(完整版)2018初一数学平行线及其判定练习题
(完整版)平行线的判定专项练习60题(有答案)
1.已知:如图,BE平分∠ABC,∠1=∠2.求证:BC∥DE.2.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.3.如图所示,AB⊥BC,BC⊥CD,BF和CE是射线,并且∠1=∠2,试说明BF∥CE.4.如图,AB⊥BC,∠1+∠2=90°,∠2=∠3,求证:BE∥DF.5.如图,OP平分∠MON,A、B分别在OP、OM上,∠BOA=∠BAO,那么AB平行于ON吗?若平行,请写出证明过程;若不平行,请说明理由.6.已知:如图,∠1=∠2,∠A=∠C.求证:AE∥BC.7.已知,如图B、D、A在一直线上,且∠D=∠E,∠ABE=∠D+∠E,BC是∠ABE的平分线,求证:DE∥BC.8.如图,已知∠AEC=∠A+∠C,试说明:AB∥CD.9.如图,已知AC∥ED,EB平分∠AED,∠1=∠2,求证:AE∥BD.10.如图,直线AB、CD与直线EF相交于E、F,已知:∠1=105°,∠2=75°,求证:AB∥CD.11.如图,∠D=∠A,∠B=∠FCB,求证:ED∥CF.12.如图,已知AB⊥BC,CD⊥BC,∠1=∠2,求证:EB∥FC.13.如图所示所示,已知BE是∠B的平分线,交AC 于E,其中∠1=∠2,那么DE∥BC吗?为什么?14.如图,已知∠C=∠D,DB∥EC.AC与DF平行吗?试说明你的理由.15.如图,AC⊥AE,BD⊥BF,∠1=35°,∠2=35°,求证:AE∥BF.16.如图,已知AB∥CD,∠1=∠2,求证:BE∥CF.17.已知∠BAD=∠DCB,∠1=∠3,求证:AD∥BC.18.如图,AD是三角形ABC的角平分线,DE∥CA,并且交AB与点E,∠1=∠2,DF与AB是否平行?为什么?19.如图,已知:∠C=∠DAE,∠B=∠D,那么AB平行于DF吗?请说明理由.20.如图,已知点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?说明理由.21.已知∠1的度数是它补角的3倍,∠2等于45°,那么AB∥CD吗?为什么?22.已知:如图,BDE是一条直线,∠ABD=∠CDE,BF平分∠ABD,DG平分∠CDE,求证:BF∥DG.23.如图,四边形ABCD中,∠A=∠C=90°,BF、DE 分别平分∠ABC、∠ADC.判断DE、BF是否平行,并说明理由.24.如图,若∠CAB=∠CED+∠CDE,求证:AB∥CD .25.如图,CD⊥AB,GF⊥AB,∠1=∠2.试说明DE∥BC.26.如图所示,∠CAD=∠ACB,∠D=90°,EF⊥CD.试说明:∠AEF=∠B.27.已知:如图所示,C,P,D三点在同一条直线上,∠BAP+∠APD=180°,∠E=∠F,求证:∠1=∠2.28.如图,∠D=∠1,∠E=∠2,DC⊥EC.求证:AD∥BE.29.如图,在四边形ABCD中,∠A=∠C,BE平分∠ABC,DF平分∠ADC,试说明BE∥DF.30.已知:如图,∠1=∠2,∠A=∠F,则∠C与∠D相等吗?试说明理由.31.如图,在四边形ABCD中,∠A=∠C=90°,∠1=∠2,∠3=∠4,求证:BE∥DF.32.如图,已知∠1=∠2求证:a∥b.33.如图,DE⊥AO于E,BO⊥AO于O,FC⊥AB于C,∠1=∠2,找出图中互相平行的线,并加以说明.34.如图,已知∠1=∠2,∠C=∠CDO,求证:CD∥OP.35.如图,已知DE平分∠BDF,AF平分∠BAC,且∠1=∠2.求证(1)DF∥AC;(2)DE∥AF.36.如图,AD平分∠BAC,EF平分∠DEC,且∠1=∠2,试说明DE与AB的位置关系.37.如图,在△ABC中,点D在AB上,∠ACD=∠A,∠BDC的平分线交BC于点E.求证:DE∥AC.38.如图,AB与CD相交于点O,并且∠A=∠1,试问∠2与∠B满足什么关系时,AC∥BD?说明理由.39.如图,已知∠1=∠A,∠2=∠B,那么MN与EF平行吗?如果平行,请说明理由.40.如图,直线AB、CD被直线EF所截,∠1+∠4=180°,求证:AB∥CD.41.如图所示,已知:∠1=∠2,∠E=∠F.试说明AB∥CD.42.如图,已知EF⊥CD于F,∠GEF=25°,∠1=65°,则AB与CD平行吗?请说明理由.43.如图,已知∠1=∠2=90°,∠3=30°,∠4=60°,图中有几对平行线?说说你的理由.44.直线AB,CD被直线EF所截,∠1=∠2,直线AB 和CD平行吗?为什么?45.已知:如图,AD⊥BC,EF⊥BC,∠1=∠2.求证:AB∥GF.46.如图,已知B、C、D三点在同一条直线上,∠B=∠1,∠2=∠E,试说明AD∥CE.47.直线AB、CD与GH交于E、F,EM平分∠BEF,FN平分∠DFH,∠BEF=∠DFH,求证:EM∥FN.48.如图所示,∠ABC=∠BCD,BE、CF分别平分∠ABC 和∠BCD,请你说出BE与CF的位置关系,并说出你的理由.49.如图,若∠1=∠2,请判断DB与EC的位置关系,并说明理由.50.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,DG∥BC吗?为什么?51.如图,已知:HG平分∠AHM,MN平分∠DMH,且∠AHM=∠DMH.问:GH与MN有怎样的位置关系,请说明理由.(请注明每一步的理由)52.已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD 于点G.求证:AB∥CD.53.如图,直线AB,CD被EF所截,∠3=∠4,∠1=∠2,EG⊥FG.求证:AB∥CD.54.已知:如图,CD是直线,E在直线CD上,∠1=130°,∠A=50°,求证:AB∥CD.55.如图,已知∠1=∠2,∠DAB=∠DCA,且DE⊥AC,BF⊥AC,问:(1)AD∥BC吗?(2)AB∥CD吗?为什么?56.如图,四边形ABCD,∠1=30°,∠B=60°,AB⊥AC,则AD与BC一定平行吗?AB与CD呢?若平行请说明理由,反之则不用说明理由.57.已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.58.如图,AD⊥BC于点D,∠1=2,∠CDG=∠B,请你判断EF与BC的位置关系,并加以证明,要求写出每步证明的理由.59.已知:如图,CE平分∠ACD,∠1=∠B,求证:AB∥CE.60.如图,已知∠1=∠2,∠3=∠4,可以判定哪两条直线平行?。
(完整版)平行线及其判定与性质练习题
平行线及其判定1、基础知识(1)在同一平面内,______的两条直线叫做平行线.若直线a与直线b 平行,则记作______.(2)在同一平面内,两条直线的位置关系只有______、______.(3)平行公理是:.(4)平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a、b、c,若a∥b,b∥c,则______.(5)两条直线平行的条件(除平行线定义和平行公理推论外):①两条直线被第三条直线所截,如果______,那么这两条直线平行,这个判定方法1可简述为:______,两直线平行.②两条直线被第三条直线所截,如果__ _,那么,这个判定方法2可简述为: ______,______.③两条直线被第三条直线所截,如果_ _____那么______,这个判定方法3可简述为:2、已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么_____.(_______,_______)(2)如果∠2=∠5,那么________。
(______,________)(3)如果∠2+∠1=180°,那么_____。
(________,______)(4)如果∠5=∠3,那么_______。
(_______,________)(5)如果∠4+∠6=180°,那么______.(_______,_____)(6)如果∠6=∠3,那么________。
(________,_________)3、已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______。
(______,______)(2)∵∠1=∠D(已知),∴______∥______.(______,______)(3)∵∠2=∠A(已知),∴______∥______.(______,______)(4)∵∠B+∠BCE=180°(已知),∴______∥______。
(完整版)平行线的判定习题
平行线的判定1一、基础能力平台1.判断题:(1)同位角不相等,两直线不平行.()(2)垂直于同一直线的若干条直线平行.()(3)如果两点到直线L的距离相等,那么过两点的直线与直线L平行.()(4)都和第三条直线平行的两直线平行.()(5)两条不平行的直线一定相交.()(6)内错角一定相等.()2.填空题:(1)如图1所示,因为∠1=∠2(已知),所以_____∥_____.(__________________)因为∠2=∠3(已知),所以_____∥______.(__________________________)(2)如图2所示,直线a、b都与直线c相交,则能判定a∥b的条件是__________.(1) (2) (3)(3)如图3所示:如果∠B=∠DCE,那么______∥______,它的根据是____________;•如果∠D=∠DCE,那么______∥______,它的根据是_________________________;如果∠A+∠D=180°,•那么_______∥_______,它的根据是__________________.(4)如图4所示,因为∠1=∠2(已知),所以______∥______(______________________).∠3•和∠4是直线______和______被直线_______•所截的________•角;•∠1•和∠3•是直线_____和______被直线______所截的_______角.因为∠1=45°,∠3=135°(已知),所以AB∥DE.(_______________________________)(4) (5) (6)(5)如图5所示,①因为∠1=∠C(已知),所以ED∥______.(__________)②因为∠2=∠BED(已知),所以DF∥_______.(_________)③因为∠3=∠B(已知),所以_____∥______(__________)④因为∠2+∠AFD=180°(已知),所以_____∥______.(__________)⑤因为∠DFC=∠C_____(已知),所以ED∥AC.(_________)3.选择题:(1)已知:如图6所示,下列条件中,不能判断直线L∥L的是()A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°(2)下列结论中,正确的是()A.在所有连结两点的线中,直线最短;B.经过两点有且只有一条直线;C.内错角互补,两直线平行;D.没有公共点的两条线段一定平行(3)已知a⊥b,b⊥c,则直线a与直线c的关系为()A.相交 B.垂直 C.平行 D.以上都不对(4)已知a∥b,c∥b,则直线a和c的关系是()A.相交 B.垂直 C.平行 D.相交或平行(5)两条直线被第三条直线所截,有一对同旁内角互补,•则这一对同旁内角的角平分线()A.互相垂直 B.互相平行C.相交但不垂直 D.不能确定(6)在同一平面内不相邻的两个直角,如果它们有一条边在同一条直线上,•那么另一条边相互() A.平行 B.垂直 C.平行或垂直 D.平行或垂直或在同一条直线上4.填写理由:(1)如图7所示,因为∠A=_____(已知),所以AC∥DE(________________________).因为∠A+_____=•180°(已知),所以AB∥FD(___________________________).(7) (8) (9)(2)如图8所示,因为AC平分∠DAB(已知),所以∠1=∠3(__________________).又因为∠1=∠2(已知),所以∠2=∠3(_____________________________).所以DC∥AB(___________________________________).(3)如图9所示,C、D、E在一条直线上.因为∠1=130°(已知),所以∠2=50°(_________).又因为∠A=50°(已知),所以∠2=∠A(_________).所以AB∥CD(____________).二、拓展延伸训练1.如图所示,BE平分∠ABD,DE平分∠BDC,∠1+∠2=90°,那么直线AB、CD的位置关系如何?2.如图所示,ADB 是一条直线,∠ADE=∠ABC ,且DG 、BF 分别是∠ADE 和∠ABC•的平分线,那么DG 与BF 平行吗?为什么?平行线的判定21.如图,直线AB 、CD 相交与点E ,要使DF ∥AB .若需要图中与∠D 相等的角有( )A .4个B .3个C .2个D .1个2.如图,直线a ,b 被c 所截,若∠1=32°,要使a ∥b ,则∠2的大小为( )A .32°B .148°C .52°D .128°3.如图,把一块直角三角板的直角顶点放在直线b 上,如果∠2=62°,要使a //b ,那么∠1的度数是( )A .28°B .52°C .62°D .68°二、填空题4.如图,∠2=150°,当∠1=_______时,a ∥b .5.如图, 点B 、C 、D 在同一条直线上,∠ACB =90°,若∠A =54°,∠ECD =36°,则CE _________ AB .6.如图, AE 平分∠BAC 交BD 于点E ,若2122∠=︒,要使AC ∥BD ,则1∠= .8765cb a3412三、解答题7.如图,直线l 与直线a 、b 分别交于点A 、B ,若∠1 = 60°,∠2=120°,试说明a ∥b .1.如图1所示,下列条件中,能判断AB∥CD 的是( )A.∠BAD=∠BCDB.∠1=∠2;C.∠3=∠4D.∠BAC=∠ACD34DCBA21FE D CBA(1) (2) (3)2.如图2所示,如果∠D=∠EFC,那么( )A.AD∥BCB.EF∥BCC.AB∥DCD.AD∥EF 3.下列说法错误的是( )A.同位角不一定相等B.内错角都相等C.同旁内角可能相等D.同旁内角互补,两直线平行 4.如图3,直线a,b 被直线c 所截,现给出下列四个条件:①∠1=∠-5; ②∠1=∠7; ③∠2+∠3=180°; ④∠4=∠7.其中能说明a∥b 的条件序号为( ) A.①② B.①③ C.①④ D.③④ 5.如左图,BE 是AB 的延长线。
