2019广东省中考数学模拟试卷(9)及答案解析
2019-2020年广东省中考数学各地区模拟试题分类(东莞专版)——圆(含解析)
2019-2020年广东省中考数学各地区模拟试题分类(东莞专版)——圆一.选择题1.(2020•东莞市一模)如图,在⊙O中,半径为5,弦AB=6,点C在AB上移动,连接OC,则OC的最小值为()A.3 B.4 C.5 D.6 2.(2020•东莞市一模)如图,扇形纸扇完全打开后,外侧两竹条AB,AC夹角为150°,AB的长为36cm,BD的长为18cm,则的长为()cm.A.πB.15πC.18πD.36π3.(2020•东莞市校级二模)如图,四边形ABCD内接于圆O,AD∥BC,∠DAB=48°,则∠AOC的度数是()A.48°B.96°C.114°D.132°4.(2019•东莞市二模)如图,AB是⊙O直径,若∠AOC=130°,则∠D的度数是()A.20°B.25°C.40°D.50°5.(2020•东莞市校级一模)如图,⊙O的半径为1,点A、B、C都在⊙O上,∠B=45°,则的长为()A.πB.πC.πD.π6.(2019秋•东莞市期末)已知一个圆锥的母线长为30cm,侧面积为300πcm,则这个圆锥的底面半径为()A.5 cm B.10 cm C.15 cm D.20 cm 7.(2020•东莞市校级模拟)如图,在矩形ABCD中,AB=2,AD=4,将D边绕点A顺时针旋转,使点D正好落在BC边上的点D′处,则阴影部分的扇形面积为()A.πB.C.D.二.填空题8.(2020•东莞市校级模拟)如图,在△ABC中,CA=CB,∠ACB=90°,AB=4,点D为AB 的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰在弧FF上,则图中阴影部分面积为.9.(2020•东莞市一模)已知在半径为3的⊙O中,弦AB的长为4,那么圆心O到AB的距离为.10.(2020•东莞市校级一模)如图,D为⊙O上一点,=,∠AOB=50°,则∠ADC的度数是.11.(2020•东莞市一模)如图,AB是⊙O的直径,点C、D在圆上,∠D=67°,则∠ABC 等于度.12.(2020•东莞市校级二模)如图,要拧开一个边长为a=8mm的正六边形螺料,扳手张开的开口b至少为mm.13.(2020•龙湖区一模)如图,AC⊥BC,AC=BC=2,以BC为直径作半圆,圆心为O,以点C为圆心,BC为半径作弧AB,过点O作AC的平行线交两弧于点D、E,则阴影部分的面积是.14.(2019•潮南区一模)如图,⊙O的弦AC与半径OB交于点D,BC∥OA,AO=AD,则∠C 的度数为°.三.解答题15.(2020•东莞市校级一模)如图,AB是⊙O的直径,点P在BA的延长线上,过点P作⊙O 的切线,切点为D,BC垂直于PD,垂足为C,BC与⊙O相交于点E,连接OE,交BD于点F.(1)求证:BD平分∠ABC;(2)若BC=6,tan P=.①求⊙O的半径;②求线段BF的长.16.(2020•东莞市校级一模)如图:AB是⊙O的直径,AC交⊙O于G,E是AG上一点,D 为△BCE内心,BE交AD于F,且∠DBE=∠BAD.(1)求证:BC是⊙O的切线;(2)求证:DF=DG;(3)若∠ADG=45°,DF=1,求证:AD﹣BD=.17.(2020•东莞市一模)如图,AB为⊙O的直径,CD⊥AB于点E,F是CD上一点,且BF =DF,延长FB至点P,连接CP,使PC=PF,延长BF与⊙O交于点G,连结BD,GD.(1)连结BC,求证:CD=GB;(2)求证:PC是⊙O的切线;(3)若tan G=,且AE﹣BE=,求FD的值.18.(2020•东莞市校级二模)如图1,BC是⊙O的直径,点A在⊙O上,点D在CA的延长线上,DE⊥BC,垂足为点E,DE与⊙O相交于点H,与AB相交于点I.过点A作∠DAF=∠ABO,与DE相交于点F.(1)求证:AF为⊙O的切线;(2)当AB=AD,且tan∠DAF=时,求:的值;(3)如图2,在(2)的条件下,延长FA,BC相交于点G,若CG=10,求线段EH的长.19.(2020•东莞市一模)如图,在△ABC中,AB=AC,AE是∠BAC的平分线,∠ABC的平分线BM交AE于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC 于点G,交AB于点F.(1)求证:AE为⊙O的切线;(2)当BC=4,AC=6时,求⊙O的半径;(3)在(2)的条件下,求线段BG的长.20.(2020•东莞市一模)如图,A是以BC为直径的圆O上一点,AD⊥BC于点D,过点B作圆O的切线,与CA的延长线相交于点E,G是AD的中点,连接并延长CG与BE相交于点F,连接并延长AF与CB的延长线相交于点P.(1)求证:BF=EF;(2)求证:PA是圆O的切线;(3)若FG=EF=3,求圆O的半径和BD的长度.参考答案一.选择题1.解:连接OA,过点O作OH⊥AB于H.∵OH⊥AB,∴AH=HB=3,∠AHO=90°,∵OA=5,∴OH===4,根据垂线段最短可知OC的最小值=4,故选:B.2.解:∵AB=36cm,BD=18cm,AB,AC夹角为150°,∴AD=AB﹣BD=18cm,∴的长为:=15π(cm),故选:B.3.解:∵AD∥BC,∴∠B=180°﹣∠DAB=132°,∵四边形ABCD内接于圆O,∴∠D=180°﹣∠B=48°,由圆周角定理得,∠AOC=2∠D=96°,故选:B.4.解:连接AD,∵AB是⊙O直径,∠AOC=130°,∴∠BDA=90°,∠CDA=65°,∴∠BDC=25°,故选:B.5.解:∵∠B=45°,∴∠AOC=90°,∵⊙O的半径为1,∴的长===π,故选:C.6.解:设这个圆锥的底面半径为rcm,300π=,解得,r=10,故选:B.7.解:∵线段AD′由线段AD旋转而成,AD=4,∴AD′=AD=4.∵AB=2,∠ABD=90°,∴sin∠AD′B==,∴∠AD′B=30°.∵AD∥BC,∴∠DAD′=∠AD′B=30°,∴S==π.阴影故选:D.二.填空题(共7小题)8.解:连接CD,作DM⊥BC,DN⊥AC.∵CA=CB,∠ACB=90°,点D为AB的中点,∴DC=AB=2,四边形DMCN是正方形,DM=.则扇形FDE的面积是:=π.∵CA=CB,∠ACB=90°,点D为AB的中点,∴CD 平分∠BCA ,又∵DM ⊥BC ,DN ⊥AC ,∴DM =DN ,∵∠GDH =∠MDN =90°, ∴∠GDM =∠HDN ,则在△DMG 和△DNH 中,∴△DMG ≌△DNH (ASA ),∴S 四边形DGCH =S 四边形DMCN =2.则阴影部分的面积是:π﹣2.故答案为π﹣2.9.解:作OC ⊥AB 于C ,连接OA ,如图,∵OC ⊥AB ,∴AC =BC =AB =×4=2, 在Rt △AOC 中,OA =5,∴OC ===, 即圆心O 到AB 的距离为. 故答案为:.10.解:如图,连接OC ,∵在⊙O 中,=,∴∠AOC=∠AOB.∵∠AOB=50°,∴∠AOC=50°,∴∠ADC=∠AOC=25°,故答案是:25°.11.解:由圆周角定理得,∠A=∠D=67°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ABC=90°﹣67°=23°,故答案为:23.12.解:设正六边形的中心是O,其一边是AB,连接OA、OB、OC、AC,OB交AC于M,如图所示:∴∠AOB=∠BOC=60°,∴OA=OB=AB=OC=BC,∴四边形ABCO是菱形,∴AC⊥OB,AM=CM,∵AB=8mm,∠AOB=60°,∴sin∠AOB==,∴AM=8×=4(mm),∴AC=2AM=8mm,故答案为:8.13.解:连接CE,如图,∵AC⊥BC,∴∠ACB=90°,∵AC∥OE,∴∠COE=∠EOB=90°,∵OC=1,CE=2,∴OE==,cos∠OCE=,∴∠OCE=60°,∴S阴影部分=S扇形BCE﹣S△OCE﹣S扇形BOD=﹣•1•﹣=π﹣.故答案为π﹣.14.解:∵BC∥OA,AO=AD,∴∠AOD=∠ODA,∠AOD=∠B,∵∠BDC=∠ODA,∴∠B=∠BDC,∵∠AOD=2∠C,∴∠B=∠BDC=2∠C,∵△BDC的内角和是180°,∴2∠C+2∠C+∠C=180°,解得:∠C=36°,故答案为:36°.三.解答题(共6小题)15.解:(1)证明:连接OD,如图,∵PD是⊙O的切线,∴OD⊥PC,∵BC⊥PC,∴OD∥BC,∴∠ODB=∠CBD,∵OD=OB,∴∠ODB=∠OBD,∴∠OBD=∠CBD,∴BD平分∠ABC;(2)①∵∠PCB=90°,BC=6,tan P=,∴=,∴PC=8,∴PB==10,设⊙O的半径为x,则OA=OB=OD=x,PO=10﹣x,∵OD∥BC,∴△OPD∽△CPB,∴=,即=,解得x=,∴PD==5,∴CD=PC﹣PD=8﹣5=3,∴BD==3;②过点O作OM⊥BE于点M,如图,则四边形ODCM是矩形,∴CM=OD=,∴BM=BC﹣CM=,∵OB=OE,∴BE=2BM=,∵OD∥BC,∴△ODF∽△EBF,∴=,即=,解得BF=.16.(1)证明:如图1,连接DE,BG.∵D为△BCE内心,∴∠DBC=∠DBE,∵∠DBE=∠BAD,∴∠DBC=∠BAD,∵AB是⊙O的直径,∴∠AGB=90°,∴∠BCG+∠CBD+∠GBD=90°,∵∠DAC=∠DBG,∠ADB=∠DAC+∠ACB+∠CBD,∴∠ADB=∠DBG+∠ACB+∠CBD=90°,∴∠BAD+∠ABD=90°,∴∠DBC+∠ABD=90°,即∠ABC=90°,∴AB⊥BC,∴BC是⊙O的切线;(2)证明:如图1,连接DE,∵∠DBC=∠BAD,∠DBC=∠DBE,∴∠DBE=∠BAD,∴∠ABF+∠BAD=∠ABF+∠DBE,∴∠BFD=∠ABD,∵∠DGC=∠ABD,∴∠BFD=∠DGC,∴∠DFE=∠DGE,∵D为△BCE内心,∴∠DEG=∠DEB,在△DEF和△DEG中,∴△DEF≌△DEG(AAS),∴DF=DG;(3)证明:如图2,在AD上截取DH=BD,连接BH、BG,∵AB是⊙O的直径,∵∠ADG=45°,∴∠ABG=∠ADG=45°,∴AB=BG,∵∠BDH=90°,BD=DH,∴∠BHD=45°,∴∠AHB=180°﹣45°=135°,∵∠BDG=∠ADB+∠ADG=90°+45°=135°,∴∠AHB=∠BDG,∵∠BAD=∠BGD,∴△ABH∽△GBD,∴,∵DG=DF=1,∴AH=,∵AD﹣BD=AD﹣DH=AH,∴AD﹣BD=.17.解:(1)∵BF=DF,∴∠BDF=∠DBF,在△BCD与△DGB中,,∴△BCD≌△DGB(AAS),∴CD=GB;(2)如图1,连接OC,∵∠COB=2∠CDB,∠CFB=∠CDB+∠DBF=2∠CDB,∴∠COB=∠CFB,∵PC=PF,∴∠COB=∠CFB=∠PCF,∵AB⊥CD,∴∠COB+∠OCE=90°,∴∠PCF+∠OCE=∠PCO=90°,∴OC⊥CP,∵OC是半径,∴PC是⊙O的切线;(3)如图2,连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∵AB⊥CD,∴=,∴∠BDE=∠A=∠G,∵tan G=,∴tan A=,即AE=3DE,同理可得:DE=3BE,∴AE﹣BE=3DE﹣DE=,解得:DE=,∴CD=2DE=2,∴BE==,∴BD==,∵∠BCD=∠FDB,∠BDC=∠FBD,∴△BCD∽△FDB,∴,∵BC=BD,∴FD===.18.(1)证明:如图1中,连接OA.∵BC是直径,∴∠BAC=∠BAD=90°,∴∠DAF+∠FAI=90°,∵OA=OB,∴∠OBA=∠OAB,∵∠DAF=∠ABO,∴∠OAB=∠DAF,∴∠OAB+∠FAI=90°,∴∠FAO=90°,即OA⊥AF,∴AF是⊙O的切线.(2)解:如图2中,∵∠IEB=∠IAD=90°,∠BIE=∠AID,∴∠D=∠B,∵∠DAF=∠B,∴∠D=∠B=∠DAF,∴tan∠B=tan∠D=,∴AD=2AI,∵AD=AB,∴BI=IA,∴BE=2IE,设IE=a,则BE=2a,BI=AI=a,∴AC=AB=a,在Rt△ABC中,BC==5a,∴EC=BC﹣BE=5a﹣2a=3a,∴=3.(3)解:如图2﹣1中,连接CH、BH.∵∠GAC=∠DAF=∠ABG,∠G=∠G,∴△GAC∽△GBA,∴===,∵CG=10,∴GA=20,BG=40,BC=30,∴BC=5a=30,∴a=6,∴BE=12,EC=18,∵HE⊥BC,∴∠HEB=∠EHC=∠BHC=90°,∴∠HBE+∠BHE=90°,∠BHE+∠CHE=90°,∴∠CEH=∠EBH,∴△CEH∽△HEB,可得HE2=BE•EC=12×18,∴HE=6.19.(1)证明:连接OM,如图1,∵BM是∠ABC的平分线,∴∠OBM=∠CBM,∵OB=OM,∴∠OBM=∠OMB,∴∠CBM=∠OMB,∴OM∥BC,∵AB=AC,AE是∠BAC的平分线,∴AE⊥BC,∴OM⊥AE,∴AE为⊙O的切线;(2)解:设⊙O的半径为r,∵AB=AC=6,AE是∠BAC的平分线,∴BE=CE=BC=2,∵OM∥BE,∴△AOM∽△ABE,∴=,即=,解得r=,即设⊙O的半径为;(3)解:作OH⊥BE于H,如图,∵OM⊥EM,ME⊥BE,∴四边形OHEM为矩形,∴HE=OM=,∴BH=BE﹣HE=2﹣=,∵OH⊥BG,∴BH=HG=,∴BG=2BH=1.20.解:(1)∵EB是切线,AD⊥BC,∴∠EBC=∠ADC=90°,∴AD∥EB,∴,∵G是AD的中点,∴AG=GD,∴EF=FB;(2)证明:连接AO,AB,∵BC是⊙O的直径,∴∠BAC=90°.在Rt△BAE中,由(1)知,F是斜边BE的中点,∴AF=FB=EF.∴∠FBA=∠FAB.又∵OA=OB,∴∠ABO=∠BAO.∵BE是⊙O的切线,∴∠EBO=90°.∵∠EBO=∠FBA+∠ABO=∠FAB+∠BAO=∠FAO=90°,∴PA是⊙O的切线.(3)如图2,连接AB,AO,∵BC是直径,∴∠BAC=∠BAE=90°,∵EF=FB,∴FA=FB=FE=FG=3,过点F作FH⊥AG交AG于点H,∵FA=FG,FH⊥AG,∴AH=HG,∵∠FBD=∠BDH=∠FHD=90°,∴四边形FBDH是矩形,∴FB=DH=3,∵AG=GD,∴AH=HG=1,GD=2,FH===2,∴BD=2,设半径为r,在Rt△ADO中,∵AO2=AD2+OD2,∴r2=42+(r﹣2)2,∴r=3.。
2019-2020年广东省中考数学各地区模拟试题分类(东莞专版)——四边形(含解析)
2019-2020年广东省中考数学各地区模拟试题分类(东莞专版)——四边形一.选择题1.(2020•东莞市一模)能判定四边形ABCD为平行四边形的题设是()A.AB∥CD,AD=BC B.∠A=∠B,∠C=∠DC.AB=CD,AD=BC D.AB=AD,CB=CD2.(2020•东莞市二模)从一个多边形的任何一个顶点出发都只有5条对角线,则它的边数是()A.6 B.7 C.8 D.9 3.(2020•东莞市一模)一个多边形每个外角都等于30°,这个多边形是()A.六边形B.正八边形C.正十边形D.正十二边形4.(2020•东莞市一模)若一个多边形的每个外角都等于45°,则它的边数是()A.11 B.10 C.9 D.8 5.(2019•东莞市模拟)正方形面积为36,则对角线的长为()A.6 B.C.9 D.6.(2020•东莞市一模)在四边形ABCD中,AC与BD相交于点O,且AD∥BC,给出下列条件:①AB∥CD;②AB=CD;③∠DAB=∠DCB;④AD=BC;⑤∠OAD=∠ODA.从中选1个作为条件,能使四边形ABCD为平行四边形的选法有()A.2种B.3种C.4种D.5种7.(2020•东莞市校级二模)如图,正方形ABCD中,点E是AD边的中点,BD,CE交于点H,BE、AH交于点G,则下列结论:①∠ABE=∠DCE;②AG⊥BE;③S△BHE =S△CHD;④∠AHB=∠EHD.其中正确的是()A .①③B .①②③④C .①②③D .①③④二.填空题 8.(2020•东莞市校级模拟)若正多边形的一个内角的度数等于它外角度数的5倍,则这个正多边形的边数为 .9.(2020•东莞市校级模拟)一个菱形的两条对角线的长分别为5和8,那么这个菱形的面积是 .10.(2020•东莞市一模)已知正多边形的一个外角为40°,则这个正多边形的内角和为 .11.(2020•东莞市校级二模)若一个正n 边形的一个外角为36°,则n 等于 .12.(2020•东莞市一模)如图,在菱形ABCD 中,∠BAD =60°,AC 与BD 交于点O ,E 为CD延长线上的一点,且CD =DE ,连接BE 分别交AC 、AD 于点F 、G ,连接OG ,则下列结论中一定成立的是 .(把所有正确结论的序号都填在横线上)①OG =AB ;②与△EGD 全等的三角形共有5个;③S 四边形ODGF >S △ABF ;④由点A 、B 、D 、E 构成的四边形是菱形.三.解答题13.(2020•东莞市校级模拟)如图,动点E 从矩形ABCD 的点B 沿线段BC 向点C 运动,连接AE ,DE ,以AE 为边作矩形AEFG ,使FG 过点D .(1)求证:矩形ABCD 与矩形AEFG 的面积相等;(2)若AB =2,BC =6,直接写出BE 为何值时,△AED 为等腰三角形.14.(2020•东莞市一模)如图,在平面直角坐标系中,四边形OABC为菱形,点C的坐标为(8,0),∠AOC=60°,垂直于x轴的直线l从y轴出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线l与菱形OABC的两边分别交于点M、N(点M在点N的上方).(1)求A、B两点的坐标;(2)设△OMN的面积为S,直线l运动时间为t秒(0≤t≤12),求S与t的函数表达式;(3)在(2)的条件下,t为何值时,S最大?并求出S的最大值.15.(2019•东莞市模拟)(1)【问题发现】如图①,正方形AEFG的两边分别在正方形ABCD的边AB和AD上,连接CF.填空:①线段CF与DG的数量关系为;②直线CF与DG所夹锐角的度数为.(2)【拓展探究】如图②,将正方形AEFG绕点A逆时针旋转,在旋转的过程中,(1)中的结论是否仍然成立,请利用图②进行说明.(3【解决问题】如图③,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=4,O为AC的中点.若点D在直线BC上运动,连接OE,则在点D的运动过程中,线段OE长的最小值为(直接写出结果).参考答案一.选择题1.解:如图所示,根据平行四边形的判定定理知,只有C符合条件.故选:C.2.解:设这个多边形是n边形.依题意,得n﹣3=5,解得n=8.故这个多边形的边数是8.故选:C.3.解:∵多边形的外角和为360°,360°÷30°=12,∴这个多边形是正十二边形,故选:D.4.解:∵多边形的外角和是360°,每个外角都等于45°,∴360÷45=8,∴正多边形的边数为8.故选:D.5.解:设对角线长是x.则有x2=36,解得:x=6.故选:B.6.解:已知AD∥BC,加上①AB∥CD可根据两组对边分别平行的四边形是平行四边形进行判定;加上②AB=CD不能判定是平行四边形;加上③∠DAB=∠DCB可证明AB∥CD,可根据两组对边平行的四边形是平行四边形进行判定;加上④AD=BC可根据一组对边平行且相等的四边形是平行四边形进行判定;加上⑤∠OAD =∠ODA 不能判定是平行四边形;故选:B .7.解:∵四边形ABCD 是正方形,E 是AD 边上的中点,∴AE =DE ,AB =CD ,∠BAD =∠CDA =90°,∴△BAE ≌△CDE (SAS ),∴∠ABE =∠DCE ,故①正确;∵四边形ABCD 是正方形,∴AD =DC ,∠ADB =∠CDB =45°,DH =DH ,∴△ADH ≌△CDH (SAS ),∴∠HAD =∠HCD ,∵∠ABE =∠DCE∴∠ABE =∠HAD ,∵∠BAD =∠BAH +∠DAH =90°,∴∠ABE +∠BAH =90°,∴∠AGB =180°﹣90°=90°,∴AG ⊥BE ,故②正确;∵AD ∥BC ,∴S △BDE =S △CDE ,∴S △BDE ﹣S △DEH =S △CDE ﹣S △DEH ,即;S △BHE =S △CHD ,故③正确;∵△ADH ≌△CDH ,∴∠AHD =∠CHD ,∴∠AHB =∠CHB ,∵∠BHC =∠DHE ,∴∠AHB=∠EHD,故④正确;故选:B.二.填空题(共5小题)8.解:设这个正多边的外角为x°,由题意得:x+5x=180,解得:x=30,360°÷30°=12.故答案为:十二.9.解:∵菱形的两条对角线的长分别为5和8,∴这个菱形的面积是×5×8=20;故答案为:20.10.解:正多边形的每个外角相等,且其和为360°,据此可得,解得n=9.(9﹣2)×180°=1260°,即这个正多边形的内角和为1260°.故答案为:1260°.11.解:n=360°÷36°=10.故答案为10.12.解:∵四边形ABCD是菱形,∴AB=BC=CD=DA,AB∥CD,OA=OC,OB=OD,AC⊥BD,∴∠BAG=∠EDG,△ABO≌△BCO≌△CDO≌△AOD,∵CD=DE,∴AB=DE,在△ABG 和△DEG 中,,∴△ABG ≌△DEG (AAS ),∴AG =DG ,∴OG 是△ACD 的中位线,∴OG =CD =AB ,①正确;∵AB ∥CE ,AB =DE ,∴四边形ABDE 是平行四边形,∵∠BCD =∠BAD =60°,∴△ABD 、△BCD 是等边三角形,∴AB =BD =AD ,∠ODC =60°, ∴OD =AG ,四边形ABDE 是菱形,④正确;∴AD ⊥BE ,由菱形的性质得:△ABG ≌△BDG ≌△DEG ,在△ABG 和△DCO 中,,∴△ABG ≌△DCO (SAS ),∴△ABO ≌△BCO ≌△CDO ≌△AOD ≌△ABG ≌△BDG ≌△DEG ,②不正确;∵OB =OD ,AG =DG ,∴OG 是△ABD 的中位线, ∴OG ∥AB ,OG =AB ,∴△GOD ∽△ABD ,△ABF ∽△OGF ,∴△GOD 的面积=△ABD 的面积,△ABF 的面积=△OGF 的面积的4倍,AF :OF =2:1, ∴△AFG 的面积=△OGF 的面积的2倍,又∵△GOD 的面积=△AOG 的面积=△BOG 的面积,∴S 四边形ODGF =S △ABF ;不正确;正确的是①④.故答案为:①④.三.解答题(共3小题)13.(1)法一:证明:∵四边形ABCD 和四边形AEFG 是矩形,∴∠B =∠G =∠BAD =∠EAG =90°,又∵∠BAE +∠EAD =∠EAD +∠DAG =90°,∴∠BAE =∠DAG ,∴△ABE ∽△AGD ,∴,∴AB •AD =AG •AE ,∴矩形AEFG 与矩形ABCD 的面积相等. 法二:连接ED ,∵S 矩形AEFG =2S △ADE ,S 矩形ABCD =2S △ADE ,∴S 矩形AEFG =S 矩形ABCD .(2)当AE =AD 时,如图2,BE ==;当DE =AD 时,如图3,CE=,∴BE=BC﹣CE=6﹣2;当AE=DE时,如图4,过E作EM⊥AD于点M,则BE=AM,∵AE=DE,∴AM==3,∴BE=3.综上,当BE为2或3或3﹣2时,△AED为等腰三角形.14.解:(1)过点A作AD⊥OC于D,∵四边形OABC为菱形,点C的坐标为(8,0),∴OA=AB=BC=CO=8.∵∠AOC=60°,∴OD=4,AD=4.∴A(4,4),B(12,4);(2)直线l从y轴出发,沿x轴正方向运动与菱形OABC的两边相交有三种情况:①0≤t≤4时,直线l与OA、OC两边相交,(如图①).∵MN⊥OC,∴ON=t.∴MN=ON tan60°=t.∴S=ON•MN=t2;②当4<t≤8时,直线l与AB、OC两边相交,(如图②).S=ON•MN=×t×4=2t;③当8<t≤12时,直线l与AB、BC两边相交,(如图③).设直线l与x轴交于点H.∵MN=4﹣(t﹣8)=12﹣t,∴S=OH•MN=×t×(12﹣t)=﹣t2+6t;=×42=8,(3)由(2)知,当0≤t≤4时,S最大=16,当4<t≤8时,S最大当8<t≤12时,S=﹣t2+6t=﹣(t﹣6)2+18∴当8<t≤12时,S<16=16.综上所述,当t=8时,S最大15.解:(1)【问题发现】如图①中,①线段CF与DG的数量关系为CF=DG;②直线CF与DG所夹锐角的度数为45°.理由:如图①中,连接AF.易证A,F,C三点共线.∵AF=AG.AC=AD,∴CF=AC﹣AF=(AD﹣AG)=DG.故答案为CF=DG,45°.(2)【拓展探究】结论不变.理由:连接AC,AF,延长CF交DG的延长线于点K,AG交FK于点O.∵∠CAD=∠FAG=45°,∴∠CAF=∠DAG,∵AC=AD,AF=AG,∴==,∴△CAF∽△DAG,∴==,∠AFC=∠AGD,∴CF=DG,∠AFO=∠OGK,∵∠AOF=∠GOK,∴∠K=∠FAO=45°.(3)【解决问题】如图3中,连接EC.∵AB=AC,AD=AE,∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∠B=∠ACB=45°,∴△BAD≌△CAE(SAS),∴∠ACE=∠ABC=45°,∴∠BCE=90°,∴点E的运动轨迹是在射线CE上,当OE⊥CE时,OE的长最短,易知OE的最小值为,故答案为,。
