聚羧酸减水剂复配计算方法
聚羧酸减水剂的复配技术与应用分析
聚羧酸减水剂的复配技术与应用分析摘要:随着混凝土化学外加剂的飞速发展,聚羧酸系减水剂的性能也越来越趋于成熟,因其自身具有的良好的减水和保坍作用,其在工程实际中的应用愈加广泛,本文就聚羧酸减水剂在生产应用中的复配与应用问题进行分析,为保证混凝土工程质量具有现实意义。
关键词:混凝土;聚羧酸减水剂;复配;应用1聚羧酸系减水剂聚羧酸系减水剂属于高性能减水剂,其主要构成物质是接枝聚合物,试剂呈浅褐色,具流动性,梳形分子结构,分散性能好。
聚羧酸系减水剂掺加到混凝土中,本身不跟水泥发生化学反应,也不会产生新的水化产物。
其作用机理是减水剂分子在水泥颗粒上的吸附作用,极性较弱的长链吸附在水泥颗粒的表面上,而使水泥颗粒带负电荷的是极性部分。
聚羧酸减水剂作为新型高性能减水剂,具有掺量低、减水率高、分散性好、生产过程无污染、碱含量和氯离子含量低,混凝土收缩小等优点,克服了其他减水剂的一些弊端。
由于聚羧酸系减水剂在高性能混凝土中发挥了不可替代的优势,在工程上应用范围越来越广。
2聚羧酸减水剂的复配技术聚羧酸减水剂的复配方案包括聚羧酸减水剂的不同母液之间的组合使用,以及聚羧酸减水剂母液与缓凝、引气、状态调节剂等功能组分(常指小料)的物理性复配。
2.1聚羧酸减水剂母液的复配聚羧酸减水剂属于高性能减水剂,通过根据混凝土的实际拌合状态决定附加某些小料的方法来改善性能,笔者认为前提是通过母液的复配来达到基本的要求,然后通过小料进行微调。
母液的复配,可以使产品的分子侧链密度得到调节,取长补短,产品设计的多元化是良好复配的基础,也可以引入具有特殊性能的母液以改善质量。
如引入保坍性良好的母液,或者引入缓释型的保坍剂。
当需要降低成本时,可采用引入经济型的聚羧酸减水剂。
母液的复配有些是性能的加权平均,有些可获得1+1>2的叠加效应。
单个母液所不能达到的效果,或许多种母液组合能发挥所需要的作用。
混凝土的坍落度损失是聚羧酸减水剂面临的最重要的问题,母液(含保坍剂)的复配是满足保坍性的最好手段,并能较好适应混凝土原材料(特别是砂)的质量优劣或者波动等。
浅谈聚羧酸高性能减水剂的合成及复配技术综述
浅谈聚羧酸高性能减水剂的合成及复配技术综述本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意!0 前言聚羧酸高性能减水剂是应用于水泥混凝土中的一种水泥分散剂,早期开发的产品是以主链为甲基丙烯酸,侧链为羧酸基团和MPEG(Methoxy polyethylene glycol)的聚酯型结构,目前多为主链为聚合丙烯酸和侧链为聚醚Allyl alcoholpolyethylene glycol 的聚醚型结构,聚羧酸减水剂是具有一定长度和数量的亲水性长侧链及带有多样性强极性活性基团主链组成的特殊分子结构表面活性剂。
聚羧酸减水剂产品在润湿环境下,其多个侧链支撑的向外伸展的梳齿结构为水泥粒子的进一步分散提供了充分的空间排列效应,能使水泥分散能力和保持的时间区别于其他类型的减水剂,从而满足混凝土施工流动性及其保持时间。
聚羧酸减水剂的结构多样化使得此类产品的开发和发展更具有意义,工程师可以通过合成技术的“分子设计”方法,改变聚羧酸高效减水剂的梳形结构、主链组成,适当变化侧链的密度与长度,在主链上引入改性基团调整或改变分子结构,而获得适用于不同需求的聚羧酸产品,实现产品的功能化和更佳的适应性。
聚羧酸减水剂产品除了母液合成技术中“分子设计”方法外,也通过添加缓凝剂、引气剂、消泡剂、增稠剂、抗泥剂等小料的方法,使其适应不同季节、不同材料和配合比的混凝土施工需要,最终获得性能优异的复合型高效减水剂。
对于大中型的聚羧酸厂家,从聚羧酸合成技术入手研制混凝土所需要的优质聚羧酸减水剂、获得不同类型的功能型母液是必须的选择,对于复配为主的聚羧酸减水剂应用型小厂,应该能够掌握母液间的复配及辅助小料的物理性复配,由母液特点和小料的物理性复配来解决技术问题。
1 聚羧酸高性能减水剂的合成聚羧酸减水剂产品于2005 年前后陆续投放市场之后,经历了早期的APEG 聚醚类、酯类产品到甲基烯基聚醚的更新,目前,APEG 聚醚类、酯类产品几乎已退出了市场。
聚羧酸减水剂母液配方
聚羧酸减水剂母液配方聚羧酸减水剂是一种常用的混凝土添加剂,可以显著降低混凝土的水泥用量,改善混凝土的工作性能和耐久性。
聚羧酸减水剂母液是聚羧酸减水剂的一种浓缩形式,通过稀释后添加到混凝土中起到减水增稠的作用。
本文将从配方的角度介绍聚羧酸减水剂母液的制备方法及其配方的调整。
