小题给出的四个选项中.只有一项是符合题目要求的。

1.i(2+3i)=A .32i -B .32i +C .32i --D .32i -+ 2.已知集合{}1,3,5,7A =.{}2,3,4,5B =则A B = A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,73.函数2e e ()x xf x x--=的图象大致为4.已知向量a .b 满足||1=a .1⋅=-a b .则(2)⋅-=a a bA .4B .3C .2D .05.从2名男同学和3名女同学中任选2人参加社区服务.则选中2人都是女同学的概率为 A .0.6 B .0.5 C .0.4 D .0.36.双曲线22221(0,0)x y a b a b -=>>则其渐近线方程为A .y =B .y =C .y =D .y =7.在ABC △中.cos 2C =1BC =.5AC =.则AB =A .BCD .8.为计算11111123499100S =-+-++-.设计了右侧的程序框图.则在空白框中应填入A .1i i =+B .2i i =+C .3i i =+D .4i i =+9.在长方体1111ABCD A B C D -中.E 为棱1CC的中点.则异面直线AE 与CD 所成角的正切值为ABCD 10.若()cos sin f x x x =-在[0,]a 是减函数.则a 的最大值是A .π4 B .π2 C .3π4D .π 11.已知1F .2F 是椭圆C 的两个焦点.P 是C 上的一点.若12PF PF ⊥.且2160PF F ∠=︒.则C的离心率为A.1B.2-CD 1 12.已知()f x 是定义域为(,)-∞+∞的奇函数.满足(1)(1)f x f x -=+.若(1)2f =.则(1)(2)(3)(50)f f f f ++++=A .50-B .0C .2D .50二、填空题:本题共4小题.每小题5分.共20分。

2018年高考真题全国卷Ⅱ文数试题解析(解析版)详细答案

2018年高考真题全国卷Ⅱ文数试题解析(解析版)详细答案

绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.A. B. C. D.【答案】D【解析】分析:根据公式,可直接计算得详解:,故选D.点睛:复数题是每年高考的必考内容,一般以选择或填空形式出现,属简单得分题,高考中复数主要考查的内容有:复数的分类、复数的几何意义、共轭复数,复数的模及复数的乘除运算,在解决此类问题时,注意避免忽略中的负号导致出错.2. 已知集合,,则A. B. C. D.【答案】C【解析】分析:根据集合可直接求解.详解:,,故选C点睛:集合题也是每年高考的必考内容,一般以客观题形式出现,一般解决此类问题时要先将参与运算的集合化为最简形式,如果是“离散型”集合可采用Venn图法解决,若是“连续型”集合则可借助不等式进行运算.3. 函数的图像大致为A. AB. BC. CD. D【答案】B【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像.详解:为奇函数,舍去A,舍去D;,所以舍去C;因此选B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.4. 已知向量,满足,,则A. 4B. 3C. 2D. 0【答案】B【解析】分析:根据向量模的性质以及向量乘法得结果.详解:因为所以选B.点睛:向量加减乘:5. 从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A. B. C. D.【答案】D【解析】分析:分别求出事件“2名男同学和3名女同学中任选2人参加社区服务”的总可能及事件“选中的2人都是女同学”的总可能,代入概率公式可求得概率.详解:设2名男同学为,3名女同学为,从以上5名同学中任选2人总共有共10种可能,选中的2人都是女同学的情况共有共三种可能则选中的2人都是女同学的概率为,故选D.点睛:应用古典概型求某事件的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件;第二步,分别求出基本事件的总数与所求事件中所包含的基本事件个数;第三步,利用公式求出事件的概率.6. 双曲线的离心率为,则其渐近线方程为A. B. C. D.【答案】A【解析】分析:根据离心率得a,c关系,进而得a,b关系,再根据双曲线方程求渐近线方程,得结果.详解:因为渐近线方程为,所以渐近线方程为,选A.点睛:已知双曲线方程求渐近线方程:.7. 在中,,,,则A. B. C. D.【答案】A【解析】分析:先根据二倍角余弦公式求cosC,再根据余弦定理求AB.详解:因为所以,选A.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.8. 为计算,设计了右侧的程序框图,则在空白框中应填入A.B.C.D.【答案】B【解析】分析:根据程序框图可知先对奇数项累加,偶数项累加,最后再相减.因此累加量为隔项.详解:由得程序框图先对奇数项累加,偶数项累加,最后再相减.因此在空白框中应填入,选B.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.9. 在正方体中,为棱的中点,则异面直线与所成角的正切值为A. B. C. D.【答案】C【解析】分析:利用正方体中,,将问题转化为求共面直线与所成角的正切值,在中进行计算即可.详解:在正方体中,,所以异面直线与所成角为,设正方体边长为,则由为棱的中点,可得,所以则.故选C.点睛:求异面直线所成角主要有以下两种方法:(1)几何法:①平移两直线中的一条或两条,到一个平面中;②利用边角关系,找到(或构造)所求角所在的三角形;③求出三边或三边比例关系,用余弦定理求角.(2)向量法:①求两直线的方向向量;②求两向量夹角的余弦;③因为直线夹角为锐角,所以②对应的余弦取绝对值即为直线所成角的余弦值.10. 若在是减函数,则的最大值是A. B. C. D.【答案】C【解析】分析:先确定三角函数单调减区间,再根据集合包含关系确定的最大值详解:因为,所以由得因此,从而的最大值为,选A.点睛:函数的性质:(1). (2)周期 (3)由求对称轴, (4)由求增区间;由求减区间.11. 已知,是椭圆的两个焦点,是上的一点,若,且,则的离心率为A. B. C. D.【答案】D【解析】分析:设,则根据平面几何知识可求,再结合椭圆定义可求离心率.详解:在中,设,则,又由椭圆定义可知则离心率,故选D.点睛:椭圆定义的应用主要有两个方面:一是判断平面内动点与两定点的轨迹是否为椭圆,二是利用定义求焦点三角形的周长、面积、椭圆的弦长及最值和离心率问题等;“焦点三角形”是椭圆问题中的常考知识点,在解决这类问题时经常会用到正弦定理,余弦定理以及椭圆的定义.12. 已知是定义域为的奇函数,满足.若,则A. B. 0 C. 2 D. 50【答案】C【解析】分析:先根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果.详解:因为是定义域为的奇函数,且,所以,因此,因为,所以,,从而,选C.点睛:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.二、填空题:本题共4小题,每小题5分,共20分。

