任意角的三角函数·典型例题分析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

任意角的三角函数·典型例题分析

例1已知角α的终边上一点P(-15α,8α)(α∈R,且α≠0),求α的各三角函数值.

分析根据三角函数定义来解

A.1 B.0

C.2 D.-2

例3若sin2α>0,且cosα<0,试确定α所在的象限.

分析用不等式表示出α,进而求解.

解∵sin2α>0,∴2α在第一或第二象限,即2kπ<2α<2kπ+π,k∈Z)

当k为偶数时,设k=2m(m∈Z),有

当k为奇数时,设k=2m+1(m∈Z)有

∴α为第一或第三象限的角

又由cosα<0可知α在第二或第四象限.综上所述,α在第三象限.

义域为{x|x∈R且x≠kπ,k∈Z}

∴函数y=tgx+ctgx的定义域是

说明本例进一步巩固终边落在坐标轴上角的集合及各三角函数值在每一象限的符号,三角函数的定义域.

例5计算

(1)a2sin(-1350°)+b2tg405°-(a-b)2ctg765°-2abcos(-1080°)

分析利用公式1,将任意角的三角函数化为0~2π间(或0°~360°间)的三角函数,进而求值.

解(1)原式=a2sin(-4×360°+90°)+b2tg(360°+45°)-(a-b)2ctg(2×360°+45°)-2abcos(-3×360°)

=a2sin90°+b2tg45°-(a-b)2ctg45°-2abcos0°

=a2+b2-(a-b)2-2ab

=0

相关文档
最新文档