一、聚羧酸减水剂母液的制备方法聚羧酸减水剂母液的制备方法主要包括以下几个步骤:首先,选择合适的聚羧酸减水剂,通常根据混凝土的性能要求和施工条件来选择适当的减水剂。
其次,将聚羧酸减水剂加入到水中,并通过搅拌使其充分溶解。
最后,经过过滤和调整pH值等工艺步骤,得到聚羧酸减水剂母液。
二、聚羧酸减水剂母液的配方调整聚羧酸减水剂母液的配方调整是为了满足不同混凝土的使用要求。
在进行配方调整时,需要考虑以下几个因素:1. 减水剂用量:根据混凝土的强度要求和施工工艺,合理确定减水剂的用量。
减水剂的用量过多会导致混凝土流动性差,用量过少则无法达到减水的效果。
2. 凝胶时间:凝胶时间是指混凝土从开始搅拌到开始凝胶的时间。
根据混凝土的施工要求,可以适当调整凝胶时间,延长或缩短凝胶3. 增稠效果:聚羧酸减水剂母液可以增加混凝土的黏稠性和塑性,提高抗渗性能。
在配方调整时,可以根据混凝土的用途和要求,调整增稠效果。
4. 其他性能调整:聚羧酸减水剂母液还可以通过添加其他助剂来调整混凝土的性能,如增加抗裂性能、改善耐久性等。
聚羧酸减水剂母液的配方优化是为了提高混凝土的性能和施工效果。
在配方优化中,需要考虑以下几个方面:1. 减水效果与黏稠性之间的平衡:减水剂的添加可以降低混凝土的水胶比,提高混凝土的强度和耐久性。
但是减水剂的添加也会使混凝土的流动性增加,降低混凝土的黏稠性。
因此,在配方优化时,需要平衡减水效果和黏稠性,以达到最佳的施工效果。
2. 凝结时间的控制:凝结时间的控制是为了满足不同施工工艺和混凝土的要求。
在配方优化时,可以通过调整凝结时间来适应不同的施工条件。
聚羧酸减水剂粉剂使用方法
聚羧酸减水剂粉剂使用方法
聚羧酸减水剂粉剂是一种常用的混凝土外加剂,它能够显著降低混凝土的水灰比,提高混凝土的流动性和可泵性。
使用聚羧酸减水剂粉剂可以帮助混凝土制品的施工更加顺利,提高混凝土的性能。
使用聚羧酸减水剂粉剂的方法如下:
1. 粉剂的配比:根据混凝土的设计配合比确定聚羧酸减水剂粉剂的用量。
通常情况下,聚羧酸减水剂粉剂的用量为混凝土总重量的0.1%-0.3%。
需要注意的是,使用过多的减水剂会导致混凝土的强度下降,所以要根据具体情况适量调整剂量。
2. 粉剂的加入:将聚羧酸减水剂粉剂均匀地撒在混凝土的表面上。
注意要避免直接将粉剂投放到水中,以免形成团块。
在撒粉剂的同时,可以使用搅拌机或者人工搅拌工具进行充分的搅拌,使粉剂均匀地分散在混凝土中。
3. 搅拌的时间:在加入聚羧酸减水剂粉剂后,需要进行充分的搅拌,使其与混凝土充分混合。
搅拌的时间一般为3-5分钟,具体时间可以根据混凝土的施工情况进行调整。
4. 混凝土的施工:在混凝土搅拌完成后,即可进行施工。
由于聚羧酸减水剂粉剂的作用,混凝土的流动性和可泵性会得到显著提高,可以更加轻松地进行浇筑和模压等工作。
需要注意的是,聚羧酸减水剂粉剂应存放在干燥通风的地方,避免潮湿和阳光直射。
另外,在使用过程中要严格按照使用说明进行操作,避免过量使用或者与其他外加剂混合使用,以免影响混凝土的性能和施工效果。
总之,聚羧酸减水剂粉剂使用方法简单,但在使用过程中应注意合理配比和充分搅拌,以确保混凝土的性能和施工质量。
聚羧酸类减水剂的制备及性能
聚羧酸类减水剂的制备及性能张赐容;黄易云;宁平【摘要】通过采用聚乙二醇单甲醚和丙烯酸在甲基苯磺酸的催化作用下合成得大分子单体聚乙二醇单甲基丙烯酸酯,再将大分子单体与丙烯酸、烯丙基磺酸盐按一定的摩尔比进行聚合,得到聚羧酸系高效减水剂。
研究了单体的不同比例对高效减水剂性能的影响;并将聚羧酸系高效减水剂在高强混凝土中的应用进行了测试和探讨。
结果表明:以聚乙二醇单甲醚、丙烯酸、烯丙基磺酸盐等为原材料合成聚羧酸系减水剂对水泥具有十分优越的分散性和分散稳定性。
在实验中选用了不同的阻聚剂,阻聚剂的品种及用量对酯化反应有较大的影响。
聚羧酸系高效减水剂中添加消泡剂可以降低混凝土的含气量,提高混凝土的强度。
