二次函数应用题利润问题讲 解
二次函数的利润问题讲课稿
例题讲解 已知某商品的进价为每件40元。现在的售价 是每件60元,每星期可卖出300件。市场调 查反映:如调整价格 ,每涨价一元,每星期 要少卖出10件;每降价一元,每星期可多卖 出20件。如何定价才能使利润最大?
解:设每件涨价为x元时获得的总利润为y元.
y =(60-40+x)(300-10x)
小组竞争
1.某果园有100棵橙子树,每一棵树平均结600个橙子. 现准备多种一些橙子树以提高产量,但是如果多种树, 那么树之间的距离和每一棵树所接受的阳光就会减少. 根据经验估计,每多种一棵树,平均每棵树就会少结5 个橙子.增种多少棵橙子树时,总产量最大?
反思感悟
通过本节课的 学习,我的+x)(300-10x)
=-10x2+100x+6000
=-10(x2-10x ) +6000
=-10[(x-5)2-25 ]+6000
=-10(x-5)2+6250
当x=5时,y的最大值是6250.
定价:60+5=65(元)
解:设每件降价x元时的总利润为y元.
y=(60-40-x)(300+20x) =(20-x)(300+20x)
怎样确定x 的取值范围
=-20x2+100x+6000
=-20(x2-5x-300)
=-20(x-2.5)2+6125 (0≤x≤20)
所以定价为60-2.5=57.5时利润最大,最大值为6125元.
由(1)(2)的讨论及现在的销售 情况,你知道应该如何定价能
使利润最大了吗?
答:综合以上两种情况,定价为65元时可 获得最大利润为6250元.
复习引入
二次函数利润问题解题技巧
二次函数利润问题解题技巧
一、概念解释
1. 二次函数利润:二次函数利润指的是,企业的利润函数中,
其可以用一个二次函数来表示。
二次函数利润是指企业在投资后能够产生的利润,以二次函数来表示利润会比较决策者更容易分析。
2. 利润最高:利润最高是指,企业利润由最低点开始,利润随
着量的增加,达到某一最高点后,随着量的继续增加而减少,从而出现利润达到最高点的情况。
3. 二次函数极值:二次函数极值是指,企业利润函数使用二次
函数进行表示时,二次函数有极大值和极小值,极大值表示企业利润最高点,极小值表示企业利润最低点。
二、解题技巧
1. 首先,要求二次函数利润的最高点,需要根据二次函数的极
值点来确定。
一般来说,二次函数的极大值点为:x=(-b/2a,f(-b/2a)),其中,b和a分别表示函数的一次和二次项系数;f(-b/2a)表示函
数的值。
2. 然后,由于企业的利润函数是二次函数,可以用二次函数去
拟合企业的利润数据,这样就可以拟合出企业的利润函数。
3. 接着,要求出企业的利润函数的最高点,可以用极值法,求
出二次函数的极大值点,这样就可以得到企业利润函数的最高点,也就是利润最高点。
4. 最后,结合求得的最高点,把极大值点和利润函数画图,来
观察利润的变化情况,看出利润达到最高时的投资情况,从而可以更好的帮助企业进行利润最大化决策。
北师大版数学九年级下册《利用二次函数解决最大利润问题》课件
解:(1)设 y=kx+b(k≠0),把 x=20,y=360 和 x=30,y=60 代入,得
+ = ,
解得 = -,
+ = ,
= .
则 y 关于 x 的一次函数表达式为 y=-30x+960(10≤x≤32).
(2)当销售价格定为多少元时,每月获得的利润最大?并求此最大利润.
x(元)之间满足函数关系式y=-2x2+60x+800,则获利最多为( D )
A.15元
B.400元
C.800元
D.1 250元
2.某商店销售一批头盔,售价为每顶80元,每月可售出200顶.经调查
发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶50元,则
该商店每月获得最大利润时,每顶头盔的销售单价为(
(2)当销售单价定为多少元时,该种油茶的月销售利润最大?求出最大
利润.
解:(2)设销售利润为w元.
由题意,得w=(x-50)(-5x+500)=-5x2+750x-25 000=-5(x-75)2+3
125(50<x<100),
∵-5<0,50<x<100,
∴当x=75时,w取得最大值,最大值是3 125.