(完整版)平行线及其判定(证明应用题)
授课教案学员姓名:________________ 学员年级:________________ 授课教师:_________________ 所授科目:_________ 上课时间:______年____月____日(~);共_____课时(以上信息请老师用正楷字手写)平行线及其判定(证明应用题)一.解答题(共11小题)1.已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.2.将一副三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB;(2)求∠DFC的度数.3.如图,△ABC中,AB=AC,D是CA延长线上的一点,且∠B=∠DAM.求证:AM∥BC.4.如图,已知DF∥AC,∠C=∠D,你能否判断CE∥BD?试说明你的理由.5.如图,已知∠1=∠2,∠3=∠4,∠5=∠6,试判断ED与FB的位置关系,并说明为什么.6.如图,已知AD⊥BC,EF⊥BC,∠3=∠C,求证:∠1=∠2.7.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.8.已知:如图,AD是△ABC的平分线,点E在BC上,点G在CA的延长线上,EG交AB于点F,且∠AFG=∠G.求证:GE∥AD.9.如图,CA⊥AD,垂足为A,∠C=50°,∠BAD=40°,求证:AB∥CD.10.如图,BE平分∠ABD,DE平分∠BDC,且∠1+∠2=90°.求证:AB∥CD.11.如图所示,已知直线a、b、c、d、e,且∠1=∠2,∠3+∠4=180°,则a与c平行吗?为什么?2015年03月05日752444625的初中数学组卷参考答案与试题解析一.解答题(共11小题)1.(2014•槐荫区二模)已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.考点:平行线的判定.专题:证明题.分析:由∠A=∠F,根据内错角相等,两直线平行,即可求得AC∥DF,即可得∠C=∠FEC,又由∠C=∠D,则可根据同位角相等,两直线平行,证得BD∥CE.解答:证明:∵∠A=∠F,∴AC∥DF,∴∠C=∠FEC,∵∠C=∠D,∴∠D=∠FEC,∴BD∥CE.点评:此题考查了平行线的判定与性质.注意内错角相等,两直线平行与同位角相等,两直线平行.2.(2013•邵阳)将一副三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB;(2)求∠DFC的度数.考点:平行线的判定;角平分线的定义;三角形内角和定理.专题:证明题.分析:(1)首先根据角平分线的性质可得∠1=45°,再有∠3=45°,再根据内错角相等两直线平行可判定出AB∥CF;(2)利用三角形内角和定理进行计算即可.解答:(1)证明:∵CF平分∠DCE,∴∠1=∠2=∠DCE,∵∠DCE=90°,∴∠1=45°,∵∠3=45°,∴∠1=∠3,∴AB∥CF(内错角相等,两直线平行);(2)∵∠D=30°,∠1=45°,∴∠DFC=180°﹣30°﹣45°=105°.点评:此题主要考查了平行线的判定,以及三角形内角和定理,关键是掌握内错角相等,两直线平行.3.(2010•江宁区一模)如图,△ABC中,AB=AC,D是CA延长线上的一点,且∠B=∠DAM.求证:AM∥BC.考点:平行线的判定.专题:证明题.分析:判别两条直线平行的方法有:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.要证明AM∥BC,只要转化为证明∠C=∠DAM即可.解答:证明:∵AB=AC,∴∠B=∠C,∵∠B=∠DAM,∴∠C=∠DAM,∴AM∥BC.点评:本题主要考查了平行线的判定,注意等量代换的应用.4.如图,已知DF∥AC,∠C=∠D,你能否判断CE∥BD?试说明你的理由.考点:平行线的判定.专题:探究型.分析:因为DF∥AC,由内错角相等证明∠C=∠FEC,又因为∠C=∠D,则∠D=∠FEC,故CE∥BD.解答:解:CE∥BD.理由:∵DF∥AC(已知),∴∠C=∠FEC(两直线平行,内错角相等),又∵∠C=∠D(已知),∴∠D=∠FEC(等量代换),∴CE∥BD(同位角相等,两直线平行).点评:解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题能有效地培养“执果索图”的思维方式与能力.5.如图,已知∠1=∠2,∠3=∠4,∠5=∠6,试判断ED与FB的位置关系,并说明为什么.考点:平行线的判定.专题:探究型.分析:设AB与DE相交于H,若判断ED与FB的位置关系,首先要判断∠1和∠EHA的大小;由∠3=∠4可证得BD∥CF(内错角相等,两直线平行),可得到∠5=∠BAF;已知∠5=∠6,等量代换后发现AB∥CD,即∠2=∠EHA,由此可得到∠1=∠EHA,根据同位角相等,两直线平行即可判断出BF、DE的位置关系.解答:解:BF、DE互相平行;理由:如图;∵∠3=∠4,∴BD∥CF,∴∠5=∠BAF,又∵∠5=∠6,∴∠BAF=∠6,∴AB∥CD,∴∠2=∠EHA,又∵∠1=∠2,即∠1=∠EHA,∴BF∥DE.另解:BF、DE互相平行;理由:如图;∵∠3=∠4,∴BD∥CF,∴∠5=∠BAF,∵∠5=∠6,∴∠BAF=∠6,∵△BFA、△DEC的内角和都是180°∴△BFA=∠1+∠BFA+BAF;△DEC=∠2+∠4+∠6∵∠1=∠2;∠BAF=∠6∴∠BFA=∠4,∴BF∥DE.点评:解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.6.如图,已知AD⊥BC,EF⊥BC,∠3=∠C,求证:∠1=∠2.考点:平行线的判定.专题:证明题.分析:先由已知证明AD∥EF,再证明1∠1=∠4,∠2=∠4,等量代换得出∠1=∠2.解答:证明:∵AD⊥BC,EF⊥BC(已知),∴AD∥EF(垂直于同一条直线的两直线平行),∴∠1=∠4(两直线平行,同位角相等),又∵∠3=∠C(已知),∴AC∥DG(同位角相等,两直线平行),∴∠2=∠4(两直线平行,内错角相等),∴∠1=∠2(等量代换).点评:此题的关键是理解平行线的性质及判定.①两直线平行,同位角相等.②两直线平行,内错角相等.③同位角相等,两直线平行.④内错角相等,两直线平行.7.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.考点:平行线的判定.专题:推理填空题.分析:由∠A=∠F,根据内错角相等,得两条直线平行,即AC∥DF;根据平行线的性质,得∠C=∠CEF,借助等量代换可以证明∠D=∠CEF,从而根据同位角相等,证明BD∥CE.解答:解:∵∠A=∠F(已知),∴AC∥DF(内错角相等,两直线平行),∴∠C=∠CEF(两直线平行,内错角相等),∵∠C=∠D(已知),∴∠D=∠CEF(等量代换),∴BD∥CE(同位角相等,两直线平行).点评:此题综合运用了平行线的判定及性质,比较简单.8.已知:如图,AD是△ABC的平分线,点E在BC上,点G在CA的延长线上,EG交AB于点F,且∠AFG=∠G.求证:GE∥AD.考点:平行线的判定.专题:证明题.分析:首先根据角平分线的性质可得∠BAC=2∠DAC,再根据三角形外角与内角的关系可得∠G+∠GFA=∠BAC,又∠AFG=∠G.进而得到∠BAC=2∠G,从而得到∠DAC=∠G,即可判定出GE∥AD.解答:证明:∵AD是△ABC的平分线,∴∠BAC=2∠DAC,∵∠G+∠GFA=∠BAC,∠AFG=∠G.∴∠BAC=2∠G,∴∠DAC=∠G,∴AD∥GE.点评:此题主要考查了平行线的判定,关键是掌握三角形内角与外角的关系,以及平行线的判定定理.9.如图,CA⊥AD,垂足为A,∠C=50°,∠BAD=40°,求证:AB∥CD.考点:平行线的判定.专题:证明题.分析:利用直角三角形中两锐角互余得出∠D=40°,再利用内错角相等,两直线平行的判定证明即可.解答:证明:∵CA⊥AD,∴∠C+∠D=90°,∴∠C=50°,∴∠D=40°,∵∠BAD=40°,∴∠D=∠BAD,∴AB∥CD.点评:本题主要考查了平行线的判定和直角三角形中两锐角互余,比较简单.10.如图,BE平分∠ABD,DE平分∠BDC,且∠1+∠2=90°.求证:AB∥CD.考点:平行线的判定;角平分线的定义.专题:证明题.分析:运用角平分线的定义,结合图形可知∠ABD=2∠1,∠BDC=2∠2,又已知∠1+∠2=90°,可得同旁内角∠ABD和∠BDC互补,从而证得AB∥CD.解答:证明:∵BE平分∠ABD,DE平分∠BDC(已知),∴∠ABD=2∠1,∠BDC=2∠2(角平分线定义).∵∠1+∠2=90°,∴∠ABD+∠BDC=2(∠1+∠2)=180°.∴AB∥CD(同旁内角互补,两直线平行).点评:灵活运用角平分线的定义和角的和差的关系是解决本题的关键,注意正确识别“三线八角”中的同位角、内错角、同旁内角.11.如图所示,已知直线a、b、c、d、e,且∠1=∠2,∠3+∠4=180°,则a与c平行吗?为什么?考点:平行线的判定;平行公理及推论.专题:探究型.分析:根据内错角相等,两直线平行可知a∥b,由同旁内角互补,两直线平行可知b∥c,根据如果两条直线都与第三条直线平行那么这两条直线平行得出结论.解答:解:平行.理由如下:∵∠1=∠2,∴a∥b(内错角相等,两直线平行),∵∠3+∠4=180°,∴b∥c(同旁内角互补,两直线平行),∴a∥c(平行于同一直线的两直线平行).点评:本题很简单,考查的是平行线的判定定理和平行公理的推论.内错角相等,两直线平行;同旁内角互补,两直线平行;如果两条直线都与第三条直线平行那么这两条直线平行.。
平行线的判定练习题(有答案)
平行线的判定练习题(有答案)平行线的判定专项练习60题(有答案)1.已知:如图,BE平分∠ABC,∠1=∠2.求证:BC∥DE.2.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.3.如图所示,AB⊥BC,BC⊥CD,BF和CE是射线,并且∠1=∠2,试说明BF∥CE.4.如图,AB⊥BC,∠1+∠2=90°,∠2=∠3,求证:BE∥DF.5.如图,OP平分∠MON,A、B分别在OP、OM上,∠BOA=∠BAO,那么AB平行于ON吗?若平行,请写出证明过程;若不平行,请说明理由.6.已知:如图,∠1=∠2,∠A=∠C.求证:AE∥BC.平行线的判定--- 第 1 页共 1 页7.已知,如图B、D、A在一直线上,且∠D=∠E,∠ABE=∠D+∠E,BC是∠ABE的平分线,求证:DE∥BC.8.如图,已知∠AEC=∠A+∠C,试说明:AB∥CD.9.如图,已知AC∥ED,EB平分∠AED,∠1=∠2,求证:AE∥BD.10.如图,直线AB、CD与直线EF相交于E、F,已知:∠1=105°,∠2=75°,求证:AB∥CD.11.如图,∠D=∠A,∠B=∠FCB,求证:ED∥CF.12.如图,已知AB⊥BC,CD⊥BC,∠1=∠2,求证:EB∥FC.平行线的判定---第 2 页共 2 页13.如图所示所示,已知BE是∠B的平分线,交AC于E,其中∠1=∠2,那么DE∥BC吗?为什么?14.如图,已知∠C=∠D,DB∥EC.AC与DF平行吗?试说明你的理由.15.如图,AC⊥AE,BD⊥BF,∠1=35°,∠2=35°,求证:AE∥BF.16.如图,已知AB∥CD,∠1=∠2,求证:BE∥CF.17.已知∠BAD=∠DCB,∠1=∠3,求证:AD∥BC.18.如图,AD是三角形ABC的角平分线,DE∥CA,并且交AB与点E,∠1=∠2,DF与AB是否平行?为什么?平行线的判定---第 3 页共 3 页19.如图,已知:∠C=∠DAE,∠B=∠D,那么AB平行于DF吗?请说明理由.20.如图,已知点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?说明理由.21.已知∠1的度数是它补角的3倍,∠2等于45°,那么AB∥CD吗?为什么?22.已知:如图,BDE是一条直线,∠ABD=∠CDE,BF平分∠ABD,DG平分∠CDE,求证:BF∥DG.23.如图,四边形ABCD中,∠A=∠C=90°,BF、DE分别平分∠ABC、∠ADC.判断DE、BF是否平行,并说明理由.24.如图,若∠CAB=∠CED+∠CDE,求证:AB∥CD.25.如图,CD⊥AB,GF⊥AB,∠1=∠2.试说明DE∥BC.平行线的判定---第 4 页共 4 页26.如图所示,∠CAD=∠ACB,∠D=90°,EF⊥CD.试说明:∠AEF=∠B.27.已知:如图所示,C,P,D三点在同一条直线上,∠BAP+∠APD=180°,∠E=∠F,求证:∠1=∠2.28.如图,∠D=∠1,∠E=∠2,DC⊥EC.求证:AD∥BE.29.如图,在四边形ABCD中,∠A=∠C,BE平分∠ABC,DF平分∠ADC,试说明BE∥DF.30.已知:如图,∠1=∠2,∠A=∠F,则∠C与∠D相等吗?试说明理由.31.如图,在四边形ABCD中,∠A=∠C=90°,∠1=∠2,∠3=∠4,求证:BE∥DF.平行线的判定---第 5 页共 5 页平行线测姓名:一、选择题1.下列命题中,不正确的是____ [ ]A.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行B.两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行C.两条直线被第三条直线所截,那么这两条直线平行D.如果两条直线都和第三条直线平行,那么这两条直线也互相平行2.如图,可以得到DE∥BC的条件是______ [ ](2题)(5题)(3题)(7题) (8题)A.∠ACB=∠BAC B.∠ABC+∠BAE=180° C.∠ACB+∠BAD=180°D.∠ACB=∠BAD3.如图,直线a、b被直线c所截,现给出下列四个条件: (1)∠1=∠2(2)∠3=∠6(3)∠4+∠7=180° (4)∠5+∠8=180°,其中能判定a∥b的条件是_________[ ]A.(1)(3) B.(2)(4)C.(1)(3)(4) D.(1)(2)(3)(4)4.一辆汽车在笔直的公路上行驶,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是________[ ]A.第一次向右拐40°,第二次向左拐40° B.第一次向右拐50°,第二次向左拐130°C.第一次向右拐50°,第二次向右拐130° D.第一次向左拐50°,第二次向左拐130°5.如图,如果∠1=∠2,那么下面结论正确的是_________.[ ]A.AD∥BC B.AB∥CD C.∠3=∠4 D.∠A=∠C6.同一平面内有四条直线a、b、c、d,若a∥b,a⊥c,b⊥d,则直线c、d的位置关系为()A.互相垂直 B.互相平行 C.相交 D.无法确定7.如图,在平行四边形ABCD中,下列各式不一定正确的是()A.∠1+∠2=180° B.∠2+∠3=180° C.∠3+∠4=180° D.∠2+∠4=180°8.如图,AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC的度数为()A.30° B.60° C.90° D.120°二、填空题 9.如图,由下列条件可判定哪两条直线平行,并说明根据.(1)∠1=∠2,.(2)∠A=∠3,.(3)∠ABC+∠C=180°.10.如果两条直线被第三条直线所截,一组同旁内角的度数之比为3∶2,差为36°,那么这两条直线的位置关系是________.11.同垂直于一条直线的两条直线_______.同一平面内,不重合的两直线的位置关系是。