%Poly-carboxyl superplasticizer was prepared by utilizing acrylic acid,sodium allyl sulfonate and PEG-M acrylic ester.The influences of different monomer ratios and reaction conditions on the superplasticizer performance were studied.The superplasticizer was used in high performance concrete,and had excellent water reduce ability in concrete even at low dosage and the strength of the concrete was also improved.Experiments showed that PEG-M,acrylic acid,and sodium allyl sulfonate used as raw materials in preparing poly-carboxyl superplasticizer which was a very good and stable disperser in cement.Different monomers ratio was used in the preparation process of superplasticizer.Carboxyl and sulfonic group content in superplasticizer had a larger influence on the cementhydration.Hydroquinone and phenothiazine as inhibitors were used in the esterification,and the experiments showed that the phenothiazine hadbetter inhibit ability,and the color of finish good was also lighter than that of using hydroquinone.Defoamer was used in poly-carboxyl superplasticizer to reduce air existing in the concrete and to improve the strength of the concrete.【期刊名称】《广州化工》【年(卷),期】2012(040)024【总页数】4页(P75-77,90)【关键词】聚羧酸;高效减水剂;高性能混凝土【作者】张赐容;黄易云;宁平【作者单位】广州从化鳌头凌丰树脂加工厂,广东从化510900;华南理工大学材料科学与工程学院,广东广州510641;华南理工大学材料科学与工程学院,广东广州510641【正文语种】中文【中图分类】TU528纵观我国50多年混凝土外加剂的发展历史,第一代木质素减水剂与第二代萘系减水剂对混凝土综合性能的提高、生产施工方式的改善起到了巨大的作用[1]。
聚羧酸减水剂配方(精选多篇)
聚羧酸减水剂配方(精选多篇)第一篇:聚羧酸减水剂配方聚羧酸减水剂配方摘要:采用自由基水溶液共聚方法合成聚羧酸减水剂。
通过正交试验考察不同配方时所合成的聚羧酸减水剂对水泥净浆流动度及经时损失的影响,确定不同侧链长度聚羧酸减水剂的最佳合成配方。
关键词:聚羧酸减水剂;水泥净浆;流动度;配方聚羧酸型减水剂分子链上具有较多的活性基团,主链上连接的侧链较多,分子结构自由度大,高性能化潜力大,因此聚羧酸型减水剂是近年来国内外研究较为活跃的高性能减水剂之一,同时也是未来减水剂发展的主导方向。
本文采用聚合度分别约为9、23、35的自制聚氧乙烯基烯丙酯大单体(PA)分别与丙烯酸、甲基丙烯磺酸钠在引发剂过硫酸铵作用下进行自由基水溶液共聚反应,得到不同侧链长度的聚羧酸减水剂,分别记为JH9、JH23、JH35。
通过正交试验分析考察单体及引发剂用量不同时所合成的聚羧酸减水剂对水泥净浆初始流动度及流动度经时损失的影响,确定不同侧链长度聚羧酸减水剂的最佳配方。
并分析在最佳合成配方下合成的不同侧链长度的聚羧酸减水剂对水泥净浆的初始流动度及经时损失的影响。
1 实验 1.1 原材料丙烯酸(AA)、甲基丙烯磺酸钠(MAS)、过硫酸铵(APS)均为市售化学试剂;聚氧乙烯基烯丙酯大单体,自制,其聚合度分别约为9、23、35;水泥,P.O42.5R,重庆腾辉江津水泥厂产。
1.2 聚羧酸减水剂的合成方法将丙烯酸、甲基丙烯磺酸钠、过硫酸铵、聚氧乙烯基烯丙酯大单体分别用去离子水配成浓度为20%的水溶液。
在装有搅拌器、回流冷凝管及温度计的三颈烧瓶中分批滴加单体及引发剂,滴加完毕后在75℃下保温反应一定时间。
反应结束后,用浓度为20%的NaOH水溶液调节PH值至7~8,得到浓度约为20%的黄色或红棕色聚羧酸减水剂。