完整word版,2018高考全国2卷文科数学带答案

完整word版,2018高考全国2卷文科数学带答案

2018年普通高等学校招生全国统一考试文科数学本试卷共注意事项:23题,共150分,共4页。

考试结束后,将本试卷和答题卡一并交回。

1. 答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2. 选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3. 请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4 .作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5 .保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有项是符合题目要求的。

1. i(2+3i)=A . 3-2iB . 3 2iC . -3-2i D. -3 2i2.已知集合A<1,3,5,7 ?,B 二「2,3,4,5 [贝U A P1B二A . :3?B .C . :3,5?D.「1,2,3,4,5,7?3.函数f(x)二e - ee2e的图象大致为2 x4.已知向量a , b满足| a|=1 , a b 二-1,则a (2a-b)=C . y」x2D. y~x2AC =5,贝U AB =绝密★启用前5.A. 4从2名男同学和B . 33名女同学中任选C . 22人参加社区服务,则选中D . 02人都是女同学的概率为6.A . 0.62 2 双曲线务 ^2 abB . 0.5 C. 0.4 D . 0.3=1( a 0,b 0)的离心率为.3,则其渐近线方程为A . 42B . .30C . 29 D. 2 5在△ABC中,111 118•为计算2 _2寸a m 99 -硕,设计了右侧的程A . i =i 1B . i =i 2C . i 二i 3D .i =i 4 9 •在长方体ABCD -A 1B 1C 1D 1中,E 为棱CC 1的中点,则异面直线 AE 与CD 所成角的正切值为2B C2. 2 . 2 f (x) =cosx -sinx 在[0, a ]是减函数,则a的最大值是n- B .-4 211.已知F 1 , F 2是椭圆C 的两个焦点,则C 的离心率为\/3A. 1——212 .已知f (x)是定义域为(_::,;)的奇函数,满足f(1-x) = f(1x).若f (1>2,则f ⑴ f(2)f(3)山 f(50) =A . -50二、 填空题:本题共 4小题,每小题5分,共20分。

2018年高考全国二卷数学含答案

2018年高考全国二卷数学含答案

2018年高考全国二卷数学含答案2018年普通高等学校招生全国统一考试二卷文科数学本试卷分为第I卷(选择题)和第II卷(非选择题)两部分,共150分,考试时间120分钟。

第I卷参考公式:如果事件A、B互斥,那么P(A+B)=P(A)+P(B)。

如果事件A、B相互独立,那么P(A·B)=P(A)·P (B)。

如果事件A在一次试验中发生的概率是P,那么n次独立重复试验中恰好发生k次的概率为:Pn(k)=C(n,k)Pk(1-P)^(n-k)。

球的表面积公式:2S=4πR,其中R表示球的半径。

球的体积公式:V=4/3πR^3,其中R表示球的半径。

一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合M={x|x<4},N={x|x-2x-3<0},则集合M∩N=A。

{x|x3} C。

{x|-1<x<2} D。

{x|2<x<3}2.函数y=1/x(x≠-5)的反函数是A。

y=-5(x≠0) B。

y=x+5(x∈R) C。

y=5/x(x≠0) D。

y=x-5(x∈R)3.曲线y=x^2-3x+1在点(1,-1)处的切线方程为A。

y=3x-4 B。

y=-3x+2 C。

y=-4x+34.已知圆C与圆(x-1)^2+y^2=1关于直线y=-x对称,则圆C的方程为A。

(x+1)^2+y^2=1 B。

x+y=1 C。

x+(y+1)^2=1 D。

x+(y-1)^2=15.已知函数y=tan(2x+θ)的图象过点(-π/12,),则θ可以是A。

-π/12 B。

π/6 C。

π/12 D。

5π/126.正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为A。

75° B。

60° C。

45° D。

30°7.函数y=-e^x的图象A。

与y=e^x的图象关于y轴对称 B。

2018年全国新课标Ⅱ卷全国2卷高考文科数学试卷及参考答案与试题解析

2018年全国新课标Ⅱ卷全国2卷高考文科数学试卷及参考答案与试题解析

2018年全国新课标Ⅱ卷全国2卷高考文科数学试卷及参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5.00分)i(2+3i)=( )A.3-2iB.3+2iC.-3-2iD.-3+2i2.(5.00分)已知集合A={1,3,5,7},B={2,3,4,5},则A∩B=( )A.{3}B.{5}C.{3,5}D.{1,2,3,4,5,7}3.(5.00分)函数f(x)=的图象大致为( )A. B. C.D.4.(5.00分)已知向量,满足||=1,=-1,则•(2)=( )A.4B.3C.2D.05.(5.00分)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为( )A.0.6B.0.5C.0.4D.0.36.(5.00分)双曲线=1(a>0,b>0)的离心率为,则其渐近线方程为( )A.y=±xB.y=±xC.y=±xD.y=±x7.(5.00分)在△ABC中,cos=,BC=1,AC=5,则AB=( )A.4B.C.D.28.(5.00分)为计算S=1-+-+…+-,设计了如图的程序框图,则在空白框中应填入( )A.i=i+1B.i=i+2C.i=i+3D.i=i+49.(5.00分)在正方体ABCD-A1B1C1D1中,E为棱CC1的中点,则异面直线AE与CD所成角的正切值为( )A. B. C. D.10.(5.00分)若f(x)=cosx-sinx在[0,a]是减函数,则a的最大值是( )A. B. C. D.π11.(5.00分)已知F1,F2是椭圆C的两个焦点,P是C上的一点,若PF1⊥PF2,且∠PF2F1=60°,则C的离心率为( )A.1-B.2-C.D.-112.(5.00分)已知f(x)是定义域为(-∞,+∞)的奇函数,满足f(1-x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=( )A.-50B.0C.2D.50二、填空题:本题共4小题,每小题5分,共20分。