2019年最新广东省中考数学模拟试卷及答案解析
2019年最新广东省中考数学模拟试卷及答案解析广东省中考数学模拟试卷一、选择题(共10小题,每小题3分,共30分)1.数字1的倒数是()。
A。
-2.B。
2.C。
1.D。
-12.下列图案中既是中心对称图形,又是轴对称图形的是()。
A。
B。
C。
D。
3.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为xxxxxxxx00人,这个数用科学记数法表示为()。
A。
44×10^8.B。
4.4×10^9.C。
4.4×10^8.D。
4.4×10^104.2010年3月份,某市市区一周空气质量报告中某项污染指数的数据是:31,35,31,34,30,32,31,这组数据的中位数、众数分别是()。
A。
32,31.B。
31,32.C。
31,31.D。
32,355.如图,直线a∥b,若∠2=55°,∠3=100°,则∠1的度数为()。
A。
35°。
B。
45°。
C。
50°。
D。
55°6.下列运算正确的是()。
A。
2a+3b=5ab。
B。
a^2·a^3=a^5.C。
(2a)^3=6a^3.D。
a^6+a^3=a^97.一元二次方程x^2-4x+2=0的根的情况是()。
A。
有两个不相等的实数根。
B。
有两个相等的实数根C。
只有一个实数根。
D。
没有实数根8.若等腰三角形的两边长为3和7,则该等腰三角形的周长为()。
A。
10.B。
13.C。
17.D。
13或179.不等式组的解集在数轴上表示正确的是()。
A。
B。
C。
D。
10.如图,正方形ABCD的边长为3cm,动点M从点B出发以3cm/s的速度沿着边BC-CD-DA运动,到达点A停止运动,另一动点N同时从点B出发,以1cm/s的速度沿着边BA向点A运动,到达点A停止运动,设点M运动时间为x(s),△AMN的面积为y(cm^2),则y关于x的函数图象是()。
2019年广东省广州市中考数学试卷(word版,含答案解析)
2019年广东省广州市中考数学试卷副标题题号 一 二 三 总分 得分一、选择题(本大题共10小题,共30.0分) 1. |−6|=( )A. −6B. 6C. −16D. 162. 广州正稳步推进碧道建设,营造“水清岸绿、鱼翔浅底、水草丰美、白鹭成群”的生态廊道,使之成为老百姓美好生活的好去处.到今年底各区完成碧道试点建设的长度分别为(单位:千米):5,5.2,5,5,5,6.4,6,5,6.68,48.4,6.3,这组数据的众数是( ) A. 5 B. 5.2 C. 6 D. 6.4 3. 如图,有一斜坡AB ,坡顶B 离地面的高度BC 为30m ,斜坡的倾斜角是∠BAC ,若tan∠BAC =25,则此斜坡的水平距离AC 为( )A. 75mB. 50mC. 30mD. 12m4. 下列运算正确的是( )A. −3−2=−1B. 3×(−13)2=−13 C. x 3⋅x 5=x 15D. √a ⋅√ab =a √b5. 平面内,⊙O 的半径为1,点P 到O 的距离为2,过点P 可作⊙O 的切线条数为( )A. 0条B. 1条C. 2条D. 无数条6. 甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的是( )A.120x=150x−8B. 120x+8=150xC. 120x−8=150xD.120x=150x+87. 如图,▱ABCD 中,AB =2,AD =4,对角线AC ,BD 相交于点O ,且E ,F ,G ,H 分别是AO ,BO ,CO ,DO 的中点,则下列说法正确的是( )A. EH =HGB. 四边形EFGH 是平行四边形C. AC ⊥BDD. △ABO 的面积是△EFO 的面积的2倍8. 若点A(−1,y 1),B(2,y 2),C(3,y 3)在反比例函数y =6x 的图象上,则y 1,y 2,y 3的大小关系是( )A. y 3<y 2<y 1B. y 2<y 1<y 3C. y 1<y 3<y 2D. y 1<y 2<y 39. 如图,矩形ABCD 中,对角线AC 的垂直平分线EF 分别交BC ,AD 于点E ,F ,若BE =3,AF =5,则AC 的长为( )A. 4√5B. 4√3C. 10D. 810. 关于x 的一元二次方程x 2−(k −1)x −k +2=0有两个实数根x 1,x 2,若(x 1−x 2+2)(x 1−x 2−2)+2x 1x 2=−3,则k 的值( ) A. 0或2 B. −2或2 C. −2 D. 2 二、填空题(本大题共6小题,共18.0分)11. 如图,点A ,B ,C 在直线l 上,PB ⊥l ,PA =6cm ,PB =5cm ,PC =7cm ,则点P 到直线l 的距离是______cm . 12. 代数式1√x−8有意义时,x 应满足的条件是 . 13. 分解因式:x 2y +2xy +y =______.14. 一副三角板如图放置,将三角板ADE 绕点A 逆时针旋转α(0°<α<90°),使得三角板ADE 的一边所在的直线与BC 垂直,则α的度数为______.15. 如图放置的一个圆锥,它的主视图是直角边长为2的等腰直角三角形,则该圆锥侧面展开扇形的弧长为______.(结果保留π)16. 如图,正方形ABCD 的边长为a ,点E 在边AB 上运动(不与点A ,B 重合),∠DAM =45°,点F 在射线AM 上,且AF =√2BE ,CF 与AD 相交于点G ,连接EC ,EF ,EG ,则下列结论: ①∠ECF =45°;②△AEG 的周长为(1+√22)a ;③BE 2+DG 2=EG 2;④△EAF 的面积的最大值18a 2. 其中正确的结论是______.(填写所有正确结论的序号)三、解答题(本大题共9小题,共102.0分)17. 解方程组:{x −y =1x +3y =9.18.如图,D是AB上一点,DF交AC于点E,DE=FE,FC//AB,求证:△ADE≌CFE.19.已知P=2aa2−b2−1a+b(a≠±b).(1)化简P;(2)若点(a,b)在一次函数y=x−√2的图象上,求P的值.20.某中学抽取了40名学生参加“平均每周课外阅读时间”的调查,由调查结果绘制了如下不完整的频数分布表和扇形统计图.频数分布表组别时间/小时频数/人数A组0≤t<12B组1≤t<2mC组2≤t<310D组3≤t<412E组4≤t<57F组t≥54(1)求频数分布表中m的值;(2)求B组,C组在扇形统计图中分别对应扇形的圆心角度数,并补全扇形统计图;(3)已知F组的学生中,只有1名男生,其余都是女生,用列举法求以下事件的概率:从F组中随机选取2名学生,恰好都是女生.21.随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2020年底,全省5G 基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.(1)计划到2020年底,全省5G基站的数量是多少万座?(2)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率.22.如图,在平面直角坐标系xOy中,菱形ABCD的对角线AC与BD交于点P(−1,2),AB⊥x轴于点E,正比例函数y=mx的图象与反比例函数y=n−3的图象相交于A,xP两点.(1)求m,n的值与点A的坐标;(2)求证:△CPD∽△AEO;(3)求sin∠CDB的值.23.如图,⊙O的直径AB=10,弦AC=8,连接BC.(1)尺规作图:作弦CD,使CD=BC(点D不与B重合),连接AD;(保留作图痕迹,不写作法)(2)在(1)所作的图中,求四边形ABCD的周长.24.如图,等边△ABC中,AB=6,点D在BC上,BD=4,点E为边AC上一动点(不与点C重合),△CDE关于DE的轴对称图形为△FDE.(1)当点F在AC上时,求证:DF//AB;(2)设△ABC的面积为S1,△ABF的面积为S2,记S=S1−S2,S是否存在最大值?若存在,求出S的最大值;若不存在,请说明理由;(3)当B,F,E三点共线时.求AE的长.25.已知抛物线G:y=mx2−2mx−3有最低点.(1)求二次函数y=mx2−2mx−3的最小值(用含m的式子表示);(2)将抛物线G向右平移m个单位得到抛物线G1.经过探究发现,随着m的变化,抛物线G1顶点的纵坐标y与横坐标x之间存在一个函数关系,求这个函数关系式,并写出自变量x的取值范围;(3)记(2)所求的函数为H,抛物线G与函数H的图象交于点P,结合图象,求点P的纵坐标的取值范围.答案和解析1.【答案】B【解析】【分析】本题考查了绝对值的性质,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 根据负数的绝对值等于它的相反数解答. 【解答】解:−6的绝对值是|−6|=6. 故选:B . 2.【答案】A【解析】解:5出现的次数最多,是5次,所以这组数据的众数为5 故选:A .众数是一组数据中出现次数最多的数据,注意众数可以不止一个. 本题主要考查众数的定义,是需要熟练掌握的概念. 3.【答案】A【解析】【分析】本题考查解直角三角形的应用−坡度坡角问题,解答本题的关键是明确题意,利用数形结合的思想解答.根据题目中的条件和图形,利用锐角三角函数即可求得AC 的长,本题得以解决. 【解答】解:∵∠BCA =90°,tan∠BAC =25,BC =30m , ∴tan∠BAC =25=BCAC =30AC , 解得,AC =75(m), 故选A . 4.【答案】D【解析】解:A 、−3−2=−5,故此选项错误; B 、3×(−13)2=13,故此选项错误; C 、x 3⋅x 5=x 8,故此选项错误; D 、√a ⋅√ab =a √b ,正确. 故选:D .直接利用有理数混合运算法则、同底数幂的乘除运算法则分别化简得出答案.此题主要考查了有理数混合运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.5.【答案】C【解析】解:∵⊙O 的半径为1,点P 到圆心O 的距离为2, ∴d >r ,∴点P 与⊙O 的位置关系是:P 在⊙O 外, ∵过圆外一点可以作圆的2条切线, 故选:C .先确定点与圆的位置关系,再根据切线的定义即可直接得出答案.此题主要考查了对点与圆的位置关系,切线的定义,切线就是与圆有且只有1个公共点的直线,理解定义是关键.6.【答案】D【解析】解:设甲每小时做x个零件,可得:120x =150x+8,故选:D.设甲每小时做x个零件,根据甲做120个所用的时间与乙做150个所用的时间相等得出方程解答即可.本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.7.【答案】B【解析】【分析】本题考查平行四边形的面积、三角形的面积,解答本题的关键是明确题意,利用数形结合的思想解答.根据题意和图形,可以判断各个选项中的结论是否成立,本题得以解决.【解答】解:∵E,F,G,H分别是AO,BO,CO,DO的中点,在▱ABCD中,AB=2,AD=4,∴EH=12AD=2,HG=12CD=12AB=1,∴EH≠HG,故选项A错误;∵E,F,G,H分别是AO,BO,CO,DO的中点,∴EH=12AD=12BC=FG,∴四边形EFGH是平行四边形,故选项B正确;由题目中的条件,无法判断AC和BD是否垂直,故选项C错误;∵点E、F分别为OA和OB的中点,∴EF=12AB,EF//AB,,即△ABO的面积是△EFO的面积的4倍,故选项D错误,故选:B.8.【答案】C【解析】解:∵点A(−1,y1),B(2,y2),C(3,y3)在反比例函数y=6x的图象上,∴y1=6−1=−6,y2=62=3,y3=63=2,又∵−6<2<3,∴y1<y3<y2.故选:C.根据反比例函数图象上点的坐标特征求出y1、y2、y3的值,比较后即可得出结论.本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上点的坐标特征求出y1、y2、y3的值是解题的关键.9.【答案】A【解析】解:连接AE,如图:∵EF是AC的垂直平分线,∴OA=OC,AE=CE,∵四边形ABCD是矩形,∴∠B=90°,AD//BC,∴∠OAF=∠OCE,在△AOF和△COE中,{∠AOF=∠COEOA=OC∠OAF=∠OCE,∴△AOF≌△COE(ASA),∴AF=CE=5,∴AE=CE=5,BC=BE+CE=3+5=8,∴AB=√AE2−BE2=√52−32=4,∴AC=√AB2+BC2=√42+82=4√5;故选:A.连接AE,由线段垂直平分线的性质得出OA=OC,AE=CE,证明△AOF≌△COE得出AF=CE=5,得出AE=CE=5,BC=BE+CE=8,由勾股定理求出AB=√AE2−BE2=4,再由勾股定理求出AC即可.本题考查矩形的性质、线段的垂直平分线的性质、全等三角形的判定与性质、勾股定理等知识,熟练掌握矩形的性质和勾股定理,证明三角形全等是解题的关键.10.【答案】D【解析】解:∵关于x的一元二次方程x2−(k−1)x−k+2=0的两个实数根为x1,x2,∴x1+x2=k−1,x1x2=−k+2.∵(x1−x2+2)(x1−x2−2)+2x1x2=−3,即(x1+x2)2−2x1x2−4=−3,∴(k−1)2+2k−4−4=−3,解得:k=±2.∵关于x的一元二次方程x2−(k−1)x−k+2=0有实数根,∴Δ=[−(k−1)]2−4×1×(−k+2)≥0,解得:k≥2√2−1或k≤−2√2−1,∴k=2.故选:D.由根与系数的关系可得出x1+x2=k−1,x1x2=−k+2,结合(x1−x2+2)(x1−x2−2)+2x1x2=−3可求出k的值,根据方程的系数结合根的判别式Δ≥0可得出关于k的一元二次不等式,解之即可得出k的取值范围,进而可确定k的值,此题得解.本题考查了根的判别式以及根与系数的关系,利用根与系数的关系结合(x1−x2+2)(x1−x2−2)+2x1x2=−3,求出k的值.11.【答案】5【解析】解:∵PB⊥l,PB=5cm,∴P到l的距离是垂线段PB的长度5cm,故答案为:5.根据点到直线的距离是直线外的点到这条直线的垂线段的长度,可得答案.本题考查了点到直线的距离,点到直线的距离是直线外的点到这条直线的垂线段的长度.12.【答案】x>8【解析】【分析】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数,属于基础题.直接利用分式、二次根式的定义求出x的取值范围.【解答】有意义时,解:代数式√x−8x−8>0,解得:x>8.故答案为:x>8.13.【答案】y(x+1)2【解析】解:原式=y(x2+2x+1)=y(x+1)2,故答案为:y(x+1)2.首先提取公因式y,再利用完全平方进行二次分解即可.本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.【答案】15°或60°【解析】【分析】分情况讨论:①DE⊥BC;②AD⊥BC.本题主要考查了垂直的定义,旋转的定义以及一副三角板的各个角的度数,理清定义是解答本题的关键.【解答】解:分情况讨论:①当DE⊥BC时,∠BAD=75°,∴α=90°−∠BAD=15°;②当AD⊥BC时,∠BAD=30°,即α=60°.故答案为15°或60°.15.【答案】2√2π【解析】解:∵某圆锥的主视图是一个腰长为2的等腰直角三角形,∴斜边长为2√2,则底面圆的周长为2√2π,∴该圆锥侧面展开扇形的弧长为2√2π,故答案为2√2π.根据圆锥侧面展开扇形的弧长=底面圆的周长即可解决问题.本题考查三视图,圆锥等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.【答案】①④【解析】解:如图1中,在BC上截取BH=BE,连接EH.∵BE=BH,∠EBH=90°,∴EH=√2BE,∵AF=√2BE,∴AF=EH,∵∠DAM =∠EHB =45°,∠BAD =90°, ∴∠FAE =∠EHC =135°, ∵BA =BC ,BE =BH , ∴AE =HC ,∴△FAE≌△EHC(SAS),∴EF =EC ,∠AEF =∠ECH , ∵∠ECH +∠CEB =90°, ∴∠AEF +∠CEB =90°, ∴∠FEC =90°,∴∠ECF =∠EFC =45°,故①正确,如图2中,延长AD 到H ,使得DH =BE ,则△CBE≌△CDH(SAS),∴∠ECB =∠DCH ,∴∠ECH =∠BCD =90°, ∴∠ECG =∠GCH =45°, ∵CG =CG ,CE =CH , ∴△GCE≌△GCH(SAS), ∴EG =GH ,∵GH =DG +DH ,DH =BE , ∴EG =BE +DG ,故③错误,∴△AEG 的周长=AE +EG +AG =AG +GH =AD +DH +AE =AE +EB +AD =AB +AD =2a ,故②错误,设BE =x ,则AE =a −x ,AF =√2x ,∴S △AEF =12⋅(a −x)×x =−12x 2+12ax =−12(x 2−ax +14a 2−14a 2)=−12(x −12a)2+18a 2,∵−12<0,∴x =12a 时,△AEF 的面积的最大值为18a 2.故④正确,故答案为①④.①正确.如图1中,在BC 上截取BH =BE ,连接EH.证明△FAE≌△EHC(SAS),即可解决问题.②③错误.如图2中,延长AD 到H ,使得DH =BE ,则△CBE≌△CDH(SAS),再证明△GCE≌△GCH(SAS),即可解决问题.④正确.设BE =x ,则AE =a −x ,AF =√2x ,构建二次函数,利用二次函数的性质解决最值问题.本题考查正方形的性质,全等三角形的判定和性质,二次函数的应用等知识,解题的关键是学会添加常用辅助线面构造全等三角形解决问题,属于中考填空题中的压轴题. 17.【答案】解:{x −y =1 ①x +3y =9 ②,②−①得,4y =8,解得y =2,把y =2代入①得,x −2=1,解得x =3,故原方程组的解为{x =3y =2.【解析】运用加减消元解答即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.【答案】证明:∵FC//AB,∴∠A=∠FCE,∠ADE=∠F,在△ADE与△CFE中:∵{∠A=∠FCF ∠ADE=∠F DE=EF,∴△ADE≌△CFE(AAS).【解析】利用AAS证明:△ADE≌CFE.本题考查了三角形全等的判定,熟练掌握三角形全等的判定方法是关键,三角形全等的判定方法有:AAS,SSS,SAS.19.【答案】解:(1)P=2aa2−b2−1a+b=2a(a+b)(a−b)−1a+b=2a−a+b(a+b)(a−b)=1a−b;(2)∵点(a,b)在一次函数y=x−√2的图象上,∴b=a−√2,∴a−b=√2,∴P=√22;【解析】本题考查分式的化简,一次函数图象上点的特征;熟练掌握分式的化简,理解点与函数解析式的关系是解题的关键.(1)P=2aa2−b2−1a+b=2a(a+b)(a−b)−1a+b=2a−a+b(a+b)(a−b)=1a−b;(2)将点(a,b)代入y=x−√2得到a−b=√2,再将a−b=√2代入化简后的P,即可求解;20.【答案】解:(1)m=40−2−10−12−7−4=5;(2)B组的圆心角=360°×540=45°,C组的圆心角=360°×1040=90°.补全扇形统计图如图1所示:(3)画树状图如图2:共有12个等可能的结果,恰好都是女生的结果有6个,∴恰好都是女生的概率为612=12.【解析】(1)用抽取的40人减去其他5个组的人数即可得出m的值;(2)分别用360°乘以B组,C组的人数所占的比例即可;补全扇形统计图;(3)画出树状图,即可得出结果.此题主要考查了列表法与树状图法,以及扇形统计图、频数分布表的应用,要熟练掌握.21.【答案】解:(1)1.5×4=6(万座).答:计划到2020年底,全省5G 基站的数量是6万座.(2)设2020年底到2022年底,全省5G 基站数量的年平均增长率为x ,依题意,得:6(1+x)2=17.34,解得:x 1=0.7=70%,x 2=−2.7(舍去).答:2020年底到2022年底,全省5G 基站数量的年平均增长率为70%.【解析】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.(1)2020年全省5G 基站的数量=目前广东5G 基站的数量×4,即可求出结论;(2)设2020年底到2022年底,全省5G 基站数量的年平均增长率为x ,根据2020年底及2022年底全省5G 基站数量,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.22.【答案】(1)解:将点P(−1,2)代入y =mx ,得:2=−m ,解得:m =−2,∴正比例函数解析式为y =−2x ;将点P(−1,2)代入y =n−3x ,得:2=−(n −3), 解得:n =1,∴反比例函数解析式为y =−2x .联立正、反比例函数解析式成方程组,得:{y =−2xy =−2x, 解得:{x 1=−1y 1=2,{x 2=1y 2=−2, ∴点A 的坐标为(1,−2).(2)证明:∵四边形ABCD 是菱形,∴AC ⊥BD ,AB//CD ,∴∠DCP =∠BAP ,即∠DCP =∠OAE .∵AB ⊥x 轴,∴∠AEO =∠CPD =90°,∴△CPD∽△AEO .(3)解:∵点A 的坐标为(1,−2),∴AE =2,OE =1,AO =√AE 2+OE 2=√5.∵△CPD∽△AEO ,∴∠CDP =∠AOE ,∴sin∠CDB =sin∠AOE =AEAO =√5=2√55.【解析】本题考查了待定系数法求一次函数解析式、待定系数法反比例函数解析式、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征、菱形的性质、相似三角形的判定与性质以及解直角三角形,解题的关键是:(1)根据点的坐标,利用待定系数法求出m ,n 的值;(2)利用菱形的性质,找出∠DCP =∠OAE ,∠AEO =∠CPD =90°;(3)利用相似三角形的性质,找出∠CDP =∠AOE .(1)根据点P 的坐标,利用待定系数法可求出m ,n 的值,联立正、反比例函数解析式成方程组,通过解方程组可求出点A 的坐标(利用正、反比例函数图象的对称性结合点P 的坐标找出点A 的坐标亦可);(2)由菱形的性质可得出AC ⊥BD ,AB//CD ,利用平行线的性质可得出∠DCP =∠OAE ,结合AB⊥x轴可得出∠AEO=∠CPD=90°,进而即可证出△CPD∽△AEO;(3)由点A的坐标可得出AE,OE,AO的长,由相似三角形的性质可得出∠CDP=∠AOE,再利用正弦的定义即可求出sin∠CDB的值.23.【答案】解:(1)如图,线段CD即为所求.(2)连接BD,OC交于点E,设OE=x.∵AB是直径,∴∠ACB=90°,∴BC=√AB2−AC2=√102−82=6,∵BC=CD,∴BC⏜=CD⏜,∴OC⊥BD于E.∴BE=DE,∵BE2=BC2−EC2=OB2−OE2,∴62−(5−x)2=52−x2,解得x=75,∵BE=DE,BO=OA,∴AD=2OE=145,∴四边形ABCD的周长=6+6+10+145=1245.【解析】本题考查作图−复杂作图,圆周角定理,解直角三角形等知识,解题的关键是学会利用参数,构建方程解决问题.(1)以C为圆心,CB为半径画弧,交⊙O于D,线段CD即为所求.(2)连接BD,OC交于点E,设OE=x,构建方程求出x即可解决问题.24.