初一数学相交线与平行线28道典型题(含 答案和解析)
初一数学相交线与平行线28道典型题(含答案和解析及考点)1、若直线AB,CD相交于O,∠AOC与∠BOD的和为200°,则∠AOD的度数为.答案:80°.解析:∵∠AOC=∠BOD,∠AOC与∠BOD的和为200°.∴∠AOC=100°.∵∠AOD与∠AOC互补.∴∠AOD=80°.考点:几何初步——相交线与平行线——对顶角、邻补角.2、已知OA⊥OB,∠AOC∶∠AOB=2∶3,则∠BOC= .答案:30°或150°.解析:当OC在∠AOB内部时,∠BOC=30°;当OC在∠AOB外部时,∠BOC=150°.考点:几何初步——相交线与平行线——对顶角、邻补角——垂线.3、若直线a与直线b相交于点A,则直线b上到直线a距离等于2cm的点的个数是().A.0B.1C.2D.3答案:C.解析: 直线b的交点两侧各有一点到直线a的距离等于2cm.考点:几何初步——相交线与平行线——点到直线的距离.4、如图所示,在平面内,两条直线l1、l2相交于点O,对于平面内任意一点M,若p、q分别是点M到直线l1、l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有个.答案:4.解析:因为两条直线相交有四个角,因此每一个角内就有一个到直线l1、l2的距离分别是2、1,的点,即距离坐标是(2,1)的点,因而共有4个.考点:几何初步——相交线与平行线——点到直线的距离.5、若∠1和∠2是同旁内角,若∠1=50°,则∠2的度数为( ). A.45° B.135° C.45°或135° D. 不能确定 答案:D.解析:若∠1和∠2是同旁内角,若∠1=50°,则∠2的度数为不能确定. 考点:几何初步——相交线与平行线——三线八角.6、平面上n 条直线最少能将平面分为__________部分,最多能将平面分为__________部分. A. 最少能将平面分成n+1部分;最多分为n2+n+22.B. 最少能将平面分成n+2部分;最多分为n2+n−22.C. 最少能将平面分成n+1部分;最多分为n2+n−22. D. 最少能将平面分成n+2部分;最多分为n2−n+22.答案:A.解析:1条直线将平面分成2部分.2条直线最少将平面分成3部分,最多将平面分成4部分,其中4=1+1+2. 3条直线最少将平面分成4部分,最多将平面分成7部分,其中7=1+1+2+3. 4条直线最少将平面分成5部分,最多将平面分成11部分,其中11=1+1+2+3+4. ……n 条直线最少将平面分成n+1部分,最多将平面分成n2+n+22部分,其中n2+n+22=1+1+2+3+…+n .综上,n 条直线最少能将平面分成n+1部分,对多能将平面分成n2+n+22部分.考点:几何初步——相交线与平行线——相交线.7、如图,已知∠1=∠2,要使∠3=∠4,则需( ).A. ∠1=∠2B. ∠2=∠4C. ∠1=∠4D. AB ∥CD答案:D.解析:假设∠3=∠4,即∠BEF=∠CFE.由内错角相等,两直线平行,可得AB∥CD.故已知∠1=∠2,要使∠3=∠4,只要AB∥CD.考点:几何初步——相交线与平行线——平行线公理及推论.8、如图①是长方形纸带,将纸带沿EF折叠成图②,再沿BF折叠成图③.(1)若图①中的∠DEF=20°,则图②中的∠CFE度数是.(2)若图①中的∠DEF=α,则图③中的∠CFE度数是.(用含有α的式子表示)答案:(1)160°.(2)180°-3α.解析:(1)在图①中:∵AD∥BC.∴∠BFE=∠DEF=20°.∴∠CFE=160°.在图②中,根据折叠性质,∠CFE大小不变.∴∠CFE=160°.(2)在图①中,∠CFE=180°-∠BFE=180°-α.在图②中,∠CFB=∠CFE-∠BFE=180°-α.根据折叠性质,图③中∠CFB与图②中∠CFB相等.在图③中,∠CFE=∠CFB-∠BFE=180°-3α.∴图③中的∠CFE度数是180°-3α.考点:几何初步——角——角的计算与证明.相交线与平行线——平行线的性质.几何变换——图形的对称——翻折变换(折叠问题)——轴对称基础——轴对称的性质.9、已知:如图,∠D=110°,∠EFD=70°,∠1=∠2.求证:∠3=∠B.证明:∵∠D=110°,∠EFD=70°,(已知).∴∠D+∠EFD=180°.∴_____∥ _____.().又∵∠1=∠2,(已知).∴_____∥ _____.().∴_____∥ _____.().∴∠3=∠B.().答案:答案见解析.解析:∵∠D=110°,∠EFD=70°,(已知).∴∠D+∠EFD=180°.∴AD∥EF.(同旁内角互补,两直线平行).又∵∠1=∠2,(已知).∴AD∥BC.(内错角相等,两直线平行).∴EF∥BC.(平行于同一直线的两直线平行).∴∠3=∠B.(两直线平行,同位角相等).考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.10、车库的电动门栏杆如图所示,BA垂直于地面AE于A,CD平行于地面AE,则∠ABC+∠BCD的大小是().A.150°B.180°C.270°D.360°答案:C.解析:过B作CD的平行线BF,则CD∥BF∥AE.∴∠DCB+∠CBF=180°,∠ABF=90°.∴∠ABC+∠BCD=∠DCB+∠CBD+∠ABF=180°+90°=270°.考点:几何初步——角——角的计算与证明.相交线与平行线——平行线的性质.11、如图,一条公路修到湖边时,需拐弯绕湖而过;如果第一次拐角∠A是120°,第二次拐角∠B是150°,第三次拐角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是.答案:150°.解析:如图,作BE∥AD.∴∠1=∠A=120°.∴∠2=∠ABC=∠1=150°-120°=30°.∵AD∥CF.∴BE∥CF.∴∠C+∠2=180°.∴∠C=180°-30°=150°.考点:几何初步——相交线与平行线——平行线公理及推论——平行线的性质.12、如图所示,若AB∥CD,则角α,β,γ的关系为().A.α+β+γ=360°B.α-β+γ=180°C.α+β+γ=180°D.α+β-γ=180°答案:D.解析:过β角的顶点为E,作EF∥AB,α+β-γ=180°.考点:几何初步——相交线与平行线平行线的判定——平行线的性质——平行有关的几何模型.13、如图AB∥CD∥EF,CG平分∠ACE,∠A=140°,∠E=110°,则∠DCG=().A.13°B.14°C.15°D.16°答案:C.解析:∵EF∥CD,∴∠ECD=180°-∠E=70°.同理∠ACD=40°.∴∠ACE=110°.∵CG平分∠ACE.∴∠ECG=55°.∴∠DCG=∠ECD-∠ECG=70°-55°=15°.考点:几何初步——相交线与平行线——平行线——平行线的性质——平行有关的几何模型.14、如图,AB∥EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°,∠B-∠D=24°,求∠GEF的度数.A.15°B.20°C.25°D.30°答案:D.解析:由AB∥EF∥CD,可知∠BED=∠B+∠D.已知∠B+∠BED+∠D=192°.∴2∠B+2∠D=192°,∠B+∠D=96°.又∠B-∠D=24°,于是可得关于∠B、∠D的方程组:{∠B+∠D=96°∠B−∠D=24°.解得∠B=60°.由AB∥EF知∠BEF=∠B=60°.因为EG平分∠BEF,所以∠GEF=12∠BEF=30°.考点:几何初步——相交线与平行线——平行线——平行有关的几何模型.15、把命题“在同一平面内,垂直于同一直线的两直线互相平行”改写成“如果……,那么……”的形式:.答案:“在同一平面内,如果两条直线都垂直于同一直线,那么这两直线互相平行”.解析:略.考点:命题与证明——命题与定理.16、下列命题中,假命题是().A. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行.B. 两条直线被第三条直线所截,同旁内角互补.C. 两直线平行,内错角相等.D. 在同一平面内,过一点有且只有一条直线与已知直线垂直.答案:B.解析:两条直线被第三条直线所截,同旁内角不一定互补,只有两直线平行时,同旁内角互补.考点:命题与证明——命题与定理.17、已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.(1)求证:AB∥CD.(2)求∠C的度数.答案:(1)证明见解析.(2)∠C=25°.解析:(1)∵AE⊥BC,FG⊥BC.∴AE∥FG.∴∠2=∠A.∵∠1=∠2.∴∠1=∠A.∴AB∥CD.(2)∵AB∥CD.∴∠C=∠3.∵∠D=∠3+60°,∠CBD=70°,∠C+∠D+∠CBD=180°.∴∠C+∠C+60°+70°=180°.∴∠C=25°.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.18、已知:如图,在△ABC中,BD⊥AC于点D,E为BC上一点,过E点作EF⊥AC,垂足为F,过点D作DH∥BC交AB于点H.(1)请你补全图形.(2)求证:∠BDH=∠CEF.答案:(1)画图见解析.(2)证明见解析.解析:(1)补全图形.(2)∵BD⊥AC,EF⊥AC.∴BD∥EF.∴∠CEF=∠CBD.∵DH∥BC.∴∠BDH=∠CBD.∴∠BDH=∠CEF.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.尺规作图——过一点作已知直线的垂线——过一点作已知直线的平行线.19、已知,如图,AB∥CD,∠1=∠B,∠2=∠D.求证:BE⊥DE.答案:证明见解析.解析:过E点作EF∥AB,则∠B=∠3.又∵∠1=∠B.∴∠1=∠3.∵AB∥EF,AD∥CD.∴EF∥CD.∴∠A=∠D.又∵∠2=∠D.∴∠2=∠4.∵∠1+∠2+∠3+∠4=180°.∴∠3+∠4=90°,即∠BED=90°.∴BE⊥ED.考点:几何初步——角——角的计算与证明.相交线与平行线——平行线的判定——平行线的性质.20、如图,已知CD∥EF,∠1+∠2=∠ABC.求证:AB∥GF.答案:证明见解析.解析:延长CD、GF交于点H,∠1=∠H.故∠2+∠H=∠ABC.易得AB∥GF.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.21、如图,已知点A,E,B在同一条直线上,设∠CED=x,∠C+∠D=y.(1)若AB∥CD,试用含x的式子表示y,并写出x的取值范围.(2)若x=90°,且∠AEC与∠D互余,求证:AB∥CD.答案:(1)y=180°-x,其中x的取值范围是(0<x<180).(2)证明见解析.解析:(1)∵AB∥CD.∴∠AEC=∠C,∠BED=∠D.∵∠C+∠D=y.∴∠AEC+∠BED=y.∵∠CED=x,∠AEC+∠CED+∠BED=180°.∴x+y=180°.∴y=180°-x,其中x的取值范围是(0<x<180).(2)∵x=90°,即∠CED=90°.∴∠AEC+∠BED=90°.∵∠AEC与∠D互余.∴∠AEC+∠D=90°.∴∠BED=∠D.∴AB∥CD.考点:函数——函数基础知识——函数自变量的取值范围.几何初步——角——余角和补角——角的计算与证明.相交线与平行线——平行线的判定——平行线的性质.22、阅读材料:材料1:如图(a)所示,科学实验证明:平面镜反射光线的规律是:射到平面镜上的光线和反射出的光线与平面镜所夹的角相等.即∠1=∠2.材料2:如图(b)所示,已知△ABC,过点A作AD∥BC,则∠DAC=∠C,又∵AD∥BC,∴∠DAC+∠BAC+∠B=180°,∴∠BAC+∠B+∠C=180°.即三角形内角和为180°.根据上述结论,解决下列问题:(1)如图(c)所示,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b镜反射,若b反射出的光线n平行于m,且∠1=50°,则∠2= ,∠3= .(2)在(1)中,若∠1=40°,则∠3= ,若∠1=55°,则∠3= .(3)由(1)(2)请你猜想:当∠3= 时,任何射到平面镜a上的光线m经过平面镜a和b的两次反射后,入射光线m与反射光线n总是平行,请说明理由.答案:(1)1.100°.2.90°.(2)1.90°.2.90°.(3)90°.解析:(1)∵∠1=50°.∴∠4=∠1=50°.∴∠6=180°-50°-50°=80°.∵m∥n.∴∠2+∠6=180°.∴∠2=100°.∴∠5=∠7=40°.∴∠3=180°-50°-40°=90°.故答案为:100°,90°.(2)∵∠1=40°.∴∠4=∠1=40°.∴∠6=180°-40°-40°=100°.∵m∥n.∴∠2+∠6=180°.∴∠2=80°.∴∠5=∠7=50°.∴∠3=180°-50°-40°=90°.∵∠1=55°.∴∠4=∠1=55°.∴∠6=180°-55°-55°=70°.∵m∥n.∴∠2+∠6=180°.∴∠2=110°.∴∠5=∠7=35°.∴∠3=180°-55°-35°=90°.(3)当∠3=90°时,m∥n.理由是:∵∠3=90°.∴∠4+∠5=180°-90°=90°.∵∠4=∠1,∠7=∠5.∴∠1+∠7+∠4+∠5=2×90°=180°.∴∠2+∠6=180°-(∠1+∠4)+180°-(∠5+∠7)=180°.∴m∥n.故答案为:90°.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.23、如图,直线AC∥BD,连接AB,直线AC,BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA,PB,构成∠PAC,∠APB,∠PBD三个角.