2018年全国卷Ⅱ文数高考试题(含答案)

2018年全国卷Ⅱ文数高考试题(含答案)

则异面直线 AE
5 2
CD 所成角的
值为
C
D
7 2
10
若 f ( x) = cos x − sin x 在 [0, a ] 是
A
π 4
函数 则 a 的最大值是
C P 是C
3π 4
B
π 2
D
π
11 A 12
知 F1
1−
F2 是椭圆 C 的两个焦点
的一点 若 PF1 ⊥ PF2
C 3 −1 2
且 ∠PF2 F1 = 60°
(
)
1 若a = 3
求 f ( x) 的单调区间
2 证明
f ( x) 只有一个零点
选考题:共 10 分 请考生在第 22 23 题中任选一题作答 如果多做,则按所做的第一题计分
22 [选修 4 4 坐标系 参数方程] 10 x = 2cos θ , 在直角坐标系 xOy 中 曲线 C 的参数方程为 y = 4sin θ
2016
的环境基础设施投资额 建立了 y
时间变
t 的两个线性回 模型 根据 2000
2016
的数据 时间变
t 的值依次为 1, 2, L,17 建立模型
建立模型
ˆ = −30.4 + 13.5t 根据 2010 y
的数据 时间变
1
t 的值依次为 1, 2, L , 7
ˆ = 99 + 17.5t y
1
a =1时
求 等式 f ( x)
0 的解集
2 若 f ( x)
1
求 a 的取值范围
绝密★ 绝密★启用前
2018
普通高等学校招生全
统一考试
文科数学试题参考答案

2018文科数学高考真题全国卷Ⅱ试卷及答案详解-最全word版本

2018文科数学高考真题全国卷Ⅱ试卷及答案详解-最全word版本

2018年普通高等学校招生全国统一考试文科数学一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有项是符合题目要求的。

1. i 2 3iA. 3 2iB. 3 2iC. 3 2iD. 3 2i2 .已知集合A1,3,5,7 , B 2,3,4,5,则Al BA. 3B. 5C.3,5D. 1,2,3,4,5,7x xe e3•函数f x —2—的图像大致为x2 26.双曲线笃与1( a 0,b 0)的离心率为3,则其渐近线方程为a bA. y 2xB. y 、3xC. y 2xD. y3x22C7 .在△ ABC 中,cos-55, BC 1 , AC 5,贝U AB25A. 4.2B. ■ 30C. 29D. 2 51 1 1 1 18.为计算S 1 2 3 4 L 99顽,设计了如图的程序框图,则在空白框中应填入已知向量a , b满足| a | 1 , a bB. 35 .从2名男同学和3名女同学中任选A. 0.6B. 0.51,则a (2a b)C. 2D. 0人参加社区服务,则选中的2人都是女同学的概率C. 0.4D. 0.3值为23 -5A .B .C.D .222210.若 f(x)cosx si nx 在[0, a ]是减函数,则a 的最大值疋nn3nA .B .C.D . n424x 2y 5 > 0, 14•若x, y 满足约束条件x 2y 3> 0,则z x y 的最大值为 . x 5 w 0,5 n 115. 已知 tan (仏 —) —,贝U tan a __________ .4 516. 已知圆锥的顶点为 S ,母线SA , SB 互相垂直,SA 与圆锥底面所成角为 30 ,若厶SAB的面积为8,则该圆锥的体积为 ____________ .三、解答题:共70分。

解答应写出文字说明、证明过程或演算步骤。

第17~21题为必考题,每个试题考生都必须作答。

2018年高考文科数学全国卷2(含详细答案)

2018年高考文科数学全国卷2(含详细答案)

数学试题 第1页(共18页)数学试题第2页(共18页)绝密★启用前2018年普通高等学校招生全国统一考试文科数学本试卷共23题,共150分,共4页。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

) 1.i(2+3i)=A .32i -B .32i +C .32i --D .32i -+ 2.已知集合{}1,3,5,7A =,{}2,3,4,5B =则A B = A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,73.函数2e e ()x xf x x --=的图象大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4 B .3 C .2 D .05.从2名男同学和3名女同学中任选2人参加社区服务,则选中2人都是女同学的概率为A .0.6B .0.5C .0.4D .0.36.双曲线22221(0,0)x y a b a b -=>>A.y = B.y =C.y = D.y = 7.在ABC △中,cos 2C =1BC =,5AC =,则AB = A.BCD.8.为计算11111123499100S =-+-++-,设计了右侧的程序框图,则在空白框中应填入A .1i i =+B .2i i =+C .3i i =+D .4i i =+9.在长方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为ABCD 10.若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是A .π4 B .π2 C .3π4D .π 11.已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为A.1- B.2CD 1--------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试题 第3页(共18页)数学试题 第4页(共18页)12.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=A .50-B .0C .2D .50二、填空题(本题共4小题,每小题5分,共20分) 13.曲线2ln y x =在点(1,0)处的切线方程为__________.14.若,x y 满足约束条件250,230,50,x y x y x +-⎧⎪-+⎨⎪-⎩≥≥≤则z x y =+的最大值为__________.15.已知51tan 45πα⎛⎫-= ⎪⎝⎭,则tan α=__________.16.已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30︒,若SA B △的面积为8,则该圆锥的体积为__________.三、解答题(共70分。