1.3 正交试验设计采用正交试验方法,通过改变丙烯酸(AA)、甲基丙烯磺酸钠(MAS)、聚氧乙烯基烯丙酯大单体(PA)、过硫酸铵(APS)4个因素的用量,考察四因素在三水平下合成的聚羧酸减水剂对水泥净浆初始流动度及流动度经时损失的影响,从而确定聚羧酸减水剂的最佳合成配方。
聚羧酸减水剂复配技术
外加剂 适应性
可 泵 性
降强
火 成 岩
沉 积 岩
石:由天然
岩石经破碎
筛选粒径大 于5mm的岩
变 质 岩
石颗粒或卵
石、碎卵石
比重 吸水性 方园状
2020/10/3 针棒状
花 岗 岩、长 岩 致密长 石
玄 武 岩、辉 绿 岩、辉 长 岩 橄 榄岩
石 灰 岩、白 云 石
砂
岩
燧
石
砾
岩、 角 砾 石
页
引气品种对降强影响
脂肪醇酸钠
小于
烷基苯酚聚氧二烯醚
烷基苯黄酸钠松香皂
小于
松香热聚物
小于
烷基磺酸钠
OP-8 OP-9 OP-10
分
水
子
泥
形
成
式
份
粉 煤 灰
硅 灰
矿 粉
性价比
各类减水剂 适应性
配技术
砂
石
检
测
方
子
子
法
2020/10/3
配 合 比 设 计
施 工 要 求
水
泥
胶 凝 材 料
掺 合 料
2020/10/3
聚羧酸减水剂复配技术
2020/10/3
混
凝
减水剂合成技术
土
外
加
剂
技
术
泵送剂复配技术
2020/10/3
萘系减水剂 氨基减水剂 脂肪族减水剂 聚羧酸减水剂
萘系、氨基系、脂肪 族系、三聚氰胺系 聚羧酸系减水剂
磺化
缩合
中合
烘干复合
硫酸+工业萘
磺化液+甲醛 缩合物+碱
萘
系
聚羧酸类高性能减水剂的合成及复配--
聚羧酸类高性能减水剂的合成及复配-- 谢谢聚羧酸类高性能减水剂的合成及复配主要针对目前市场常用羧酸工艺北京科峰技术发展有限公司潘科锋一。
合成总述目前市场所使用聚羧酸类高性能减水剂人们习惯性的分为醚类和酯类。
酯类一般是指用不同分子量的MPEG(甲氧基封端的聚氧乙烯醚)在浓硫酸或者对甲苯磺酸等催化剂作用下与含有不饱和键的羧酸进行酯化。
形成所谓的“大单体”。
然后再用“大单体”和其他含有不饱和键的小分子单体在酸性条件下进行开链共聚,生成聚羧酸类高性能减水剂醚类是指直接用一定分子量的含有不饱和键封端的聚氧乙烯醚直接与其他含有不饱和键的小分子量单体在酸性条件下直接共聚成聚羧酸类高性能减水剂。
目前市场上这种醚大概分为三种:1,APEG(烯丙基封端聚氧乙烯醚).2,HPEG(异丁烯醇封端聚氧乙烯醚)。
3,TPEG(异戊烯醇封端聚氧乙烯醚) 一。
酯类聚羧酸高性能减水剂合成工艺一般酯类聚羧酸高性能减水剂合成所用MPEG的分子量都是在600-1200左右;也有专门跟厂家订做分子量600。
800.1000的。
MPEG是环氧乙烷在碱性条件下,用甲醇做起始剂生产的。
一般成品都经过用醋酸中和后PH值在7左右。
所用含有不饱和键的酸一般为:(甲基)丙烯酸;衣糠酸;马来酸(酐);富马酸等。
目前使用最多的是甲基丙烯酸和衣糠酸。
催化剂一般使用浓硫酸和对甲苯磺酸酯化反应是可逆反应。
在隔绝空气或者厌氧条件下进行。
在酯类聚羧酸高性能减水剂合成中,酯化的好坏对最终产品的性能起决定作用,是控制的关键~酯化温度一般在125-135度。
由于在此温度下MAA有可能自聚。
所以要在反应中加对苯二酚或者吩噻嗪等做阻聚剂。
酯化后聚工艺比较灵活。
一般都在去离子水介质中自由聚合。
国内目前以过硫酸铵(APS)做引发剂参与共聚的小高分子也很多。
比如:(甲基)丙烯酸(AA,MAA);烯丙基磺酸钠(AS);甲基烯丙基磺酸钠(MAS);丙烯酰胺;2-丙烯酰胺-2-甲基丙烯磺酸钠(AMPS);(甲基)丙烯酸甲酯;丙烯酸羟乙酯;醋酸乙烯酯等参考实例:MPEG1000酯化和聚合工艺配方 1.主要原料: MPEG1000;对苯二酚;对甲苯磺酸;甲基丙烯酸(MAA,分子量86);甲基丙烯磺酸钠(MAS,分子量158.2);过硫酸铵(APS) 2.酯化配方: 摩尔比:MAA/MPEG 4/1 对苯二酚用量为MAA 重量的1% 对甲苯磺酸用量为MPEG1000重量的2% 注意:酯化反应是可逆反应。
混凝土外加剂合成与复配技术详解
混凝土外加剂合成技术复配技术的工程应用在众多高性能减水剂中,具有梳形分子结构的聚羧酸系减水剂由于其具有减水率高,混凝土坍落度经时损失小,掺量低。
等优点,已成为国内外外加剂研究与开发的热点[1~3]。
本文在总结现有聚羧酸系减水剂合成方法的基础上,采用了一种新的合成途径,试验合成了一代号为NKY的聚羧酸系减水剂。
1 现有的合成方法通常是丙烯酸或甲在聚醚上引入活性双键,200至3000之间的活性大单体,然后由该大单体与各种羧酸单体共聚而得。