第3课时
利用二次函数解决最大利润问题
根据二次函数图象的顶点坐标确定最大利润
[例1] (2022滨州)某种商品每件的进价为10元,若每件按20元的价格
销售,则每月能卖出360件;若每件按30元的价格销售,则每月能卖出
60件.假定每月的销售件数y(件)是销售价格x(元)的一次函数.
(1)求y关于x的一次函数表达式.
.
二次函数与实际问题中利润问题(附答案)
③日用品何时获得最大利润:
3.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半个月内获得最大利润?
设销售价为x元(x≥30元),利润为y元,则
(1)写出售价x(元/件)与每天所得利润y(元)之间的函数关系式;
(2)每件定价多少元时,才能使一天的利润最大?
⑥纯牛奶何时利润最大:
6.某商场销售某种品牌的纯牛奶,已知进价为每箱40元,生产厂家要求每箱售价在40元~70元之间.市场调查发现:若每箱发50元销售,平均每天可售出90箱,价格每降低1元,平均每天多销售3箱;价格每升高1元,平均每天少销售3箱.
(1)写出售价x(元/箱)与每天所得利润w(元)之间的函数关系式;
(2)每箱定价多少元时,才能使平均每天的利润最大?最大利润是多少?
⑦水产品何时利润最大:
.某商店销售一种销售成本为40元的水产品,若按50元/千克销售,一月可售出5000千克,销售价每涨价1元,月销售量就减少10千克.
(1)写出售价x(元/千克)与月销售利润y(元)之间的函数关系式;
二次函数y=ax2+bx+c(a≠0)的性质:
顶点式,对称轴和顶点坐标公式:
利润=售价-进价
总利润=每件利润×销售数量
①何时橙子总产量最大:
1.某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.增种多少棵橙子树时,总产量最大?
二次函数解决利润问题
二次函数的实际应用——利润最大(小)值问题知识要点:二次函数的一般式c bx ax y ++=2(0≠a )化成顶点式ab ac a b x a y 44)2(22-++=,如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值).即当0>a 时,函数有最小值,并且当abx 2-=,a b ac y 442-=最小值;当0<a 时,函数有最大值,并且当abx 2-=,a b ac y 442-=最大值.如果自变量的取值范围是21x x x ≤≤,如果顶点在自变量的取值范围21x x x ≤≤内,则当abx 2-=,a b ac y 442-=最值,如果顶点不在此范围内,则需考虑函数在自变量的取值范围内的增减性;如果在此范围内y 随x 的增大而增大,则当2x x =时,c bx ax y ++=222最大,当1x x =时,c bx ax y ++=121最小;如果在此范围内y 随x 的增大而减小,则当1x x =时,c bx ax y ++=121最大,当2x x =时,c bx ax y ++=2.[例1]:求下列二次函数的最值:(1)求函数322-+=x x y 的最值.[例2]:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?[练习]:1.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半个月内获得最大利润?2.某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,即旅行团每增加一人,每人的单价就降低10元.你能帮助分析一下,当旅行团的人数是多少时,旅行社可以获得最大营业额?[例3]: 某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如下表:若日销售量y 是销售价x 的一次函数.⑴求出日销售量y (件)与销售价x (元)的函数关系式;⑵要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元? 3.(2006十堰市)市“健益”超市购进一批20元/千克的绿色食品,如果以30•元/千克销售,那么每天可售出400千克.由销售经验知,每天销售量y (千克)•与销售单价x (元) (30≥x )存在如下图所示的一次函数关系式. ⑴试求出y 与x 的函数关系式;⑵设“健益”超市销售该绿色食品每天获得利润P 元,当销售单价为何值时,每天可获得最大利润?最大利润是多少?