【答案】证明:(1)∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,由折叠可知:DF=DC,当点F在AC上时,有∠DFC=∠C=60°,∴∠DFC=∠A,∴DF//AB;解:(2)存在,过点D作DM⊥AB交AB于点M,∵AB=BC=6,BD=4,∴CD=2,∴DF=2,∴点F在以D为圆心,DF为半径的圆上,∴当点F在DM上时,S△ABF最小,∵BD=4,DM⊥AB,∠ABC=60°,∴MD=2√3,∴S△ABF的最小值=12×6×(2√3−2)=6√3−6,∴S最大值=√34×62−(6√3−6)=3√3+6;(3)如图,过点D作DG⊥EF于点G,过点E作EH⊥CD于点H,∵△CDE关于DE的轴对称图形为△FDE,∴DF=DC=2,∠EFD=∠C=60°,∵GD⊥EF,∠EFD=60°,∴FG=1,DG=√3FG=√3,∵BD2=BG2+DG2,∴16=3+(BF+1)2,∴BF=√13−1,∴BG=√13,∵EH⊥BC,∠C=60°,∴CH=EC2,EH=√3HC=√32EC,∵∠GBD=∠EBH,∠BGD=∠BHE=90°,∴△BGD∽△BHE,∴DGBG =EHBH,∴√3√13=√32EC6−EC2,∴EC=√13−1,∴AE=AC−EC=7−√13.【解析】本题是三角形综合题,考查了等边三角形的性质,折叠的性质,勾股定理,相似三角形的判定和性质,添加恰当的辅助线构造相似三角形是本题的关键.(1)由折叠的性质和等边三角形的性质可得∠DFC =∠A ,可证DF//AB ;(2)过点D 作DM ⊥AB 交AB 于点M ,由题意可得点F 在以D 为圆心,DF 为半径的圆上,由△ABC 的面积为S 1的值是定值,则当点F 在DM 上时,S △ABF 最小时,S 最大;(3)过点D 作DG ⊥EF 于点G ,过点E 作EH ⊥CD 于点H ,由勾股定理可求BG 的长,通过证明△BGD∽△BHE ,可求EC 的长,即可求AE 的长.25.【答案】解:(1)∵y =mx 2−2mx −3=m(x −1)2−m −3,抛物线有最低点, ∴二次函数y =mx 2−2mx −3的最小值为−m −3;(2)∵抛物线G :y =m(x −1)2−m −3∴平移后的抛物线G 1:y =m(x −1−m)2−m −3∴抛物线G 1顶点坐标为(m +1,−m −3)∴x =m +1,y =−m −3∴x +y =m +1−m −3=−2即x +y =−2,变形得y =−x −2∵m >0,m =x −1∴x −1>0∴x >1∴y 与x 的函数关系式为y =−x −2(x >1);(3)法一:如图,函数H :y =−x −2(x >1)图象为射线x =1时,y =−1−2=−3;x =2时,y =−2−2=−4∴函数H 的图象恒过点B(2,−4)∵抛物线G :y =m(x −1)2−m −3x =1时,y =−m −3;x =2时,y =m −m −3=−3∴抛物线G 恒过点A(2,−3)由图象可知,若抛物线与函数H 的图象有交点P ,则y B <y P <y A ,∴点P 纵坐标的取值范围为−4<y P <−3;法二:{y =−x −2y =mx 2−2mx −3整理的:m(x 2−2x)=1−x∵x >1,且x =2时,方程为0=−1不成立∴x ≠2,即x 2−2x =x(x −2)≠0∴m =1−x x(x −2)>0 ∵x >1∴1−x <0∴x(x −2)<0∴x −2<0∴x <2即1<x <2∵y P =−x −2∴−4<y P <−3.【解析】本题考查了求二次函数的最值,二次函数的平移,二次函数与一次函数的关系.解题关键是在无图的情况下运用二次函数性质解题,第(3)题结合图象解题体现数形结合的运用.(1)抛物线有最低点即开口向上,m >0,用配方法或公式法求得对称轴和函数最小值.(2)写出抛物线G 的顶点式,根据平移规律即得到抛物线G 1的顶点式,进而得到抛物线G 1顶点坐标(m+1,−m−3),即x=m+1,y=−m−3,x+y=−2即消去m,得到y 与x的函数关系式.再由m>0,即求得x的取值范围.(3)法一:求出抛物线恒过点B(2,−4),函数H图象恒过点A(2,−3),由图象可知两图象交点P应在点A、B之间,即点P纵坐标在A、B纵坐标之间.法二:联立函数H解析式与抛物线解析式组成方程组,整理得到用x表示m的式子.由x与m的范围讨论x的具体范围,即求得函数H对应的交点P纵坐标的范围.。
广东中考数学模拟试题及解析
2019年广东省中考数学试卷及解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出地四个选项中,只有一个是正确地,请把答题卡上对应题目所选地选项涂黑.1.(3分)四个实数0、、﹣3.14、2中,最小地数是()A.0 B.C.﹣3.14 D.22.(3分)据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为()3.A.1.442×107B.0.1442×107 C.1.442×108D.0.1442×1083.(3分)如图,由5个相同正方体组合而成地几何体,它地主视图是()A.B.C.D.4.(3分)数据1、5、7、4、8地中位数是()A.4 B.5 C.6 D.75.(3分)下列所述图形中,是轴对称图形但不是中心对称图形地是()A.圆B.菱形C.平行四边形D.等腰三角形6.(3分)不等式3x﹣1≥x+3地解集是()A.x≤4 B.x≥4 C.x≤2 D.x≥27.(3分)在△ABC中,点D、E分别为边AB、AC地中点,则△ADE与△ABC地面积之比为()A.B.C.D.8.(3分)如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B地大小是()A.30°B.40°C.50°D.60°9.(3分)关于x地一元二次方程x2﹣3x+m=0有两个不相等地实数根,则实数m地取值范围是()A.m<B.m≤C.m>D.m≥10.(3分)如图,点P是菱形ABCD边上地一动点,它从点A出发沿在A→B→C→D 路径匀速运动到点D,设△PAD地面积为y,P点地运动时间为x,则y关于x地函数图象大致为()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)11.(3分)同圆中,已知弧AB所对地圆心角是100°,则弧AB所对地圆周角是.12.(3分)分解因式:x2﹣2x+1=.13.(3分)一个正数地平方根分别是x+1和x﹣5,则x=.14.(3分)已知+|b﹣1|=0,则a+1=.15.(3分)如图,矩形ABCD中,BC=4,CD=2,以AD为直径地半圆O与BC相切于点E,连接BD,则阴影部分地面积为.(结果保留π)16.(3分)如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B1地坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6地坐标为.17.三、解答题(一)17.(6分)计算:|﹣2|﹣20180+()﹣118.(6分)先化简,再求值:•,其中a=.19.(6分)如图,BD是菱形ABCD地对角线,∠CBD=75°,(1)请用尺规作图法,作AB地垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF地度数.20.(7分)某公司购买了一批A、B型芯片,其中A型芯片地单价比B型芯片地单价少9元,已知该公司用3120元购买A型芯片地条数与用4200元购买B 型芯片地条数相等.21.(1)求该公司购买地A、B型芯片地单价各是多少元?(2)若两种芯片共购买了200条,且购买地总费用为6280元,求购买了多少条A型芯片?21.(7分)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周地工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示地不完整统计图.(1)被调查员工人数为人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周地工作量完成情况为“剩少量”地员工有多少人?22.(7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.23.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.24.(9分)如图,已知顶点为C(0,﹣3)地抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.25.(1)求m地值;(2)求函数y=ax2+b(a≠0)地解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M地坐标;若不存在,请说明理由.24.(9分)如图,四边形ABCD中,AB=AD=CD,以AB为直径地⊙O经过点C,连接AC,OD交于点E.25.(1)证明:OD∥BC;(2)若tan∠ABC=2,证明:DA与⊙O相切;(3)在(2)条件下,连接BD交于⊙O于点F,连接EF,若BC=1,求EF地长.26.(9分)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB 绕点O顺时针旋转60°,如题图1,连接BC.27.(1)填空:∠OBC=°;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP地长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M 地运动速度为1.5单位/秒,点N地运动速度为1单位/秒,设运动时间为x秒,△OMN地面积为y,求当x为何值时y取得最大值?最大值为多少?2018年广东省中考数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出地四个选项中,只有一个是正确地,请把答题卡上对应题目所选地选项涂黑.二、1.(3分)四个实数0、、﹣3.14、2中,最小地数是()A.0 B.C.﹣3.14 D.2【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大地反而小,据此判断即可.【解答】解:根据实数比较大小地方法,可得﹣3.14<0<<2,所以最小地数是﹣3.14.故选:C.【点评】此题主要考查了实数大小比较地方法,要熟练掌握,解答此题地关键是要明确:正实数>0>负实数,两个负实数绝对值大地反而小.2.(3分)据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为()3.A.1.442×107B.0.1442×107 C.1.442×108D.0.1442×108【分析】根据科学记数法地表示方法可以将题目中地数据用科学记数法表示,本题得以解决.【解答】解:14420000=1.442×107,故选:A.【点评】本题考查科学记数法﹣表示较大地数,解答本题地关键是明确科学记数法地表示方法.3.(3分)如图,由5个相同正方体组合而成地几何体,它地主视图是()A.B.C.D.【分析】根据主视图是从物体正面看所得到地图形解答即可.【解答】解:根据主视图地定义可知,此几何体地主视图是B中地图形,故选:B.【点评】本题考查地是简单几何体地三视图地作图,主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到地图形.4.(3分)数据1、5、7、4、8地中位数是()A.4 B.5 C.6 D.7【分析】根据中位数地定义判断即可;【解答】解:将数据重新排列为1、4、5、7、8,则这组数据地中位数为5故选:B.【点评】本题考查了确定一组数据地中位数地能力.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间地那个数(最中间两个数地平均数),叫做这组数据地中位数.5.(3分)下列所述图形中,是轴对称图形但不是中心对称图形地是()A.圆B.菱形C.平行四边形D.等腰三角形【分析】根据轴对称图形与中心对称图形地概念求解.【解答】解:A、是轴对称图形,也是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项正确.故选:D.【点评】本题考查了中心对称图形与轴对称图形地概念:轴对称图形地关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.(3分)不等式3x﹣1≥x+3地解集是()A.x≤4 B.x≥4 C.x≤2 D.x≥2【分析】根据解不等式地步骤:①移项;②合并同类项;③化系数为1即可得.【解答】解:移项,得:3x﹣x≥3+1,合并同类项,得:2x≥4,系数化为1,得:x≥2,故选:D.【点评】本题主要考查解一元一次不等式,解题地关键是掌握解一元一次不等式地步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.7.(3分)在△ABC中,点D、E分别为边AB、AC地中点,则△ADE与△ABC地面积之比为()A.B.C.D.【分析】由点D、E分别为边AB、AC地中点,可得出DE为△ABC地中位线,进而可得出DE∥BC及△ADE∽△ABC,再利用相似三角形地性质即可求出△ADE与△ABC地面积之比.【解答】解:∵点D、E分别为边AB、AC地中点,∴DE为△ABC地中位线,∴DE∥BC,∴△ADE∽△ABC,∴=()2=.故选:C.【点评】本题考查了相似三角形地判定与性质以及三角形中位线定理,利用三角形地中位线定理找出DE∥BC是解题地关键.8.(3分)如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B地大小是()A.30°B.40°C.50°D.60°【分析】依据三角形内角和定理,可得∠D=40°,再根据平行线地性质,即可得到∠B=∠D=40°.【解答】解:∵∠DEC=100°,∠C=40°,∴∠D=40°,又∵AB∥CD,∴∠B=∠D=40°,故选:B.【点评】本题考查了平行线性质地应用,运用两直线平行,内错角相等是解题地关键.9.(3分)关于x地一元二次方程x2﹣3x+m=0有两个不相等地实数根,则实数m地取值范围是()A.m<B.m≤C.m>D.m≥【分析】根据一元二次方程地根地判别式,建立关于m地不等式,求出m地取值范围即可.【解答】解:∵关于x地一元二次方程x2﹣3x+m=0有两个不相等地实数根,∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,∴m<.故选:A.【点评】此题考查了根地判别式,一元二次方程根地情况与判别式△地关系:(1)△>0⇔方程有两个不相等地实数根;(2)△=0⇔方程有两个相等地实数根;(3)△<0⇔方程没有实数根.10.(3分)如图,点P是菱形ABCD边上地一动点,它从点A出发沿在A→B→C→D 路径匀速运动到点D,设△PAD地面积为y,P点地运动时间为x,则y关于x地函数图象大致为()11.A.B.C.D.【分析】设菱形地高为h,即是一个定值,再分点P在AB上,在BC上和在CD 上三种情况,利用三角形地面积公式列式求出相应地函数关系式,然后选择答案即可.【解答】解:分三种情况:①当P在AB边上时,如图1,设菱形地高为h,y=AP•h,∵AP随x地增大而增大,h不变,∴y随x地增大而增大,故选项C不正确;②当P在边BC上时,如图2,y=AD•h,AD和h都不变,∴在这个过程中,y不变,故选项A不正确;③当P在边CD上时,如图3,y=PD•h,∵PD随x地增大而减小,h不变,∴y随x地增大而减小,∵P点从点A出发沿在A→B→C→D路径匀速运动到点D,∴P在三条线段上运动地时间相同,故选项D不正确;故选:B.【点评】本题考查了动点问题地函数图象,菱形地性质,根据点P地位置地不同,分三段求出△PAD地面积地表达式是解题地关键.二、填空题(共6小题,每小题3分,满分18分)11.(3分)同圆中,已知弧AB所对地圆心角是100°,则弧AB所对地圆周角是50°.【分析】直接利用圆周角定理求解.【解答】解:弧AB所对地圆心角是100°,则弧AB所对地圆周角为50°.故答案为50°.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对地圆周角相等,都等于这条弧所对地圆心角地一半.12.(3分)分解因式:x2﹣2x+1=(x﹣1)2.【分析】直接利用完全平方公式分解因式即可.【解答】解:x2﹣2x+1=(x﹣1)2.【点评】本题考查了公式法分解因式,运用完全平方公式进行因式分解,熟记公式是解题地关键.13.(3分)一个正数地平方根分别是x+1和x﹣5,则x=2.【分析】根据正数地两个平方根互为相反数列出关于x 地方程,解之可得.【解答】解:根据题意知x +1+x ﹣5=0,解得:x=2,故答案为:2.【点评】本题主要考查地是平方根地定义和性质,熟练掌握平方根地定义和性质是解题地关键.14.(3分)已知+|b ﹣1|=0,则a +1= 2 .【分析】直接利用非负数地性质结合绝对值地性质得出a ,b 地值进而得出答案.【解答】解:∵+|b ﹣1|=0,∴b ﹣1=0,a ﹣b=0,解得:b=1,a=1,故a +1=2.故答案为:2.【点评】此题主要考查了非负数地性质以及绝对值地性质,正确得出a ,b 地值是解题关键.15.(3分)如图,矩形ABCD 中,BC=4,CD=2,以AD 为直径地半圆O 与BC 相切于点E ,连接BD ,则阴影部分地面积为 π .(结果保留π)16.【分析】连接OE ,如图,利用切线地性质得OD=2,OE ⊥BC ,易得四边形OECD 为正方形,先利用扇形面积公式,利用S 正方形OECD ﹣S 扇形EOD 计算由弧DE 、线段EC 、CD 所围成地面积,然后利用三角形地面积减去刚才计算地面积即可得到阴影部分地面积.【解答】解:连接OE ,如图,∵以AD 为直径地半圆O 与BC 相切于点E ,∴OD=2,OE ⊥BC ,易得四边形OECD 为正方形,∴由弧DE 、线段EC 、CD 所围成地面积=S 正方形OECD ﹣S 扇形EOD =22﹣=4﹣π,∴阴影部分地面积=×2×4﹣(4﹣π)=π.故答案为π.【点评】本题考查了切线地性质:圆地切线垂直于经过切点地半径.若出现圆地切线,必连过切点地半径,构造定理图,得出垂直关系.也考查了矩形地性质和扇形地面积公式.17.(3分)如图,已知等边△OA 1B 1,顶点A 1在双曲线y=(x >0)上,点B 1地坐标为(2,0).过B 1作B 1A 2∥OA 1交双曲线于点A 2,过A 2作A 2B 2∥A 1B 1交x 轴于点B 2,得到第二个等边△B 1A 2B 2;过B 2作B 2A 3∥B 1A 2交双曲线于点A 3,过A 3作A 3B 3∥A 2B 2交x 轴于点B 3,得到第三个等边△B 2A 3B 3;以此类推,…,则点B 6地坐标为 (2,0) .18.【分析】根据等边三角形地性质以及反比例函数图象上点地坐标特征分别求出B 2、B 3、B 4地坐标,得出规律,进而求出点B 6地坐标.【解答】解:如图,作A 2C ⊥x 轴于点C ,设B 1C=a ,则A 2C=a , OC=OB 1+B 1C=2+a ,A 2(2+a ,a ). ∵点A 2在双曲线y=(x >0)上, ∴(2+a )•a=, 解得a=﹣1,或a=﹣﹣1(舍去),∴OB 2=OB 1+2B 1C=2+2﹣2=2,∴点B2地坐标为(2,0);作A3D⊥x轴于点D,设B2D=b,则A3D=b,OD=OB2+B2D=2+b,A2(2+b,b).∵点A3在双曲线y=(x>0)上,∴(2+b)•b=,解得b=﹣+,或b=﹣﹣(舍去),∴OB3=OB2+2B2D=2﹣2+2=2,∴点B3地坐标为(2,0);同理可得点B4地坐标为(2,0)即(4,0);…,∴点B n地坐标为(2,0),∴点B6地坐标为(2,0).故答案为(2,0).【点评】本题考查了反比例函数图象上点地坐标特征,等边三角形地性质,正确求出B2、B3、B4地坐标进而得出点B n地规律是解题地关键.三、解答题(一)17.(6分)计算:|﹣2|﹣20180+()﹣1【分析】直接利用负指数幂地性质以及零指数幂地性质、绝对值地性质进而化简得出答案.【解答】解:原式=2﹣1+2=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(6分)先化简,再求值:•,其中a=.【分析】原式先因式分解,再约分即可化简,继而将a地值代入计算.【解答】解:原式=•=2a,当a=时,原式=2×=.【点评】本题主要考查分式地化简求值,解题地关键是熟练掌握分式混合运算顺序和运算法则.19.(6分)如图,BD是菱形ABCD地对角线,∠CBD=75°,(1)请用尺规作图法,作AB地垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF地度数.【分析】(1)分别以A、B为圆心,大于AB长为半径画弧,过两弧地交点作直线即可;(2)根据∠DBF=∠ABD﹣∠ABF计算即可;【解答】解:(1)如图所示,直线EF即为所求;(2)∵四边形ABCD是菱形,∴∠ABD=∠DBC=∠ABC=75°,DC∥AB,∠A=∠C.∴∠ABC=150°,∠ABC+∠C=180°,∴∠C=∠A=30°,∵EF垂直平分线线段AB,∴AF=FB,∴∠A=∠FBA=30°,∴∠DBF=∠ABD﹣∠FBE=45°.【点评】本题考查作图﹣基本作图,线段地垂直平分线地性质,菱形地性质等知识,解题地关键是灵活运用所学知识解决问题,属于常考题型.19.(7分)某公司购买了一批A、B型芯片,其中A型芯片地单价比B型芯片地单价少9元,已知该公司用3120元购买A型芯片地条数与用4200元购买B 型芯片地条数相等.(1)求该公司购买地A、B型芯片地单价各是多少元?(2)若两种芯片共购买了200条,且购买地总费用为6280元,求购买了多少条A型芯片?【分析】(1)设B型芯片地单价为x元/条,则A型芯片地单价为(x﹣9)元/条,根据数量=总价÷单价结合用3120元购买A型芯片地条数与用4200元购买B型芯片地条数相等,即可得出关于x地分式方程,解之经检验后即可得出结论;(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据总价=单价×数量,即可得出关于a地一元一次方程,解之即可得出结论.【解答】解:(1)设B型芯片地单价为x元/条,则A型芯片地单价为(x﹣9)元/条,根据题意得:=,解得:x=35,经检验,x=35是原方程地解,∴x﹣9=26.答:A型芯片地单价为26元/条,B型芯片地单价为35元/条.(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据题意得:26a+35(200﹣a)=6280,解得:a=80.答:购买了80条A型芯片.【点评】本题考查了分式方程地应用以及一元一次方程地应用,解题地关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.20.(7分)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周地工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示地不完整统计图.(1)被调查员工人数为800人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周地工作量完成情况为“剩少量”地员工有多少人?【分析】(1)由“不剩”地人数及其所占百分比可得答案;(2)用总人数减去其它类型人数求得“剩少量”地人数,据此补全图形即可;(3)用总人数乘以样本中“剩少量”人数所占百分比可得.【解答】解:(1)被调查员工人数为400÷50%=800人,故答案为:800;(2)“剩少量”地人数为800﹣(400+80+20)=300人,补全条形图如下:(3)估计该企业某周地工作量完成情况为“剩少量”地员工有10000×=3500人.【点评】本题考查地是条形统计图和扇形统计图地综合运用,读懂统计图,从不同地统计图中得到必要地信息是解决问题地关键.条形统计图能清楚地表示出每个项目地数据;扇形统计图直接反映部分占总体地百分比大小.也考查了用样本估计总体.21.(7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.