T.Hirate等人网采用不同链长的甲氧基聚乙二醇醚与甲墓丙烯酸缩合,再由该大单体与甲基丙烯酸共聚而得一混凝土坍落度保持性很好的外加剂。
M.Ki-noshitam等人先合成了甲基封端的聚氧乙烯丙烯酸酯,然后与丙烯酸钠、烯丙基磺酸钠在水溶液中共聚,制得水溶性共聚物,作为混凝土外加剂使用时,只需添加0.01%—0.2%,便可改善混凝土的和易性,提高了混凝土的强度。
清华大学的李崇智[3]则用过量的丙烯酸与不同分子量的聚乙二醇部分酯化,得到系列的聚乙二醇单丙烯酸酯,再与(甲基)丙烯酸及(甲基)丙烯磺酸钠共聚,所合成减水剂的水泥净浆流动度1h基本无变化。
华东理工大学包志军等的[6]合成方法如下:第一步在四口烧瓶中依次按配比加入聚乙二醇单甲醚、对苯二酚、对甲苯磺酸和甲基丙烯酸,加热搅拌,并升温至110~C,反应5h,得到大分子单体(MAMPEC);第二步同时滴加MAMPEG、丙烯酸和过硫酸铵水溶液经共聚反应后得成品,该产品在0.8内的研究者大多采用此种方法。
链都会相对减少,这必然会影响到流动性;若阻聚剂量过大,在第一步中虽然能充分起到阻聚作用,但过量的阻聚会影响之后的聚合,使得产物的转化率和分子量都会降低,从而减小流动度。
另外,该方法中间产物需经分离提纯后转入第二个反应釜进行共聚合反应,工艺比较复杂,操作不方便,成本较高,影响了该成果转化为工业化生产。
1.2先共聚后缩合先共聚后缩合是指第一步将一种或几种羧酸类单体在溶液中均聚或共聚成高聚物,分子量由几千至几万不等,第二步由该高聚物与单甲氧基聚乙二醇醚在催化剂作用下发生缩合反应,在高分子主链上引入聚醚侧链。
聚羧酸减水剂的合成及性能研究
·79·聚羧酸减水剂的合成及性能研究 高淑星(山东易和环保科技有限公司,山东 济南 201100)1 引言聚羧酸减水剂与传统的减水剂相比,性价比更高,更适用于现代建筑工程中。
聚羧酸减水剂在使用过程中体现出少掺量、高性能的产品特色,既可以使建筑外体美观牢固、不易燃、不易爆,安全适用于火车和汽车运输;同时,聚羧酸减水剂还是绿色环保产品,可应用于居住及办公场所等。
2 聚羧酸减水剂简述聚羧酸减水剂是一种水泥分散剂,主要与水泥混凝土配合应用于建筑工程中,这种新一代的高性能减水剂深受建筑工程市场好评。
聚羧酸减水剂2003年由国外引进,2007年聚羧酸减水剂产量增加,直至2017年大幅增加,年均产量在700×104 t。
目前,我国是聚羧酸减水剂使用量最大的国家。
2.1 聚羧酸减水剂的结构聚羧酸减水剂由主链和众多的支链组成,属于梳型分子结构,它采用自由基水溶液共聚方法合成。
聚羧酸减水剂中的聚羧酸高性能减水剂带有羧基(-COOH)等活性亲水基团及聚氧化乙烯链基等不饱和单体,主要原料有甲基丙烯酸、丙烯酸等,其分子结构转变为静电斥力效应和空间位阻效应共同作用结构,放弃了最初的单一静电斥力效应结构,最终形成立体分散系统。
聚羧酸减水剂最初在生产中采用酯类大单体减水剂为原料,导致较多的生产缺陷,如设备使用复杂不易操作、生产周期长、供应市场能力弱等问题,随着科研技术的发展,在多次试验和实践中,逐渐使用成本低、效率高的醚类大单体,使聚羧酸系减水剂的生产过程变得简化且效率高。
2.2 聚羧酸减水剂的合成2.2.1 聚羧酸减水剂母液的合成不饱和聚醚大单体在引发剂的作用下产生共聚,将带有活性基因的枝连接到主链上,采用不同品种的聚醚大单体、丙烯酸为主要原料,常温合成或加热合成。
2.2.2 聚羧酸减水剂的复配以聚羧酸减水剂母液为原料,根据需要适量添加缓凝、引气、消泡、防冻、保水等多种成分,溶解混合过程。
2.2.3 聚羧酸减水剂的合成方法聚羧酸减水剂的合成方法主要包括原位聚合接枝法、先聚合后功能化法和单体直接共聚法。
浅谈聚羧酸系减水剂的复配改性
比, 在葡 萄糖酸钠 、 消泡剂不同掺量情 况下进行 混凝 土性 能试验 。研 究结果表 明: 对聚羧 酸 系减水 剂进行复 配可优 化混凝 土的性
能, 但存在一个最佳掺量 。
[ 关键词] 聚羧 酸 系减水剂 复配 混凝土性能试验