⑶根据市场调查,该绿色食品每天可获利润不超过4480元,•现该超市经理要求每天利润不得低于4180元,请你帮助该超市确定绿色食品销售单价x 的范围(•直接写出答案).作业布置: 1.二次函数1212-+=x x y ,当x=_____时,y 有最____值,这个值是___. 2.某一抛物线开口向下,且与x 轴无交点,则具有这样性质的抛物线的表达式可能为______________),此类函数都有____值(填“最大”“最小”).3.不论自变量x 取什么实数,二次函数y =2x 2-6x +m 的函数值总是正值,你认为m 的取值范围是29>m ,此时关于一元二次方程2x 2-6x +m =0的解的情况是__(填“有解”或“无解”)4.小明在某次投篮中,球的运动路线是抛物线21 3.55y x =-+的一部分,如图所示,若命中篮圈中心,则他与篮底的距离L 是 米 .5.在距离地面2m 高的某处把一物体以初速度V 0(m/s )竖直向上抛出,•在不计空气阻力的情况下,其上升高度s (m )与抛出时间t (s )满足:S=V 0t-12gt 2(其中g 是常数,通常取10m/s 2),若V 0=10m/s ,则该物体在运动过程中最高点距离地面_____m .6.影响刹车距离的最主要因素是汽车行驶的速度及路面的摩擦系数.有研究表明,晴天在某段公路上行驶上,速度为V (km/h )的汽车的刹车距离S (m )可由公式S=1100V 2确定;雨天行驶时,这一公式为S=150V 2.如果车行驶的速度是60km/h ,•那么在雨天行驶和晴天行驶相比,刹车距离相差_____米.。
专题08 二次函数实际应用中的利润问题(解析版)-【压轴必考】
专题08 二次函数实际应用中的利润问题 经典例题例1.某电商销售某种商品一段时间后,发现该商品每天的销售量y (单位:千克)和每千克的售价x (单位:元)满足一次函数关系(如图所示),其中5080x ≤≤,(1)求y 关于x 的函数解析式;(2)若该种商品的成本为每千克40元,该电商如何定价才能使每天获得的利润最大?最大利润是多少?【答案】(1)y 关于x 的函数解析式为2200y x =-+;(2)该电商定价为70元时才能使每天获得的利润最大,最大利润是1800元.【解析】(1)设y 关于x 的函数解析式为y kx b =+,则由图象可得()50,100和()80,40,代入得: 501008040k b k b +=⎧⎨+=⎩,解得:2200k b =-⎧⎨=⎩,∴y 关于x 的函数解析式为2200y x =-+; (2)设该电商每天所获利润为w 元,由(1)及题意得:()()240220022808000w x x x x =--+=-+-,∴-2<0,开口向下,对称轴为702b x a=-=, ∴5080x ≤≤,∴当70x =时,w 有最大值,即为22702807080001800w =-⨯+⨯-=; 答:该电商定价为70元时才能使每天获得的利润最大,最大利润是1800元.例2.合肥百货大楼以进价120元购进某种新商品,在5月份试销阶段发现,在售价不低于130元的情况下每件售价(元)与商品的日销量(件)始终存在下表中的数量关系:(1)请你观察上面表格中数据的变化规律,填写表中的a 值为(2)若百货大楼该商品柜组想日盈利达到1600元,应将售价定为多少元?(3)柜组售货员小李发现销售该种商品m 件与n 件的利润相同,且m n ≠,请直接写出m 与n 所满足的关系式.【答案】(1)20;(2)160元;(3)m +n =80【解析】(1)∴130+70=200,135+65=200,140+60=200,∴每件的售价与产品的日销量之和为200,∴a =200-180=20,故答案为:20;(2)由(1)知:当每件产品每涨价1元时,日销售量减少1件,设每件产品定价为x 元(x >120),则产品的日销量为(200-x )元,依题意得:(x -120)(200-x )=1600,整理得:x 2-320x +25600=0,解得:x 1=x 2=160.答:每件产品定价为160元时,每日盈利可达到1600元;(3)由(1)知:当每件产品每涨价1元时,日销售量减少1件,∴当销售该种商品m 件时,定价为:(200-m )元,销售该种商品n 件时,定价为:(200-n )元, 由题意得:(200-m -120)m =(200-n -120)n ,整理得:(m -n )(m +n -80)=0,∴m ≠n ,∴m +n -80=0,即m +n =80.故答案为:(1)20;(2)160元;(3)m +n =80例3.某网店销售一款市场上畅销的蒸蛋器,进价为每个40元,在销售过程中发现,这款蒸蛋器销售单价为60元时,每星期卖出100个.