《实变函数与泛函分析基础》第二版 程其襄 泛函知识点期末总结

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

泛函知识点期末总结

一、关于有界线性算子,算子范数等

1、设 [,]x X C a b ∈=,定义X 上的线性算子

T :若[,],()()()(),[,]f C a b Tf t x t f t t a b ∈=∈。

求证:T 有界,并求||||T 。

2、设 0[,],[,]X C a b t a b =∈。定义X 上的线性泛函f :若0,()()x X f x x t ∈=。求证:f 有界,并求||||f 。

3、设 12123[,],,,,[,],,,

,n X C a b t t t a b C λλλ=∈∈(全体复数集),定义X 上

的线性泛函f : 若1

,()()n i i i x X f x x t λ=∈=∑,f 有界,并求||||f 。

二、关于共轭空间的定义及其求解

三、内积空间的定义及内积空间与赋范空间的关系,常见的内积空间

四、变分引理 极小化向量定理P245定理1及推论,P247引理1,P251引理1

五、投影定理,投影算子及其性质,

六、Hilbert 空间的连续线性泛函,共轭算子,自伴算子,正常算子,酉算子

七、完全规范正交基及其判定定理

八、Banach 空间的基本定理及其应用

九、Banach 共轭算子的定义及其求法

十、逆算子定理与闭图像定理之间的关系与证明

十一、强收敛,弱收敛,弱星收敛,一致收敛及其关系

十二、完备度量空间的定义及其应用

十三、压缩映射原理及其应用

十四、h ölder 不等式,Minkowski 不等式,Schwarz 不等式

十五、稠密,可分,完备,柯西序列

十六、度量空间定义及其常见度量空间,赋范线性空间的定义及其常见赋范线性

空间

相关文档
最新文档