(提示:有公共端点的两条重合的射线所组成的角是0°角)(1)如图1,当动点P落在第①部分时,求证:∠APB=∠PAC+∠PBD.,(2)如图2,当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立?(请画出图形并直接回答成立或不成立)(3)如图3,当动点P落在第③部分时,探究∠PAC,∠APB,∠PBD之间的关系,请画出图形并直接写出相应的结论.答案:(1)证明见解析.(2)不成立.(3)证明见解析.解析:(1)过点P作直线AC的平行线,易知∠1=∠PAC,∠2=∠PBD.又∵∠APB=∠1+∠2,∴∠APB=∠PAC+∠PBD.(2)不成立.(3)①当动点P在射线BA的右侧时(如图4).结论是∠PBD =∠PAC+∠APB.②当动点P在射线BA上(如图5).结论是∠PBD =∠PAC+∠APB或∠PAC =∠PBD +∠APB或∠APB=0°,∠PAC=∠PBD.③当动点P在射线BA的左侧时(如图6).结论是∠PAC =∠PBD +∠APB.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质——平行有关的几何模型.24、如图所示,在下列条件中:①∠1=∠2;②∠BAD=∠BCD;③∠3=∠4且∠ABC=∠ADC;④∠BAD+∠ABC=180°;⑤∠ABD=∠ACD;⑥∠ABC+∠BCD=180°.能判定AB∥CD的共有()个.A.2B.3C.4D.5答案:A.解析:由平行的判定知③⑥可以判定AB∥CD.考点:几何初步——相交线与平行线——平行线的判定.25、有下列四个命题:①如果两条直线都与第三条直线平行,那么这两条直线也互相平行.②两条直线被第三条直线所截,同旁内角互补.③在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线也互相垂直.④在同一平面内,过一点有且只有一条直线与已知直线垂直.其中所有正确的命题是().A. ①②B. ①④C. ②③D. ③④答案:B.解析:①④正确;②两条直线被第三条直线所截,同旁内角不一定互补,需要两条直线平行;③在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行. 考点:几何初步——相交线与平行线——平行线公理及推论——平行线的判定——平行线的性质.26、如图,DB ∥FG ∥EC ,∠ABD=60°,∠ACE=30°,AP 平分∠BAC ,求∠PAG 的度数.A.11°B.12°C.13°D.14°答案:B.解析:由DB ∥FG ∥EC.可得∠BAC=∠BAG+∠CAG=∠DBA+∠ACE=60°+36°=96°.由AP 平分∠BAC 得∠CAP=12∠BAC=12×96°=48°. 由FG ∥EC 得∠GAC=∠ACE=36°.∴∠PAG=48°-36°=12°.考点:几何初步——相交线与平行线——平行线——平行有关的几何模型.27、如图,AB ∥CD ,且∠BAP=60°-α,∠APC=45°+α,∠PCD=30°-α,则α=( ).A.10°B.15°C.20°D.30°答案:B.解析:得∠APC=∠BAP+∠DCP .∴45°+α=60°-α+30°-α.解得:α=15°.考点:几何初步——相交线与平行线——平行线的性质.28、已知,如图,AB∥CD,直线α交AB、CD分别于点E、F,点M在线段EF点上,P是直线CD 上的一个动点,(点P不与F重合).(1)当点P在射线FC上移动时,∠FMP、∠FPM和∠AEF之间的数量关系是:.(2)当点P在射线FD上移动时,∠FMP、∠FPM和∠AEF之间的数量关系是:. 答案:(1)∠FMP+∠FPM=∠AEF.(2)∠FMP+∠FPM+∠AEF=180°.解析:(1)当点P在射线FC上移动时.∵AB∥CD.∴∠AEF+∠CFE=180°.又∵∠FMP+∠FPM+∠CFE=180°.∴∠FMP+∠FPM=∠AEF.(2)当点P在射线FD上移动时.∵AB∥CD.∴∠AEF=∠MFD.又∵∠FMP+∠FPM+∠CFE=180°.∴∠FMP+∠FPM+∠AEF=180°.考点:几何初步——相交线与平行线——平行线的性质.。
平行线的判定及性质 例题及练习
平行线的判定及性质一、【基础知识精讲】1、平行线的判定(1)平行公理:经过直线外一点,有且只有一条直线与已知直线平行. (2)平行公理的推论:平行于同一条直线的两条直线. (3)在同一平面内,垂直于同一条直线的两条直线. (4)同位角相等,两直线平行. (5)内错角相等,两直线平行.(6)同旁内角互补,两直线平行.3、平行线的性质(1)两直线平行,同位角相等. (2)两直线平行,内错角相等.(3)两直线平行,同旁内角互补.二、【例题精讲】专题一:余角、补角、对顶角与三线八角例题1:∠A的余角与∠A的补角互为补角,那么2∠A是()A.直角 B.锐角 C.钝角 D.以上三种都有可能【活学活用1】如图2-79中,下列判断正确的是()A.4对同位角,2对内错角,4对同旁内角B.4对同位角,2对内错角,2对同旁内角C.6对同位角,4对内错角,4对同旁内角D.6对同位角,4对内错角,2对同旁内角【活学活用2】如图2-82,下列说法中错误的是( )A.∠3和∠5是同位角B.∠4和∠5是同旁内角C.∠2和∠4是对顶角D.∠1和∠2是同位角【活学活用3】如图,直线AB与CD交于点O,OE⊥AB于O,图中∠1与∠2的关系是()A.对顶角B.互余C.互补D相等例题2:如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角分别是_______.【活学活用4】如图,∠AOC +∠DOE +∠BOF = .专题二:平行线的判定例题3:如图,已知∠EFB+∠ADC=180°,且∠1=∠2,试说明DG ∥AB.1 2A BCDF E G【活学活用】1、长方体的每一对棱相互平行,那么这样的平行棱共有 ( )A .9对B .16对 C.18对 D .以上答案都不对2、已知:如图2-96,DE ⊥AO 于E,BO ⊥AO,FC ⊥AB 于C ,∠1=∠2,求证:DO ⊥AB.3、如图2-97,已知:∠1=∠2=,∠3=∠4,∠5=∠6.求证:AD ∥BC.4、如图2—101,若要能使AB ∥ED ,∠B 、∠C 、∠D 应满足什么条件?ABCDOE F5、同一平面内有四条直线a 、b 、c 、d ,若a ∥b ,a ⊥c ,b ⊥d ,则c 、d 的位置关系为( ) A.互相垂直 B .互相平行 C.相交 D .没有确定关系专题三:平行线的性质1、如图,110,ABC ACB BO ∠+∠=、CO 分别平分ABC ∠和,ACB EF ∠过点O 与BC 平行,则BOC ∠= . 2、如图,AB //CD ,BC //DE ,则∠B+∠D = .3、如图,直线AB 与CD 相交于点O ,OB 平分∠DOE .若60DOE ∠=,则∠AOC 的度数是 .4、 如图,175,2120,375∠=∠=∠=,则4∠= .13 425、如图,//AB CD ,直线EF 分别交AB 、CD 于E 、F ,ED 平分BEF ∠,若172∠=,则2∠= .【例题讲解】例1:如图,已知:AD ∥BC, ∠AEF=∠B,求证:AD ∥EF 。
平行线及其判定练习题(含答案)
平⾏线及其判定练习题(含答案)第五章相交线与平⾏线5.2 平⾏线及其判定1.下列图形中,由∠1=∠2能得到AB∥CD的是A.B.C.D.2.同⼀个平⾯内,若a⊥b,c⊥b,则a与c的关系是A.平⾏B.垂直C.相交D.以上都不对3.如图,直线a,b被直线c所截,∠1=55°,下列条件能推出a∥b的是A.∠3=55°B.∠2=55°C.∠4=55°D.∠5=55°4.如图为平⾯上五条直线L1,L2,L3,L4,L5相交的情形,根据图中标⽰的⾓度,判断下列叙述何者正确A.L1和L3平⾏,L2和L3平⾏B.L1和L3平⾏,L2和L3不平⾏C.L1和L3不平⾏,L2和L3平⾏D.L1和L3不平⾏,L2和L3不平⾏5.如图,要使AB∥CD∥EF,则需∠BAC+∠ACE+∠CEF等于A.360°B.270°C.200°D.180°6.如图是⼀个风车,当风车的⼀⽚叶⼦AB旋转到与地⾯MN平⾏时,叶⼦CD与地⾯MN__________(填“平⾏”或“不平⾏”),理由是__________.7.如图,AB∥CD,过点E画EF∥AB,则EF与CD的位置关系是__________,理由是__________.8.如图,已知∠1=50°,∠2=130°,且BD∥CE,AC与DF平⾏吗?为什么?9.如图,46⊥.问CD AB∥吗?为什么?∠=?,CE CDACE∠=?,136BAF10.如图,MN、EF分别表⽰两⾯镜⼦,⼀束光线AB照到镜⾯MN上,反射光线为BC;光线BC经过镜⾯EF反射后的反射光线为CD,此时有∠1=∠2=∠3=∠4.试判断AB与CD的位置关系,你是如何思考的?11.如图,AB∥CD,直线EF交AB、CD于点G、H.如果GM平分∠BGF,HN平分∠CHE,那么,GM 与HN平⾏吗?为什么?12.某⼈在⼴场上练习驾驶汽车,两次拐弯后,⾏驶⽅向与原来相同,这两次拐弯的⾓度可能是A.第⼀次左拐30°,第⼆次右拐30°B.第⼀次右拐50°,第⼆次左拐130°C.第⼀次右拐50°,第⼆次右拐130°D.第⼀次向左拐50°,第⼆次向左拐120°13.学习了平⾏线后,⼩龙同学想出了“过已知直线m外⼀点P画这条直线的平⾏线的新⽅法”,他是通过折⼀张半透明的正⽅形纸得到的.观察图(1)~(4),经两次折叠展开后折痕CD所在的直线即为过点P的已知直线m的平⾏线.从图中可知,⼩明画平⾏线的依据有①两直线平⾏,同位⾓相等;②两直线平⾏,内错⾓相等;③同位⾓相等,两直线平⾏;④内错⾓相等,两直线平⾏.A.①②B.②③C.③④D.①④14.(2018郴州)如图,直线a,b被直线c所截,下列条件中,不能判定a∥bA.∠2=∠4 B.∠1+∠4=180°C.∠5=∠4 D.∠1=∠315.(2018湘潭)如图,点E是AD延长线上⼀点,如果添加⼀个条件,使BC∥AD,则可添加的条件为__________.(任意添加⼀个符合题意的条件即可)1.【答案】B【解析】A、∠1、∠2是同旁内⾓,由∠1=∠2不能判定AB∥CD;B、∠1、∠2是内错⾓,由∠1=∠2能判定AB∥CD;C、∠1、∠2是内错⾓,由∠1=∠2能判定AD∥BC,不能判定AB∥CD;D 、∠1、∠2是同旁内⾓,由∠1=∠2不能判定AB ∥CD ;故选B . 2.【答案】A【解析】如图,∵a ⊥b ,c ⊥b ,∴∠1=∠2=90°,∴a ∥c ,故选A.【点睛】本题考查了垂直的定义以及平⾏线的判定,熟练掌握平⾏线的判定⽅法是解此题的关键. 3.【答案】A【解析】∵∠1=55°,∠3=55°,∴∠1=∠3,∴a ∥b ,故选A .【点睛】本题考查的是平⾏线的判定,熟知平⾏线的判定定理是解答此题的关键. 4.【答案】C【解析】∵9292180?+?≠?,∴L 1和L 3不平⾏,∵8888?=?,∴L 2和L 3平⾏,故选C . 5.【答案】A【解析】当∠BAC +∠ACD =180°时,AB ∥CD ;当∠DCE +∠CEF =180°时,CD ∥EF ,⽽∠ACD +∠DCE =∠ACE ,所以当∠BAC +∠ACD +∠DCE +∠CEF =360°,即∠BAC +∠ACE +∠CEF =360°时,AB ∥CD ∥EF ,故选A .6.【答案】不平⾏;经过直线外⼀点,有且只有⼀条直线与这条直线平⾏【解析】AB 与CD 有夹⾓,根据过直线外⼀点,有且只有⼀条直线与已知直线平⾏,可得CD 不能同时与地⾯MN 平⾏.故答案为:不平⾏;经过直线外⼀点,有且只有⼀条直线与这条直线平⾏. 【点睛】考查的是平⾏线的判定与性质,熟知平⾏公理是解答此题的关键. 7.【答案】EF ∥CD ;平⾏于同⼀直线的两直线互相平⾏.【解析】平⾏线的性质:平⾏于同⼀条直线的两直线互相平⾏,AB ∥CD ,EF ∥AB ,则EF 与CD 的位置关系是EF ∥CD .故答案为:EF ∥CD ;平⾏于同⼀直线的两直线互相平⾏【点睛】此题重点考查学⽣对平⾏线的性质的理解,熟练掌握平⾏线的性质是解题的关键.9.【解析】平⾏,理由如下:∵∠ACD=360°–90°–136°=134°,∠BAC=180°–46°=134°,∴∠ACD=∠BAC,∴CD AB∥(内错⾓相等,两直线平⾏).【点睛】本题考查平⾏线的判定,垂线的定义,周⾓、补⾓的定义,⽐较简单.10.【解析】因为∠ABC=180°–∠1–∠2,∠BCD=180°–∠3–∠4,⼜因∠1=∠2=∠3=∠4,所以∠ABC=∠BCD,所以AB∥CD.【点睛】本题考查平⾏线的判定与性质.本题利⽤了“两直线平⾏,内错⾓相等”的性质,“内错⾓相等,两直线平⾏”的判定定理.11.【解析】GM∥HN,理由如下:∵AB∥CD,∴∠BGH=∠CHG,∵GM平分∠BGF,HN平分∠CHE,∴∠NHG=12∠CHG,∠MGH=12∠BGH,∴∠NHG=∠MGH,∴GM∥HN.12.【答案】A【解析】如图所⽰(实线为⾏驶路线):A符合“同位⾓相等,两直线平⾏”的判定,其余均不符合平⾏线的判定.故选A.【点睛】本题考查平⾏线的判定,熟记定理是解决问题的关键.【点睛】此题主要考查了平⾏线的判定,以及翻折变换,关键是掌握平⾏线的判定定理.14.【解析】由∠2=∠4或∠1+∠4=180°或∠5=∠4,可得a∥b;由∠1=∠3,不能得到a∥b;故选D.【点评】本题主要考查了平⾏线的判定,解题时注意:同位⾓相等,两直线平⾏;同旁内⾓互补,两直线平⾏.15.【解析】若∠A+∠ABC=180°,则BC∥AD;若∠C+∠ADC=180°,则BC∥AD;若∠CBD=∠ADB,则BC∥AD;若∠C=∠CDE,则BC∥AD;故答案为:∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE.(答案不唯⼀)【点评】本题主要考查了平⾏线的判定,同位⾓相等,两直线平⾏;内错⾓相等,两直线平⾏;同旁内⾓互补,两直线平⾏.。
平行线练习题及答案
平行线练习题及答案平行线练习题及答案在数学中,平行线是指在同一个平面上永远不会相交的两条直线。
平行线在几何学和代数学中有着重要的应用,因此对于学生来说,掌握平行线的性质和判断方法是至关重要的。
本文将为大家提供一些平行线的练习题及答案,帮助大家加深对平行线的理解和运用。
练习题一:判断下列直线是否平行。
1. 直线AB:y = 2x + 3直线CD:y = 2x - 12. 直线EF:2x - 3y = 6直线GH:4x - 6y = 123. 直线IJ:3x + 4y = 8直线KL:6x + 8y = 16答案一:1. 直线AB和直线CD的斜率都为2,且截距不相等,因此直线AB和直线CD不平行。