Ab ta t n o d rt x l r o o n d f a in f o y a b x lt d x u e ,t e p p rc o s ss d u g u o a e e o me s sr c :I r e o e p o e c mp u d mo ii t o l c r o y a e a mi t r s h a e h o e o i m l c n t ,d f a r c o p a d p l c r o y a ea mi t r s f ra c m p u d Co c e e p ro ma c e t i c r id o twi a o c e e mi o o e t a d n o y a b x l t d x u e o o o n . n r t e f r n et s s a re u t s me c n r t x c mp n n n h d f r n r p ri n o o im l c n t n e o me s if e tp o o t fs d u g u o a e a d d f a r .Th e u t h w h tc mp u d o o y a b x 1t d i t r si b et e o e r s ls s o t a o o n f lc r o y a e a m x u e sa l o p o t z h o c e e p ro ma c ,b tt e e i n o t p i etec n rt ef r n e mi u h r sa p i m mo n . mu a u t K y wo d :p l c r o y i d x u e c mp u d e r s o y a b x l a mi t r s c o o n c n r t e f r n e t s o c e e p ro ma c e t
现场复配减水剂施工技术
Equipment technology 装备技术169现场复配减水剂施工技术刘彬(中铁十四局集团第五工程有限公司,山东兖州 272117)中图分类号:K928 文献标识码:B 文章编号1007-6344(2018)03-0169-02摘要:本文主要介绍了现场复配减水剂的工艺,并结合混凝土工程的施工要求,简要论述了如何根据施工温度的变化以及进场原材料的变化对减水剂配方进行适当调整。
从而使得混凝土的和易性满足各种环境下的施工要求,以达到保证混凝土工程施工质量、降低施工成本的目的。
关键词:复配;减水剂;技术0引言由于目前减水剂种类较多,市场相对混乱,没有统一的定价规则,市场上购买的减水剂性能不稳定,给混凝土质量带来巨大的隐患。
为解决此类问题,我们尝试进行在现场复配减水剂,即直接购买减水剂母液以及其他掺和料,在施工现场进行配制减水剂,与现场的水泥进行相容性比对,这样既能保证减水剂的质量,又能降低减水剂的投入成本。
下面以国道308项目外加剂现场复配为例,介绍减水剂现场复配工艺及成本情况。
1工程概况国道308冀鲁界至南宫段改建工程第2标段,起讫桩号为:K489+600-K496+600,路线长度7.0Km;清河支线起讫桩号分别为ZK0+000-ZK2+075.777,路线长度2.076Km,均为新建。
整个标段全长9.076公里。
主要内容为:路基、路面,桥涵、互通区、防护、交通沿线设施、绿化及其他工程的全部工作。
其中混凝土方量共计约4万m3,含C25、C30、C35、C40、C50五个标号,预计使用减水剂约160吨。
2场地建设减水剂复配需要场地建设约150平米,选址需方便减水剂生产,并使生产的减水剂达到最大利用率,厂房内设原材料存放区、减水剂复配区。
在复配区安置称重仪器,称重仪器上安装减水剂复配灌,根据对减水剂平均使用率,选择满足使用减水剂储存罐。
3减水剂的复配加工3.1原材料混凝土常规使用的化学外加剂主要由有机质表面活性剂组成的减水剂,以及减水剂为主要组分复合了少量保坍落、缓凝、引气、早强、增稠等功能组成的复合型减水剂。
聚羧酸高性能减水剂的复配及应用(可编辑)
聚羧酸高性能减水剂的复配及应用(可编辑)1)由于聚羧酸的高性能,全球化学外加剂都在朝着该方向发展。
国内聚羧酸的发展――也在经历换代变革推广阶段,今后3年加速应用阶段―进而成为主导产品(我国使用率不足20%,而发达国家达70%以上)。
2)工程领域得到普遍应用聚羧酸减水剂在重点工程及普通民用工程都得到了大量的应用。
聚羧酸的多样化、多品种、多功能(与萘系不同,各厂家产品基本是不同的) 熟悉减水率与掺量的关系,聚羧酸减水率高,减水率”范围18%,35%(萘系一般在15,,23,)。
聚羧酸减水剂的掺量按固体含量算一般0.1~0.3%(20,浓度产品一般掺量在1,左右),掺量大小取决于混凝土原材料组分的质量、配合比、混凝土性能要求(标号)。
合理利用聚羧酸减水剂高保坍特点: 1h坍损小,但要了解聚羧酸的适应性。
聚羧酸减水剂的含气量变化大; 气泡结构不同,含气量2,8,,应通过筛选和消泡。
混凝土拌合物对用水量较敏感 ?适宜的聚羧酸掺量,主要看混凝土的状态变化: 对砂石含泥量、含粉比较敏感。