【分析】(1)根据矩形地性质可得出AD=BC、AB=CD,结合折叠地性质可得出AD=CE、AE=CD,进而即可证出△ADE≌△CED(SSS);(3)根据全等三角形地性质可得出∠DEF=∠EDF,利用等边对等角可得出EF=DF,由此即可证出△DEF是等腰三角形.【解答】证明:(1)∵四边形ABCD是矩形,∴AD=BC,AB=CD.由折叠地性质可得:BC=CE,AB=AE,∴AD=CE,AE=CD.在△ADE和△CED中,,∴△ADE≌△CED(SSS).(2)由(1)得△ADE≌△CED,∴∠DEA=∠EDC,即∠DEF=∠EDF,∴EF=DF,∴△DEF是等腰三角形.【点评】本题考查了全等三角形地判定与性质、翻折变换以及矩形地性质,解题地关键是:(1)根据矩形地性质结合折叠地性质找出AD=CE、AE=CD;(2)利用全等三角形地性质找出∠DEF=∠EDF.22.(9分)如图,已知顶点为C(0,﹣3)地抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m地值;(2)求函数y=ax2+b(a≠0)地解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M地坐标;若不存在,请说明理由.【分析】(1)把C(0,﹣3)代入直线y=x+m中解答即可;(2)把y=0代入直线解析式得出点B地坐标,再利用待定系数法确定函数关系式即可;(3)分M在BC上方和下方两种情况进行解答即可.【解答】解:(1)将(0,﹣3)代入y=x+m,可得:m=﹣3;(2)将y=0代入y=x﹣3得:x=3,所以点B地坐标为(3,0),将(0,﹣3)、(3,0)代入y=ax2+b中,可得:,解得:,所以二次函数地解析式为:y=x2﹣3;(3)存在,分以下两种情况:①若M在B上方,设MC交x轴于点D,则∠ODC=45°+15°=60°,∴OD=OC•tan30°=,设DC为y=kx﹣3,代入(,0),可得:k=,联立两个方程可得:,解得:,所以M1(3,6);②若M在B下方,设MC交x轴于点E,则∠OEC=45°﹣15°=30°,∴OE=OC•tan60°=3,设EC为y=kx﹣3,代入(3,0)可得:k=,联立两个方程可得:,解得:,所以M2(,﹣2),综上所述M地坐标为(3,6)或(,﹣2).【点评】此题主要考查了二次函数地综合题,需要掌握待定系数法求二次函数解析式,待定系数法求一次函数解析式等知识是解题关键.23.(9分)如图,四边形ABCD中,AB=AD=CD,以AB为直径地⊙O经过点C,连接AC,OD交于点E.(1)证明:OD∥BC;(2)若tan∠ABC=2,证明:DA与⊙O相切;(3)在(2)条件下,连接BD交于⊙O于点F,连接EF,若BC=1,求EF地长.【分析】(1)连接OC,证△OAD≌△OCD得∠ADO=∠CDO,由AD=CD知DE⊥AC,再由AB为直径知BC⊥AC,从而得OD∥BC;(2)根据tan∠ABC=2可设BC=a、则AC=2a、AD=AB==,证OE为中位线知OE=a、AE=CE=AC=a,进一步求得DE==2a,再△AOD 中利用勾股定理逆定理证∠OAD=90°即可得;(3)先证△AFD∽△BAD得DF•BD=AD2①,再证△AED∽△OAD得OD•DE=AD2②,由①②得DF•BD=OD•DE,即=,结合∠EDF=∠BDO知△EDF∽△BDO,据此可得=,结合(2)可得相关线段地长,代入计算可得【解答】解:(1)连接OC,在△OAD和△OCD中,∵,∴△OAD≌△OCD(SSS),∴∠ADO=∠CDO,又AD=CD,∴DE⊥AC,∵AB为⊙O地直径,∴∠ACB=90°,∴∠ACB=90°,即BC⊥AC,∴OD∥BC;(2)∵tan∠ABC==2,∴设BC=a、则AC=2a,∴AD=AB==,∵OE∥BC,且AO=BO,∴OE=BC=a,AE=CE=AC=a,在△AED中,DE==2a,在△AOD中,AO2+AD2=()2+(a)2=a2,OD2=(OF+DF)2=(a+2a)2=a2,∴AO2+AD2=OD2,∴∠OAD=90°,则DA与⊙O相切;(3)连接AF,∵AB是⊙O地直径,∴∠AFD=∠BAD=90°,∵∠ADF=∠BDA,∴△AFD∽△BAD,∴=,即DF•BD=AD2①,又∵∠AED=∠OAD=90°,∠ADE=∠ODA,∴△AED∽△OAD,∴=,即OD•DE=AD2②,由①②可得DF•BD=OD•DE,即=,又∵∠EDF=∠BDO,∴△EDF∽△BDO,∵BC=1,∴AB=AD=、OD=、ED=2、BD=、OB=,∴=,即=,解得:EF=.【点评】本题主要考查圆地综合问题,解题地关键是掌握等腰三角形地性质、全等三角形地判定与性质、相似三角形地判定与性质及勾股定理逆定理等知识点.24.(9分)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB 绕点O顺时针旋转60°,如题图1,连接BC.(1)填空:∠OBC=60°;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP地长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M 地运动速度为1.5单位/秒,点N地运动速度为1单位/秒,设运动时间为x秒,△OMN地面积为y,求当x为何值时y取得最大值?最大值为多少?【分析】(1)只要证明△OBC是等边三角形即可;(2)求出△AOC地面积,利用三角形地面积公式计算即可;(3)分三种情形讨论求解即可解决问题:①当0<x≤时,M在OC上运动,N 在OB上运动,此时过点N作NE⊥OC且交OC于点E.②当<x≤4时,M在BC上运动,N在OB上运动.③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G.【解答】解:(1)由旋转性质可知:OB=OC,∠BOC=60°,∴△OBC是等边三角形,∴∠OBC=60°.故答案为60.(2)如图1中,∵OB=4,∠ABO=30°,∴OA=OB=2,AB=OA=2,=•OA•AB=×2×2=2,∴S△AOC∵△BOC是等边三角形,∴∠OBC=60°,∠ABC=∠ABO+∠OBC=90°,∴AC==2,∴OP===.(3)①当0<x≤时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E.则NE=ON•sin60°=x,=•OM•NE=×1.5x×x,∴S△OMN∴y=x2.∴x=时,y有最大值,最大值=.②当<x≤4时,M在BC上运动,N在OB上运动.作MH⊥OB于H.则BM=8﹣1.5x,MH=BM•sin60°=(8﹣1.5x),∴y=×ON×MH=﹣x2+2x.当x=时,y取最大值,y<,③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G.MN=12﹣2.5x,OG=AB=2,∴y=•MN•OG=12﹣x,当x=4时,y有最大值,最大值=2,综上所述,y有最大值,最大值为.【点评】本题考查几何变换综合题、30度地直角三角形地性质、等边三角形地判定和性质、三角形地面积等知识,解题地关键是学会用分类讨论地思想思考问题,属于中考压轴题.。
广东中考模拟考试《数学试卷》含答案解析
广东数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题1.2020-的倒数为( ). A. 12020 B. 12020- C. 2020- D. 20202.据民政部网站消息截至2018年底,我国60岁以上老年人口已经达到2.56亿人.其中2.56 亿用科学记数法表示为( )A 2.56×107 B. 2.56×108 C. 2.56×l09 D. 2.56×l010 3.如图是由几个相同的小正方体堆砌成的几何体,它的左视图是( )A B.C. D.4.已知一个多边形内角和等于900º,则这个多边形是( )A. 五边形B. 六边形C. 七边形D. 八边形 5.下列图形中,是轴对称图形但不是中心对称图形的是( )A. 等边三角形B. 正六边形C. 正方形D. 圆 6.不等式组2312x x -≥-⎧⎨-≥-⎩的解为( ) A. 5x ≥ B. 1x ≤- C. 15x -≤≤ D. 5x ≥或1x ≤-7.如图,已知直线12 //l l ,一块含30°角的直角三角板如图所示放置,235∠=︒,则1∠等于( )A. 25°B. 35°C. 40°D. 45°8.关于x 的一元二次方程(m ﹣2)x 2+5x +m 2﹣4=0的常数项是0,则( )A. m =4B. m =2C. m =2或m =﹣2D. m =﹣29.在△ABC 中,DE ∥BC ,AE :EC =2:3,则S △ADE :S 四边形BCED 的值为( )A. 4:9B. 4:21C. 4:25D. 4:510.如图,在△ABC 中,∠C=90°,AC=BC=3cm.动点P 从点A 出发,以2cm/s 的速度沿AB 方向运动到点B.动点Q 同时从点A 出发,以1cm/s 的速度沿折线ACCB 方向运动到点B.设△APQ 的面积为y(cm 2).运动时间为x(s ),则下列图象能反映y 与x 之间关系的是 ( )A. B.C. D.二、填空题11.x 1+有意义,则x 的取值范围为_____. 12.同时抛掷两枚质地均匀的硬币,则两枚硬币全部正面向上的概率是 .13.分解因式:22a 4a 2-+=_____.14.如图,⊙的弦AC 与半径OB 交于点,//BC OA ,AO AD =,则C ∠的度数为______º.15.已2|2|(2)0x y y -+-=,y x =__________.16.如图,Rt △ABC 中,∠ACB =90°,AC =BC =2,在以AB 的中点O 为坐标原点,AB 所在直线为x 轴建立的平面直角线坐标系中,将△ABC 绕点B 顺时针旋转,使点A 旋转至y 轴正半轴上的A ′处,则图中阴影部分面积为_____.17.将一些形状相同的小五角星如图所示的规律摆放,据此规律,第10个图形有_______个五角星.三、解答题18.计算:12+(π﹣2019)0﹣(﹣13)﹣2﹣4cos30° 19.先化简,再求值:24224a a a a a a ⎛⎫÷- ⎪---⎝⎭,其中22a =+. 20.如图,△ABC 中,AB =AC =10,BC =16.点D 在边BC 上,且点D 到边AB 和边AC 的距离相等.(1)用直尺和圆规作出点D (不写作法,保留作图痕迹,在图上标注出点D );(2)求点D 到边AB 的距离.21.某校积极开展”阳光体育”活动,并开设了跳绳、足球、篮球、跑步四种运动项目,为了解学生最喜爱哪一种项目,随机抽取了部分学生进行调查,并绘制了如下的条形统计图和扇形统计图(部分信息未给出).(1)求本次被调查的学生人数;(2)补全条形统计图;(3)该校共有3000名学生,请估计全校最喜爱篮球的人数比最喜爱足球的人数多多少?22.如图,把矩形纸片ABCD 沿EF 折叠后,使得点落在点的位置上,点恰好落在边AD 上的点处,连接EG .(1)求证:GEF △是等腰三角形;(2)若4CD =,8GD =,求HF 长度.23.六•一前夕,某幼儿园园长到厂家选购A 、B 两种品牌的儿童服装,每套A 品牌服装进价比B 品牌服装每套进价多25元,用2000元购进A 种服装数量是用750元购进B 种服装数量的2倍.(1)求A 、B 两种品牌服装每套进价分别为多少元;(2)该服装A 品牌每套售价为130元,B 品牌每套售价为95元,服装店老板决定,购进B 品牌服装的数量比购进A 品牌服装的数量的2倍还多4套,两种服装全部售出后,可使总的获利超过1200元,则最少购进A 品牌的服装多少套.24.如图,在O 中,弦AB 与弦 C D 相交于点,OA CD ⊥于点,过点的直线与 C D 的延长线交于点,//AC BF .(1)若FGB FBG ∠=∠,求证:BF 是O 的切线; (2)若3tan 4F ∠=,CD a =,请用表示O 的半径; (3)求证:22GF GB DF GF -=⋅.25.已知二次函数y=ax 2+bx ﹣3a 经过点A (﹣1,0)、C (0,3),与x 轴交于另一点B ,抛物线的顶点为D ,(1)求此二次函数解析式;(2)连接DC 、BC 、DB ,求证:△BCD 直角三角形;(3)在对称轴右侧的抛物线上是否存在点P ,使得△PDC 为等腰三角形?若存在,求出符合条件的点P 的坐标;若不存在,请说明理由.答案与解析一、选择题1.2020-的倒数为( ). A. 12020 B. 12020- C. 2020- D. 2020【答案】B【解析】【分析】根据倒数的定义:乘积为1的两数互为倒数,即可求出结论.【详解】解:2020-的倒数为12020-故选B .【点睛】此题考查的是求一个数的倒数,掌握倒数的定义是解决此题的关键.2.据民政部网站消息截至2018年底,我国60岁以上老年人口已经达到2.56亿人.其中2.56 亿用科学记数法表示为( )A 2.56×107 B. 2.56×108 C. 2.56×l09 D. 2.56×l010 【答案】B【解析】【分析】科学记数法表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是非负数;当原数的绝对值<1时,n 是负数.【详解】解:2.56亿=256000000=2.56×108, 故选B.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.如图是由几个相同的小正方体堆砌成的几何体,它的左视图是( )A. B. C.D.【答案】A【解析】【分析】 从左边看有2列,左数第1列有两个正方形,第2列有1个正方形,据此可得.【详解】从左边看有2列,左数第1列有两个正方形,第2列有1个正方形,故它的左视图是故选A .【点睛】此题考查三视图的知识;左视图是从几何体左面看得到的平面图形.4.已知一个多边形的内角和等于900º,则这个多边形是( )A. 五边形B. 六边形C. 七边形D. 八边形【答案】C【解析】试题分析:多边形的内角和公式为(n -2)×180°,根据题意可得:(n -2)×180°=900°,解得:n=7.考点:多边形的内角和定理.5.下列图形中,是轴对称图形但不是中心对称图形的是( )A. 等边三角形B. 正六边形C. 正方形D. 圆 【答案】A【解析】因为平行四边形是中心对称图形,而非轴对称图形;正六边形和圆既是中心对称图形也轴对称图形;等边三角形是轴对称图形而非中心对称图形,所以答案B 、C 、D 错误,应选答案A . 6.不等式组2312x x -≥-⎧⎨-≥-⎩的解为( ) A. 5x ≥B. 1x ≤-C. 15x -≤≤D. 5x ≥或1x ≤-【答案】C【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:解不等式2−x≥−3,得:x≤5,解不等式x−1≥−2,得:x≥−1,则不等式组的解集为15x -≤≤.故选C .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知”同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.如图,已知直线12 //l l ,一块含30°角的直角三角板如图所示放置,235∠=︒,则1∠等于( )A. 25°B. 35°C. 40°D. 45°【答案】A【解析】【分析】 过C 点作CM ∥直线l ₁,求出CM ∥直线l ₁∥直线l ₂,根据三角形内角和定理得∠ACB =60°根据平行线的性质∠2=∠ACM=35°, ∠MCB=∠CDE=25°,再由对顶角相等得出∠1= ∠CDE=∠MCB ,即可求出答案.【详解】解:过C 作CM ∥l ₁,∵直线l ₁∥直线l ₂,∴CM∥l₁∥l₂∴∠2=∠ACM,∠MCB=∠CDE∵∠B=30°∴∠ACB=60°∴∠ACM+∠MCB=60°∵∠2=∠ACM =35°∴∠MCB=25°∴∠1=∠CDE=∠MCB=25°故选:A【点睛】本题考查了平行线的性质、三角形内角和定理、对顶角相等,能正确作出辅助线是解题的关键.8.关于x的一元二次方程(m﹣2)x2+5x+m2﹣4=0的常数项是0,则( )A. m=4B. m=2C. m=2或m=﹣2D. m=﹣2【答案】D【解析】【分析】根据常数项为0,可得m2-4=0,同时还要保证m-2≠0,即可.【详解】由题意得:m2-4=0,且m-2≠0,解得:m=-2,故选D.【点睛】此题主要考查了一元二次方程的一般形式,关键是掌握ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.9.在△ABC中,DE∥BC,AE:EC=2:3,则S△ADE:S四边形BCED的值为( )A. 4:9B. 4:21C. 4:25D. 4:5【答案】B【解析】分析】由已知条件得到AE:AC=2:5,根据DE∥BC,得到△ADE∽△ABC,根据相似三角形的性质得到S△ADE:S△ABC =(AE:AB)2=4:25,即可得到结论.【详解】解:∵DE∥BC,∴△ADE∽△ABC,∴2ADEABCS AES AC⎛⎫= ⎪⎝⎭,∵23 AEEC=,∴25 AEAC=,∴425ADEABCSS=,∴S△ADE:S四边形BCED=4:21.故选B.【点睛】本题考查了相似三角形的判定及性质,比例的基本性质的运用,相似三角形的面积与相似比的关系,熟练掌握相似三角形的判定定理是解题的关键.10.如图,在△ABC中,∠C=90°,AC=BC=3cm.动点P从点A出发,以2cm/s的速度沿AB方向运动到点B.动点Q同时从点A出发,以1cm/s的速度沿折线ACCB方向运动到点B.设△APQ的面积为y(cm2).运动时间为x(s),则下列图象能反映y与x之间关系的是( )A. B.C. D.【答案】D【解析】【分析】在△ABC中,∠C=90°,AC=BC=3cm,可得AB=32,∠A=∠B=45°,分当0<x≤3(点Q在AC上运动,点P在AB上运动)和当3≤x≤6时(点P与点B重合,点Q在CB上运动)两种情况求出y与x的函数关系式,再结合图象即可解答.【详解】在△ABC中,∠C=90°,AC=BC=3cm,可得AB=32,∠A=∠B=45°,当0<x≤3时,点Q在AC 上运动,点P在AB上运动(如图1),由题意可得AP=2x,AQ=x,过点Q作QN⊥AB于点N,在等腰直角三角形AQN中,求得QN=22x,所以y=12AP QN⋅=21212=222x x x⨯⨯(0<x≤3),即当0<x≤3时,y随x的变化关系是二次函数关系,且当x=3时,y=4.5;当3≤x≤6时,点P与点B重合,点Q在CB上运动(如图2),由题意可得PQ=6-x,AP=32,过点Q作QN⊥BC于点N,在等腰直角三角形PQN中,求得QN=22(6-x),所以y=12AP QN⋅=12332(6)=9222x x⨯⨯--+(3≤x≤6),即当3≤x≤6时,y随x的变化关系是一次函数,且当x=6时,y=0.由此可得,只有选项D符合要求,故选D.【点睛】本题考查了动点函数图象,解决本题要正确分析动线运动过程,然后再正确计算其对应的函数解析式,由函数的解析式对应其图象,由此即可解答.二、填空题11.若分式x 1x 2+-有意义,则x 的取值范围为_____. 【答案】x ≥﹣1且x ≠2.【解析】【分析】根据被开方式是非负数,且分母不等于零列式求解即可.【详解】解:由题意得:x +1≥0,且x ﹣2≠0,解得:x ≥﹣1且x ≠2,故答案为x ≥﹣1且x ≠2.【点睛】本题考查了代数式有意义时字母的取值范围,代数式有意义时字母的取值范围一般从几个方面考虑:①当代数式是整式时,字母可取全体实数;②当代数式是分式时,考虑分式的分母不能为0;③当代数式是二次根式时,被开方数为非负数.12.同时抛掷两枚质地均匀的硬币,则两枚硬币全部正面向上的概率是 .【答案】14. 【解析】试题分析:画树状图为:共有4种等可能的结果数,其中两枚硬币全部正面向上的结果数为1,所以两枚硬币全部正面向上的概率=14.故答案为14. 考点:列表法与树状图法.13.分解因式:22a 4a 2-+=_____.【答案】()22a 1-【解析】分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式2后继续应用完全平方公式分解即可:()()2222a 4a 22a 2a 12a 1-+=-+=-. 14.如图,⊙的弦AC 与半径OB 交于点,//BC OA ,AO AD =,则C ∠的度数为______º.【答案】36°. 【解析】【分析】利用同弧所对的圆心角的度数是圆周角度数的2倍得∠O=2∠C,再利用平行线性质得∠O=∠B 即可证明OA=AD,最后利用三角形内角和即可解题.【详解】解:设∠C=x,由图可知∠O=2∠C=2x,(同弧所对的圆心角的度数是圆周角度数的2倍)∵//BC OA ,∴∠O=∠B=2x,∵AO AD =,∴∠O=∠ADO=∠CDB=2x,在△CDB 中,5x=180°,(三角形内角和) 解得:x=36°, ∴∠C=36°. 【点睛】本题考查了圆周角和圆心角的关系,平行线的性质,三角形内角和的性质,中等难度,熟悉圆周角的性质是解题关键.15.已2|2|(2)0x y y -+-=,y x =__________.【答案】16【解析】【分析】根据非负性的性质列方程式求出x 、y ,然后再求值即可.【详解】解:根据题意得,x-2y=0,y-2=0,解得,x=4,y=2,∴y x =42=16故答案为:16【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.如图,Rt△ABC中,∠ACB=90°,AC=BC=2,在以AB的中点O为坐标原点,AB所在直线为x轴建立的平面直角线坐标系中,将△ABC绕点B顺时针旋转,使点A旋转至y轴正半轴上的A′处,则图中阴影部分面积为_____.【答案】2 3π【解析】【分析】根据等腰直角三角形的性质求出AB,再根据旋转的性质可得A′B=AB,然后求出∠OA′B=30°,再根据直角三角形两锐角互余求出∠A′BA=60°,即旋转角为60°,再根据S阴影=S扇形ABA′+S△A′BC′﹣S△ABC﹣S扇形CBC′=S扇形ABA′﹣S扇形CBC′,然后利用扇形的面积公式列式计算即可得解.【详解】解:∵∠ACB=90°,AC=BC,∴△ABC是等腰直角三角形,∴AB=2OA=2OB2AC=2,∵△ABC绕点B顺时针旋转点A在A′处,∴BA′=AB,∴BA′=2OB,∴∠OA′B=30°,∴∠A′BA=60°,即旋转角为60°,S阴影=S扇形ABA′+S△A′BC′﹣S△ABC﹣S扇形CBC′=S扇形ABA′﹣S扇形CBC′=22 60(22)602 360360ππ⋅⋅⨯-=42 33ππ-=23π.故答案为23π. 【点睛】本题主要考查了旋转的性质、等腰直角三角形的性质、直角三角形30°角所对的直角边等于斜边的一半的性质的知识点,表示出阴影部分的面积等于两个扇形的面积的差是解题的关键,难点在于求出旋转角的度数.17.将一些形状相同的小五角星如图所示的规律摆放,据此规律,第10个图形有_______个五角星.【答案】120.【解析】寻找规律:不难发现,第1个图形有3=22-1个小五角星;第2个图形有8=32-1个小五角星;第3个图形有15=42-1个小五角星;…第n 个图形有(n +1)2-1个小五角星.∴第10个图形有112-1=120个小五角星.三、解答题18.12(π﹣2019)0﹣(﹣13)﹣2﹣4cos30° 【答案】-8.【解析】【分析】先根据二次根式的性质,零指数幂的意义,负整数指数幂的意义及特殊角的三角函数值逐项化简,再合并同类二次根式和同类项即可.【详解】解:原式=3﹣9﹣38【点睛】本题考查了实数的缓和运算,熟练掌握二次根式的性质,零指数幂的意义,负整数指数幂的意义及特殊角的三角函数值是解答本题的关键.19.先化简,再求值:24224a a a a a a ⎛⎫÷- ⎪---⎝⎭,其中22a =. 【答案】22a a +-;122+【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将a 的值代入计算即可求出值. 【详解】24224a a a a a a ⎛⎫÷- ⎪---⎝⎭()()()24222a a a a a a a +-=÷-+- ()()()2222a a a a a a +-=-- 22a a +=-, 当22a =+时,原式222241222222+++===++- 【点睛】此题考查了分式的化简求值,熟练掌握运算法则是争本题的关键.20.