2. 直线EF和直线GH的斜率都为2,且截距相等,因此直线EF和直线GH平行。
3. 直线IJ和直线KL的斜率都为2,且截距相等,因此直线IJ和直线KL平行。
练习题二:已知直线AB和直线CD平行,点E、F、G分别位于直线AB上,且AE = EF = FG。
若AE = 4,求FG的值。
答案二:由于直线AB和直线CD平行,因此直线AB和直线CD的斜率相等。
设直线AB的斜率为k,点E的坐标为(x1, y1),点F的坐标为(x2, y2),点G的坐标为(x3, y3)。
根据题意可得:y1 = kx1y2 = kx2y3 = kx3又因为AE = EF = FG,所以有:EF = FGy2 - y1 = y3 - y2kx2 - kx1 = kx3 - kx22kx2 = k(x1 + x3)x2 = (x1 + x3) / 2由于AE = 4,可得:y1 = kx1 = 4将x2 = (x1 + x3) / 2和y1 = 4代入直线AB的方程中,可得:4 = k(x1 + x3) / 28 = k(x1 + x3)8 = 4kx2x2 = 2将x2 = 2代入直线AB的方程中,可得:y2 = kx2 = 2k由于EF = FG,可得:y2 - y1 = y3 - y22k - 4 = y3 - 2k4k = y3 + 4y3 = 4k - 4将y3 = 4k - 4代入直线AB的方程中,可得:y3 = kx3 = 4k - 4综上所述,当AE = 4时,FG的值为4k - 4。
平行线的判定与性质练习题
平行线的判定与性质练习题平行线的判定与性质练习题平行线是几何学中的基本概念之一,它在我们的日常生活中无处不在。
从道路上的交叉口到建筑物的设计,平行线都扮演着重要的角色。
在几何学中,我们需要学会判定平行线,并掌握它们的性质。
下面,我将给大家提供一些平行线的判定与性质练习题,希望能帮助大家更好地理解和应用平行线的知识。
练习题一:判定平行线1. 在下图中,判断线段AB和线段CD是否平行。
A-----B| |C-----D2. 在下图中,判断线段AB和线段EF是否平行。
A-----B| || |E-----F3. 在下图中,判断线段AB和线段CD是否平行。
A-----B\ /\ /C-----D练习题二:平行线的性质1. 若两条平行线被一条横线所截,那么对应的内角互补。
2. 若两条平行线被一条横线所截,那么对应的外角相等。
3. 若两条直线分别与一条平行线相交,那么对应的内角相等。
4. 若两条直线分别与一条平行线相交,那么同旁内角互补。
练习题三:平行线的应用1. 若两条平行线被一条横线所截,且已知其中一个内角的度数为60°,求对应的内角和外角的度数。
2. 若两条平行线被一条横线所截,且已知其中一个外角的度数为120°,求对应的内角和另一个外角的度数。
3. 若两条直线分别与一条平行线相交,且已知其中一个内角的度数为70°,求对应的内角和同旁内角的度数。
4. 若两条直线分别与一条平行线相交,且已知其中一个同旁内角的度数为45°,求对应的内角和另一个同旁内角的度数。
通过以上练习题,我们可以加深对平行线的判定与性质的理解。
判定平行线需要观察线段的走向,若两条线段的走向相同,即不相交且不重合,则可以判定它们为平行线。
而平行线的性质则是通过观察线段之间的关系得出的。
掌握这些性质可以帮助我们解决更复杂的几何问题。
在应用平行线的过程中,我们可以根据已知条件利用平行线的性质进行推导。
七年级数学(下)第五章《相交线与平行线——平行线的判定》练习题含答案
七年级数学(下)第五章《相交线与平行线——平行线的判定》练习题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下面几种说法中,正确的是A.同一平面内不相交的两条线段平行B.同一平面内不相交的两条射线平行C.同一平面内不相交的两条直线平行D.以上三种说法都不正确【答案】C2.如图所示,若∠1与∠2互补,∠2与∠4互补,则A.l3∥l4B.l2∥l5C.l1∥l5D.l1∥l2【答案】D【解析】因为∠1与∠2互补,∠2与∠4互补,可知∠1+∠2=180°,∠2+∠4=180°,所以∠1=∠4,根据内错角相等,两直线平行可得l1∥l2,故选D.3.一学员在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来的方向相同,这两次拐弯的角度可能是A.第一次向右拐40°,第二次向左拐140°B.第一次向右拐40°,第二次向右拐140°C.第一次向左拐40°,第二次向左拐140°D.第一次向左拐40°,第二次向右拐40°【答案】D4.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等【答案】A【解析】三角板的∠CAB,沿着FE进行平移后角的大小没变,而平移前后的两个角是同位角,所以画图原理是“同位角相等,两直线平行”.5.如图,给出下面的推理:①∵∠B=∠BEF,∴AB∥EF;②∵∠B=∠CDE,∴AB∥CD;③∵∠B+∠BEC=180°,∴AB∥EF;④∵AB∥CD,CD∥EF,∴AB∥EF.其中正确的是A.①②③B.①②④C.①③④D.②③④【答案】B二、填空题:请将答案填在题中横线上.6.在同一平面内有四条直线a、b、c、d,已知:a∥d,b∥c,b∥d,则a和c的位置关系是__________.【答案】a∥c【解析】∵a∥d,b∥c,b∥d,∴a∥c.故答案为:a∥c.7.如图,直线a、b被直线c所截,若要a∥b,需增加条件__________(填一个即可).【答案】答案不唯一,如∠1=∠3.【解析】∵∠1=∠3,∴a∥b(同位角相等,两直线平行),故答案为:∠1=∠3.8.如图所示,若∠1=70°,∠2=50°,∠3=60°,则________________∥________________.【答案】DE;AC三、解答题:解答应写出文字说明、证明过程或演算步骤.9.如图,已知∠1=∠3,AC平分∠DAB,你能推断出哪两条直线平行?请说明理由.【解析】可以推断出DC∥AB,理由如下:∵AC平分∠DAB,∴∠1=∠2(角平分线的定义),又∵∠1=∠3,∴∠2=∠3(等量代换),∴DC∥AB(内错角相等,两直线平行).10.如图,若∠1与∠B互为补角,∠B=∠E,那么直线AB与直线DE平行吗?直线BC与直线EF平行吗?为什么?【解析】BC∥EF,理由如下:∵∠1+∠B=180°,∴AB∥DE,∵∠1+∠B=180°,∠B=∠E.∴∠1+∠E=180°,又∠1=∠2,∴∠2+∠E=180°,∴BC∥EF.11.如图,已知∠A+∠ACD+∠D=360°,试说明:AB∥DE.12.如图,∠1=65°,∠2=65°,∠3=115°.试说明:DE∥BC,DF∥AB.根据图形,完成下面的推理:因为∠1=65°,∠2=65°,所以∠1=∠2.所以__________∥__________.(__________)因为AB与DE相交,所以∠1=∠4(__________),所以∠4=65°.又因为∠3=115°,所以∠3+∠4=180°.所以__________∥__________.(__________)。
初一数学第二学期第2章第2节两直线平行判定(二)_练习题和答案
两直线平行判定(二)【知识点考查题】一、容易题1.(2017-2018重庆市江津区支坪中学月考)下列命题:①不相交的两条直线平行.②梯形的两底互相平行.③同垂直于一条直线的两直线平行。
④同旁内角相等,两直线平行. 其中真命题有()A.1个B. 2个C. 3个D. 4个【答案】A【考点】两直线平行的判定【考查能力】推理论证能力2.(2017-2018江苏海安县月考)如图,下列推理及括号中所注明的推理依据错误的是()A. ∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B. ∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C. ∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D. ∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)【答案】D【考点】两直线平行的判定【考查能力】推理论证能力3.(2017-2018青海省西宁二十一中月考)如图,若∠1=70°,∠2=110°,∠3=70°,则有().A. a∥bB. c∥dC. a⊥dD. 任两条都无法判定是否平行【答案】A【考点】两直线平行的判定【考查能力】推理论证能力4.(2017-2018重庆市重点中学八校联考)如图,下列条件中不能判定AB∥CD的是()A. 错误!未找到引用源。
B.C.D.【答案】C【考点】两直线平行的判定【考查能力】推理论证能力二、中等题5.(2017-2018北京市海淀区月考)如图,已知∠B=40°,要使AB∥CD,需要添加一个条件,这个条件可以是___.【答案】∠BED=40°【考点】两直线平行的判定【考查能力】推理论证能力6.(2017—2018重庆市荣昌区月考)如图,直线a,b与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠3=180°,其中能判断a//b的是______(填序号).【答案】①③④【考点】两直线平行的判定【考查能力】推理论证能力7.(2017-2018江苏省徐州外国语学校月考)如图,EF∥AB,FC∥AB,则可知点E、C、F 在一条直线上.理由是:__________.【答案】过直线外一点有且只有一条直线平行于已知直线【考点】两直线平行的判定【考查能力】推理论证能力【技能技巧考查题】一、较难题8.(2017-2018内蒙古北京八中乌兰察布分校月考)如图,已知BED B D ∠=∠+∠,求证: //AB CD .【答案】见解析试题解析:证明:延长BE 交CD 于F .BED ∠是DEF 的外角,(BED D EFD ∴∠=∠+∠三角形的一个外角等于和它不相邻的两个内角和),又BED B D ∠=∠+∠,(B EFD ∴∠=∠等量代换),//(AB CD ∴内错角相等,两直线平行).【考点】两直线平行的判定【考查能力】推理论证能力9.(2017-2018内蒙古北京八中乌兰察布分校月考)推理填空:如图,E 点为DF 上的点,B 为AC 上的点, 12C D ∠=∠∠=∠,,那么//DF AC ,请完成它成立的理由解:2314(∠=∠∠=∠, ______ ) 又12∠=∠34(∴∠=∠ ______ )∴ ______ // ______ ( ______ )(C ABD ∴∠=∠ ______ )(∠=∠______ )C D∴∠=∠______ )(D ABD∴______ )//(DF AC【答案】见解析试题解析:∵∠2=∠3,∠1=∠4(对顶角相等),又∵∠1=∠2,∴∠3=∠4(等量代换),∴DB∥CE(内错角相等,两直线平行),∴∠C=∠ABD(两直线平行,同位角相等),∵∠C=∠D(已知),∴∠D=∠ABD(等量代换),∴DF∥AC(同位角相等,两直线平行),故答案为:对顶角相等,等量代换,DB,CE,内错角相等,两直线平行,两直线平行,同位角相等,已知,等量代换,同位角相等,两直线平行.【考点】两直线平行的判定【考查能力】推理论证能力10.(原创题)如图,∠EAC=90°,∠1+∠2=90°,∠1=∠3,∠2=∠4.(1)如图①,求证:DE∥BC;(2)若将图①改变为图②,其他条件不变,(1)中的结论是否仍成立?请说明理由.【答案】见解析试题解析:(1)如图1,∵∠1=∠3,∠2=∠4,∴∠1+∠3+∠2+∠4=2(∠1+∠2),∵∠1+∠2=90°,∴∠1+∠3+∠2+∠4=180°;∵∠D+∠B+∠1+∠3+∠2+∠4=360°,∴∠D+∠B=180°,∴DE∥BC.(2)成立.如图2,连接EC;∵∠1=∠3,∠2=∠4,且∠1+∠2=90°,∴∠3+∠4=∠1+∠2=90°;∵∠EAC=90°,∴∠AEC+∠ACE=180°-90°=90°,∴∠AEC+∠ACE+∠3+∠4=180°,∴DE∥BC,即(1)中的结论仍成立.【考点】两直线平行的判定【考查能力】推理论证能力以考察知识为主试题一.选择题(共6小题)1.如图,若两条平行线EF,MN与直线AB,CD相交,则图中共有同旁内角的对数为()A.4 B.8 C.12 D.162.下列说法正确的是()A.若两条直线被第三条直线所截,则同旁内角互补B.相等的角是对顶角C.有一条公共边并且和为180°的两个角互为邻补角D.若三条直线两两相交,则共有6对对顶角3.若∠α与∠β同旁内角,且∠α=50°时,则∠β的度数为()A.50°B.130°C.50°或130°D.无法确定4.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4 B.∠1=∠2 C.∠D=∠DCE D.∠D+∠ACD=180°5.如图,工人师傅在工程施工中,需在同一平面内弯制一个变形管道ABCD,使其拐角∠ABC=150°,∠BCD=30°,则()A.AB∥BC B.BC∥CD C.AB∥DC D.AB与CD相交6.如图,直线l1,l2,被l3所截得的同旁内角为α,β,要使l1∥l2,只要使()A.α+β=90° B.α=βC.=36°D.α+β=360°以考察技能为主试题二.填空题(共4小题)7.如图,现给出下列条件:①∠1=∠B,②∠2=∠5,③∠3=∠4,④∠1=∠D,⑤∠B+∠BCD=180°,其中能够得到AB∥CD的条件是.8.已知:如图,∠EAD=∠DCF,要得到AB∥CD,则需要的条件.(填一个你认为正确的条件即可)9.如图,Rt△AOB和Rt△COD中,∠AOB=∠COD=90°,∠B=40°,∠C=60°,点D 在边OA上,将图中的△COD绕点O按每秒10°的速度沿顺时针方向旋转一周,在旋转的过程中,在第秒时,边CD恰好与边AB平行.10.如图,下列能判定AB∥CD的条件有(填序号)①∠B+∠BCD=180°;②∠2=∠3;③∠1=∠4;④∠B=∠5;⑤∠D=∠5.三.解答题(共5小题)11.如图,四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,则BE与DF有何位置关系?试说明理由.12.完成下面的证明:已知:如图.BE平分∠ABD,DE平分∠BDC,且∠1+∠2=90°.求证:AB∥CD.证明:∵DE平分∠BDC(已知),∴∠BDC=2∠1().∵BE平分∠ABD(已知),∴∠ABD=(角的平分线的定义).∴∠BDC+∠ABD=2∠1+2∠2=2(∠1+∠2)().∵∠1+∠2=90°(已知),∴∠ABD+∠BDC=().∴AB∥CD().13.将一块直角三角板放在如图所示的位置,∠1与∠2互余,试判断直线a与b的位置关系并证明.14.