2018年全国卷2(文科数学)含答案

2018年全国卷2(文科数学)含答案

绝密★启用前2018年普通高等学校招生全国统一考试文科数学(全国II 卷)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上. 2.作答时,务必将答案写在答题卡上.写在本试卷及草稿纸上无效. 3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【D 】 A .B .C .D .2.已知集合,,则【C 】A .B .C .D .3.函数的图象大致为【B 】4.已知向量,满足,,则【B 】 A .4B .3C .2D .05.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为【D 】 A .B .C .D .6.双曲线,则其渐近线方程为【A 】A .B .C .D . ()i 23i +=32i-32i +32i --32i -+{}1,3,5,7A ={}2,3,4,5B =AB ={}3{}5{}3,5{}1,2,3,4,5,7()2e e x xf x x --=a b ||1=a 1⋅=-a b (2)⋅-=a a b 0.60.50.40.322221(0,0)x y a b a b-=>>y =y =y =y =7.在中,,,,则【A 】 A .BCD .8.为计算,设计了如图的程序框图,则在空白框中应填入【B 】A .B .C .D .9.在正方体中,为棱的中点,则异面直线与所成角的正切值为【C 】 ABCD 10.若在是减函数,则的最大值是【C 】A .B .C .D .11.已知,是椭圆的两个焦点,是上的一点,若,且,则的离心率为【D 】 A . B .CD12.已知是定义域为的奇函数,满足.若,则【C 】A .B .0C .2D .50二、填空题:本题共4小题,每小题5分,共20分.、13.曲线在点处的切线方程为 y =2x –2 .ABC △cos 2C =1BC =5AC =AB =11111123499100S =-+-++-1i i =+2i i =+3i i =+4i i =+1111ABCD A B C D -E 1CC AE CD ()cos sin f x x x =-[0,]a a π4π23π4π1F 2F C P C 12PF PF ⊥2160PF F ∠=︒C 121()f x (,)-∞+∞(1)(1)f x f x -=+(1)2f =(1)(2)(3)f f f ++(50)f ++=50-2ln y x =(1,0)14.若满足约束条件 则的最大值为 9 .15.已知,则 .16.已知圆锥的顶点为,母线,互相垂直,与圆锥底面所成角为,若的面积为,则该圆锥的体积为 8π .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23为选考题.考生根据要求作答. (一)必考题:共60分.17.(本小题满分12分)记为等差数列的前项和,已知,. (1)求的通项公式;(2)求,并求的最小值.解:(1)设{a n }的公差为d ,由题意得3a 1+3d =–15. 由a 1=–7得d =2.所以{a n }的通项公式为a n =2n –9. (2)由(1)得S n =n 2–8n =(n –4)2–16. 所以当n =4时,S n 取得最小值,最小值为–16.18.(本小题满分12分) 下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回,x y 250,230,50,x y x y x +-⎧⎪-+⎨⎪-⎩≥≥≤z x y =+5π1tan()45α-=tan α=32S SA SB SA 30︒SAB△8n S {}n a n 17a =-315S =-{}n a n S n Sy y t归模型.根据2000年至2016年的数据(时间变量的值依次为)建立模型①:;根据2010年至2016年的数据(时间变量的值依次为)建立模型②:. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.解:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为 =–30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为 =99+17.5×9=256.5(亿元).(2)利用模型②得到的预测值更可靠. 理由如下:(i )从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y =–30.4+13.5t 上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型=99+17.5t 可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ii )从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠.以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.19.(本小题满分12分)如图,在三棱锥中,,,为的中点.t 1,2,,17ˆ30.413.5y t =-+t 1,2,,7ˆ9917.5yt =+y y y P ABC-AB BC ==4PA PB PC AC ====O AC(1)证明:平面;(2)若点在棱上,且,求点到平面的距离.解:(1)因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =. 连结OB .因为AB =BC,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB ==2.由知,OP ⊥OB . 由OP ⊥OB ,OP ⊥AC知PO ⊥平面ABC .(2)作CH ⊥OM ,垂足为H .又由(1)可得OP ⊥CH ,所以CH ⊥平面POM .故CH 的长为点C 到平面POM 的距离.由题设可知OC ==2,CM =ACB =45°.所以OM ,CH =.所以点C 到平面POM . 20.(本小题满分12分)设抛物线的焦点为,过且斜率为的直线与交于,两点,.(1)求的方程;PO ⊥ABC M BC 2MC MB =C POM AC 12AC 222OP OB PB +=12AC 23BC sin OC MC ACB OM ⋅⋅∠24C y x =:F F (0)k k >l C A B ||8AB =l(2)求过点,且与的准线相切的圆的方程.解:(1)由题意得F(1,0),l的方程为y=k(x–1)(k>0).设A(x1,y1),B(x2,y2).由得.,故.所以.由题设知,解得k=–1(舍去),k=1.因此l的方程为y=x–1.(2)由(1)得AB的中点坐标为(3,2),所以AB的垂直平分线方程为,即.设所求圆的圆心坐标为(x0,y0),则解得或因此所求圆的方程为或.21.(本小题满分12分)已知函数.(1)若,求的单调区间;(2)证明:只有一个零点.解:(1)当a=3时,f(x)=,f ′(x)=.令f ′(x)=0解得x=x=当x∈(–∞,+∞)时,f ′(x)>0;当x∈(f ′(x)<0.A B C2(1)4y k xy x=-⎧⎨=⎩2222(24)0k x k x k-++=216160k∆=+=212224kx xk++=212244(1)(1)kAB AF BF x xk+=+=+++=22448kk+=2(3)y x-=--5y x=-+0022005(1)(1)16.2y xy xx=-+⎧⎪⎨-++=+⎪⎩,32xy=⎧⎨=⎩,116.xy=⎧⎨=-⎩,22(3)(2)16x y-+-=22(11)(6)144x y-++=()()32113f x x a x x=-++3a=()f x()f x3213333x x x---263x x--3-3+3-3+3-3+故f (x )在(–∞,+∞)单调递增,在(单调递减.(2)由于,所以等价于. 设=,则g ′(x )=≥0,仅当x =0时g ′(x )=0, 所以g (x )在(–∞,+∞)单调递增.故g (x )至多有一个零点,从而f (x )至多有一个零点.又f (3a –1)=,f (3a +1)=,故f (x )有一个零点. 综上,f (x )只有一个零点.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.【选修4-4:坐标系与参数方程】(本小题满分10分)在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数).(1)求和的直角坐标方程;(2)若曲线截直线所得线段的中点坐标为,求的斜率.解:(1)曲线的直角坐标方程为. 当时,的直角坐标方程为, 当时,的直角坐标方程为.(2)将的参数方程代入的直角坐标方程,整理得关于的方程 .①因为曲线截直线所得线段的中点在内,所以①有两个解,设为,,则.又由①得,故,于是直线的斜率3-3+3-3+210x x ++>()0f x =32301x a x x -=++()g x 3231x a x x -++2222(23)(1)x x x x x ++++22111626()0366a a a -+-=---<103>xOy C 2cos ,4sin x θy θ=⎧⎨=⎩θl 1cos ,2sin x t αy t α=+⎧⎨=+⎩t C l C l (1,2)l C 221416x y +=cos 0α≠l tan 2tan y x αα=⋅+-cos 0α=l 1x =l C t 22(13cos )4(2cos sin )80t t ααα+++-=C l (1,2)C 1t 2t 120t t +=1224(2cos sin )13cos t t ααα++=-+2cos sin 0αα+=l.23.【选修4-5:不等式选讲】(本小题满分10分) 设函数.(1)当时,求不等式的解集;(2)若,求的取值范围.解:(1)当时,可得的解集为. (2)等价于.而,且当时等号成立.故等价于. 由可得或,所以的取值范围是.tan 2k α==-()5|||2|f x x a x =-+--1a =()0f x ≥()1f x ≤a 1a =24,1,()2,12,26, 2.x x f x x x x +≤-⎧⎪=-<≤⎨⎪-+>⎩()0f x ≥{|23}x x -≤≤()1f x ≤|||2|4x a x ++-≥|||2||2|x a x a ++-≥+2x =()1f x ≤|2|4a +≥|2|4a +≥6a ≤-2a ≥a (,6][2,)-∞-+∞。