如图,△ABC 中,AB =AC =10,BC =16.点D 在边BC 上,且点D 到边AB 和边AC 的距离相等.(1)用直尺和圆规作出点D (不写作法,保留作图痕迹,在图上标注出点D );(2)求点D 到边AB 的距离.【答案】(1)见解析(2)4.8【解析】【分析】(1)作∠A 的角平分线交BC 于D ,则根据角平分线的性质可判断点D 到边AB 和边AC 的距离相等;(2)利用勾股定理计算出AD=6,设设点D 到AB 的距离为h ,,利用等面积法得到12×10h=8×6×12,然后解方程求出h 即可.【详解】解:(1)作∠A 的角平分线(或BC 的垂直平分线)与BC 的交点即为点D .如图:(2)∵AB=AC,AD是∠A角平分线∴AD⊥BC,垂足为D,∵BC=16,∴BD=CD=8,∵AB=10,在RT△ABD中∴根据勾股定理求得AD=6,设点D到AB的距离为h,则12×10h=8×6×12,解得h=4.8,所以点D到边AB的距离为4.8.【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了角平分线的性质.21.某校积极开展”阳光体育”活动,并开设了跳绳、足球、篮球、跑步四种运动项目,为了解学生最喜爱哪一种项目,随机抽取了部分学生进行调查,并绘制了如下的条形统计图和扇形统计图(部分信息未给出).(1)求本次被调查的学生人数;(2)补全条形统计图;(3)该校共有3000名学生,请估计全校最喜爱篮球的人数比最喜爱足球的人数多多少?【答案】(1)40人(2)12人(3)1125人【解析】【分析】(1)用喜欢跳绳的人数除以其所占的百分比即可求得被调查的总人数;(2)用总人数乘以足球所占的百分比即可求得喜欢足球的人数,用总数减去其他各小组的人数即可求得喜欢跑步的人数,从而补全条形统计图;(3)用样本估计总体即可确定最喜爱篮球的人数比最喜爱足球的人数多多少.【详解】解:(1)观察条形统计图与扇形统计图知:喜欢跳绳的有10人,占25%,故总人数有10÷25%=40人; (2)喜欢足球的有40×30%=12人, 喜欢跑步的有40-10-15-12=3人,故条形统计图补充:(3)全校最喜爱篮球的人数比最喜爱足球的人数多1512300022540-⨯=人. 【点睛】本题考查了扇形统计图、条形统计图及用样本估计总体的知识,解题的关键是能够读懂两种统计图并从中整理出进一步解题的有关信息,难度不大.22.如图,把矩形纸片ABCD 沿EF 折叠后,使得点落在点位置上,点恰好落在边AD 上的点处,连接EG .(1)求证:GEF △是等腰三角形;(2)若4CD =,8GD =,求HF 的长度.【答案】(1)见解析;(2)HF 的长为3【解析】【分析】(1)根据折叠性质可知FEC GEF ∠=∠,由平行线的性质可知GFE FEC ∠=∠,根据等量代换得GFE GEF ∠=∠,再根据等角对等边得到答案;(2)由折叠的性质可知HF DF =,90C H∠=∠=︒,8GD =,CD=GH=4,再根据勾股定理求得答案即可.【详解】解:(1)∵长方形纸片ABCD ,∴//AD BC ,∴GFE FEC ∠=∠∵FEC GEF ∠=∠∴GFE GEF ∠=∠∴GEF △是等腰三角形.(2)∵90C H ∠=∠=︒,HF DF =,8GD =,CD=GH=4设HF 长为,则GF 长为(8)x -,在Rt FGH △中,2224(8)x x +=-解得3x =,∴HF 的长为3.【点睛】本题考查了折叠的性质和平行线的性质,以及勾股定理的应用,根据折叠性质求出相关的量是解题的关键.23.六•一前夕,某幼儿园园长到厂家选购A 、B 两种品牌的儿童服装,每套A 品牌服装进价比B 品牌服装每套进价多25元,用2000元购进A 种服装数量是用750元购进B 种服装数量的2倍.(1)求A 、B 两种品牌服装每套进价分别为多少元;(2)该服装A 品牌每套售价为130元,B 品牌每套售价为95元,服装店老板决定,购进B 品牌服装的数量比购进A 品牌服装的数量的2倍还多4套,两种服装全部售出后,可使总的获利超过1200元,则最少购进A 品牌的服装多少套.【答案】(1)A 、B 两种品牌服装每套进价分别为100元、75元;(2)17套.【解析】【分析】(1)首先设A 品牌服装每套进价为x 元,则B 品牌服装每套进价为(x-25)元,根据关键语句”用2000元购进A 种服装数量是用750元购进B 种服装数量的2倍.”列出方程,解方程即可;(2)首先设购进A 品牌的服装a 套,则购进B 品牌服装(2a+4)套,根据”可使总的获利超过1200元”可得不等式(130-100)a+(95-75)(2a+4)>1200,再解不等式即可.【详解】解:(1)设A 品牌服装每套进价为x 元,则B 品牌服装每套进价为()25x -元,由题意得:2000750225x x =⨯-, 解得:100x =, 经检验:100x =是原分式方程的解,251002575x -=-=,答:A 、B 两种品牌服装每套进价分别为100元、75元;(2)设购进A 品牌的服装a 套,则购进B 品牌服装()24a +套,由题意得:()()()1301009575241200a a -+-+>,解得:16a >,答:至少购进A 品牌服装的数量是17套.【点睛】本题考查了分式方程组的应用和一元一次不等式的应用,弄清题意,表示出A 、B 两种品牌服装每套进价,根据购进的服装的数量关系列出分式方程,求出进价是解决问题的关键.24.如图,在O 中,弦AB 与弦 C D 相交于点,OA CD ⊥于点,过点的直线与 C D 的延长线交于点,//AC BF .(1)若FGB FBG ∠=∠,求证:BF 是O 的切线; (2)若3tan 4F ∠=,CD a =,请用表示O 的半径; (3)求证:22GF GB DF GF -=⋅.【答案】(1)见解析;(2)2548r a =;(3)见解析 【解析】【分析】 (1) 根据等边对等角可得∠OAB=∠OBA ,然后根据OA ⊥CD 得到∠OAB+∠AGC=90°推出∠FBG+∠OBA=90°,从而得到OB ⊥FB ,再根据切线的定义证明即可;(2)根据两直线平行,内错角相等可得∠ACF=∠F ,根据垂径定理可得1122CE CD a ==,连接OC ,设圆的半径为r ,表示出OE ,然后利用勾股定理列式计算即可求出r ;(3)连接BD ,根据在同圆或等圆中,同弧所对的圆周角相等可得∠DBG=∠ACF ,然后求出∠DBG=∠F ,从而求出△BDG 和△FBG 相似,根据相似三角形对应边成比例列式表示出BG 2,然后代入,整理等式左边即可得证.【详解】(1)∵OA OB =∴OAB OBA ∠=∠,∵OA CD ⊥,∴90OAB AGC ∠+∠=︒又∵FGB FBG ∠=∠,FGB AGC ∠=∠,∴90FBG OBA ∠+∠=︒即90OBF ∠=︒,∴OB FB ⊥∴BF 是O 的切线;(2)∵CD a =,OA CD ⊥∴1122CE CD a ==,∵//AC BF ,∴ACF F ∠=∠, ∵3tan 4F =, ∴3tan 4AE ACF CE ∠==,即3142AE a =, 解得38AE a =, 连接OC ,设圆的半径为,则38OE r a =-, 在Rt OCE 中,222CE OE OC +=, 即2221328a r a r ⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭, 解得2548r a =; (3)证明:连接BD ,∵DBG ACF ∠=∠,ACF F ∠=∠(已证)∴DBG F ∠=∠又∵FGB BGF =∠∠,∴BDG FBG ∽△△ ∴DG GB GB GF= 即2GB DG GF =⋅,∴222()GF GB GF DG GF GF GF DG GF DF -=-⋅=-=⋅,即22GF GB DF GF -=⋅.【点睛】本题是圆的综合题型,主要考查了切线的定义,解直角三角形,勾股定理的应用,相似三角形的判定与性质,作辅助线构造出直角三角形与相似三角形是解题的关键,(3) 的证明比较灵活,想到计算整理后得证是解题的关键.25.已知二次函数y=ax 2+bx ﹣3a 经过点A (﹣1,0)、C (0,3),与x 轴交于另一点B ,抛物线的顶点为D ,(1)求此二次函数解析式;(2)连接DC 、BC 、DB ,求证:△BCD 是直角三角形;(3)在对称轴右侧的抛物线上是否存在点P ,使得△PDC 为等腰三角形?若存在,求出符合条件的点P 的坐标;若不存在,请说明理由.【答案】(1)抛物线的解析式为y=﹣x 2+2x+3.(2)证明见解析;(3)点P 坐标为35+55-或(2,3). 【解析】试题分析:(1)将A(﹣1,0)、C(0,3),代入二次函数y=ax 2+bx ﹣3a ,求得a 、b 的值即可确定二次函数的解析式;(2)分别求得线段BC 、CD 、BD 的长,利用勾股定理的逆定理进行判定即可;(3)分以CD 为底和以CD 为腰两种情况讨论.运用两点间距离公式建立起P 点横坐标和纵坐标之间的关系,再结合抛物线解析式即可求解.试题解析:(1)∵二次函数y=ax 2+bx ﹣3a 经过点A(﹣1,0)、C(0,3),∴将A(﹣1,0)、C(0,3),代入,得30{33a b a a --=-=,解得12a b =-=⎧⎨⎩,∴抛物线的解析式为y=﹣x 2+2x+3;(2)如图,连接DC 、BC 、DB ,由y=﹣x 2+2x+3=﹣(x ﹣1)2+4得,D 点坐标为(1,4),∴22(10)(43)-+-2,2233+2,22(31)(40)-+-5∵CD 2+BC 22)2+(32)2=20,BD 252=20,∴CD 2+BC 2=BD 2,∴△BCD 是直角三角形;(3)y=﹣x 2+2x+3对称轴为直线x=1.假设存在这样的点P,①以CD 为底边,则P 1D=P 1C ,设P 1点坐标为(x ,y),根据勾股定理可得P 1C 2=x 2+(3﹣y)2,P 1D 2=(x ﹣1)2+(4﹣y)2,因此x 2+(3﹣y)2=(x ﹣1)2+(4﹣y)2,即y=4﹣x .又P 1点(x ,y)在抛物线上,∴4﹣x=﹣x 2+2x+3,即x 2﹣3x+1=0,解得x 135+x 235-1,(不满足在对称轴右侧应舍去),∴35+∴y=4﹣55-P 1坐标为35+55-.②以CD 为一腰,∵点P 2在对称轴右侧的抛物线上,由抛物线对称性知,点P2与点C关于直线x=1对称,此时点P2坐标为(2,3).∴符合条件的点P坐标为(352+,552-)或(2,3).考点:1.二次函数图象性质;2.等腰三角形性质;3.直角三角形的判定.。
2019年广东省中考数学真题--含解析++
2019年广东省中考试题解析(满分120分,考试时间120分钟)一、选择题(本大题共10题,每小题3分,共30)1.(2019广东省,1,3分)﹣2的绝对值是()A.2 B.﹣2 C.1D.±22【答案】A【解析】解:|﹣2|=2,故选:A.【知识点】绝对值2.(2019广东省,2,3分)某网店2019年母亲节这天的营业额为221000元,将数221000用科学记数法表示为()A.2.21×106 B.2.21×105C.221×103D.0.221×106【答案】B【解析】解:将221000用科学记数法表示为:2.21×105.故选:B.【知识点】科学记数法—表示较大的数3.(2019广东省,3,3分)如图,由4个相同正方体组合而成的儿何体,它的左视图是()【答案】A【解析】解:从左边看得到的是两个叠在一起的正方形,如图所示.故选:A.【知识点】简单组合体的三视图4.(2019广东省,4,3分)下列计算正确的是()A.b6+b3=b2B.b3•b3=b9C.a2+a2=2a2D.(a3)3=a6【答案】C【解析】解: b6+b3,无法计算,故选项A错误;b3•b3=b6,故选项B错误;a2+a2=2a2,故选项C正确;(a3)3=a9,故选项D错误.故选:C.【知识点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方5.(2019广东省,5,3分)下列四个银行标志中,既是中心对称图形,又是轴对称图形的是()【答案】C【解析】解:A、是轴对称图形,不是中心对称图形,故选项A错误;B、是轴对称图形,不是中心对称图形,故选项B错误;C、既是轴对称图形,也是中心对称图形,故选项C正确;D、是轴对称图形,不是中心对称图形,故选项D错误.故选:C.【知识点】轴对称图形;中心对称图形6.(2019广东省,6,3分)数据3,3,5,8,11的中位数是()A.3 B.4 C.5 D.6【答案】C【解析】解:把这组数据按照从小到大的顺序排列为:3,3,5,8,11,故这组数据的中位数是5.故选:C.【知识点】中位数7.(2019广东省,7,3分)实数a、b在数轴上的对应点的位置如图所示,下列式子成立的是()<0A.a>b B.|a|<|b| C.a+b>0 D.ab【答案】D【解析】解:由图可得:﹣2<a<﹣1,0<b<1,∴a<b,故A错误;|a|>|b|,故B错误;a+b <0,故D正确;故选:D.<0,故C错误;ab【知识点】绝对值;实数与数轴8.(2019广东省,8,3分)化简√42的结果是()A.﹣4 B.4 C.±4 D.2【答案】B【解析】解:√42=√16=4.故选:B.【知识点】算术平方根9.(2019广东省,9,3分)已知x1,x2是一元二次方程x2﹣2x=0的两个实数根,下列结论错误的是()A.x1≠x2B.x12﹣2x1=0 C.x1+x2=2 D.x1•x2=2【答案】D【解析】解:∵△=(﹣2)2﹣4×1×0=4>0,∴x1≠x2,选项A不符合题意;∵x1是一元二次方程x2﹣2x=0的实数根,∴x12﹣2x1=0,选项B不符合题意;∵x1,x2是一元二次方程x2﹣2x=0的两个实数根,∴x1+x2=2,x1•x2=0,选项C不符合题意,选项D符合题意.故选:D.【知识点】一元二次方程根与系数的关系10.(2019广东省,10,3分)如图,正方形ABCD的边长为4,延长CB至E使EB=2,以EB为边在上方作正方形EFGB,延长FG交DC于M,连接AM,AF,H为AD的中点,连接FH分别与AB,AM交于点N、K:则下列结论:①△ANH≌△GNF;②∠AFN=∠HFG;③FN=2NK;④S:S△ADM=△AFN 1:4.其中正确的结论有()A.1个B.2个C.3个D.4个【答案】C【解析】解:∵四边形EFGB是正方形,EB=2,∴FG=BE=2,∠FGB=90°,∵四边形ABCD是正方形,H为AD的中点,∴AD=4,AH=2,∠BAD=90°,∴∠HAN=∠FGN,AH=FG,∵∠ANH=∠GNF,∴△ANH≌△GNF(AAS),故①正确;∴∠AHN=∠HFG,∵AG=FG=2=AH,∴AF=√2FG=√2AH,∴∠AFH ≠∠AHF ,∴∠AFN ≠∠HFG ,故②错误; ∵△ANH ≌△GNF , ∴AN =12AG =1, ∵GM =BC =4, ∴AHAN =GM AG =2,∵∠HAN =∠AGM =90°, ∴△AHN ∽△GMA , ∴∠AHN =∠AMG , ∵AD ∥GM , ∴∠HAK =∠AMG , ∴∠AHK =∠HAK , ∴AK =HK , ∴AK =HK =NK , ∵FN =HN ,∴FN =2NK ;故③正确; ∵延长FG 交DC 于M , ∴四边形ADMG 是矩形, ∴DM =AG =2,∵S △AFN =12AN •FG =12×2×1=1,S △ADM =12AD •DM =12×4×2=4, ∴S △AFN :S △ADM =1:4故④正确, 故选:C .【知识点】全等三角形的判定与性质;正方形的性质;相似三角形的判定与性质二、填空题(本大题共6小题,每小题4分,共24分) 11. (2019广东省,11,4分)计算:20190+(13)﹣1= . 【答案】4【解析】解:原式=1+3=4.故答案为:4.【知识点】有理数的加法;零指数幂;负整数指数幂12.(2019广东省,12,4分)如图,已知a∥b,∠1=75°,则∠2=.【答案】105°【解析】解:∵直线L直线a,b相交,且a∥b,∠1=75°,∴∠3=∠1=75°,∴∠2=180°﹣∠3=180°﹣75°=105°.故答案为:105°【知识点】平行线的性质13.(2019广东省,13,4分)一个多边形的内角和是1080°,这个多边形的边数是.【答案】8【解析】解:设多边形边数有x条,由题意得:180(x﹣2)=1080,解得:x=8,故答案为:8.【知识点】多边形内角与外角14.(2019广东省,14,4分)已知x=2y+3,则代数式4x﹣8y+9的值是.【答案】21【解析】解:∵x=2y+3,∴x﹣2y=3,则代数式4x﹣8y+9=4(x﹣2y)+9=4×3+9=21.故答案为:21.【知识点】代数式求值;整式的加减15.(2019广东省,15,4分)如图,某校教学楼AC与实验楼BD的水平间距CD=15√3米,在实验楼顶部B点测得教学楼顶部A点的仰角是30°,底部C点的俯角是45°,则教学楼AC的高度是米(结果保留根号).【答案】(15+15√3)【解析】解:过点B 作BE ⊥AB 于点E ,在Rt △BEC 中,∠CBE =45°,BE =15√3;可得CE =BE ×tan45°=15√3米. 在Rt △ABE 中,∠ABE =30°,BE =15√3,可得AE =BE ×tan30°=15米. 故教学楼AC 的高度是AC =15√3+15米. 答:教学楼AC 的高度是(15√3+15)米.【知识点】解直角三角形的应用﹣仰角俯角问题16.(2019广东省,16,4分)如图1所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按图2所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(图1)拼出来的图形的总长度是 (结果用含a ,b 代数式表示).【答案】a +8b【解析】解:由图可得,拼出来的图形的总长度=9a ﹣8(a ﹣b )=a +8b .故答案为:a +8b . 【知识点】利用轴对称设计图案三、解答题(本大题共9小题,满分66分,各小题都必须写出解答过程) 17. (2019广东省,17,6分)解不等式组:{x −1>2①2(x +1)>4②【思路分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集. 【解题过程】解:{x −1>2①2(x +1)>4②解不等式组①,得x>3解不等式组②,得x>1则不等式组的解集为x>3【知识点】解一元一次不等式组18.(2019广东省,18,6分)先化简,再求值:(xx−2−1x−2)÷x2−xx2−4,其中x=√2【思路分析】先化简分式,然后将x的值代入计算即可.【解题过程】解:原式=x−1x−2⋅(x+2)(x−2)x(x−1)=x+2x当x=√2时,原式=√2+2√2=√2+1【知识点】分式的化简求值19.(2019广东省,19,6分)如图,在△ABC中,点D是AB边上的一点.(1)请用尺规作图法,在△ABC内,求作∠ADE,使∠ADE=∠B,DE交AC于E;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若ADDB =2,求AEEC的值.【思路分析】(1)利用基本作图(作一个角等于已知角)作出∠ADE=∠B;(2)先利用作法得到∠ADE=∠B,则可判断DE∥BC,然后根据平行线分线段成比例定理求解.【解题过程】解:(1)如图,∠ADE为所作;(2)∵∠ADE=∠B∴DE∥BC,∴AEEC =ADDB=2.【知识点】相似三角形的判定与性质;作图20.(2019广东省,20,7分)为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为A、B、C、D四个等级,绘制如下不完整的统计图表,如图表所示,根据图表信息解答下列问题:成绩等级频数分布表成绩等级频数A24B10C xD 2合计y(1)x=,y=,扇形图中表示C的圆心角的度数为度;(2)甲、乙、丙是A等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲,乙两名学生的概率.【思路分析】(1)随机抽男生人数:10÷25%=40(名),即y=40;C等级人数:40﹣24﹣10﹣2=4(名),即x=4;扇形图中表示C的圆心角的度数360°×440=36°;(2)先画树状图,然后求得P(同时抽到甲,乙两名学生)=26=13.【解题过程】解:(1)随机抽男生人数:10÷25%=40(名),即y=40;C等级人数:40﹣24﹣10﹣2=4(名),即x=4;扇形图中表示C的圆心角的度数360°×440=36°.故答案为4,40,36;(2)画树状图如下:P (同时抽到甲,乙两名学生)=26=13.【知识点】频数(率)分布表;扇形统计图;列表法与树状图法21. (2019广东省,21,7分)某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,已知每个篮球的价格为70元,每个足球的价格为80元.(1)若购买这两类球的总金额为4600元,求篮球,足球各买了多少个? (2)若购买篮球的总金额不超过购买足球的总金额,求最多可购买多少个篮球?【思路分析】(1)设购买篮球x 个,购买足球y 个,根据总价=单价×购买数量结合购买篮球、足球共60个\购买这两类球的总金额为4600元,列出方程组,求解即可;(2)设购买了a 个篮球,则购买(60﹣a )个足球,根据购买篮球的总金额不超过购买足球的总金额,列不等式求出x 的最大整数解即可.【解题过程】解:(1)设购买篮球x 个,购买足球y 个, 依题意得:{x +y =6070x +80y =4600.解得{x =20y =40.答:购买篮球20个,购买足球40个; (2)设购买了a 个篮球, 依题意得:70a ≤80(60﹣a ) 解得a ≤32.答:最多可购买32个篮球.【知识点】二元一次方程组的应用;一元一次不等式的应用22. (2019广东省,22,7分)在如图所示的网格中,每个小正方形的边长为1,每个小正方形的顶点叫格点,△ABC 的三个顶点均在格点上,以点A 为圆心的EF̂与BC 相切于点D ,分别交AB 、AC 于点E 、F .(1)求△ABC 三边的长;(2)求图中由线段EB 、BC 、CF 及EF̂所围成的阴影部分的面积.【思路分析】(1)根据勾股定理即可求得;(2)根据勾股定理求得AD ,由(1)得,AB 2+AC 2=BC 2,则∠BAC =90°,根据S 阴=S △ABC ﹣S 扇形AEF 即可求得.【解题过程】解:(1)AB =√22+62=2√10,AC =√62+22=2√10, BC =√42+82=4√5;(2)由(1)得,AB 2+AC 2=BC 2, ∴∠BAC =90°,连接AD ,AD =√22+42=2√5,∴S 阴=S △ABC ﹣S 扇形AEF =12AB •AC −14π•AD 2=20﹣5π. 【知识点】勾股定理;切线的性质;扇形面积的计算23. (2019广东省,23,9分)如图,一次函数y =kx +b 的图象与反比例函数y =k 2x的图象相交于A 、B 两点,其中点A 的坐标为(﹣1,4),点B 的坐标为(4,n ). (1)根据图象,直接写出满足kx +b >k2x 的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上,且S △AOP :S △BOP =1:2,求点P 的坐标.【思路分析】(1)根据一次函数图象在反比例图象的上方,可求x 的取值范围; (2)将点A ,点B 坐标代入两个解析式可求k 2,n ,k 1,b 的值,从而求得解析式; (3)根据三角形面积相等,可得答案.【解题过程】解:(1)∵点A 的坐标为(﹣1,4),点B 的坐标为(4,n ).由图象可得:kx +b >k 2x 的x 的取值范围是x <﹣1或0<x <4;(2)∵反比例函数y =k 2x 的图象过点A (﹣1,4),B (4,n )∴k 2=﹣1×4=﹣4,k 2=4n∴n =﹣1∴B (4,﹣1)∵一次函数y =kx +b 的图象过点A ,点B∴{−k +b =44k +b =−1, 解得:k =﹣1,b =3∴直线解析式y =﹣x +3,反比例函数的解析式为y =−4x ;(3)设直线AB 与y 轴的交点为C ,∴C (0,3),∵S △AOC =12×3×1=32,∴S △AOB =S △AOC +S △BOC =12×3×1+12×3×4=152, ∵S △AOP :S △BOP =1:2,∴S △AOP =152×13=52, ∴S △COP =52−32=1,∴12×3•x P =1,∴x P =23,∵点P 在线段AB 上,∴y =−23+3=73,∴P (23,73).