如图,直线AB,CD相交于点O,OA平分∠EOC,且∠EOC:∠EOD=2:3.(1)求∠BOD的度数;(2)如图2,点F在OC上,直线GH经过点F,FM平分∠OFG,且∠MFH﹣∠BOD=90°,求证:OE∥GH.15.如图,已知∠1=∠2,∠3=∠4,∠5=∠6,试判断ED与FB的位置关系,并说明为什么.两直线平行判定(二)参考答案与试题解析一.选择题(共6小题)1.(2014春•扬中市校级期末)如图,若两条平行线EF,MN与直线AB,CD相交,则图中共有同旁内角的对数为()A.4 B.8 C.12 D.16【解答】解:以CD为截线,①若以EF、MN为被截直线,有2对同旁内角,②若以AB、EF为被截直线,有2对同旁内角,③若以AB、MN为被截直线,有2对同旁内角;综上,以CD为截线共有6对同旁内角.同理:以AB为截线又有6对同旁内角.以EF为截线,以AB、CD为被截直线,有2对同旁内角,以MN为截线,以AB、CD为被截直线,有2对同旁内角,综上,共有16对同旁内角.故选D.2.(2014春•滦南县期末)下列说法正确的是()A.若两条直线被第三条直线所截,则同旁内角互补B.相等的角是对顶角C.有一条公共边并且和为180°的两个角互为邻补角D.若三条直线两两相交,则共有6对对顶角【解答】解:A、应该是“若两条平行直线被第三条直线所截,则同旁内角互补”,故错误;B、相等的角不一定都是对顶角,如两直线平行,其中的同位角相等但不是对顶角,故错误;C、如果这两个角在公共边的同侧,则不是邻补角,故错误;D、正确.故选D.3.(2016春•永新县期末)若∠α与∠β同旁内角,且∠α=50°时,则∠β的度数为()A.50°B.130°C.50°或130°D.无法确定【解答】解:虽然α和β是同旁内角,但缺少两直线平行的前提,所以无法确定β的度数.故选:D.4.(2016春•建瓯市期末)如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4 B.∠1=∠2 C.∠D=∠DCE D.∠D+∠ACD=180°【解答】解:A、根据内错角相等,两直线平行可得BD∥AC,故此选项错误;B、根据内错角相等,两直线平行可得AB∥CD,故此选项正确;C、根据内错角相等,两直线平行可得BD∥AC,故此选项错误;D、根据同旁内角互补,两直线平行可得BD∥AC,故此选项错误;故选:B.5.(2016•赤峰)如图,工人师傅在工程施工中,需在同一平面内弯制一个变形管道ABCD,使其拐角∠ABC=150°,∠BCD=30°,则()A.AB∥BC B.BC∥CD C.AB∥DC D.AB与CD相交【解答】解:∵∠ABC=150°,∠BCD=30°,∴∠ABC+∠BCD=180°,∴AB∥DC.故选:C.6.(2015春•烟台期末)如图,直线l1,l2,被l3所截得的同旁内角为α,β,要使l1∥l2,只要使()A.α+β=90° B.α=βC.=36°D.α+β=360°【解答】解:当α+β=180°,即(α+β)=α+β=36°时,l1∥l2.故选C.二.填空题(共4小题)7.(2016春•新泰市期中)如图,现给出下列条件:①∠1=∠B,②∠2=∠5,③∠3=∠4,④∠1=∠D,⑤∠B+∠BCD=180°,其中能够得到AB∥CD的条件是①②⑤.【解答】解:①∵∠1=∠B,∴AB∥CD,故本小题正确;②∵∠2=∠5,∴AB∥CD,故本小题正确;③∵∠3=∠4,∴AD∥BC,故本小题错误;④∵∠1=∠D,∴AD∥BC,故本小题错误;⑤∵∠B+∠BCD=180°,∴AB∥CD,故本小题正确.故答案为:①②⑤.8.(2015春•玉田县期末)已知:如图,∠EAD=∠DCF,要得到AB∥CD,则需要的条件∠EAD=∠B.(填一个你认为正确的条件即可)【解答】解:可以添加条件∠EAD=∠B,理由如下:∵∠EAD=∠B,∠EAD=∠DCF,∴∠B=∠DCF,∴AB∥CD.故答案为:∠EAD=∠B.9.(2014春•江阴市期末)如图,Rt△AOB和Rt△COD中,∠AOB=∠COD=90°,∠B=40°,∠C=60°,点D在边OA上,将图中的△COD绕点O按每秒10°的速度沿顺时针方向旋转一周,在旋转的过程中,在第10或28秒时,边CD恰好与边AB平行.【解答】解:①两三角形在点O的同侧时,如图1,设CD与OB相交于点E,∵AB∥CD,∴∠CEO=∠B=40°,∵∠C=60°,∠COD=90°,∴∠D=90°﹣60°=30°,∴∠DOE=∠CEO﹣∠D=40°﹣30°=10°,∴旋转角∠AOD=∠AOB+∠DOE=90°+10°=100°,∵每秒旋转10°,∴时间为100°÷10°=10秒;②两三角形在点O的异侧时,如图2,延长BO与CD相交于点E,∵AB∥CD,∴∠CEO=∠B=40°,∵∠C=60°,∠COD=90°,∴∠D=90°﹣60°=30°,∴∠DOE=∠CEO﹣∠D=40°﹣30°=10°,∴旋转角为270°+10°=280°,∵每秒旋转10°,∴时间为280°÷10°=28秒;综上所述,在第10或28秒时,边CD恰好与边AB平行.故答案为:10或28.10.(2016春•抚州校级期中)如图,下列能判定AB∥CD的条件有①③④(填序号)①∠B+∠BCD=180°;②∠2=∠3;③∠1=∠4;④∠B=∠5;⑤∠D=∠5.【解答】解:选项①中∵∠B+∠BCD=180°,∴AB∥CD (同旁内角互补,两直线平行),所以正确;选项②中,∵∠2=∠3,∴AD∥BC(内错角相等,两直线平行),所以错误;选项③中,∵∠1=∠4,∴AB∥CD(内错角相等,两直线平行),所以正确;选项④中,∵∠B=∠5,∴AB∥CD(同位角相等,两直线平行),所以正确;选项⑤中,∠D=∠5,∴AD∥BC(内错角相等,两直线平行),所以错误;故答案为:①③④.三.解答题(共5小题)11.(2016春•太仓市期末)如图,四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,则BE与DF有何位置关系?试说明理由.【解答】解:BE∥DF.理由如下:∵∠A=∠C=90°(已知),∴∠ABC+∠ADC=180°(四边形的内角和等于360°).∵BE平分∠ABC,DF平分∠ADC,∴∠1=∠2=∠ABC,∠3=∠4=∠ADC(角平分线的定义).∴∠1+∠3=(∠ABC+∠ADC)=×180°=90°(等式的性质).又∠1+∠AEB=90°(三角形的内角和等于180°),∴∠3=∠AEB(同角的余角相等).∴BE∥DF(同位角相等,两直线平行).12.(2016春•枣阳市期末)完成下面的证明:已知:如图.BE平分∠ABD,DE平分∠BDC,且∠1+∠2=90°.求证:AB∥CD.证明:∵DE平分∠BDC(已知),∴∠BDC=2∠1(角平分线的定义).∵BE平分∠ABD(已知),∴∠ABD=2∠2(角的平分线的定义).∴∠BDC+∠ABD=2∠1+2∠2=2(∠1+∠2)(等量代换).∵∠1+∠2=90°(已知),∴∠ABD+∠BDC=180°(等量代换).∴AB∥CD(同旁内角互补两直线平行).【解答】证明:∵DE平分∠BDC(已知),∴∠BDC=2∠1(角平分线的性质).∵BE平分∠ABD(已知),∴∠ABD=2∠2(角的平分线的定义).∴∠BDC+∠ABD=2∠1+2∠2=2(∠1+∠2)(等量代换).∵∠1+∠2=90°(已知),∴∠ABD+∠BDC=180°(等量代换).∴AB∥CD(同旁内角互补两直线平行).13.将一块直角三角板放在如图所示的位置,∠1与∠2互余,试判断直线a与b的位置关系并证明.【解答】解:a∥b.理由:过点C作CH∥DF,∵CH∥DF,∴∠2=∠BCH.∵∠1+∠2=90°,∴∠BCH+∠1=90°,∵∠BCH+∠ACH=90°,∴∠1=∠ACH,∴CH∥a,∴a∥b.14.(2015秋•南岗区期末)如图,直线AB,CD相交于点O,OA平分∠EOC,且∠EOC:∠EOD=2:3.(1)求∠BOD的度数;(2)如图2,点F在OC上,直线GH经过点F,FM平分∠OFG,且∠MFH﹣∠BOD=90°,求证:OE∥GH.【解答】解:∵∠EOC:∠EOD=2:3,∴∠EOC=180°×=72°,∵OA平分∠EOC,∴∠AOC=∠EOC=×72°=36°,∴∠BOD=∠AOC=36°.(2)延长FM交AB于N,如图所示:∵∠MFH﹣∠BOD=90°,FM平分∠OFG,∴∠MFC=∠MFH=∠BOD+90°=126°,∴∠ONF=126°﹣36°=90°,∴∠OFM=90°﹣36°=54°,∴∠OFG=2∠OFM=108°,∴∠OFG+∠EOC=180°,∴OE∥GH.15.(2009春•平谷区校级期末)如图,已知∠1=∠2,∠3=∠4,∠5=∠6,试判断ED与FB的位置关系,并说明为什么.【解答】解:BF、DE互相平行;理由:如图;∵∠3=∠4,∴BD∥CF,∴∠5=∠BAF,又∵∠5=∠6,∴∠BAF=∠6,∴AB∥CD,∴∠2=∠EHA,又∵∠1=∠2,即∠1=∠EHA,∴BF∥DE.另解:BF、DE互相平行;理由:如图;∵∠3=∠4,∴BD∥CF,∴∠5=∠BAF,∵∠5=∠6,∴∠BAF=∠6,∵△BFA、△DEC的内角和都是180°∴△BFA=∠1+∠BFA+BAF;△DEC=∠2+∠4+∠6∵∠1=∠2;∠BAF=∠6∴∠BFA=∠4,∴BF∥DE.。
(完整版)七年级数学_平行线的性质与判定的证明_练习题及答案
平行线的性质与判定的证明练习题温故而知新可以为师以:重点1.平行线的性质(1)两直线平行,同位角相等;(2)两直线平行,内错角相等;(3)两直线平行,同旁内角互补.2.平行线的判定(1)同位角相等,两直线平行;(2)内错角相至两直线平行;(3)同旁内角互补,两直线平行互补例1 已知如图2-2 , AB// CD// EF,点M, N, P分别在AB, CD, EF上,NQ 平分/ MNP. (1) 若/AMN=60° , ZEPN=80° ,分别求/MNP, / DNQ 的度数;(2)探求/DNQ与/AMN, /EPN的数量关系.解析:根据两直线平行,内错角相等及角平分线定义求解(标注/ MND= /AMN , /DNP=/EPN)答案:(标注/ MND= / AMN=60 ° ,/DNP=/EPN=80° )解:(1) V AB// CD// EF,・・./MND= /AMN=60 ° ,/DNP=/EPN=80° ,Z MNP= Z MND+ Z DNP=60 +80 =140 0 ,又NQ平分/ MNP,Z MNQ= 1Z MNP= 1 X140 =70 0 , 2 2・./DNQ=/MNQ- /MND=70 -60 =10 ° ,・••/MNP, / DNQ 的度数分别为140° ,10°.fT一步)(2)(标注 / MND= /AMN, / DNP= / EPN)由(1)得/ MNP= ZMND+ /DNP= /AMN+ / EPN,・./MNQ= 1 /MNP」(/AMN+/EPN), 2 2・./DNQ= / MNQ- /MND1, , ___ _ ,=-(/AMN+/EPN) - /AMN21 ,,一 , 、=一(/ EPN-ZAMN), 2即2/DNQ= / EPN-/AMN.小结:在我们完成涉及平行线性质的相关问题时,注意实现同位角、内错角、同旁内角之间的角度转换,即同位角相等,内错角相等,同旁内角互补例2 如图,/ AGD=/ACB,CD,AB,E口AB,证明:/ 1 = / 2.解析:(标注:/ 1 = /2=/DCB, DG//BC, CD//ER答案:(标注:/ 1 = /2=/DCB)证明:因为/ AGD=/ACB,所以DG // BC,所以/ 1 = / DCB,又因为CD±AB,EF^AB,所以CD// EF,所以/ 2=/ DCB,所以/ 1 = /2.小结:在完成证明的问题时,我们可以由角的关系可以得到直线之间的关系,由直线之间的关系也可得到角的关系.例3 (1)已知:如图2-4 ①,直线AB//ED,求证:/ABC+/CDE=/ BCD;(2)当点C位于如图2-4②所示时,/ABC, /CDE与/ BCD存在什么等量关系?并证明.图①图⑵(1)解析:动画过点C作CF//AB由平行线性质找到角的关系.(标注/1=/ABC, /2=/CDE)£口答案:证明:如图,过点C作CF// AB,•.直线AB// ED,••.AB// CF// DE,•./ 1=/ABC, /2= /CDE.ZBCD= Z1+Z2,•./ABC+/CDE=/ BCD;(2)解析:动画过点C作CF//AB,由平行线性质找到角的关系.图2解析:动画过点B作BD // AE,答案:解:过点B 作BD//AE,=AE〃CF,・.AE//BD//CF, . ./A=/1, /2+/C=180° ・•/A=120° , /+/2=/ABC=150° ,・・/2=30 ° , ZC=180 -30 =150° .小结:把关于角度的问题转化为平行线问题,利用平行线的性质与判定予以解答举一反三:1.如图2-9 , FG// HI,则/ x的度数为()A.600B. 72°C. 90°D. 100°解析:/ AEG=180°-120 °=60°,由外凸角和等于内凹角和有60 +30 +30 0次+48 ° ,解彳取=72答案:B.2.已知如图所示,AB//EF// CD, EG 平分/BEF, / B+/BED+/D=192 ° , zB-/ D=24 /GEF的度数.解析:解:「AB // EF// CD, . B= / BEF/ DEF=/D.,• / B+ / BED+Z D=192 °, 即 / B+ / BEF+Z DEF+ / D=192 • .2(/B+/ D)=192 °, 即/ B+ZD=96 °./ B- Z D=24 °,・./ B=60 °,即/ BEF=60 °.••• EG 平分/ BEF,GEF=1 / BEF=30。
七年级数学平行线的判定测试题及答案