2018年全国卷2文科数学试题与答案解析

2018年全国卷2文科数学试题与答案解析

====绝密★启用前2018 年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的。

学 @科网1.i23iA.32i B. 32i C.32i D. 32i2.已知集合 A1,3,5,7 ,B2,3,4,5,则 A BA.3B. 5C.3,5D.1,2,3,4,5,7e x e x的图像大致为3.函数fxx24.已知向量 a,b满足 |a|1, ab1,则 a(2ab)A.4B.3C.2D.05 .从 2 名男同学和3 名女同学中任选2 人参加社区服务,则选中的2 人都是女同学的概率为A .0.6B .0.5C .0.4D .0.36.双曲线x2y 2a 2b 21(a 0,b0) 的离心率为3,则其渐近线方程为 A .y2xB .y3xC .y2xD .y3x227.在 △ ABC 中, cosC5, BC1 ,AC5,则 AB25A .42B .30C .29D .25.资料==========8.为计算 S1 1111 1 ,设计了如图的程序框图,则在空白框中应填入23499100开始N 0,T0i 1是否i100NN1S NTiT T1输出 Si1结束A.i i1B.ii2C.i i3D.i i49.在正方体 ABCD A1B1C1D1中, E 为棱 CC 1的中点,则异面直线AE 与 CD 所成角的正切值为A.2B.3 C .5D.7 222210 .若 f(x)cosx sinx 在[0,a] 是减函数,则 a 的最大值是A.ππC .3πD.πB.42411.已知 F1,F2是椭圆 C 的两个焦点,P 是C上的一点,若PF1PF 2,且PF2F160,则 C 的离心率为A.13B.23 C .31D.31 2212 .已知f(x)是定义域为 (, )的奇函数,满足 f(1x)f(1x) .若 f(1),2 则f(1)f(2)f(f(50)A .50B .0C .2D .50二、填空题:本题共 4 小题,每小题5 分,共20 分。

2018年高考全国2卷文科数学带答案解析

2018年高考全国2卷文科数学带答案解析

范文范例指导参考绝密★启用前2018 年普通高等学校招生全国统一考试文科数学本试卷共 23 题,共 150 分,共4 页。

考试结束后,将本试卷和答题卡一并交回。

注意事项: 1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用 0.5 毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12 小题,每小题 5 分,共 60 分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. i(2+3i)A. 3 2i B. 3 2i C. 3 2i D. 3 2i2.已知集合 A 1,3,5,7 ,B 2,3,4,5 则A BA. 3 B.5 C. 3,5 D. 1,2,3,4,5,73.函数e x e xf ( x)2的图象大致为x4.已知向量a,b 满足| a|1 , a b 1 ,则a (2a b)A. 4 B. 3 C. 2 D. 05.从 2 名男同学和 3 名女同学中任选2 人参加社区服务,则选中2 人都是女同学的概率为A. 0.6 B. 0.5 C. 0.4 D. 0.36.双曲线x2 22y21( a 0, b0) 的离心率为 3 ,则其渐近线方程为a bA. y 2 x B. y 3x C. y2D. y3 x x 2 27.在△ABCC 51, AC 5,则 AB 中, cos , BC25A.4 2 B. 30 C. 29 D.2 5 word 资料整理分享范文 范例 指导 参考8.为计算S1 1 1 1 11,设计了右侧的程开始 2 3 499 100序框图,则在空白框中应填入 N 0,TA .ii 1i 1B .ii 2是 i 否 C .ii 3 100D .ii 41N S N TNi T T 1 输出 S i 1结束9.在长方体 ABCD A 1B 1C 1D 1 中, E 为棱 CC 1 的中点,则异面直线 AE 与 CD 所成角的正切值为A .2 B .3 C . 5 D .7 22 2 210.若 f (x) cosxsin x 在 [0, a] 是减函数,则 a 的最大值是A . πB . πC . 3πD . π4 2411.已知 F 1 , F 2是椭圆 C 的两个焦点, P 是 C 上的一点,若 PF 1 PF 2 ,且 PF 2F 1 60 ,则 C 的离心率为A . 3B . 2 3C . 3 1D .311 2 212.已知 f (x) 是定义域为 ( , ) 的奇函数,满足 f (1 x) f (1 x) .若 f(1) 2 ,则f (1) f (2) f (3) f (50)A . 50B . 0C . 2D . 50二、填空题:本题共 4 小题,每小题 5 分,共 20 分。