【知识点】反比例函数与一次函数的交点24.(2019广东省,24,9分)如图1,在△ABC中,AB=AC,⊙O是△ABC的外接圆,过点C作∠BCD=∠ACB交⊙O于点D,连接AD交BC于点E,延长DC至点F,使CF=AC,连接AF.(1)求证:ED=EC;(2)求证:AF是⊙O的切线;(3)如图2,若点G是△ACD的内心,BC•BE=25,求BG的长.【思路分析】(1)由AB=AC知∠ABC=∠ACB,结合∠ACB=∠BCD,∠ABC=∠ADC得∠BCD=∠ADC,从而得证;(2)连接OA,由∠CAF=∠CFA知∠ACD=∠CAF+∠CFA=2∠CAF,结合∠ACB=∠BCD得∠ACD=2∠ACB,∠CAF=∠ACB,据此可知AF∥BC,从而得OA⊥AF,从而得证;(3)证△ABE∽△CBA得AB2=BC•BE,据此知AB=5,连接AG,得∠BAG=∠BAD+∠DAG,∠BGA =∠GAC+∠ACB,由点G为内心知∠DAG=∠GAC,结合∠BAD+∠DAG=∠GDC+∠ACB得∠BAG=∠BGA,从而得出BG=AB=5.【解题过程】解:(1)∵AB=AC,∴∠ABC=∠ACB,又∵∠ACB=∠BCD,∠ABC=∠ADC,∴∠BCD=∠ADC,∴ED=EC;(2)如图1,连接OA,∵AB=AC,̂=AĈ,∴AB∴OA ⊥BC ,∵CA =CF ,∴∠CAF =∠CFA ,∴∠ACD =∠CAF +∠CFA =2∠CAF ,∵∠ACB =∠BCD ,∴∠ACD =2∠ACB ,∴∠CAF =∠ACB ,∴AF ∥BC ,∴OA ⊥AF ,∴AF 为⊙O 的切线;(3)∵∠ABE =∠CBA ,∠BAD =∠BCD =∠ACB ,∴△ABE ∽△CBA ,∴AB BC =BE AB ,∴AB 2=BC •BE ,∴BC •BE =25,∴AB =5,如图2,连接AG ,∴∠BAG =∠BAD +∠DAG ,∠BGA =∠GAC +∠ACB ,∵点G 为内心,∴∠DAG =∠GAC ,又∵∠BAD +∠DAG =∠GDC +∠ACB ,∴∠BAG =∠BGA ,∴BG =AB =5.【知识点】圆心角定理;切线的判定与性质;相似三角形的判定与性质25. (2019广东省,25,9分)如图1,在平面直角坐标系中,抛物线y =√38x 2+3√34x −7√38与x 轴交于点A 、B (点A 在点B 右侧),点D 为抛物线的顶点,点C 在y 轴的正半轴上,CD 交x 轴于点F ,△CAD 绕点C 顺时针旋转得到△CFE ,点A 恰好旋转到点F ,连接BE .(1)求点A 、B 、D 的坐标;(2)求证:四边形BFCE 是平行四边形;(3)如图2,过项点D 作DD 1⊥x 轴于点D 1,点P 是抛物线上一动点,过点P 作PM ⊥x 轴,点M为垂足,使得△PAM 与△DD 1A 相似(不含全等).①求出一个满足以上条件的点P 的横坐标;②直接回答这样的点P 共有几个?【思路分析】(1)利用抛物线解析式求得点A 、B 、D 的坐标;(2)欲证明四边形BFCE 是平行四边形,只需推知EC ∥BF 且EC =BF 即可;(3)①利用相似三角形的对应边成比例求得点P 的横坐标,没有指明相似三角形的对应边(角),需要分类讨论;②根据①的结果即可得到结论.【解题过程】解:(1)令√38x 2+3√34x −7√38=0, 解得x 1=1,x 2=﹣7.∴A (1,0),B (﹣7,0).由y =√38x 2+3√34x −7√38=√38(x +3)2﹣2√3得,D (﹣3,﹣2√3); (2)证明:∵DD 1⊥x 轴于点D 1,∴∠COF =∠DD 1F =90°,∵∠D 1FD =∠CFO ,∴△DD 1F ∽△COF ,∴D 1D PD 1=CO OF , ∵D (﹣3,﹣2√3),∴D 1D =2√3,OD =3,∴D 1F =2,∴2√32=OC 1,∴OC =√3,∴CA =CF =FA =2,∴△ACF 是等边三角形,∴∠AFC =∠ACF ,∵△CAD 绕点C 顺时针旋转得到△CFE ,∴∠ECF =∠AFC =60°,∴EC ∥BF ,∵EC =DC =√32+(√3+2√3)2=6,∵BF =6,∴EC =BF ,∴四边形BFCE 是平行四边形;(3)∵点P 是抛物线上一动点,∴设P 点(x ,√38x 2+3√34x −7√38), ①当点P 在B 点的左侧时,∵△PAM 与△DD 1A 相似,∴DD 1PM =D 1A MA 或DD 1AM =D 1A PM , ∴2√3√3B x 2+3√34x−7√38=41−x 或2√31−x =4√38x 2+3√34x−7√38,解得:x 1=1(不合题意舍去),x 2=﹣11或x 1=1(不合题意舍去)x 2=−373;当点P 在A 点的右侧时,∵△PAM 与△DD 1A 相似,∴PM AM =DD 1D 1A 或PM MA =D 1A DD 1, ∴√38x 2+3√34x−7√38x−1=2√34或√38x 2+3√34x−7√38x−1=42√3, 解得:x 1=1(不合题意舍去),x 2=﹣3(不合题意舍去)或x 1=1(不合题意舍去),x 2=−53(不合题意舍去);当点P 在AB 之间时,∵△PAM 与△DD 1A 相似,∴PM AM =DD 1D 1A 或PM MA =D 1ADD 1,∴√38x 2+3√34x−7√38x−1=2√34或√38x 2+3√34x−7√38x−1=42√3, 解得:x 1=1(不合题意舍去),x 2=﹣3(不合题意舍去)或x 1=1(不合题意舍去),x 2=−53;综上所述,点P 的横坐标为﹣11或−373或−53;②由①得,这样的点P 共有3个.【知识点】待定系数法求函数的解析式;全等三角形的判定和性质;平行四边形的判定;相似三角形的判定和性质。
2019年广东省中考数学试题(含答案,解析版)
2019年广东省中考数学试题(含答案,解析版)2019年广东省初中学业水平考试数学本次考试共4页,满分120分,考试时间为100分钟。
考生在答题卡上填写准考证号、姓名、考场号和座位号,并用2B铅笔在对应号码的标号处涂黑。
选择题用2B铅笔涂黑答题卡上对应题目选项的答案信息点,非选择题必须用黑色字迹钢笔或签字笔作答,写在答题卡各题目指定区域内相应位置上。
如需改动,先划掉原来的答案,再写上新的答案。
不准使用铅笔和涂改液。
考试结束时,将试卷和答题卡一并交回。
答案无效若不按以上要求作答。
一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑。
1.求解-2的绝对值。
A。
2B。
-2C。
0D。
±2答案】A解析】正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.考点】绝对值2.某网店2019年母亲节这天的营业额为221 000元,将数221 000用科学记数法表示为。
A。
2.21×106B。
2.21×105C。
221×103D。
0.221×106答案】B解析】科学记数法的形式为a×10n,其中≤|a|<10.考点】科学记数法3.如图,由4个相同正方体组合而成的几何体,它的左视图是。
答案】A解析】从左边看,得出左视图。
考点】简单组合体的三视图4.下列计算正确的是。
A。
b6÷b3=b2B。
b3·b3=b9C。
a2+a2=2a2D。
(a3)3=a6答案】C解析】合并同类项:字母部分不变,系数相加减。
考点】同底数幂的乘除,合并同类项,幂的乘方5.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是。
答案】C解析】轴对称与中心对称的概念。
考点】轴对称与中心对称6.数据3、3、5、8、11的中位数是。
A。
3B。
4C。
5D。
6答案】C解析】按顺序排列,中间的数或者中间两个数的平均数。
广东省2019年中考数学试题及答案解析(WORD版)
2019年广东省初中毕业生学业考试数 学一、选择题 1.2-=A.2B.2-C.12D.12-【答案】A.【解析】由绝对值的意义可得,答案为A 。
2. 据国家统计局网站2019年12月4日发布消息,2019年广东省粮食总产量约为13 573 000吨,将13 573 000用科学记数法表示为A.61.357310⨯B.71.357310⨯C.81.357310⨯D.91.357310⨯ 【答案】B.【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 13 573 000=71.357310⨯;3. 一组数据2,6,5,2,4,则这组数据的中位数是A.2B.4C.5D.6 【答案】B.【解析】由小到大排列,得:2,2,4,5,6,所以,中位数为4,选B 。
4. 如图,直线a ∥b ,∠1=75°,∠2=35°,则∠3的度数是A.75°B.55°C.40°D.35° 【答案】C.【解析】两直线平行,同位角相等,三角形的一个外角等于与它不相邻的两个内角之和,所以, 75°=∠2+∠3,所以,∠3=40°,选C 。
5. 下列所述图形中,既是中心对称图形,又是轴对称图形的是A.矩形B.平行四边形C.正五边形D.正三角形 【答案】A.【解析】平行四边形只是中心对称图形,正五边形、正三角形只是轴对称图形,只有矩形符合。
6.2(4)x -=A.28x -B.28xC.216x -D.216x【答案】D.【解析】原式=22-4x ()=216x 7. 在0,2,0(3)-,5-这四个数中,最大的数是A.0B.2C.0(3)-D.5-【答案】B.【解析】(-3)0=1,所以,最大的数为2,选B 。
8. 若关于x 的方程2904x x a +-+=有两个不相等的实数根,则实数a 的取值范围是A.2a ≥B.2a ≤C.2a >D.2a <【答案】C.【解析】△=1-4(94a -+)>0,即1+4a -9>0,所以,2a >9. 如题9图,某数学兴趣小组将边长为3的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB 的面积为A.6B.7C.8D.9【答案】D.【解析】显然弧长为BC +CD 的长,即为6,半径为3,则16392S =⨯⨯=扇形.10. 如题10图,已知正△ABC 的边长为2,E ,F ,G 分别是AB ,BC ,CA 上的点,且AE =BF =CG ,设 △EFG 的面积为y ,AE 的长为x ,则y 关于x 的函数图象大致是【答案】D.【解析】根据题意,有AE=BF=CG ,且正三角形ABC 的边长为2, 故BE=CF=AG=2-x ;故△AEG 、△BEF 、△CFG 三个三角形全等. 在△AEG 中,AE=x ,AG=2-x , 则S△AEG=12AE×AG×sinA= 34x (2-x );故y=S△ABC-3S△AEG=3-3⨯34x (2-x )=34(3x 2 -6x+4). 故可得其图象为二次函数,且开口向上,选D 。
2019年广东省中考数学真题(含答案).doc
2019 年广东省初中学业水平考试——数学一、选择题 ( 本大题 10 小题,每小题 3 分,共 30 分) 在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.2的绝对值是B. 2C. 1D. 2 22.某网店 2019 年母亲节这天的营业额为 221000 元,将数 221000 用科学记数法表示为A. 2.21 106B. 2.21 105C. 221 103D. 0.221 1063.如图,由 4 个相同正方体组合而成的几何体,它的左视图是A. B. C. D.4.下列计算正确的是3A. b6b3b2B. b3b3b9C. a2a22a2D. a3a65.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是A. B. C. D.6.数据的中位数是7.实数a、b在数轴上的对应点的位置如图所示,下列式子成立的是A. a bB. a bC. a b 0D.ab8.化简42的结果是A.4 C. 49. 已知x1、x2是一元二次方程x2 2x 0 的两个实数根,下列结论错误的是..A. x1x2 B. x12 2x1 0 C.x1x22D.x1x2210.如图,正方形 ABCD 的边长为4,延长 CB 至 E 使 EB 2 ,以EB 为边在上方作正方形 EFGB ,延长 FG 交 DC 于 M ,连接AM 、AF ,H 为 AD 的中点,连接 FH 分别与 AB 、AM交于点 N 、 K .则下列结论:①ANH GNF ;②AFN HFG ;③ FN 2NK ;④S AFN: S ADM1: 4 .其中正确的结论有个个个个二、填空题 ( 本大题 6 小题,每小题 4 分,共 24 分) 请将下列各题的正确答案填写在答题卡相应的位置上 .11. 计算:201901 1_________. 312. 如图,已知 a / /b , 1 75,则 2_______.13. 一个多边形的内角和是1080,这个多边形的边数是______.14. 已知x2y 3,则代数式4x 8 y 9的值是_______________.15.如图,某校教学楼 AC 与实验楼 BD 的水平间距CD 15 3米,在实验楼顶部 B 点测得教学楼顶部 A 点的仰角是 30 ,底部 C 点的俯角是 45 ,则教学楼 AC 的高度是______米( 结果保留根号 ).16.如题 16-1 图所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按题 16-2 图所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用 9 个这样的图形 ( 题 16-1 图) 拼出来的图形的总长度是 _______(结果用含a、b代数式表示 ).三、解答题 ( 一)( 本大题 3 小题,每小题 6 分,共 18 分)x 1 2 ①18. 先化简,再求值:17. 解不等式组:4 ②2 x 1x 1 x2 x,其x 2 x 2 x2 4中 x2 .19. 如图,在ABC 中,点D是边AB上的一点.(1) 请用尺规作图法,在ABC 内,求作ADE ,使ADE B ,DE交AC于 E ;(不要求写作法,保留作图痕迹)(2)在(1) 的条件下,若AD2,求AE的值 . DB EC四、解答题 ( 二)( 本大题 3 小题,每小题 7 分,共 21 分)20.为了解某校九年级全体男生 1000 米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为 A 、 B 、 C 、 D 四个等级,绘制如下不完整的统计图表,如题图表所示,根据图表信息解答下列问题:成绩等级频数分布表成绩等级扇形统计图成绩等级频数A24B10CxD 2合计y(1)x______,y______,扇形图中表示C的圆心角的度数为 ______度;(2)甲、乙、丙是 A 等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲、乙两名学生的概率 .21.某校为了开展“阳光体育运动” ,计划购买篮球、足球共 60 个,已知每个篮球的价格为 70 元,每个足球的价格为 80 元.(1)若购买这两类球的总金额为 4600 元,求篮球、足球各买了多少个(2)若购买篮球的总金额不超过购买足球的总金额,求最多可购买多少个篮球22. 在如图所示的网格中,每个小正方形的边长为1,每个小正方形的顶点叫格点,ABC的三个顶点均在格点上,以点 A 为圆心的 EF 与 BC 相切于点 D ,分别交 AB 、AC于点 E、 F .(1)求ABC三边的长;(2)求图中由线段 EB 、BC、CF及 FE 所围成的阴影部分的面积.五、解答题 ( 三)( 本大题 3 小题,每小题 9 分,共 27 分)23. 如图,一次函数yk1x b 的图象与反比例函数 yk2的图象相交于 A 、 B 两点,其x中点 A 的坐标为1,4,点 B 的坐标为4,n.(1) 根据图象,直接写出满足k1x b k2的 x 的取值范围;x(2)求这两个函数的表达式;(3) 点P在线段AB上,且S AOP: S BOP1:2,求点P的坐标.24. 如题 24-1 图,在ABC 中,AB AC , O 是ABC 的外接圆,过点 C 作BCD ACB交O于点 D,连接 AD交BC于点 E,延长 DC至点 F ,使CF AC,连接 AF .(1) 求证:ED EC ;(2) 求证:AF是O 的切线;(3) 如题 24-2 图,若点G是ACD 的内心, BC BE25 ,求 BG 的长.25. 如题 25-1 图,在平面直角坐标系中,抛物线y 3 x2 3 3 x 7 3与 x 轴交于点 A 、8 4 8B (点 A 在点 B 右侧),点 D 为抛物线的顶点.点C 在y轴的正半轴上,CD 交x轴于点 F ,CAD 绕点 C 顺时针旋转得到好旋转到点 F ,连接 BE .CFE ,点 A 恰(1)求点 A、B、D的坐标;(2)求证:四边形 BFCE 是平行四边形;(3) 如题 25-2 图,过顶点D作DD1x 轴于点 D1,点P是抛物线上一动点,过点 P 作PM x轴,点 M 为垂足,使得 PAM 与DD1A相似(不含全等).①求出一个满足以上条件的点P 的横坐标;②直接回答这样的点 P 共有几个....2019 年广东省初中学业水平考试数学试卷参考答案12.10515.1515316.a 8b三、解答题 ( 一)17.解不等式①,得x 3,解不等式②,得 x 1 ,则不等式组的解集是 x 3 .x 1 x 2 x 2 18.解:原式x2x x 1x 2 .2当 x 2 时,原式2 22 1 . 219.解: (1) 如图 .(2)∵ ADEB,∴DE//BC.∴ADE ABC .∴AE AD 2.EC DB四、解答题 ( 二)20.(1)440 36(2)解:画树状图如图:∴ P 同时抽到甲、乙 2 1 .6 321. 解: (1) 设篮球、足球各买了x ,y个,根据题意,得x y60,70x 80 y4600,x 20,解得y 40.∴篮球、足球各买了20 个, 40 个.(2)设购买了a个篮球,根据题意,得70a 80 60 a .解得 a32 .∴最多可购买篮球32 个. 22. 解: (1) AB 22 62 2 10,AC 62 22 2 10 ,BC428245.(2) 由(1) 得AB2AC2BC2,∴BAC 90 .连接 AD,AD 22 42 2 5 ,∴S阴=SABCS扇形AEF1 AB AC 1 AD2 2 420 5.五、解答题 ( 三)23. 解: (1)x 1或 0 x 4 .(2)把A 1,4 代入 y k 2 ,得 k 2 4 .x∴ y 4 .x∵点 B 4, n 在 y4 上,∴ n 1. x∴B4,1.把 A 1,4 , B 4, 1 代入 yk 1x b 1 得k 1 b4, k 1 1, 4k 1 b 1,解得 b 3.∴ yx 3 .(3) 设 AB 与 y 轴交于点 C,∵点 C 在直线 y x 3 上,∴ C 0,3 .S AOB 1OC x A x B 1 314 7.5,2 2又S AOD :S BOP 1:2,∴S 又 S AOPAOC17.5 2.5, S BOP 5 .313 1 1.5 ,∴点P在第一象限.2∴S COP 2.5 1.5 1.又 OC 3,∴13 x P 1 ,解得 x P 2 .2 3把∴x P2代入 y x 3 ,得 y P 7 .3 3 P2,7.3 324.(1) 证明:∵AB AC,∴ABC ACB.又∵ACB BCD ,ABC ADC ,∴BCD ADC .∴ED EC.(2)证明:连接OA,∵AB AC,∴AB AC.∴OA BC.∵ CA CF ,∴CAF CFA .∴ACD CAF CFA 2 CAF .∵ACB BCD ,∴ACD 2ACB .∴CAF ACB.∴ AF / /BC.∴OA AF.∴ AF为O的切线.(3) ∵ABE CBA ,BAD BCD ACB ,∴ABE CBA.∴AB BE.BC AB∴AB2 BC BE .∵BC BE 25 ,∴ AB 5.连接 AG ,∴BAG BAD DAG ,BGA GAC ACB .∵点G为内心,∴DAG GAC.又∵BAD BCD ACB ,∴BAD DAG GAC ACB . ∴BAG BGA .∴BG AB 5.25.(1) 解:令3x2 3 3 x 7 3 0 ,8 4 8解得 x 1 或7.故A1,0,B 7,0 .3 2 ,故D 3,23.配方得 y x 32 38(2)证明:∵ CF CA,OA OF 1,易证 DD1FCOF .∴D1D CO .FD1 OF∴OC3.∴ CA CF FA 2 ,即ACF 为等边三角形. ∴AFCECF 60 .∴EC//BF .又∵ EC DC 6,BF 6,∴EC/ /BF .∴四边形 BFCE 是平行四边形 .(3) 设点 P 的坐标为 x, 3 x 2 3 3 x 7 3 , 8 4 8①当点 P 在 B 点左侧时, 则 1) DD 1 D 1 A,∴ x 1 1( 舍) , x 2 11 . PMMA 2)DD 1 D 1 A ,∴ x 1 1 ( 舍 ) , x 2 37 . PAAM 3②当点 P 在 A 点右侧时,因为 PAM 与DD 1A 相似,则 3) PMDD 1 ,∴ x 1 1( 舍) , x 2 3( 舍). MAD 1 APM D 1 A ,∴ x 1 1 ( 舍) , x 2 5 4)DD 1 ( 舍). MA3③当点 P 在 AB 之间时,∵ PAM 与DD 1 A 相似,PM DD 1 , x 1 1 ( 舍) , x 2 3(舍).则 5)D 1 A MA6)PM D 1 A , x 1 1( 舍) , x 2 5 . MA DD 1 3综上所述,点P 的横坐标为 5 ,11,37,点共有3个.3 3。
2019年广东省中考数学最后一卷模拟试题及参考答案