对铁锈有一定反应性。
对应缓凝效果、含气量、保坍、粘度(和易性)要求,以及混凝土中水泥、掺合料、砂石料的多样性及变化,需要外加剂进行适应,产品供应要根据工程实际进行复配。
复配形式: (1)原液的复配:不同聚羧酸类型之间不同比例的复配;一般不可与萘系等传统减水剂复配(在混溶剂开发成功之前) (2)与辅助功能型组分的复配:即通常所述的小料复配。
与萘系高效减水剂的复配基础是基本相同的,但复配技术有所区别。
复配的成分: 缓凝成分:葡萄糖酸钠,酒石酸钠、柠檬酸、白糖、六偏磷酸钠消泡成分:主要看互溶性及消泡的效果,0.002,0.0008%,掺量按外加剂计算:每吨外加剂0。
2,0.8kg。
引气剂:主要十二烷基硫酸钠K12, 十二烷基苯磺酸,皂代,松香类。
掺量按胶材计算:0.0005%,0.007% 增稠剂:纤维素类。
互溶性与葡钠、糖钙、木钙、白糖、柠檬酸、K12等溶解性好,与磷酸钠、三萜皂苷互溶性差。
聚羧酸高性能减水剂的复配和应用
根据化学成分和性能特点,聚羧酸高 性能减水剂可分为标准型、缓凝型、 早强型和引气型等。
发展历程及现状
发展历程
聚羧酸高性能减水剂经历了从第一代木质素磺酸盐类、第二代萘系到第三代聚羧酸系的发展历程,性能不断提升。
现状
目前,聚羧酸高性能减水剂已成为混凝土外加剂的主导产品,广泛应用于建筑、水利、交通等基础设施建设领域。
高性能化
随着建筑行业对高性能混凝土的需求 增加,高性能减水剂的市场需求也将 持续增长。
智能化
借助人工智能、大数据等先进技术, 实现减水剂生产的智能化管理和优化, 提高生产效率和产品质量。
国际化
加强国际合作与交流,推动减水剂技 术的国际化发展,拓展海外市场。
06 实验研究及案例分析
实验设计思路和方法
VS
复配目的
通过复配,可以改善单一减水剂的缺陷, 提高减水率、保坍性、增强效果等,同时 降低成本,实现高性能减水剂的高效、经 济应用。
常见复配组分选择
聚羧酸系高性能减水剂
具有高减水率、低掺量、保坍 性好等优点,是复配中的主要 组分。
脂肪族高效减水剂
减水效果较好,价格较低,但 保坍性较差,可作为经济型复 配组分。
绿色生产技术创新
原料选择
采用可再生、低毒、低污染的原料,从源头上减少对 环境的影响。
生产工艺优化
改进生产工艺,提高资源利用效率,减少废弃物排放, 降低能耗和物耗。
产品性能提升
通过研发新型高效减水剂,提高混凝土的工作性能和 耐久性,减少对环境的负荷。
未来发展趋势预测
绿色化
未来减水剂的发展将更加注重环保性 能,推动绿色化生产和使用。
1 2 3
高性能混凝土
聚羧酸高性能减水剂可显著提高混凝土的流动性, 降低水灰比,制备出高强度、高耐久性的高性能 混凝土。
聚羧酸减水剂的合成及复配技术综述
1引言高效减水剂等作为混凝土外加剂在整个工程建设中发挥着重要作用,减水剂的发展可分为三个阶段:以木钙为主的普通减水剂,到以萘系为主的高效减水剂,再到以聚羧酸系为代表的高性能减水剂,而聚羧酸高效减水剂相比前两者具有良好的环保性能和技术优势,被广泛用于现代化混凝土工程中,其含有有害物质量较少,且减水率高,掺量较少,能显著提升混凝土强度,因而快速获得建筑工程应用,比如三峡工程等多个建筑工程中均使用了聚羧酸减水剂。
2国内外研究综述首先,1986年由日本研发了亲水性官能团聚羧酸减水剂,这种减水剂具有低坍损速度和高效减水率,之后将其运用于混凝土工程中。
1995年后,相比其他类型的减水剂,这种聚羧酸高效减水剂在工程中实现了广泛应用,占据整个建筑工程的80%。
日本将这种减水剂作为高性能AE减水剂,并在之后纳入了国家行业标准中,欧美对于聚羧酸高效减水剂的相关研究滞后于日本,由于美国等发达国家发现,将聚羧酸高效减水剂加入混凝土后会影响减水性能以及混凝土沁水性能,因此使用量较少,仅达到20%左右。
从国内研究上来看,21世纪我国在建设工程和工业生产中才开始使用和研究聚羧酸高效减水剂,早期主要使用马贝、西卡等减水剂产品,但由于这种材料成本高,无法实现广泛应用,只能够利用一些大型工程建设中。
伴随着科学技术发展,对于减水剂原材料,分子结构,工艺设计进行改进优化,之后使其成本降低可用于一般工程建设中。
如根据郭广仁等研究学者,研发了聚羧酸高效减水剂,这种减水剂相比其他减水剂来说能够显著降低掺量达到 1.50%,其含气量达5%,同时减水率能够达到30%以上。
国内目前聚羧酸减水剂相关研究已经获得很多进展,但由于这种减水剂会发生化学反应和本身存在敏感性等问题,国内外研究学者纷纷针对聚羧酸减水剂的工艺进行优化筛选,深入探讨其与水泥的适应性等问题。