2018高考全国2卷文科数学带答案

2018高考全国2卷文科数学带答案

绝密★启用前2018年普通高等学校招生全国统一考试文科数学本试卷共23题,共150分,共4页。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.i(2+3i)=A.32i-B.32i+C.32i--D.32i-+2.已知集合{}1,3,5,7A=,{}2,3,4,5B=则A B=A.{}3B.{}5C.{}3,5D.{}1,2,3,4,5,73.函数2e e()x xf xx--=的图象大致为4.已知向量a,b满足||1=a,1⋅=-a b,则(2)⋅-=a a bA.4 B.3 C.2 D.05.从2名男同学和3名女同学中任选2人参加社区服务,则选中2人都是女同学的概率为A.0.6B.0.5C.0.4D.0.36.双曲线22221(0,0)x ya ba b-=>>A.y=B.y=C.y=D.y x=7.在ABC△中,cos2C=1BC=,5AC=,则AB=A.B C8.为计算11111123499100S=-+-++-,设计了右侧的程序框图,则在空白框中应填入A.1i i=+B.2i i=+C.3i i=+D .4i i =+9.在长方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 ABCD10.若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是A .π4 B .π2 C .3π4D .π 11.已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为A.1B.2CD1 12.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=A .50-B .0C .2D .50二、填空题:本题共4小题,每小题5分,共20分。

【真题】2018年全国卷II高考数学(文科)试题含答案解析

【真题】2018年全国卷II高考数学(文科)试题含答案解析

【试题来源】2018 年高考文数真题(全国Ⅱ卷)
三、解答题
17. (2018•卷Ⅱ)记 Sn 为等差数列(an)的前 n 项和,已知 a1=-7,S1=-15. (1)求{an}的通项公式; 【答案】设数列的公差为 d,由题意有:
a1=-7,S3=3a2=-15 a2=-5,d=2 ∴an=a1+(n-1)d=-7+2(n-1)=2n-9
7. (2018•卷Ⅱ)在 ABC 中, cos C 5 , BC 1, AC 5 则 AB ( ) 25
A. 4 2
B. 30
C. 29
D. 2 5
【答案】A cos C 5
【解析】【解答】 2 5 ,
cos C 2 cos2 C 1 2 1 1 3
y' 2 x
y' 2 x1
∴在点(0,0)处的切线方程为:y=2(x-1)=2x-2
故答案为:y=2x-2
【分析】 【题型】填空题 【考查类型】高考真题 【试题级别】高三 【试题地区】全国 【试题来源】2018 年高考文数真题(全国Ⅱ卷)
x 2y 5 0 14. (2018•卷Ⅱ)若 x,y 满足约束条件 x 2 y 3 0 ,则 z x y 的最大值为_______.
∴amax= 3 4
故答案为:C
【分析】 【题型】单选题 【考查类型】高考真题 【试题级别】高三 【试题地区】全国 【试题来源】2018 年高考文数真题(全国Ⅱ卷)
11.
(2018•卷Ⅱ)已知 F1 、 F2 是椭圆 C 的两个焦点,P 是 C 上的一点,若 PF1 PF2 ,且
PF2F1 60 ,则 C 的离心率为( )
A.4

2018年高考全国2卷文科数学试题答案(word、精校、详细解析版)

2018年高考全国2卷文科数学试题答案(word、精校、详细解析版)