2019年广东省中考数学最后一卷模拟试题一、选择题(本大题共10小题,每小题3分,共30分)1.﹣2019的相反数是()A.2019B.﹣2019C.D.﹣2.将数据219 000 000用科学记数法表示为()A.0.219×109B.2.19×109C.2.19×108D.21.9×1073.一个不透明的盒子中装有6个大小相同的乒乓球,其中4个是黄球,2个是白球.从该盒子中任意摸出一个球,摸到黄球的概率是()A.B.C.D.4.下列运算正确的是()A.3a+4b=7ab B.a3•a2=a6C.2a3÷a2=2a D.(﹣3a)3=﹣9a35.某种零件模型可以看成如图所示的几何体(空心圆柱),该几何体的俯视图是()A.B.C.D.6.抽样调查了某校30位女生所穿鞋子的尺码,数据如下(单位:码)码号3334353637人数761511这组数据的中位数和众数分别是()A.35,37B.15,15C.35,35D.15,357.如果n边形每一个内角等于与它相邻外角的2倍,则n的值是()A.4B.5C.6D.78.如图,在△ABC中,AB=AC,点D、E分别是边AB、AC的中点,点G、F在BC边上,四边形DGFE是正方形.若DE=4cm,则AC的长为()A.4cm B.2cm C.8cm D.4cm9.如图,△ABD是⊙O的内接三角形,AB是直径,点C在⊙O上,且∠ABD=56°,则∠BCD等于()A.32°B.34°C.56°D.66°10.如图,△ABC中,AB=6,BC=8,tan∠B=,点D是边BC上的一个动点(点D与点B不重合),过点D作DE⊥AB,垂足为E,点F是AD的中点,连接EF,设△AEF 的面积为y,点D从点B沿BC运动到点C的过程中,D与B的距离为x,则能表示y 与x的函数关系的图象大致是()A.B.C.D.二、填空题(本题有6小题,第小题4分,共24分)11.分解因式:3x2﹣12y2=.12.已知关于x的一元二次方程x2+3x+m=0有两个相等的实数根,则m=.13.一个多边形的内角和是它的外角和的3倍,则这个多边形是边形.14.已知:如图,∠1=∠2=∠3=55°,则∠4的度数是.15.如图,在菱形ABCD中,∠B=60°,AB=2,把菱形ABCD绕BC的中点E顺时针旋转60°得到菱形A'B'C'D',其中点D的运动路径为,则图中阴影部分的面积为.16.如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB=1,点A在函数y=﹣(x<0)的图象上,将此矩形向右平移3个单位长度到A1B1O1C1的位置,此时点A1在函数y=(x>0)的图象上,C1O1与此图象交于点P,则点P的纵坐标是.三、填空题(本题有3小题,第小题6分,共18分)17.计算()﹣1﹣(π﹣2019)0+tan60°+18.先化简代数式(﹣)÷,再从0≤x≤3的范围内选择一个合适的整数代入求值.19.如图,A是∠MON边OM上一点,AE∥ON.(1)尺规作图,作∠MON的角平分线OB,交AE于点B;(保留作图痕迹,不写作法)(2)过点B画OB的垂线,分别交OM,ON于点C,D,求证:AB=OC.四、填空题(本题有3小题,第小题7分,共21分)20.近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查,调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他.该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了名购买者:(2)请补全条形统计图:在扇形统计图中A种支付方式所对应的圆心角为108度;(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?21.某体育用品商店用4000元购进一批足球,全部售完后,又用3600元再次购进同样的足球,但这次每个足球的进价是第一次进价的1.2倍,且数量比第一次少了10个.(1)求第一次每个足球的进价是多少元?(2)若第二次进货后按150元/个的价格销售,当售出10个后,根据市场情况,商店决定对剩余的足球全部按同一标准一次性打折售完,但要求这次的利润不少于450元,问该商店最低可打几折销售?22.如图1,将矩形ABCD沿DE折叠,使顶点A落在DC上的点A′处,然后将矩形展平,沿EF折叠,使顶点A落在折痕DE上的点G处.再将矩形ABCD沿CE折叠,此时顶点B恰好落在DE上的点H处.如图2.(1)求证:EG=CH;(2)已知AF=,求AD和AB的长.五、填空题(本题有3小题,第小题9分,共27分)23.如图,抛物线y=x2+bx﹣3过点A(1,0),直线AD交抛物线于点D,点D的横坐标为﹣2,点P是线段AD上的动点.(1)b=,抛物线的顶点坐标为;(2)求直线AD的解析式;(3)过点P的直线垂直于x轴,交抛物线于点Q,连接AQ,DQ,当△ADQ的面积等于△ABD的面积的一半时,求点Q的坐标.24.如图,△ABC是⊙O的内接三角形,直径AB=10.sin A=,点D为线段AC上一动点(不运动至端点A、C),作DF⊥AB于F,连结BD,井延长BD交⊙O于点H,连结CF.(1)当DF经过圆心O时,求AD的长;(2)求证:△ACF∽△ABD;(3)求CF・DH的最大值.25.有一块含30°角的直角三角板OMN,其中∠MON=90°,∠NMO=30°,ON=2,将这块直角三角板按如图所示位置摆放.等边△ABC的顶点B与点O重合,BC边落在OM上,点A恰好落在斜边MN上,将等边△ABC从图1的位置沿OM方向以每秒1个单位长度的速度平移,边AB,AC分别与斜边MN交于点E,F(如图2所示),设△ABC 平移的时间为t(s)(0<t<6).(1)等边△ABC的边长为;(2)在运动过程中,当时,MN垂直平分AB;(3)当0<t<6时,求直角三角板OMN与等边△ABC重叠部分的面积S与时间t之间的函数关系式.2019年广东省中考数学最后一卷模拟试题一、选择题(本大题共10小题,每小题3分,共30分)1.﹣2019的相反数是()A.2019B.﹣2019C.D.﹣【分析】根据相反数的意义,直接可得结论.【解答】解:因为a的相反数是﹣a,所以﹣2019的相反数是2019.故选:A.【点评】本题考查了相反数的意义.理解a的相反数是﹣a,是解决本题的关键.2.将数据219 000 000用科学记数法表示为()A.0.219×109B.2.19×109C.2.19×108D.21.9×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:将数据219 000 000用科学记数法表示为2.19×108,故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.一个不透明的盒子中装有6个大小相同的乒乓球,其中4个是黄球,2个是白球.从该盒子中任意摸出一个球,摸到黄球的概率是()A.B.C.D.【分析】用黄球的个数除以球的总个数即可得到答案.【解答】解:∵一个不透明的盒子中装有6个大小相同的乒乓球,其中4个是黄球,2个是白球,∴从该盒子中任意摸出一个球,摸到黄球的概率是=,故选:A.【点评】此题主要考查了概率公式的应用,关键是掌握概率公式:概率=所求情况数与总情况数之比.4.下列运算正确的是()A.3a+4b=7ab B.a3•a2=a6C.2a3÷a2=2a D.(﹣3a)3=﹣9a3【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式不能合并,不符合题意;B、原式=a5,不符合题意;C、原式=2a,符合题意;D、原式=﹣27a3,不符合题意,故选:C.【点评】此题考查了整式的除法,熟练掌握运算法则是解本题的关键.5.某种零件模型可以看成如图所示的几何体(空心圆柱),该几何体的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可.【解答】解:空心圆柱由上向下看,看到的是一个圆环,并且大小圆都是实心的.故选:D.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.解答此题时要有一定的生活经验.6.抽样调查了某校30位女生所穿鞋子的尺码,数据如下(单位:码)码号3334353637人数761511这组数据的中位数和众数分别是()A.35,37B.15,15C.35,35D.15,35【分析】根据众数与中位数的意义分别进行解答即可.【解答】解:∵共有30双女生所穿的鞋子的尺码,∴中位数是地15、16个数的平均数,∴这组数据的中位数是35;35出现了12次,出现的次数最多,则这组数据的众数是35;故选:C.【点评】此题考查了众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.7.如果n边形每一个内角等于与它相邻外角的2倍,则n的值是()A.4B.5C.6D.7【分析】设出外角的度数,表示出内角的度数,根据一个内角与它相邻的外角互补列出方程,解方程得到答案.【解答】解:设外角为x,则相邻的内角为2x,由题意得,2x+x=180°,解得,x=60°,360÷60°=6,故选:C.【点评】本题考查的是多边形内、外角的知识,理解一个多边形的一个内角与它相邻外角互补是解题的关键.8.如图,在△ABC中,AB=AC,点D、E分别是边AB、AC的中点,点G、F在BC边上,四边形DGFE是正方形.若DE=4cm,则AC的长为()A.4cm B.2cm C.8cm D.4cm【分析】根据三角形的中位线定理可得出BC=4,由AB=AC,可证明BG=CF=2,由勾股定理求出CE,即可得出AC的长.【解答】解:∵点D、E分别是边AB、AC的中点,∴DE=BC,∵DE=4cm,∴BC=8cm,∵AB=AC,四边形DEFG是正方形,∴DG=EF,BD=CE,在Rt△BDG和Rt△CEF,,∴Rt△BDG≌Rt△CEF(HL),∴BG=CF=2,∴EC=2,∴AC=4cm.故选:D.【点评】本题考查了正方形的性质、相似三角形的判定、勾股定理、等腰三角形的性质以及正方形的性质,是基础题,比较简单.9.如图,△ABD是⊙O的内接三角形,AB是直径,点C在⊙O上,且∠ABD=56°,则∠BCD等于()A.32°B.34°C.56°D.66°【分析】根据圆周角定理得到∠ADB=90°,利用互余计算出∠A=34°,然后根据圆周角定理得到∠BCD的度数.【解答】解:∵AB是直径,∴∠ADB=90°,∴∠A=90°﹣∠ABD=90°﹣56°=34°,∴∠BCD=∠A=34°.故选:B.【点评】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理.10.如图,△ABC中,AB=6,BC=8,tan∠B=,点D是边BC上的一个动点(点D与点B不重合),过点D作DE⊥AB,垂足为E,点F是AD的中点,连接EF,设△AEF 的面积为y,点D从点B沿BC运动到点C的过程中,D与B的距离为x,则能表示y 与x的函数关系的图象大致是()A.B.C.D.【分析】由tan∠B==,设DE=4m,BE=3m,则BD=5m=x,然后将AE与DE都用含有x的代数式表示,再计算出△AEF的面积即可得到y与x的函数关系,由此对照图形即可.【解答】解:∵DE⊥AB,垂足为E,∴tan∠B==,设DE=4m,BE=3m,则BD=5m=x,∴m=,DE=,BE=,∴AE=6﹣=(6﹣)•∴y=S△AEF化简得:y=﹣+x,又∵0<x≤8∴该函数图象是在区间0<x≤8的抛物线的一部分.故选:B.【点评】本题考查了动点问题的函数图象,解题的关键是设法将AE与DE都用含有x的代数式表示二、填空题(本题有6小题,第小题4分,共24分)11.(4分)分解因式:3x2﹣12y2=.【分析】先提取公因式3,再对余下的多项式利用平方差公式继续分解.【解答】解:3x2﹣12y2,=3(x2﹣4y2),=3(x+2y)(x﹣2y).【点评】本题考查了提公因式法,公式法分解因式,关键在于提取公因式后,可以利用平方差公式进行二次分解.12.已知关于x的一元二次方程x2+3x+m=0有两个相等的实数根,则m=.【分析】利用判别式的意义得到△=32﹣4m=0,然后解关于m的方程即可,【解答】解:根据题意得△=32﹣4m=0,解得m=.故答案为.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.13.一个多边形的内角和是它的外角和的3倍,则这个多边形是边形.【分析】根据多边形的内角和定理,多边形的内角和等于(n﹣2)•180°,外角和等于360°,然后列方程求解即可.【解答】解:设多边形的边数是n,根据题意得,(n﹣2)•180°=3×360°,解得n=8,∴这个多边形为八边形.故答案为:八.【点评】本题主要考查了多边形的内角和公式与外角和定理,根据题意列出方程是解题的关键,要注意“八”不能用阿拉伯数字写.14.已知:如图,∠1=∠2=∠3=55°,则∠4的度数是.【分析】根据对顶角相等以及平行线的判定与性质求出∠3+∠6=180°,即可得出∠4的度数.【解答】解:如图,∵∠1=∠2=∠5∴a ∥b∴∠3+∠6=180°,且∠3=55°∴∠6=125°∴∠4=∠6=125°故答案为:125°【点评】本题主要考查了平行线的判定与性质,熟练掌握相关的定理是解题关键. 15.如图,在菱形ABCD 中,∠B =60°,AB =2,把菱形ABCD 绕BC 的中点E 顺时针旋转60°得到菱形A 'B 'C 'D ',其中点D 的运动路径为,则图中阴影部分的面积为 .【分析】先通过已知条件求出△EA 'D 与△EA 'D '以及扇形EDD '的面积,然后根据S 阴影部分=S 扇形EDD '﹣S △EA 'D ﹣S △EA 'D 求出阴影部分面积.【解答】解:如图连接AE 、DE 、A 'E 、DE ,∵菱形ABCD 中,∠B =60°,E 为BC 中点,∴BE =AB =1,∠BAE =30°,∠EAD =90°,∴∠EA 'D =90°,A 'E =AE =,DE ==,DE '=∵旋转角为60°,∴∠DED '=60°,BEB '=60°,BB '=BE =B 'E =1,∴CE =CA '=A 'D =1∴S △EA 'D =S △ECD =CE •AE ==, S △EA 'D '=EA '•A 'D '=××2=, S 扇形EDD '==,∴S 阴影部分=S 扇形EDD '﹣S △EA 'D ﹣S △EA 'D =﹣﹣=, 故答案为,【点评】本题考查了扇形的面积,熟练运用割补法是解题的关键.16.如图,在平面直角坐标系中,矩形ABOC 的两边在坐标轴上,OB =1,点A 在函数y =﹣(x <0)的图象上,将此矩形向右平移3个单位长度到A 1B 1O 1C 1的位置,此时点A 1在函数y =(x >0)的图象上,C 1O 1与此图象交于点P ,则点P 的纵坐标是 .【分析】先求出A 点坐标,再根据图形平移的性质得出A 1点的坐标,故可得出反比例函数的解析式,把O1点的横坐标代入即可得出结论.【解答】解:∵OB=1,AB⊥OB,点A在函数y=﹣(x<0)的图象上,∴当x=﹣1时,y=2,∴A(﹣1,2).∵此矩形向右平移3个单位长度到A1B1O1C1的位置,∴B1(2,0),∴A1(2,2).∵点A1在函数y=(x>0)的图象上,∴k=4,∴反比例函数的解析式为y=,O1(3,0),∵C1O1⊥x轴,∴当x=3时,y=,∴P(3,).【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上点的坐标一定适合此函数的解析式是解答此题的关键.三、填空题(本题有3小题,第小题6分,共18分)17.计算()﹣1﹣(π﹣2019)0+tan60°+【分析】直接利用负指数幂的性质以及二次根式的性质和零指数幂的性质分别化简得出答案.【解答】解:原式=2﹣1+×+2=2﹣1+3+2=4+2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.先化简代数式(﹣)÷,再从0≤x≤3的范围内选择一个合适的整数代入求值.【分析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x的值代入计算可得.【解答】解:原式=[﹣]÷=•=,∵x≠±3且x≠1,∴在0≤x≤3可取x=0或x=2,当x=0时,原式=﹣1.当x=2时,原式=1.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及分式有意义的条件.19.如图,A是∠MON边OM上一点,AE∥ON.(1)尺规作图,作∠MON的角平分线OB,交AE于点B;(保留作图痕迹,不写作法)(2)过点B画OB的垂线,分别交OM,ON于点C,D,求证:AB=OC.【分析】(1)根据角平分线的尺规作图即可得;(2)过点B作直线的垂线,由AE∥ON知∠2=∠5,根据角平分线知∠1=∠5,从而得∠1=∠2,再由OB⊥CD可得∠3=∠4,从而得出答案.【解答】解:(1)如图所示,射线OB即为所求;(2)如图,∵AE∥ON,∴∠2=∠5,∵∠1=∠5,∴∠1=∠2,∵CD⊥OB,∴∠2+∠3=∠1+∠4=90°,∴∠3=∠4,∴AB=OC.【点评】本题主要考查作图﹣基本作图,熟练掌握角平分线和过直线上一点作已知直线的垂线及平行线的性质是解题的关键.四、填空题(本题有3小题,第小题7分,共21分)20.近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查,调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他.该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了名购买者:(2)请补全条形统计图:在扇形统计图中A种支付方式所对应的圆心角为108度;(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?【分析】(1)根据B的数量和所占的百分比可以求得本次调查的购买者的人数;(2)根据统计图中的数据可以求得选择A和D的人数,从而可以将条形统计图补充完整,求得在扇形统计图中A种支付方式所对应的圆心角的度数;(3)根据统计图中的数据可以计算出使用A和B两种支付方式的购买者共有多少名.【解答】解:(1)56÷28%=200,即本次一共调查了200名购买者;故答案为:200;(2)D方式支付的有:200×20%=40(人),A方式支付的有:200﹣56﹣44﹣40=60(人),补全的条形统计图如右图所示,在扇形统计图中A种支付方式所对应的圆心角为:360°×=108°,故答案为:108;(3)1600×=928(名),答:使用A和B两种支付方式的购买者共有928名.【点评】本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.21.某体育用品商店用4000元购进一批足球,全部售完后,又用3600元再次购进同样的足球,但这次每个足球的进价是第一次进价的1.2倍,且数量比第一次少了10个.(1)求第一次每个足球的进价是多少元?(2)若第二次进货后按150元/个的价格销售,当售出10个后,根据市场情况,商店决定对剩余的足球全部按同一标准一次性打折售完,但要求这次的利润不少于450元,问该商店最低可打几折销售?【分析】(1)设第一次每个足球的进价是x元,则第二次每个足球的进价是1.2x元,根据数量关系:第一次购进足球的数量﹣10个=第二次购进足球的数量,可得分式方程,然后求解即可;(2)设商店对剩余的足球按同一标准一次性打a折销售时,可使利润不少于450元.先根据(1)中求得的数得到第二次购进足球的数量和价格,再根据数量关系:第一次销售完10个获得的利润+第二次打折销售完足球获得的利润≥450元,列出不等式,然后求解即可得出答案.【解答】解:(1)设第一次每个足球的进价是x元,则第二次每个足球的进价是 1.2x 元,根据题意得,﹣=10,解得:x=100,经检验:x=100是原方程的根,答:第一次每个足球的进价是100元;(2)设该商店最低可打a折销售,根据题意得,150×10+(﹣10)×150×﹣3600≥450,解得:a=7.5答:该商店最低可打7.5折销售.【点评】本题考查分式方程及一元一次不等式的应用,关键是理解题意,第一问以数量作为等量关系列方程求解,第二问以利润作为不等量关系列不等式求解.22.如图1,将矩形ABCD沿DE折叠,使顶点A落在DC上的点A′处,然后将矩形展平,沿EF折叠,使顶点A落在折痕DE上的点G处.再将矩形ABCD沿CE折叠,此时顶点B恰好落在DE上的点H处.如图2.(1)求证:EG=CH;(2)已知AF=,求AD和AB的长.【分析】(1)由折叠的性质及矩形的性质可知AE=AD=EG,BC=CH,再根据四边形ABCD是矩形,可得EG=CH;(2)由折叠的性质可知∠ADE=45°,∠FGE=∠A=90°,AF=,那么DG=,利用勾股定理求出DF=2,于是可得AD=AF+DF=+2;再利用AAS证明△AEF≌△BCE,得到AF=BE,于是AB=AE+BE=+2+=2+2.【解答】(1)证明:由折叠可得:AE=A'E=BC=CH=GE,∵四边形ABCD是矩形,∴EG=CH;(2)解:∵∠ADE=45°,∠FGE=∠A=90°,AF=,∴DG=,DF=2,∴AD=AF+DF=+2;由折叠知∠AEF=∠GEF,∠BEC=∠HEC,∴∠GEF+∠HEC=90°,∠AEF+∠BEC=90°,∵∠AEF+∠AFE=90°,∴∠BEC=∠AFE,在△AEF与△BCE中,,∴△AEF≌△BCE(AAS),∴AF=BE,∴AB=AE+BE=+2+=2+2.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了全等三角形的判定与性质,矩形的性质,勾股定理等知识.五、填空题(本题有3小题,第小题9分,共27分)23.如图,抛物线y=x2+bx﹣3过点A(1,0),直线AD交抛物线于点D,点D的横坐标为﹣2,点P是线段AD上的动点.(1)b=2,抛物线的顶点坐标为(﹣1,﹣4);(2)求直线AD的解析式;(3)过点P的直线垂直于x轴,交抛物线于点Q,连接AQ,DQ,当△ADQ的面积等于△ABD的面积的一半时,求点Q的坐标.【分析】(1)将点A 的坐标代入函数解析式求得b 的值,然后利用配方法将函数解析式转化为顶点式,可以直接求得顶点坐标;(2)结合(1)中抛物线解析式求得点D 的坐标,利用点A 、D 的坐标来求直线AD 解析式;(3)由二次函数图象上点的坐标特征求得点B 的坐标,易得AB =4.结合三角形面积公式求得S △ABD =6.设P (m ,m ﹣1),Q (m ,m 2+2m ﹣3).则PQ =﹣m 2﹣m +2.利用分割法得到:S △ADQ =S △APQ +S △DPQ =PQ =(﹣m 2﹣m +2).根据已知条件列出方程(﹣m 2﹣m +2)=3.通过解方程求得m 的值,即可求得点Q 的坐标.【解答】解:(1)把A (1,0)代入y =x 2+bx ﹣3,得12+b ﹣3=0.解得b =2.故该抛物线解析式为:y =x 2+2x ﹣3=(x +1)2﹣4,即y =(x +1)2﹣4.故顶点坐标是(﹣1,﹣4).故答案是:2;(﹣1,﹣4).(2)由(1)知,抛物线解析式为:y =x 2+2x ﹣3.当x =﹣2,则y =(﹣2)2+2×(﹣2)﹣3=﹣3,∴点D 的坐标是(﹣2,﹣3).设直线AD 的解析式为:y =kx +t (k ≠0).把A (1,0),D (﹣2,﹣3)分别代入,得. 解得. ∴直线AD 的解析式为:y =x ﹣1;(3)当y =0时,x 2+2x ﹣3=0,解得x 1=1,x 2=﹣3,∴B (﹣3,0),∴AB =4.∴S △ABD =×4×3=6.设P (m ,m ﹣1),Q (m ,m 2+2m ﹣3).则PQ =(m ﹣1)﹣(m 2+2m ﹣3)=﹣m 2﹣m +2.∴S △ADQ =S △APQ +S △DPQ =PQ •(1﹣m )+PQ •(m +2)=PQ =(﹣m 2﹣m +2).当△ADQ 的面积等于△ABD 的面积的一半时,(﹣m 2﹣m +2)=3.解得m 1=0,m 2=﹣1.∴Q (0,﹣3)或(﹣1,﹣4).【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.24.如图,△ABC 是⊙O 的内接三角形,直径AB =10.sin A =,点D 为线段AC 上一动点(不运动至端点A 、C ),作DF ⊥AB 于F ,连结BD ,井延长BD 交⊙O 于点H ,连结CF .(1)当DF 经过圆心O 时,求AD 的长;(2)求证:△ACF ∽△ABD ;(3)求CF ・DH 的最大值.【分析】(1)由AB是直径知∠ACB=90°,依据三角函数求出BC=6,由勾股定理求出AC=8,由AB⊥DE知∠AFD=∠ACB=90°,结合∠A为公共角可证△ADF∽△ABC,得出对应边成比例,即可求出AD的长;(2)由△ADF∽△ABC知=,结合∠A为△ACF和△ABD的公共角可证△ACF ∽△ABD;(3)连接CH,先证△ACH∽△HCD得出比例式,即CF•DH=CD•AF,再设AD=x,则CD=8﹣x,AF=x,从而得出CF•DH=﹣(x﹣4)2+,利用二次函数的性质求解可得.【解答】(1)解:当DF经过圆心O时,AF=OA=5,∵AB为直径,AB=10,∴∠ACB=90°,∴sin A==,∴BC=6,由勾股定理得:AC==8,∵AB⊥DE,∴∠AFD=∠ACB=90°,∵∠A=∠A,∴△ADF∽△ABC,∴=,∴AD===;(2)证明:由(1)得:△ADF∽△ABC,∴=,即=,又∵∠A为△ACF和△ABD的公共角,∴△ACF∽△ABD;(3)解:连接CH,如图所示:由(2)知△ACF∽△ABD,∴∠ABD=∠ACF,∵∠ABD=∠ACH,∴∠ACH=∠ACF,又∵∠CAF=∠H,∴△ACH∽△HCD,∴=,即CF•DH=CD•AF,设AD=x,则CD=8﹣x,AF=x,∴CF•DH=x(8﹣x)=﹣x2+x=﹣(x﹣4)2+,∴当x=4时,CF•DH的最大值为.【点评】本题是圆的综合问题,考查了圆周角定理、勾股定理、相似三角形的判定与性质、二次函数的性质等知识;半圆综合性强,熟练掌握圆周角定理,证明三角形相似是解题的关键.25.有一块含30°角的直角三角板OMN,其中∠MON=90°,∠NMO=30°,ON=2,将这块直角三角板按如图所示位置摆放.等边△ABC的顶点B与点O重合,BC边落在OM上,点A恰好落在斜边MN上,将等边△ABC从图1的位置沿OM方向以每秒1个单位长度的速度平移,边AB,AC分别与斜边MN交于点E,F(如图2所示),设△ABC 平移的时间为t(s)(0<t<6).(1)等边△ABC的边长为3;(2)在运动过程中,当3时,MN垂直平分AB;(3)当0<t <6时,求直角三角板OMN 与等边△ABC 重叠部分的面积S 与时间t 之间的函数关系式.【分析】(1)根据,∠OMN =30°和△ABC 为等边三角形,求证△OAM 为直角三角形,然后即可得出答案.