3在实际应用中聚羧酸减水剂的问题分析在混凝土预拌过程中原材料差异性,地域性以及技术人员使用,理论知识等相关因素均会影响其使用效果。
聚羧酸系减水剂的合成原理与复配技术课件
聚羧酸系减水剂的合成方法
聚羧酸系减水剂的合成方法主要包括自由基聚合和离子聚 合。自由基聚合是常用的合成方法,通过引发剂引发单体 聚合,形成高分子聚合物。离子聚合则是通过离子交换剂 的作用,使单体离子化后再聚合。
聚羧酸系减水剂的合成过程中,温度、压力、反应时间等 工艺参数也会影响其性能和产率。因此,选择合适的工艺 参数对于合成高性能的聚羧酸系减水剂至关重要。
高性能混凝土
高性能混凝土是一种新型混凝土材料,具有高强度、高耐久性和高工作性等特点。聚羧酸系减水剂在高性能混凝土中的应用 可以提高混凝土的工作性能和耐久性,降低水灰比,减少收缩和开裂。
聚羧酸系减水剂可以与其他外加剂如缓凝剂、引气剂等配合使用,进一步改善高性能混凝土的性能。
自密实混凝土
自密实混凝土是一种不需要振捣即可自行密 实的混凝土,具有高流动性和稳定性。聚羧 酸系减水剂在自密实混凝土中的应用可以提 高混凝土的流动性和稳定性,减少离析和泌 水现象。
与其他外加剂的复配
聚羧酸系减水剂与缓凝剂的复配
01
通过复配缓凝剂,可以调整混凝土的凝结时间,满足工程需求。
聚羧酸系减水剂与引气剂的复配
02
引气剂可以提高混凝土的抗冻性和耐久性,但需注意控制气泡
含量。
聚羧酸系减水剂与增稠剂的复配
03
增稠剂可以改善混凝土的工作性,提高坍落度。
与不同水泥的适应性研究
聚羧酸系减水剂与通用水泥的适应性
减水剂分子具有较强的抗硬水能力, 能够在不同水质条件下保持稳定的减 水效果。
03
聚羧酸系减水剂的应用领 域
混凝土预制构件
预制构件是建筑行业中的重要组成部 分,聚羧酸系减水剂在混凝土预制构 件中的应用可以提高混凝土的流动性, 降低用水量,减少构件表面气泡和裂 纹,提高构件的耐久性和力学性能。
聚羧酸高性能减水剂复配试验
THANKS
谢谢您的观看
04
复配试验过程及结果分析
试验步骤与操作规范
01
02
03
04
试验准备
准备好聚羧酸高性能减水剂、 各种添加剂、搅拌器、滴定管
等试验设备和试剂。
复配操作
按照一定比例将聚羧酸高性能 减水剂与其他添加剂进行混合
,用搅拌器搅拌均匀。
滴定分析
对复配后的减水剂进行滴定分 析,测定其浓度、密度等参数
。
试验记录
详细记录试验过程中的操作、 数据及异常情况。
搅拌时间对聚羧酸高性 能减水剂的性能也有影 响。应保证足够的搅拌 时间,使减水剂与混凝 土充分混合,发挥最佳 性能。
温度对聚羧酸高性能减 水剂的性能也有影响。 应控制混凝土的出机温 度和入模温度,避免温 度过高或过低对混凝土 性能的影响。
聚羧酸高性能减水剂的 储存条件对其性能也有 影响。应选择干燥、阴 凉、通风良好的地方储 存减水剂,避免阳光直 射和高温环境。
02
原材料准备与试验设备
原材料种类及性能要求
01
聚羧酸高性能减水剂
主要原材料,具有高减水率、低 掺量、高分散性等特点。应选用 质量稳定、性能良好应符合相应国 家标准。
02
各种掺合料
如粉煤灰、矿渣粉等,用于改善 混凝土性能,应符合相应国家标
准。
04
砂、石
用于制备混凝土,应符合相应国 家标准。
聚羧酸高性能减水剂复配试 验
汇报人: 2023-12-20
目录
• 引言 • 原材料准备与试验设备 • 聚羧酸高性能减水剂配方设计 • 复配试验过程及结果分析 • 性能评价与影响因素分析 • 结论与展望
01
引言
聚羧酸高性能减水剂概述
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
减水剂复配方法:
1、母液固含40%,则固含为6%的减水剂1吨里复配母液需=(1000/40)*6=150kg.
简单记忆25kg母液为1个固含.也就是配7个固含直接算25*7=175的母液即可.
至于其他小料,如夏天每吨减水剂复配葡钠20‰,即每吨加葡钠20kg 即可。
2、在搅拌站试配时复配少量的外加剂算法为:复配固含为6%的减水剂400g,母液需=(6%/40%)*400=60g。
简单记忆,每配400g多少固含的外加剂,即加母液固含*10即可。
例配400g固含为8的外加剂加母液80g。
如果配500g固含为8的外加剂加母液=(80/400)*500=100.
同理可复配其他重量外加剂
至于小料:如夏天每吨减水剂复配葡钠20‰,则复配400g减水剂时加葡钠=400*20‰=8g。
同理,复配800g减水剂,纤维素掺量为1.5‰,则加纤维素=800*1.5‰=1.2g。