2018年全国Ⅱ卷文科数学试题答案(详细解析版)1.解:i(2+3i)=2i+3i2=﹣3+2i.故选:D.2.解:∵集合A={1,3,5,7},B={2,3,4,5},∴A∩B={3,5}.故选:C.3.解:函数f(﹣x)==﹣=﹣f(x),则函数f(x)为奇函数,图象关于原点对称,排除A,当x=1时,f(1)=e﹣>0,排除D.当x→+∞时,f(x)→+∞,排除C,故选:B.4.解:向量,满足||=1,=﹣1,则•(2)=2﹣=2+1=3,故选:B.5.解:(适合理科生)从2名男同学和3名女同学中任选2人参加社区服务,共有C52=10种,其中全是女生的有C32=3种,故选中的2人都是女同学的概率P==0.3,(适合文科生),设2名男生为a,b,3名女生为A,B,C,则任选2人的种数为ab,aA,aB,aC,bA,bB,Bc,AB,AC,BC共10种,其中全是女生为AB,AC,BC共3种,故选中的2人都是女同学的概率P==0.3,故选:D.6.解:∵双曲线的离心率为e==,则=====,即双曲线的渐近线方程为y=±x=±x,故选:A.7.解:在△ABC中,cos=,cosC=2×=﹣,BC=1,AC=5,则AB====4.故选:A.8.解:模拟程序框图的运行过程知,该程序运行后输出的是S=N﹣T=(1﹣)+(﹣)+…+(﹣);累加步长是2,则在空白处应填入i=i+2.故选:B.9.解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCD﹣A1B1C1D1棱长为2,则A(2,0,0),E(0,2,1),D(0,0,0),C(0,2,0),=(﹣2,2,1),=(0,﹣2,0),设异面直线AE与CD所成角为θ,则cosθ===,sinθ==,∴tanθ=.∴异面直线AE与CD所成角的正切值为.故选:C.10.解:f(x)=cosx﹣sinx=﹣(sinx﹣cosx)=﹣sin(x﹣),由﹣+2kπ≤x﹣≤+2kπ,k∈Z,得﹣+2kπ≤x≤+2kπ,k∈Z,取k=0,得f(x)的一个减区间为[﹣,],由f(x)在[0,a]是减函数,得a≤.则a的最大值是.故选:C.11.解:F1,F2是椭圆C的两个焦点,P是C上的一点,若PF1⊥PF2,且∠PF2F1=60°,可得椭圆的焦点坐标F2(c,0),所以P(c,c).可得:,可得,可得e4﹣8e2+4=0,e∈(0,1),解得e=.故选:D.12.解:∵f(x)是奇函数,且f(1﹣x)=f(1+x),∴f(1﹣x)=f(1+x)=﹣f(x﹣1),f(0)=0,则f(x+2)=﹣f(x),则f(x+4)=﹣f(x+2)=f(x),即函数f(x)是周期为4的周期函数,∵f(1)=2,∴f(2)=f(0)=0,f(3)=f(1﹣2)=f(﹣1)=﹣f(1)=﹣2,f(4)=f(0)=0,则f(1)+f(2)+f(3)+f(4)=2+0﹣2+0=0,则f(1)+f(2)+f(3)+…+f(50)=12[f(1)+f(2)+f(3)+f(4)]+f(49)+f(50)=f(1)+f(2)=2+0=2,故选:C.13.解:∵y=2lnx,∴y′=,当x=1时,y′=2∴曲线y=2lnx在点(1,0)处的切线方程为y=2x﹣2.故答案为:y=2x﹣2.14.解:由x,y满足约束条件作出可行域如图,化目标函数z=x+y为y=﹣x+z,由图可知,当直线y=﹣x+z过A时,z取得最大值,由,解得A(5,4),目标函数有最大值,为z=9.故答案为:9.15.解:∵tan(α﹣)=,∴tan(α)=,则tanα=tan(α+)=====,故答案为:.16.解:圆锥的顶点为S,母线SA,SB互相垂直,△SAB的面积为8,可得:,解得SA=4,SA与圆锥底面所成角为30°.可得圆锥的底面半径为:2,圆锥的高为:2,则该圆锥的体积为:V==8π.故答案为:8π.17.解:(1)∵等差数列{a n}中,a1=﹣7,S3=﹣15,∴a1=﹣7,3a1+3d=﹣15,解得a1=﹣7,d=2,∴a n=﹣7+2(n﹣1)=2n﹣9;(2)∵a1=﹣7,d=2,a n=2n﹣9,∴S n===n2﹣8n=(n﹣4)2﹣16,∴当n=4时,前n项的和S n取得最小值为﹣16.18.解:(1)根据模型①:=﹣30.4+13.5t,计算t=19时,=﹣30.4+13.5×19=226.1;利用这个模型,求出该地区2018年的环境基础设施投资额的预测值是226.1亿元;根据模型②:=99+17.5t,计算t=9时,=99+17.5×9=256.5;.利用这个模型,求该地区2018年的环境基础设施投资额的预测值是256.5亿元;(2)模型②得到的预测值更可靠;因为从总体数据看,该地区从2000年到2016年的环境基础设施投资额是逐年上升的,而从2000年到2009年间递增的幅度较小些,从2010年到2016年间递增的幅度较大些,所以,利用模型②的预测值更可靠些.19.(1)证明:∵AB=BC=2,AC=4,∴AB2+BC2=AC2,即△ABC是直角三角形,又O为AC的中点,∴OA=OB=OC,∵PA=PB=PC,∴△POA≌△POB≌△POC,∴∠POA=∠POB=∠POC=90°,∴PO⊥AC,PO⊥OB,OB∩AC=0,∴PO⊥平面ABC;(2)解:由(1)得PO⊥平面ABC,PO=,在△COM中,OM==.S=××=,S△COM==.设点C到平面POM的距离为d.由V P﹣OMC=V C﹣POM⇒,解得d=,∴点C到平面POM的距离为.20.解:(1)方法一:抛物线C:y2=4x的焦点为F(1,0),当直线的斜率不存在时,|AB|=4,不满足;设直线AB的方程为:y=k(x﹣1),设A(x1,y1),B(x2,y2),则,整理得:k2x2﹣2(k2+2)x+k2=0,则x1+x2=,x1x2=1,由|AB|=x1+x2+p=+2=8,解得:k2=1,则k=1,∴直线l的方程y=x﹣,;方法二:抛物线C:y2=4x的焦点为F(1,0),设直线AB的倾斜角为θ,由抛物线的弦长公式|AB|===8,解得:sin2θ=,∴θ=,则直线的斜率k=1,∴直线l的方程y=x﹣1;(2)过A,B分别向准线x=﹣1作垂线,垂足分别为A1,B1,设AB的中点为D,过D作DD1⊥准线l,垂足为D,则|DD1|=(|AA1|+|BB1|)由抛物线的定义可知:|AA1|=|AF|,|BB1|=|BF|,则r=|DD1|=4,以AB为直径的圆与x=﹣1相切,且该圆的圆心为AB的中点D,由(1)可知:x1+x2=6,y1+y2=x1+x2﹣2=4,则D(3,2),过点A,B且与C的准线相切的圆的方程(x﹣3)2+(y﹣2)2=16..21.解:(1)当a=3时,f(x)=x3﹣a(x2+x+1),所以f′(x)=x2﹣6x﹣3时,令f′(x)=0解得x=3,当x∈(﹣∞,3﹣2),x∈(3﹣2,+∞)时,f′(x)>0,函数是增函数,当x∈(3﹣2时,f′(x)<0,函数是单调递减,综上,f(x)在(﹣∞,3﹣2),(3﹣2,+∞),上是增函数,在(3﹣2上递减.(2)证明:因为x2+x+1=(x+)2+,所以f(x)=0等价于,令,则,所以g(x)在R上是增函数;取x=max{9a,1},则有=,取x=min{9a,﹣1},则有=,所以g(x)在(min{9a,﹣1},max{9a,1})上有一个零点,由单调性则可知,f(x)只有一个零点.22.解:(1)曲线C的参数方程为(θ为参数),转换为直角坐标方程为:.直线l的参数方程为(t为参数).转换为直角坐标方程为:sinαx﹣cosαy+2cosα﹣sinα=0.(2)把直线的参数方程代入椭圆的方程得到:+=1整理得:(4cos2α+sin2α)t2+(8cosα+4sinα)t﹣8=0,则:,由于(1,2)为中点坐标,所以:,则:8cosα+4sinα=0,解得:tanα=﹣2,即:直线l的斜率为﹣2.23.解:(1)当a=1时,f(x)=5﹣|x+1|﹣|x﹣2|=.当x≤﹣1时,f(x)=2x+4≥0,解得﹣2≤x≤1,当﹣1<x<2时,f(x)=2≥0恒成立,即﹣1<x<2,当x≥2时,f(x)=﹣2x+6≥0,解得2≤x≤3,综上所述不等式f(x)≥0的解集为[﹣2,3],(2)∵f(x)≤1,∴5﹣|x+a|﹣|x﹣2|≤1,∴|x+a|+|x﹣2|≤4,∴|x+a|+|x﹣2|=|x+a|+|2﹣x|≥|x+a+2﹣x|=|a+2|,∴|a+2|≤4,即﹣4≤a+2≤4,解得﹣6≤a≤2,故a的取值范围[﹣6,2].。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精心整理
绝密★启用前
2018年普通高等学校招生全国统一考试
文科数学
本试卷共23题,共150分,共4页。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确
1.A . 2A B = A {}3,5
34,则(2⋅a a A 5概率为 A .0.6
B .0.5
C .0.4
D .0.3
6.双曲线22
221(0,0)x y a b a b
-=>>
A .
y = B .y = C .y x = D .y =
7.在ABC △中,cos 2
C 1BC =,5AC =,则AB =
A
.B
C
D
.8199100
+
-图,则在空白框中应填入
A B C D 9A 10A 1160︒,
A 12(50)f +
+A B .0 二、填空题:本题共4小题,每小题13在点(1,0)处的切线方程为14满足约束条件x ⎧⎪15.已知51
tan 45
πα⎛⎫-= ⎪⎝