(2)易知当点C 与M 重合时直线MN 平分线段AB ,此时OB =3,由此即可解决问题;(3)分两种情形分别求解:当0<t ≤3时,作CD ⊥FM 于D .根据S =S △MEB ﹣2S △MDC ,计算即可.②当3<t <6时,S =S △MEB .【解答】解:(1)在Rt △MON 中,∵∠MON =90°,ON =2,∠M =30°∴OM =ON =6, ∵△ABC 为等边三角形∴∠AOC =60°,∴∠OAM =90°∴OA ⊥MN ,即△OAM 为直角三角形,∴OA =OM =×6=3.故答案为3.(2)易知当点C 与M 重合时直线MN 平分线段AB ,此时OB =3,所以t =3. 故答案为3.(3)易知:OM =6,MN =4,S △OMN =××6=6,∵∠M =30°,∠MBA =60°,∴∠BEM =90°.①当0<t ≤3时,作CD ⊥FM 于D .∵∠ACB =60°,∠M =30°,∠FCB =∠M +∠CFM ,∴∠CFM =∠M =30°,∴CF =CM ,∵CD ⊥FM ,∴DF =DM ,∴S △CMF =2S △CDM ,∵△MEB ∽△MON , ∴=()2,∴S △MEB =t 2﹣t +,∵△MDC ∽△MON , ∴=()2,∴S △MDC =t 2﹣t +,∴S =S △MEB ﹣2S △MDC =﹣t 2+. ②当3<t <6时,S =S △MEB =t 2﹣t +, 综上所述,S =.【点评】本题属于几何变换综合题,考查了平移变换,等边三角形的性质和判定,解直角三角形,相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年中考数学模拟试卷一、选择题(本大题共10小题,共40.0分)1.计算|−3|的结果是()A. 3B. −13C. −3 D. 132.如图是由八个相同小正方体组成的几何体,则其主视图是()A.B.C.D.3.从泉州市电子商务中心获悉,近年来电子商务产业蓬勃发展截止到2018年3月,我市电商从业人员已达873 000人,数字873 000可用科学记数法表示为()A. 8.73×103B. 87.3×104C. 8.73×105D. 0.873×1064.下列各式的计算结果为a5的是()A. a7−a2B. a10÷a2C. (a2)3D. (−a)2⋅a35.不等式组{−3x+6≥0x−1>0的解集在数轴上表示为()A. B.C. D.6.下列图形中,是中心对称图形,但不是轴对称图形的是()A. B. C. D.7.去年某市7月1日到7日的每一天最高气温变化如折线图所示,则关于这组数据的描述正确的是()A. 最低温度是32℃B. 众数是35℃C. 中位数是34℃D. 平均数是33℃8.在《九章算术》中有“盈不足术”的问题,原文如下:今有共买物,人出八,盈三;人出七,不足四.问人数几何?大意为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元.问人数是多少?若设人数为x,则下列关于x的方程符合题意的是()A. 8x−3=7x+4B. 8(x−3)=7(x+4)C. 8x+4=7x−3D. 17x−3=18x+49.如图,在3×3的网格中,A,B均为格点,以点A为圆心,以AB的长为半径作弧,图中的点C是该弧与格线的交点,则sin∠BAC 的值是()A. 12B. 23C. √53D. 2√5510.如图,反比例函数y=kx的图象经过正方形ABCD的顶点A和中心E,若点D的坐标为(−1,0),则k的值为( )A. 2B. −2C. 12D. −12二、填空题(本大题共6小题,共24.0分)11.已知a=(12)0,b=2−1,则a______b(填“>”,“<”或“=”).12.正八边形的每一个内角的度数为______度.13.一个暗箱中放有除颜色外其他完全相同的m个红球,6个黄球,3个白球现将球搅匀后,任意摸出1个球记下颜色,再放回暗箱,通过大量重复试验后发现,摸到黄球的频率稳定在30%附近,由此可以估算m的值是______.14.如图,将△ABC绕点A顺时针旋转120∘,得到△ADE.这时点D、E、B恰好在同一直线上,则∠ABC的度数为______.15.已知关于x的一元二次方程(m−1)x2−(2m−2)x−1=0有两个相等实数根,则m的值为______.16.在平行四边形ABCD中,AB=2,AD=3,点E为BC中点,连结AE,将△ABE沿AE折叠到的位置,若∠BAE=45∘,则点到直线BC的距离为______.三、解答题(本大题共9小题,共86.0分)17.解方程:x−32−2x+13=1.18.先化简,再求值:(a2a−3−9a−3)÷a2+3aa3,其中a=√22.19.某公交公司决定更换节能环保的新型公交车.购买的数量和所需费用如下表所示:A型数量(辆)B型数量(辆)所需费用(万元)3145023650(1)求A型和B型公交车的单价;(2)该公司计划购买A型和B型两种公交车共10辆,已知每辆A型公交车年均载客量为60万人次,每辆B型公交车年均载客量为100万人次,若要确保这10辆公交车年均载客量总和不少于670万人次,则A型公交车最多可以购买多少辆?20.如图,在锐角△ABC中,AB=2cm,AC=3cm.(1)尺规作图:作BC边的垂直平分线分别交AC,BC于点D、E(保留作图痕迹,不要求写作法);(2)在(1)的条件下,连结BD,求△ABD的周长.21.为进一步弘扬中华优秀传统文化,某校决定开展以下四项活动:A经典古诗文朗诵;B书画作品鉴赏;C民族乐器表演;D围棋赛.学校要求学生全员参与,且每人限报一项.九年级(1)班班长根据本班报名结果,绘制出了如下两个尚不完整的统计图,请结合图中信息解答下列问题:(1)直接填空:九年级(1)班的学生人数是______,在扇形统计图中,B项目所对应的扇形的圆心角度数是______;(2)将条形统计图补充完整;(3)用列表或画树状图的方法,求该班学生小聪和小明参加相同项目活动的概率.22.求证:矩形的对角线相等.(要求:画出图形,写出已知,求证和证明过程)23.如图,菱形ABCD中,BC=√6,∠C=135∘,以点A为圆心的⊙A与BC相切于点E.(1)求证:CD是⊙A的切线;(2)求图中阴影部分的面积.24.如图1,在矩形ABCD中,AB=√3,AD=3,点E从点B出发,沿BC边运动到点C,连结DE,过点E作DE的垂线交AB于点F.(1)求证:∠BFE=∠ADE;(2)求BF的最大值;(3)如图2,在点E的运动过程中,以EF为边,在EF上方作等边△EFG,求边EG的中点H所经过的路径长.25.已知:二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A、B(−3,0),顶点为C(−1,−2)(1)求该二次函数的解析式;(2)如图,过A、C两点作直线,并将线段AC沿该直线向上平移,记点A、C分别平移到点D、E处.若点F在这个二次函数的图象上,且△DEF是以EF为斜边的等腰直角三角形,求点F的坐标;(3)试确定实数p,q的值,使得当p≤x≤q时,P≤y≤5.2答案和解析【答案】1. A2. C3. C4. D5. C6. A7. D8. A9. B10. B11. >12. 13513. 1114. 30∘15. 016. 2√2317. 解:去分母得:3(x−3)−2(2x+1)=6,去括号得:3x−9−4x−2=6,移项得:−x=17,系数化为1得:x=−17.18. 解:(a2a−3−9a−3)÷a2+3aa3=a2−9a−3⋅a3a(a+3)=(a+3)(a−3)a−3⋅a3a(a+3)=a2,当a=√22时,原式=(√22)2=12.19. 解:(1)设A型和B型公交车的单价分别为a万元,b万元,根据题意,得:{2a+3b=6503a+b=450,解得:{b=150a=100,答:购买每辆A型公交车100万元,购买每辆B型公交车150万元;(2)设购买A型公交车x辆,则购买B型公交车(10−x)辆,根据题意得:60x+100(10−x)≥670,解得:x≤814,∵x>0,且10−x>0,∴0<x<814,∴x最大整数为8,答:A型公交车最多可以购买8辆.20. 解:(1)如图,DE为所作;(2)∵DE垂直平分BC,∴DB=DC,∴△ABD的周长=AB+BD+AD=AB+CD+AD=AB+AC=2+3=5(cm).21. 50;144∘22. 解:已知:四边形ABCD是矩形,AC与BD是对角线,求证:AC=BD,证明:∵四边形ABCD是矩形,∴AB=DC,∠ABC=∠DCB=90∘,又∵BC=CB,∴△ABC≌△DCB(SAS),∴AC=BD,所以矩形的对角线相等23. 证明:(1)连接AE,过A作AF⊥CD,∴∠AFD=90∘,∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,∵BC与⊙A相切于点E,∴AE⊥BC,∴∠AEB=∠AFD=90∘,在△AEB与△AFD中,{∠B=∠D∠AEB=∠AFD AB=AD,∴△AEB≌△AFD,∴AF=AE,∴CD是⊙A的切线;(2)在菱形ABCD中,AB=BC=√6,AB//CD,∴∠B+∠C=180∘,∵∠C=135∘,∴∠B=180∘−135∘=45∘,在Rt△AEB中,∠AEB=90∘,∴AE=AB⋅sin∠B=√6×√22=√3,∴菱形ABCD的面积=BC⋅AE=3√2,在菱形ABCD中,∠BAD=∠C=135∘,AE=√3,∴扇形MAN的面积=135π×(√3)2360=9π8,∴阴影面积=菱形ABCD的面积−扇形MAN的面积=3√2−98π.24. 解:(1)证明:如图1,在矩形ABCD中,∠B=90∘,∴∠BFE+∠BEF=90∘,∵DE⊥EF,∴∠CED+∠BEF=90∘,∴∠BFE=∠CED,∵AD//BC,∴∠CED=∠ADE,∴∠BFE=∠ADE;(2)由(1)可得,∠BFE=∠CED,∠B=∠C=90∘,∴△BEF∽△CDE,∴BFCE =BECD,在矩形ABCD中,BC=AD=3,AB=CD=√3,设BE=x(0≤x≤3),则CE=3−x,∴BF =BE⋅CE CD=x(3−x)√3=−√33x 2+√3x =−√33(x −32)2+3√34,∵−√33<0,0≤x ≤3,∴当x =32时,BF 存在最大值34√3;(3)如图2,连接FH ,取EF 的中点M ,连接BM ,HM , 在等边三角形EFG 中,EF =FG ,H 是EG 的中点, ∴∠FHE =90∘,∠EFH =12∠EFG =30∘, 又∵M 是EF 的中点, ∴FM =HM =EM ,在Rt △FBE 中,∠FBE =90∘,M 是EF 的中点, ∴BM =EM =FM , ∴BM =EM =HM =FM , ∴点B ,E ,H ,F 四点共圆, 连接BH ,则∠HBE =∠EFH =30∘,∴点H 在以点B 为端点,BC 上方且与射线BC 夹角为30∘的射线上, 如图,过C 作于点,∵点E 从点B 出发,沿BC 边运动到点C , ∴点H 从点B 沿BH 运动到点, 在中,,,∴点H 所经过的路径长是32√3.25. 解:(1)∵二次函数y =ax 2+bx +c 的顶点为C(−1,−2),∴可设该二次函数的解析式为y =a(x +1)2−2, 把B(−3,0)代入,得0=a(x +1)2−2, 解得a =12,∴该二次函数的解析式为y =12(x +1)2−2;(2)由12(x +1)2−2=0,得x =−3或1,∴A(1,0).如图,过点C作CH⊥x轴于点H.∵C(−1,−2),∴CH=2,OH=1,又∵AO=1,∴AH=2=CH,∴∠1=45∘,AC=√AH2+CH2=2√2.在等腰直角△DEF中,DE=DF=AC=2√2,∠FDE=90∘,∴∠2=45∘,EF=√DE2+DF2=4,∴∠1=∠2=45∘,∴EF//CH//y轴.由A(1,0),C(−1,−2)可得直线AC的解析式为y=x−1.由题意,设F(m,12m2+m−32)(其中m>1),则点E(m,m−1),∴EF=(12m2+m−32)−(m−1)=12m2−12=4,∴m1=3,m2=−3(不合题意舍去),∴点F的坐标为(3,6);(3)当y=52时,12(x+1)2−2=52,解得x1=−4,x2=2.∵y=12(x+1)2−2,∴当x<−1时,y随x的增大而减小;当x>−1时,y随x的增大而增大;当x=−1时,y有最小值−2.∵当p≤x≤q时,P≤y≤52,∴可分三种情况讨论:①当p≤x≤−1时,由增减性得:当x=p=−4时,y最大=52,当x=q时,y最小=−4<−2,不合题意,舍去;②当p<−1≤q时,(Ⅰ)若(−1)−p>q−(−1),由增减性得:当x=p=−4时,y最大=52,当x=−1时,y最小=−2≠p,不合题意,舍去;(Ⅱ)若(−1)−p≤q−(−1),由增减性得:当x=q=2时,y最大=52,当x=−1时,y最小=p=−2,符合题意,∴p=−2,q=2;③当−1≤p<q时,由增减性得:当x=q=2时,y最大=52,当x=p时,y最小=p,把x=p,y=p代入y=12(x+1)2−2,得p=12(p+1)2−2,解得p1=√3,p2=−√3<−1(不合题意,舍去),∴p=√3,q=2.综上所述,满足条件的实数p,q的值为p=−2,q=2或p=√3,q=2.【解析】1. 解:|−3|=3.故选:A.根据绝对值的性质进行计算.本题考查了绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2. 解:主视图有3列,从左往右分别有3,1,2个小正方形,故选:C.主视图是从图形的正面看所得到的图形,根据小正方体的摆放方法,画出图形即可.此题主要考查了简单几何体的三视图,关键是掌握主视图是从物体的正面看得到的视图.3. 解:数字873 000可用科学记数法表示为8.73×105.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4. 解:A、a7−a2,无法计算,故此选项错误;B、a10÷a2=a8,故此选项错误;C、(a2)3=a6,故此选项错误;D、(−a)2⋅a3=a5,故此选项正确.故选:D.直接利用同底数幂的乘除运算法则以及幂的乘方运算法则计算得出答案.此题主要考查了同底数幂的乘除运算以及幂的乘方运算,正确掌握运算法则是解题关键.5. 解:解不等式x−1>0,得:x>1;解不等式−3x+6≥0,得:x≤2,所以不等式组的解集为:1<x≤2,数轴上表示为:,故选:C.先求出每个不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键.6. 解:A、此图形是中心对称图形,不是轴对称图形,故此选项正确;B、此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形是中心对称图形,也是轴对称图形,故此选项错误;D、此图形不是中心对称图形,是轴对称图形,故此选项错误.故选:A.根据中心对称图形的定义旋转180∘后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.此题主要考查了中心对称图形与轴对称的定义,关键是找出图形的对称中心与对称轴.7. 解:由折线统计图知这7天的气温从低到高排列为:31、32、33、33、33、34、35,=33℃,所以最低气温为31℃,众数为33℃,中位数为33℃,平均数是31+32+33×3+34+357故选:D.将数据从小到大排列,由中位数及众数、平均数的定义,可得出答案.本题考查了众数、中位数的知识,解答本题的关键是由折线统计图得到最高气温的7个数据.8. 解:设这个物品的价格是x元,则可列方程为:8x−3=7x+4故选:A.根据“总人数不变”可列方程.本题主要考查由实际问题抽象出一元一次方程,解题的关键是理解题意,确定相等关系,并据此列出方程.9. 解:如图作CH⊥AB于H.在Rt△ACH中,sin∠BAC=CHAC =23,故选:B.如图作CH⊥AB于H.在Rt△ACH中,sin∠BAC=CHAC =23即可解决问题;本题考查解直角三角形、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.10. 解:∵反比例函数y=kx的图象经过正方形ABCD的顶点A和中心E,点D的坐标为(−1,0),∴点A的坐标为(−1,−k),∴点E的坐标为(−1+0.5k,−0.5k),∴−0.5k=k−1+0.5k,解得,k=−2,故选:B.根据题意可以设出点A的坐标,从而可以得到点E的坐标,进而求得k的值,从而可以解答本题.本题考查反比例函数图象上点的坐标特征、正方形的性质,解答本题的关键是明确反比例函数的性质,利用反比例函数的知识解答.11. 解:∵a=(12)0,b=2−1,∴a=1,b=12,∴a>b.故答案为:>.直接利用零指数幂的性质和负指数幂的性质分别化简得出答案.此题主要考查了零指数幂的性质和负指数幂的性质,正确化简各数是解题关键.12. 解:∵正八边形的每个外角为:360∘÷8=45∘,∴每个内角为180∘−45∘=135∘.利用多边形的外角和为360度,求出正八边形的每一个外角的度数即可解决问题.本题需仔细分析题意,利用多边形的外角和即可解决问题.=30%,13. 解:由题意可得:6m+6+3解得:m=11,故答案为:11.直接利用样本估计总体,进而得出关于m的等式求出答案.此题主要考查了用样本估计总体,正确得出关于m的等式是解题关键.14. 解:∵△ABC绕点A顺时针旋转120∘得到△ADE,∴∠EAC=∠DAB=120∘,∠ABC=∠ADE,AB=AD,∴在△DAB中,∠ADE=∠DBA=180∘−∠DAB=30∘,2则∠ADE=∠ABC=30∘,故答案为:30∘.由旋转性质知∠EAC=∠DAB=120∘,∠ABC=∠ADE,AB=AD,再等腰△DAB中得∠ADE=∠DBA=180∘−∠DAB=30∘,据此可得答案.2本题主要考查旋转的性质,解题的关键是掌握①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.15. 解:∵关于x的一元二次方程(m−1)x2−(2m−2)x−1=0有两个相等的实数根,∴△=(2m−2)2+4(m−1)=0,且m−1≠0,∴4m−1=0,m≠1解得,m=0.故答案是:0.根据一元二次方程的根的判别式△=0列出关于m的方程,通过解方程即可求得m的值.本题考查了根的判别式、一元二次方程的定义.一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.16. 解:如图连接BB′,作B′H⊥BC于H.∵∠BAE=∠EAB′=45∘,∴∠BAB′=90∘,∵AB=AB′=2,∴BB′=2√2,∵AE⊥BB′,∴OB=OB′=√2,∵BE=EC=1.5,∴OE=√BE2−OB2=0.5,∵∠EBO=∠HBB′,∠BOE=∠BHB′=90∘,∴△BOE∽△BHB′,∴B′HOE =BB′BE,∴B′H0.5=2√21.5,∴B′H=2√23.故答案为2√23.如图连接BB′,作B′H⊥BC于H.利用△BOE∽△BHB′,可得B′HOE =BB′BE,由此即可解决问题;本题考查翻折变换、平行四边形的性质、相似三角形的性质、勾股定理等知识,解题的关键是学会添加常用辅助线,正确寻找相似三角形解决问题.17. 方程两边每一项都要乘各分母的最小公倍数6,切勿漏乘不含有分母的项,另外分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上.注意:在去分母时,应该将分子用括号括上.切勿漏乘不含有分母的项.18. 根据分式的除法和减法可以化简题目中的式子,再将a的值代入化简后的式子即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分是化简求值的方法.19. (1)根据“购买A型公交车3辆,B型公交车1辆,共需450万元;若购买A型公交车2辆,B型公交车3辆,共需650万元”列方程组求解可得;(2)设购买A型公交车x辆,则购买B型公交车(10−x)辆,根据“这10辆公交车年均载客量总和不少于670万人次”求得x的范围即可.本题主要考查二元一次方程组、一元一次不等式的应用,解题的关键是根据题意确定相等关系或不等式关系以列出方程组和不等式是解题的关键.20. (1)利用基本作图(作已知线段的垂直平分线)作DE垂直平分BC;(2)利用线段垂直平分线的性质得到DB=DC,则利用等量代换得到△ABD的周长= AB+AC,然后把AB=2cm,AC=3cm代入计算计算.本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).21. 解:(1)九年级(1)班的学生人数是15÷30%=50(人),B项目所对应的扇形的圆心角度数是360∘×2050=144∘,故答案为:50,144∘;(2)B项目所对应的人数为50−15−20−10=5,条形统计图如图所示:(3)画树状图如下:共有16种等可能的结果,其中小聪和小明参加相同项目活动的情况有4种,∴P(参加相同项目活动)=416=14.(1)依据项目A的数据,即可得到九年级(1)班的学生人数,依据B项目所占的百分比,即可得出B项目所对应的扇形的圆心角度数;(2)依据B项目所对应的人数为50−15−20−10=5,即可将条形统计图补充完整;(3)画树状图,即可得到共有16种等可能的结果,其中小聪和小明参加相同项目活动的情况有4种,进而得到小聪和小明参加相同项目活动的概率.本题考查列表法与树状图法,当有两个元素时,可用树形图列举,也可以列表列举.解答本题的关键是明确题意,利用概率公式求出相应的概率.22. 由“四边形ABCD是矩形”得知,AB=CD,AD=BC,矩形的四个角都是直角,再根据全等三角形的判定原理SAS判定全等三角形,由此,得出全等三角形的对应边相等的结论.本题考查的是矩形的性质和全等三角形的判定.(1)在矩形中,对边平行相等,四个角都是直角;(2)全等三角形的判定原理AAS;三个判定公理(ASA、SAS、SSS);(3)全等三角形的对应边、对应角都相等.23. (1)连接AE,根据菱形的性质和全等三角形的判定和性质以及切线的判定证明即可;(2)利用菱形的性质和扇形的面积公式解答即可.此题考查菱形的性质,全等三角形的判定与性质,扇形面积公式,熟练掌握性质及公式是解本题的关键.24. (1)依据∠BFE+∠BEF=90∘,∠CED+∠BEF=90∘,即可得到∠BFE=∠CED,再根据∠CED=∠ADE,即可得出∠BFE=∠ADE;(2)依据△BEF∽△CDE,即可得到BFCE =BECD,设BE=x(0≤x≤3),则CE=3−x,根据BF=BE⋅CECD =−√33(x−32)2+3√34,即可得到当x=32时,BF存在最大值34√3;(3)连接FH,取EF的中点M,连接BM,HM,依据BM=EM=HM=FM,可得点B,E,H,F四点共圆,连接BH,则∠HBE=∠EFH=30∘,进而得到点H在以点B为端点,BC上方且与射线BC夹角为30∘的射线上,再过C作于点,根据点E 从点B出发,沿BC边运动到点C,即可得到点H从点B沿BH运动到点,再利用在中,,即可得出点H所经过的路径长是32√3.本题属于四边形综合题,主要考查了相似三角形的判定与性质,解直角三角形以及四点共圆的综合运用,解决问题的关键是作辅助线构造直角三角形,利用直角三角形斜边上中线的性质以及含30∘角的直角三角形的性质得出结论.25. (1)由二次函数y=ax2+bx+c的顶点为C(−1,−2),可设其解析式为y=a(x+1)2−2,再把B(−3,0)代入,利用待定系数法即可求出该二次函数的解析式;(2)由二次函数的解析式求出A(1,0).过点C作CH⊥x轴于点H.解直角△ACH,得出AH= 2=CH,那么∠1=45∘,AC=2√2.解等腰直角△DEF得出∠2=45∘,EF=4,由∠1=∠2=45∘,得到EF//CH//y轴.利用待定系数法求出直线AC的解析式为y=x−1.设F(m,12m2+m−32)(其中m>1),则点E(m,m−1),那么EF=(12m2+m−32)−(m−1)=12m2−12=4,解方程求出m,进而得出点F的坐标;(3)先求出y=52时x1=−4,x2=2.再根据二次函数的性质可知,当p≤x≤q时,p≤y≤5,应分三种情况讨论:①p≤x≤−1;②p<−1≤q;③−1≤p<q.2本题是二次函数综合题,其中涉及到利用待定系数法求二次函数、一次函数的解析式,二次函数的性质,等腰直角三角形的性质,函数图象上点的坐标特征等知识.综合性较强,有一定难度.利用数形结合与分类讨论是解题的关键.。