如果调整销售单价,每涨价1元,每星期少卖出2个,现网店决定提价销售,设销售单价为x 元,每星期销售量为y 个.(1)请直接写出y (个)与x (元)之间的函数关系式;(2)当销售单价是多少元时,该网店每星期的销售利润是2400元?(3)当销售单价是多少元时,该网店每星期的销售利润最大?最大利润是多少元?【答案】(1)y =-2x +220;(2)当销售单价是70元或80元时,该网店每星期的销售利润是2400元;(3)当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元.【解析】(1)由题意可得,y =100-2(x -60)=-2x +220;(2)由题意可得,(-2x +220)(x -40)=2400,解得,170x =,280x =,∴当销售单价是70元或80元时,该网店每星期的销售利润是2400元.答:当销售单价是70元或80元时,该网店每星期的销售利润是2400元.(3)设该网店每星期的销售利润为w 元,由题意可得w =(-2x +220)(x -40)=223008800-+-x x , 当752b x a=-=时,w 有最大值,最大值为2450, ∴当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元.答:当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元.【变式训练1】天府新区某商场开业后要经营一种新上市的文具进价为10元/件.试营销阶段发现:当销售单价是13元时,每天的销售量为250件;销售单价每上涨1元,每天的销售量就减少10件,设该商场销售这种文具每天的销售量为y 件,销售单价为x 元/件(3)1x ≥.(1)写出y 与x 之间的函数关系式;(2)设商场每天的销售利润为w (元),若每天销售量不少于150件,求商场每天的最大利润.【答案】(1)10380y x =-+;(2)1950元【解析】(1)当销售单价是13元时,每天的销售量为250件;销售单价每上涨1元,每天的销售量就减少10件,∴销售量y 件,销售单价x 元/件(13)x 之间的关系为:25010(13)10380y x x =--=-+; (2)每天销售量不少于150件,150y ∴,即10380150x -+,解得23x ,商场每天的销售利润2(10)(10)(10380)10(24)1960w x y x x x =-⋅=-⋅-+=--+,w ∴关于x 的抛物线对称轴为24x =,而100-<,开口向下,当23x 时,图象在对称轴左侧,w 随x 的增大而增大,23x ∴=时,w 最大,且w 最大值为1950,∴若每天销售量不少于150件,则商场每天的最大利润是1950元.【变式训练2】某地区在2020年开展脱贫攻坚的工作中大力种植有机蔬菜.某种蔬菜的销售单价与销售月份之间的关系如图(1)所示,每千克成本与销售月份之间的关系如图(2)所示(其中图(1)的图象是直线,图(2)的图象是抛物线).(1)求每千克蔬菜销售单价y 与销售月份x 之间的关系式;(2)判断哪个月份销售每千克蔬菜的收益最大?并求出最大收益;(3)求出一年中销售每千克蔬菜的收益大于1元的月份有哪些?【答案】(1)y =23-x +7;(2)5月出售每千克收益最大,最大为73元;(3)一年中销售每千克蔬菜的收益大于1元的月份有4,5,6三个月.【解析】(1)设y kx b =+,将(3,5)和(6,3)代入得,3563k b k b +=⎧⎨+=⎩,解得237k b ⎧=-⎪⎨⎪=⎩.273y x ∴=-+; (2)设每千克成本与销售月份之间的关系式为:y =a (x -6)2+1,把(3,4)代入得,4=a (3-6)2+1,解得13a =.21(6)13y x ∴=-+,即214133y x x =-+. 收益23W =-217(413)3x x x +--+217(5)33x =--+, 103a =-<,∴当5x =时,73W =最大值.故5月出售每千克收益最大,最大为73元; (3)一年中销售每千克蔬菜的收益:23W =-217(413)3x x x +--+, 当1W =时,23-217(413)13x x x +--+=,解得:x 1=7,x 2=3, 103a =-<,x 为正整数,∴一年中销售每千克蔬菜的收益大于1元的月份有4,5,6三个月. 故答案为:(1)y =23-x +7;(2)5月出售每千克收益最大,最大为73元;(3)一年中销售每千克蔬菜的收益大于1元的月份有4,5,6三个月.