,则tan α=__________.
16.已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30︒,若SAB
△的面积为8,则该圆锥的体积为__________.
三、解答题:共70分。

解答应写出文字说明、证明过程或演算步骤。

第17~21题
为必考题,每个试题考生都必须作答。

第22、23为选考题。

考生根据要求作答。

(一)必考题:共60分。

17.(12分)
记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-. (1)求{}n a 的通项公式; (2)求n S ,并求n S 的最小值. 18.(12分)
下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图. 2,
,17)建立模
2,,7)
19.PA =到平
面20.两点,
||8AB =.
(1)求l 的方程;
(2)求过点A ,B 且与C 的准线相切的圆的方程. 21.(12分)
已知函数321()(1)3
f x x a x x =-++.
(1)若3a =,求()f x 的单调区间;
(2)证明:()f x 只有一个零点.
(二)选考题:共10分。

请考生在第22、23题中任选一题作答。

如果多做,则按
所做的第一题计分。

22.[选修4-4:坐标系与参数方程](10分)
在直角坐标系xOy 中,曲线C 的参数方程为2cos ,
4sin ,x θy θ=⎧⎨=⎩
(θ为参数),直线l 的参数方
程为23.绝密17.A 8.B
9.C
10.C
11.D
12.C
二、填空题 13.y =2x –2 14.9
15.32
6.8π
三、解答题 17.解:
(1)设{a n}的公差为d,由题意得3a1+3d=–15.
由a1=–7得d=2.
所以{a n}的通项公式为a n=2n–9.
(2)由(1)得S n=n2–8n=(n–4)2–16.
所以当n=4时,S n取得最小值,最小值为–16.
18
y=–30.4+13.5×
2018年的环境基础设施投资额的预测值为
y=99+17.5×
)利用模型②得到的预测值更可靠.
)从折线图可以看出,2000年至
线y
20102016
资额的变化趋势,因此利用模型②得到的预测值更可靠.
(ii)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠.
以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.
19.解:
(1)因为AP =CP =AC =4,O 为AC 的中点,所以
OP ⊥AC ,且OP =2
3.
连结OB .因为AB =BC =2
2AC ,所以△ABC 为等腰
直角三角形,且
OB ⊥AC ,OB =1
2AC =2.
由222OP OB PB +=知,OP ⊥OB .
由OP ⊥OB ,OP ⊥AC 知PO ⊥平面ABC .
(2)作CH ⊥OM ,垂足为H .又由(1)可得OP ⊥CH ,所以CH ⊥平面POM . 故CH 的长为点C 到平面POM 的距离. 由题设可知OC =1
2AC =2,CM =2
3BC =423
,∠ACB =45°. 所以OM =
25
3
,CH =
sin OC MC ACB OM ⋅⋅∠=455

所以点C 到平面POM 的距离为455

20.解:
(1)由题意得F (1,0),l 的方程为y =k (x –1)(k >0). 设A (x 1,y 1),B (x 2,y 2). 由2
(1)4y k x y x
=-⎧⎨
=⎩得2222(24)0k x k x k -++=.
2
16160k ∆=+=,故2122
24
k x x k ++=
. 所以
2122
44
(1)(1)k AB AF BF x x k +=+=+++=
. 由题设知2244
8k k
+=,解得
k =–1(舍去),k =1.
因此l 的方程为y =x –1.
(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为2(3)y x -=--,即5y x =-+.
设所求圆的圆心坐标为(x 0,y 0),则
0022
000
5(1)(1)16.2
y x y x x =-+⎧⎪⎨-++=+⎪⎩,
解得0032x y =⎧⎨=⎩,或00116.x y =⎧⎨=-⎩, 因此所求圆的方程为
22(3)(2)16x y -+-=或22(11)(6)144x y -++=.
21
g
(x 【注】因为211()(1)(13)33f x x x x a -=++--,22131(024
x x x ++=++>,所以
1
(13)03
f a +=
>,2(23)(1)0f a x x -+=-++<. 综上,f (x )只有一个零点. 22.解:
(1)曲线C 的直角坐标方程为22
1416x y +=.
当cos 0α≠时,l 的直角坐标方程为tan 2tan y x αα=⋅+-, 当cos 0α=时,l 的直角坐标方程为1x =.
(2)将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程
22(13cos )4(2cos sin )80t t ααα+++-=.①
,2t ,则1t +2=-. 23[2,)+∞.。

相关文档
最新文档