5.2《平行线的判定》检测题一、选择题:(每小题3分,共24分) 1、下列说法正确的有〔 〕①不相交的两条直线是平行线; ②在同一平面内,不相交的两条线段平行③过一点有且只有一条直线与已知直线平行; ④若a ∥b,b ∥c,则a 与c 不相交. A.1个 B.2个 C.3个 D.4个2、在同一平面内,两条不重合直线的位置关系可能是〔 〕A.平行或相交B.垂直或相交C.垂直或平行D.平行、垂直或相交 3.如图1所示,下列条件中,能判断AB ∥CD 的是( )A.∠BAD=∠BCDB.∠1=∠2;C.∠3=∠4D.∠BAC=∠ACD34DCBA21FE D CBA EDCBA(1) (2) (3)4.如图2所示,如果∠D=∠EFC,那么( )A.AD ∥BCB.EF ∥BCC.AB ∥DCD.AD ∥EF 5.如图3所示,能判断AB ∥CE 的条件是( )A.∠A=∠ACEB.∠A=∠ECDC.∠B=∠BCAD.∠B=∠ACE 6.下列说法错误的是( )A.同位角不一定相等B.内错角都相等C.同旁内角可能相等D.同旁内角互补,两直线平行7.不相邻的两个直角,如果它们有一边在同一直线上,那么另一边相互( ) A.平行 B.垂直 C.平行或垂直 D.平行或垂直或相交8、在同一平面内的三条直线,若其中有且只有两条直线互相平行,则它们交点的个数是〔 〕A 、0个B 、1个C 、2个D 、3个 二、填空题:(每小题4分,共28分)1.在同一平面内,直线a,b 相交于P,若a ∥c,则b 与c 的位置关系是______.2.在同一平面内,若直线a,b,c 满足a ⊥b,a ⊥c,则b 与c 的位置关系是______.3、如图,光线AB 、CD 被一个平面镜反射,此时∠1=∠3,∠2=∠4,那么AB 和CD 的位置关系是 ,BE 和DF 的位置关系是 .4、如图,AB ∥EF,∠ECD=∠E,则CD ∥AB.说理如下:ACEF EDC B A5.在同一平面内,直线a,b 相交于P,若a ∥c,则b 与c 的位置关系是______.6.在同一平面内,若直线a,b,c 满足a ⊥b,a ⊥c,则b 与c 的位置关系是______.7.如图所示,BE 是AB 的延长线,量得∠CBE=∠A=∠C.(1)由∠CBE=∠A 可以判断______∥______,根据是_________.(2)由∠CBE=∠C 可以判断______∥______,根据是_________. 三、训练平台:(每小题15分,共30分)1、如图所示,已知∠1=∠2,AB 平分∠DAB,试说明DC ∥AB. DCBA212、如图所示,已知直线EF 和AB,CD 分别相交于K,H,且EG ⊥AB,∠CHF=600,∠E=•30°,试说明AB ∥CD.GHKEDC B A四、解答题:(共23分)1、如图所示,已知直线a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,则a 与c 平行吗?•为什么? (11分)d ecb a 3412∵∠ECD=∠E( )∴CD∥EF( ) 又AB∥EF( )∴CD∥AB( ).E D CBA2、如图所示,请写出能够得到直线AB ∥CD 的所有直接条件. (12分)五、根据下列要求画图.(15分)1、如图(1)所示,过点A 画MN ∥BC;2、如图(2)所示,过点P 画PE ∥OA,交OB 于点E,过点P画PH ∥OB,交OA 于点H; 3、如图(3)所示,过点C 画CE ∥DA,与AB 交于点E,过点C 画CF ∥DB,与AB•的延长线交于点F.CBAD CBA(1) (2) (3)参考答案一、1.B .2.A .3. D 4.D 5.A 6.B 7.A 8.C二、1.相交 2.平等 3.平行 平行 4.已知 内错角相等,两直线平行 已知 平行于同一条直线的两直线平行5.相交6.互相平行7.(1)AD BC 同位角相等,两直线平行 (2)DC AB •内错角相等,两直线平行 三、1.解:∵AC 平分∠DAB,∴∠1=∠CAB, 又∵∠1=∠2, ∴∠CAB=∠2, ∴AB ∥CD.2.解:∵EG ⊥AB,∠E=30°,∴∠AKF=∠EKG=60°=∠CHF, ∴AB ∥CD. 四、1.解:平行.∵∠1=∠2, ∴a ∥b,876534DCBA 12又∵∠3+∠4=180°,∴b∥c,∴a∥c.2、∠1=∠6,∠2=∠5,∠3=∠8,∠4=∠7,∠3=∠6,∠4=∠5,∠3+∠5=180°,∠4+∠6=180°五.略欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。
平行线性质练习题30题
平行线性质练习题1. 已知直线AB和CD平行,若BE平分∠ABC,求证:BE也平分∠ECD。
2. 在平行线l1和l2之间,有一条横穿它们的直线l3,形成了八个角。
求证:同旁内角互补。
3. 若直线a ∥ b,直线b ∥ c,求证:直线a ∥ c。
4. 已知直线AB ∥ CD,点E在AB上,点F在CD上,且∠BEF = 120°,求∠EFD的度数。
5. 在平行线l1和l2上分别取点A、B、C、D,若AB = CD,BC = DA,求证:四边形ABCD是平行四边形。
6. 已知直线l1 ∥ l2,点P在l1上,点Q在l2上,若PQ垂直于l1,求证:PQ也垂直于l2。
7. 在平行线l1和l2之间,有一条横穿它们的直线l3,形成了八个角。
求证:内错角相等。
8. 若直线a ∥ b,直线c与a、b都相交,且∠1 = ∠2,求证:直线c ∥ b。
9. 已知直线AB ∥ CD,点E在AB上,点F在CD上,且∠AEF = 30°,求∠CFD的度数。
10. 在平行线l1和l2上分别取点A、B、C、D,若AB = CD,AD = BC,求证:四边形ABCD是矩形。
11. 已知直线l1 ∥ l2,点P在l1上,点Q在l2上,若PQ = QR,PR = QR,求证:∠PQR = 90°。
12. 在平行线l1和l2之间,有一条横穿它们的直线l3,形成了八个角。
求证:同位角相等。
13. 若直线a ∥ b,直线c与a、b都相交,且∠1 + ∠2 = 180°,求证:直线c ∥ a。
14. 已知直线AB ∥ CD,点E在AB上,点F在CD上,且∠BEF = 135°,求∠EFD的度数。
15. 在平行线l1和l2上分别取点A、B、C、D,若AB = CD,AC= BD,求证:四边形ABCD是菱形。
16. 已知直线l1 ∥ l2,点P在l1上,点Q在l2上,若PQ垂直于l1,且PQ = QR,求证:PR垂直于l2。
(完整word版)平行线的判定定理和性质定理练习题
(完整word 版)平行线的判定定理和性质定理练习题平行线的判定定理和性质定理[一]、平行线的判定一、填空1.如图1,若∠A=∠3,则 ∥ ; 若∠2=∠E ,则 ∥ ;若∠ +∠ = 180°,则 ∥ .2.若a⊥c,b⊥c,则a b .3.如图2,写出一个能判定直线a ∥b 的条件: . 4.在四边形ABCD 中,∠A +∠B = 180°,则 ∥ ( ). 5.如图3,若∠1 +∠2 = 180°,则 ∥ 。
6.如图4,∠1、∠2、∠3、∠4、∠5中, 同位角有 ; 内错角有 ;同旁内角有 . 7.如图5,填空并在括号中填理由:(1)由∠ABD =∠CDB 得 ∥ ( ); (2)由∠CAD =∠ACB 得 ∥ ( );(3)由∠CBA +∠BAD = 180°得 ∥ ( )8.如图6,尽可能多地写出直线l 1∥l 2的条件: .9.如图7,尽可能地写出能判定AB∥CD 的条件来: . 10.如图8,推理填空:(1)∵∠A =∠ (已知), ∴AC∥ED( );(2)∵∠2 =∠ (已知), ∴AC∥ED( ); (3)∵∠A +∠ = 180°(已知), ∴AB∥FD( );(4)∵∠2 +∠ = 180°(已知), ∴AC∥ED( ); 二、解答下列各题11.如图9,∠D =∠A,∠B =∠FCB,求证:ED∥CF.∵∠D=∠A∴AB||DE(内错角相等,两直线平行)∵∠B=∠FCB ∴AB||CF(内错角相等,两直线平行) ACB41 23 5图4ab c d 123 图3A B C ED 1 2 3 图1 图243 2 1 5ab1 2 3A F C DB E图8EB AF D C 图9ADCBO图5图65 1 243 l 1 l 2图754 32 1 A DC B∴DE ||CF12.如图10,∠1∶∠2∶∠3 = 2∶3∶4, ∠AFE = 60°,∠BDE =120°,写出图中平行的直线,并说明理由.证明:∵∠1∶∠2∶∠3 = 2∶3∶4又∵,∠1+∠2+∠3 =180度 ∴∠1=40度,∠2=60度,∠3 = 80度 ∵∠AFE = 60°=∠2,所以AB 平行ED又∵∠BDE =120°,∠BDE =120°+∠2=120°+60°=180°∴FE ∥BD13.如图11,直线AB 、CD 被EF 所截,∠1 =∠2,∠CNF =∠BME。
七年级数学下册平行线及其判定试题与答案
七年级数学下册平行线及其判定试题一、 选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,已知下列条件不能判定直线//a b 的是( )A .12∠=∠B .34∠=∠C .14∠=∠D .45180︒∠+∠= 2.如图,直线a ,b 被直线c 所截,现给出下列四个条件:(1)15∠=∠;(2)17∠=∠;(3)23180∠+∠=︒;(4)47∠=∠,其中能判定//a b 的条件的序号是( )A .(1),(2)B .(1),(3)C .(1),(4)D .(3),(4) 3.如图,点E 在AD 延长线上,下列条件能判断//AB CD 的是( )A .34∠=∠B .180C ADC ︒∠+∠= C .C CDE ∠=∠D .12∠=∠4.如图,下列给定的条件中,不能判定//AB DF 的是( )A .1A ∠=∠B .3A ∠=∠C .14∠=∠D .2180A ∠+∠=︒ 5.如图所示,点E 在AC 的延长线上,下列条件中能判断//BD AC 的是( )A .3A ∠=∠B .D DCE ∠=∠C .12∠=∠D .180A ACD ∠+∠=︒6.如图,点D ,E ,F 分别在ABC ∆的边BC ,AB ,AC 上,连接DE ,DF ,在下列给出的条件中,不能判定//AB DF 的是( )A .2180A ∠+∠=︒°B .1A ∠=∠C .14∠=∠D .3A ∠=∠7.如图,下列条件中,不能判断直线a ∥b 的是( )A .∠1=∠3B .∠2=∠3C .∠4=∠5D .∠2+∠4=180° 8.下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容,则回答正确的是( )A.⊙代表∠FEC B.□代表同位角C.▲代表∠EFC D.※代表AB9.如图,可以判定AB//CD的条件是()A.∠1=∠2B.∠BAD+∠B=180°C.∠3=∠4D.∠D=∠510.如图,给出下列条件:①∠1=∠2:①∠3=∠4:①AB∥CE,且∠ADC=∠B:①AB∥CE,且∠BCD=∠BAD.其中能推出BC∥AD的条件为()A.①①B.①①C.①①D.①①①11.如图,下列不能判定DF∥AC的条件是()A.∠A=∠BDF B.∠2=∠4C.∠1=∠3D.∠A+∠ADF=180°AB DF的是()12.如图,不能判定//A .12∠=∠B .4A ∠=∠C .1A ∠=∠D .3180A ∠+∠=︒二、 填空题(本大题共6小题,每小题3分,共18分)13.如图,∠1=120°,∠2=45°,若使b ∥c ,则可将直线b 绕点A 逆时针旋转_________度.14.如图所示,直线a ,b 被直线c 所截,∠1=∠2,则直线a ,b 的位置关系为______(用符号表示).15.如图,下列条件中:①∠BAD +∠ABC =180°;①∠1=∠2;①∠3=∠4;①∠BAD =∠BCD ,能判定AD ∥BC 的是_____.16.如图,现给出下列条件:①∠1=∠B ,②∠2=∠5,③∠3=∠4,④∠BCD +∠D =180°,⑤∠B +∠BCD =180°,其中能够得到AB ∥CD 的条件有_____.(填序号)17.如图,下列条件中:①12∠=∠;②34∠=∠;③5D ∠=∠;④1=6∠∠;⑤180BAD D ∠+∠=︒;⑥180BCD D ∠+∠=︒,能得//AD BC 的有_______________________ (只填序号).18.如图,在三角形ABC 中,已知AB AC ⊥,AD BC ⊥,3AC =,4AB =,5BC =,有下列结论:①B 与C ∠不是同旁内角;②点A 到直线BC 的距离为2.4;③过点A 仅能作一条直线与BC 垂直;④过直线AC 外一点有且只有一条直线与直线AC 平行.其中正确的结论序号有________.三、解答题(本大题共6小题,共66分,解答应写出文字说明、演算步骤或推理过程) 19.填写理由:如图,∠1=∠2,∠3=∠4,4BAE ∠=∠,试说明//AD BE .解:∵∠1=∠2(已知)∴12CAF CAF ∠+∠=∠+∠(______)即BAF ∠=∠______∵∠3=∠4,4BAE ∠=∠(已知)∴∠3=∠______(______)∴∠3=∠______∴//AD BE (______)20.如图,已知∠ABC=180°-∠A ,BD ⊥CD 于D ,EF ⊥CD 于E .(1)求证:AD ∥BC ;(2)若∠ADB=36°,求∠EFC 的度数.21.如图所示:(1)若//DE BC ,13∠=∠,90CDF ∠=︒,求证:FG AB ⊥.(2)若把(1)中的题设“//DE BC ”与结论“FG AB ⊥”对调,所得命题是否是真命题?说明理由.22.如图①,在三角形ABC 中,点E ,F 分别为线段AB ,AC 上任意两点,EG 交BC 于点G ,交AC 的延长线于点H ,∠1+∠AFE=180°.(1)证明:BC∥EF;(2)如图②,若∠2=∠3,∠BEG=∠EDF,证明:DF 平分∠AFE.23.如图,在ABC 中,D 是BC 边上的一点,45B ∠=︒,30BAD ∠=︒,将ABD △沿AD 折叠得到AED ,AE 与BC 交于点F .(1)求AFC ∠和EDF ∠的度数;(2)若32E C ∠∠=::,问:DE //AC 吗,请说明理由. 24.如图,已知点E 在直线DC 上,射线EF 平分∠AED ,过E 点作EB ⊥EF ,G 为射线EC 上一点,连结BG ,且90EBG BEG ︒∠+∠=.(1)求证:DEF EBG ∠=∠;(2)若EBG A ∠=∠,试判断AB 与EF 的位置关系,并说明理由.七年级数学下册平行线及其判定试题答案三、 选择题(本大题共12小题,每小题3分,共36分。
平行线的判定练习题(含答案)
平行线的判定练习题一、选择题(每小题3分,共36分)1.下面四个图中,∠1=∠2一定成立的是( C )2.如图,已知点O 是直线AB 上一点,∠1=65°,则∠2的度数是( D )A.25°B.65°C.105°D.115°3.下列说法正确的是( A )A.a ,b ,c 是直线,且a ∥b,b∥c,则a∥cB.a ,b ,c 是直线,且a⊥b,b⊥c,则a⊥cC.a ,b ,c 是直线,且a ∥b,b⊥c,则a∥cD.a ,b ,c 是直线,且a∥b,b∥c,则a⊥c4.如图,下列各语句中,错误的语句是( B )A .∠ADE 与∠B 是同位角 B.∠BDE 与∠C 是同旁内角C.∠BDE 与∠AED 是内错角D.∠BDE 与∠DEC 是同旁内角5.如图,点O 在直线AB 上,且OC⊥OD.若∠COA=36°,则∠DOB 大小为( B )A.36°B.54°C.64°D.72°6.体育课上,老师测量跳远成绩的依据是( C )A.平行线间的距离相等B.两点之间,线段最短C.垂线段最短D.两点确定一条直线7.如图,∠ACB=90°,CD⊥AB ,垂足为D ,则下面的结论中,不正确的是( A )A.点B 到AC 的垂线段是线段CAB.CD 与AB 互相垂直C.AC 与BC 互相垂直D.线段AC 的长度是点A 到BC 的距离8.如图,直线AB ,CD 相交于点0,E0⊥CD.下列说法错误的是( C )A.∠AOD =∠BOCB.∠AOE+∠B 0D=90°C.∠AOC=∠AOED.∠AOD+∠BOD=180°9.如图,直线AB ,CD 相交于点0,0E 平分∠AOD.若∠CO E =140°,则∠BOC=( D )A.50°B.60°C.70°D.80°10.对于图中标记的各角,下列条件能够推理得到a∥b 的是( D )(第4题)(第5题)(第2题)(第7题) (第8题)A.∠1=∠2B.∠2=∠4C.∠3=∠4D.∠1+∠4=180°11.如图,90,ACD CE AB ︒∠=⊥,垂足为E ,则下面的结论中,不正确的是(A )A.点C 到AB 的垂线段是线段CDB.CD 与AC 互相垂直C.AB 与CE 互相垂直D.线段CD 的长度是点D 到AC 的距离12.如图,已知1234∠=∠=∠=∠,则图中的平行线有( C )A.2组B.3组C.4组D.5组二、填空题(每小题3分,共15分)13.已知∠α=35°40’,则∠α的余角为______,补角为______.14.如图,AC⊥BC,AC=3,BC=4,AB=5,则点B 到AC 的距离为______.15.如图,已知OA⊥OB,OC⊥OD,∠AOC=27°,则∠BOD 的度数是______.16.如图,在同一平面内,OA⊥l,OB⊥l,垂足为O ,则OA 与OB 重合的理由是______.17.如图,AB⊥EF 于点G ,CD⊥EF 于点H ,GP 平分∠EGB,HQ 平分∠CHF,则图中互相平行的直线有__________________.三、解答题(共49分)18.(5分)一个角的补角比这个角的余角的3倍大10°,求这个角的度数.19.(共9分,每空1分)如图,完成下列推理过程.(1)已知∠1=108°,∠2=72°,由∠1+∠2=108°+72°=180°,可得______∥______,根据是________;(2)已知∠1=108°,∠3=108°,由∠l=108°=∠3,可得______∥______,根据是___________;(3)已知∠2=72°,∠4=72°,由∠2=72°=∠4,可得______∥______,根据是_________.20. (5分)如图,在直角三角形ABC 中,∠ACB=90°,将直角三角形ABC 向下翻折,使点A 与点C 重合,折痕为DE ,试说明:DE ∥BC.21. (5分)如图,已知∠1与∠3互余,∠2与∠3的余角互补,问直线l1∥l2吗?为什么?22. (5分)如图,直线AB,CD相交于点0,OA平分∠EOC.(1)若∠E0C=72°,求∠BOD的度数;(2)若∠D0E=2∠AOC,判断射线0E,0D的位置关系并说明理由.23.(5分)如图,DE平分∠ADC,CE平分∠BCD,且∠1+∠2=90°.试判断AD与BC的位置关系,并说明理由.24.(5分)如图,四边形ABCD,∠1=30°,∠B=60°,AB⊥AC,则AD与BC一定平行吗?AB与CD呢?若平行请说明理由,反之则不用说明理由.25.(5分)已知:如图,CD是直线,E在直线CD上,∠1=130°,∠A=50°,求证:AB∥CD.26.(5分)如图,若∠1=∠2,请判断DB与EC的位置关系,并说明理由.参考答案1.C2.D3.B4.B5.A6.C7.A8.C9.D 10.D13.54°20’ 144°20’ 14.4 15.153° 16.同一平面内,过一点有且只有一条直线与已知直线垂直 17.AB∥CD,GP∥HQ18.解:这个角的度数为50°19.(1)AB CD 同旁内角互补,两直线平行 (2)AB CD 同位角相等,两直线平行(3)AE DF 内错角相等,两直线平行20.解:因为将直角三角形ABC向下翻折,使点A与点C重合,折痕为DE,所以∠AED=∠CED=90°.又因为∠ACB=90°,所以∠AED=∠ACB=90°.所以DE∥BC.21.解l1∥l2.理由:因为∠1+∠3=90°,∠2+(90°-∠3)=180°,所以∠3=90°-∠l,∠2+90°-90°+∠1=180°.所以∠2+∠1=180°.所以l1∥l2.22.解:(l)∠BOD=36°.(2)0E⊥0D.理由如下:因为∠D OE=2∠AOC,OA平分∠EOC,所以∠DO E=∠EOC.又因为∠DOE+∠EOC=180°,所以∠DOE=∠EOC=90°.所以OE⊥OD.23.解:AD∥BC.理由如下:因为DE平分∠ADC,CE平分∠BCD,所以∠ADC=2∠1,∠BCD =2∠2.因为∠1+∠2=90°,所以∠ADC+∠BCD=2(∠1+∠2)=180°,所以AD∥BC.24.(1)AD与BC一定平行.理由如下:∵AB⊥AC,∴∠BAC=90°,∵∠1=30°,∠B=60°,∴∠1+∠BAC+∠B=180°,即∠BAD+∠B=180°,∴AD∥BC.(2)AB与CD不一定平行.25.:∵∠1+∠2=180°,∠1=130°,∴∠2=50°,∵∠A=50°,∴∠A=∠2,∴AB∥CD.26.DB与EC的位置关系是平行,理由:∵∠1=∠3,∠2=∠4(对顶角相等),又∵∠1=∠2,∴∠3=∠4,∴BD∥EC.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
42.(3分)如图,有一个与地面成30°角的斜坡,现要在斜坡上竖一电线杆,当电线杆与地面垂直时,它与斜坡所成的角α=°.
43.如图,直线AB、CD与直线EF相交于E、F,∠1=105°,当∠2=________时,能使AB∥CD.
(2)利用三角形内角和定理进行计算即可.
试题解析:(1)∵CF平分∠DCE,∴∠1=∠2= ∠DCE,∵∠DCE=90°,∴∠1=45°,∵∠3=45°,∴∠1=∠3,∴AB∥CF(内错角相等,两直线平行);
(2)∵∠D=30°,∠1=45°,∴∠DFC=180°﹣30°﹣45°=105°.
考点:1.平行线的判定;2.角平分线的定义;3.三角形内角和定理.
考点:平行线的判定.
8.C
【解析】
试题分析:因为由∠1=∠2可得AD//BC,所以①错误;因为由∠3=∠4可得AD//BC,所以②正确;
因为AD∥BE,所以∠1=∠2,又因为∠D=∠B,所以根据三角形的内角和可得∠3=∠4,所以AD//BC,因此③正确;所以②③正确,故选:C.
考点:平行线的判定与性质.
【解析】
试题分析:因为∠1+∠B=180°,所以AD∥BC,所以∠D=∠2=45°.
故选:B.
考点:平行线的判定和性质.
5.D.
【解析】
试题分析:∵AB∥CD,∠1=63°,∴∠BEN=∠1=63°,∵EN平分∠BEF,∴∠BEF=2∠BEN=126°,∴∠2=180°﹣∠BEF=180°﹣126°=54°.故选D.
9.A.
【解析】
试题分析:∵∠1=∠2,∴a∥b,∴∠3的对顶角+∠4=180º,∠3的对顶角=∠3=125°,∴∠4=180º-125º=55º,故选A.
考点:平行线的性质与判定.
10.C.
【解析】
试题分析:∵原命题“若a⊥c,b⊥c,则a∥b”,用反证法时应假设结论不成立,即假设“a与b相交”.故选C.
【解析】如果两条直线都与第三条直线平行,那么这两条直线也互相平行.
14.D
【解析】因为∠D和∠EFC是AD、EF被DC所截得的一对同位角,根据同位角相等,两直线平行,即可判定AD∥EF,故选D.
15.B
【解析】①错,在同一平面内时①才成立;②正确;③错,两线段平行是指它们所在直线没交点;④正确.故选B.
C.EF∥BC
D.AD∥EF
15.下列说法正确的有( )
①不相交的两条直线是平行线;②在同一平面内,两条直线的位置关系有两种;③若线段AB与CD没有交点,则AB∥CD;④若a∥b,b∥c,则a与c不相交.
A.1个
B.2个
C.3个
D.4个
16.如图,已知AB∥EF,AB∥CD.因为AB∥EF,________,所以________∥________(________).
(1)请判断AB与CD的位置关系并说明理由;
(2)如图2,当∠E=90°且AB与CD的位置关系保持不变,移动直角顶点E,使∠MCE=∠ECD,当直角顶点E点移动时,问∠BAE与∠MCD否存在确定的数量关系?并说明理由;
(3)如图3,P为线段AC上一定点,点Q为直线CD上一动点且AB与CD的位置关系保持不变,当点Q在射线CD上运动时(点C除外)∠CPQ+∠CQP与∠BAC有何数量关系?猜想结论并说明理由.
A. 55° B. 60° C.70° D. 75°
10.用反证法证明“若a⊥c,b⊥c,则a∥b”时,应假设()
A.a不垂直于c B.a,b都不垂直于c
C.a与b相交D.a⊥b
11.如图,下列能判定AB∥CD的条件有( )个.
(1)∠B+∠BCD=90°; (2)∠1=∠2; (3)∠3=∠4; (4) ∠B=∠5.
33.把命题“在同一平面内,垂直于同一直线的两直线互相平行”改写成“如果……,那么……”
的形式:
34.如图,请添加一个条件,使AB∥CD,那么你添加的这个条件是.
35.如果直线a⊥b,且直线c⊥a,则直线c与b的位置关系(填“平行”或“垂直”).
36.(3分)如图,∠1+∠2=180°,∠3=108°,则∠4=度.
B、两直线平行,同位角相等,所以B选项为假命题;
C、在同一平面内,垂直于同一条直线的两条直线互相平行,所以C选项为假命题;
D、对顶角相等,所以D选项为真命题.
故选D.
考点:命题与定理.
2.B.
【解析】
试题分析:①是正确的,对顶角相等;②正确,在同一平面内,垂直于同一条直线的两直线平行;
③错误,角平分线分成的两个角相等但不是对顶角;④错误,同位角只有在两直线平行的情况下才相等.
考点:平行线的性质.
6.C
【解析】
试题分析:根据同位角相等,两直线平行这一定理可知a∥b,再根据两直线平行,同旁内角互补可得∠3+∠5=180°,即∠5=180°﹣∠3=180°﹣70°=110°,因此可求得∠4=∠5=110°.
故选C
考点:平行线的判定与性质
7.D
【解析】
试题分析:因为∠EDC与∠EFC既不是同位角又不是内错角,所以A错误;因为∠AFE与∠ACD既不是同位角又不是内错角,所以B错误;因为由∠1=∠2能得到EF∥BC,所以C错误;因为∠3与∠4是内错角,所以由∠3=∠4能得到DE∥AC,所以D正确,故选:D.
评卷人
得分
一、解答题
17.(6分)如图,四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,则BE与DF有何位置关系?试说明理由.
18.(本题5分)将一副三角板拼成如图所示的图形,过点C作CF 平分∠DCE交DE于点F.
(1)求证:CF//AB;
(2)求∠DFC的度数.
19.(本题满分8分)已知:如图, CF⊥AB于F,ED⊥AB于D,∠1=∠2,求证:FG∥BC
故①②正确,③④错误,所以错误的有两个,
故选B.
考点: 平行线的判定.
3.C.
【解析】
试题分析:∵∠1+∠2=180°,
∴AB∥CD,
∴∠2=∠4,∠3=∠4,
∵∠1+∠2=180°,∠2=∠3,
∴∠1+∠3=180°,
由邻补角定义得:∠1+∠4=180°,
故选C.
考点:平行线的判定与性质.
4.B.
7.如图,下列条件中,能判定DE∥AC的是 ( )
A.∠EDC=∠EFC B.∠AFE=∠ACD
C.∠1=∠2 D.∠3=∠4
8.如图,给出下列条件:①∠1=∠2;②∠3=∠4;③AD∥BE,且∠D=∠B;其中,能推出AB∥DC的条件为()
A.①②B.①③C.②③D.以上都错
9.如图,直线a,b被直线e,d所截,若∠1=∠2,∠3=125°,则∠4的度数为( ).
A.1 B.2 C.3 D.4
12.如图,∠1=∠B,∠2=25°,则∠D=( )
A.25°B.45°C.50°D.65°
13.三条直线a、b、c,若a∥c,b∥c,则a与b的位置关系是( )
A.a⊥b
B.a∥b
C.a⊥b或a∥b
D.无法确定
14.如图,如果∠D=∠EFC,那么( )
A.AB∥BC
B.AB∥CD
∵∠BAC=70°(已知)
∴∠AGD= _________ .
26.已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.
27.如图,已知∠ABC=180°﹣∠A,BD⊥CD于D,EF⊥CD于F.
(1)求证:AD∥BC;
(2)若∠1=36°,求∠2的度数.
28.(9分)如图1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°
20.已知,如图,CD⊥AB于D,EF⊥AB于F,∠1=∠2,请问DG∥BC吗?如果平行,请说明理由。
21.如图,已知:∠B=∠D+∠E,试说明:AB∥CD.
22.如图,∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的大小关系,并证明你的结论.
23.已知:如图,EF⊥AB,CD⊥AB,AC⊥BC,∠1=∠2,求证:DG⊥BC
201说法中正确的是()
A.过一点有且只有一条直线与已知直线平行
B.同位角相等
C.垂直于同一条直线的两条直线互相平行
D.对顶角相等
2.下列命题:①对顶角相等;②在同一平面内,垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等.其中错误的有( )
A.1个 B.2个 C.3个 D.4个
又∠1+∠AEB=90°(三角形的内角和等于180°),
∴∠3=∠AEB(同角的余角相等).
∴BE∥DF(同位角相等,两直线平行).
考点:平行线的判定;角平分线的定义
18.(1)证明见试题解析;(2)105°.
【解析】
试题分析:(1)首先根据角平分线的性质可得∠1=45°,再有∠3=45°,再根据内错角相等两直线平行可判定出AB∥CF;
3.如图,如果 ,那么( ).
(A) (B)
(C) (D)
4.如图,∠1+∠B=180°,∠2=45°,则∠D的度数是( ).
A.25° B.45° C.50° D.65°
6.(3分)直线a、b、c、d的位置如图所示,如果∠1=58°,∠2=58°,∠3=70°,那么∠4等于( )
A.58°B.70°C.110°D.116°
考点:反证法.
11.C.
【解析】
试题分析:当∠B+∠BCD=180°,AB∥CD;当∠1=∠2时,AD∥BC;当∠3=∠4时,AB∥CD;当∠B=∠5时,AB∥CD.故选C.