【变式训练3】红星公司销售一种成本为40元/件的产品,若月销售单价不高于50元/件.一个月可售出5万件;月销售单价每涨价1元,月销售量就减少0.1万件.其中月销售单价不低于成本.设月销售单价为x (单位:元/件),月销售量为y (单位:万件).(1)直接写出y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)当月销售单价是多少元/件时,月销售利润最大,最大利润是多少万元?(3)为响应国家“乡村振兴”政策,该公司决定在某月每销售1件产品便向大别山区捐款a 元.已知该公司捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元,求a 的值.【答案】(1)5(4050)0.110(50100)x y x x ≤≤⎧=⎨-+<≤⎩;(2)当月销售单价是70元/件时,月销售利润最大,最大利润是90万元;(3)4.【解析】(1)由题意,当4050x ≤≤时,5y =,当50x >时,50.1(50)0.110y x x =--=-+,0y ≥,0.1100x ∴-+≥,解得100x ≤,综上,5(4050)0.110(50100)x y x x ≤≤⎧=⎨-+<≤⎩; (2)设该产品的月销售利润为w 万元,①当4050x ≤≤时,5(40)5200w x x =-=-,由一次函数的性质可知,在4050x ≤≤内,w 随x 的增大而增大,则当50x =时,w 取得最大值,最大值为55020050⨯-=;②当50100x <≤时,2(40)(0.110)0.1(70)90w x x x =--+=--+,由二次函数的性质可知,当70x =时,w 取得最大值,最大值为90,因为9050>,所以当月销售单价是70元/件时,月销售利润最大,最大利润是90万元;(3)捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元(大于50万元), 5070x ∴<≤,设该产品捐款当月的月销售利润为Q 万元,由题意得:(40)(0.110)Q x a x =---+,整理得:221400.1()390240a a Q x a +=--+-+, 140702a +>,∴在5070x <≤内,Q 随x 的增大而增大, 则当70x =时,Q 取得最大值,最大值为(7040)(0.17010)903a a ---⨯+=-,因此有90378a -=,解得4a =.【变式训练4】某企业研发了一种新产品,已知这种产品的成本为30元/件,且年销售量y (万件)与售价x (元/件)的函数关系式为()()2140,406080.6070x x y x x ⎧-+≤<⎪=⎨-+≤≤⎪⎩ (1)当售价为60元/件时,年销售量为________万件;(2)当售价为多少时,销售该产品的年利润最大?最大利润是多少?(3)若销售该产品的年利润不少于750万元,直接写出x 的取值范围.【答案】(1)20;(2)当售价为50元/件时,年销售利润最大,最大为800万元;(3)4555x ≤≤【解析】(1)=6080608020x y x y =-+=-+=当时,代入中,得.(2)设销售该产品的年利润为W 万元,当60x ≤40<时,()()()2302140250800W x x x =--+=--+.∴20<-,∴当50x =时,800W =最大当6070≤≤x 时,()()()2308055625W x x x =--+=--+∴10-<,6070≤≤x ,∴当60x =时,600W =最大∴800600>,∴当50x =时,800W =最大∴当售价为50元/件时,年销售利润最大,最大为800万元.(3)4555x ≤≤理由如下:由题意得 ()()3021407504555x x x --+≥≤≤解得:故答案为:(1)20;(2)当售价为50元/件时,年销售利润最大,最大为800万元;(3)4555x ≤≤ 课后训练1.某超市销售一种商品,每件成本为50元,销售人员经调查发现,销售单价为100元时,每月的销售量为50件,而销售单价每降低2元,则每月可多售出10件,且要求销售单价不得低于成本.(1)求该商品每月的销售量y (件)与销售单价x (元)之间的函数关系式;(不需要求自变量取值范围) (2)若使该商品每月的销售利润为4000元,并使顾客获得更多的实惠,销售单价应定为多少元?(3)超市的销售人员发现:当该商品每月销售量超过某一数量时,会出现所获利润反而减小的情况,为了每月所获利润最大,该商品销售单价应定为多少元?【答案】(1)5550y x =-+;(2)70元;(3)80元.【解析】(1)∴依题意得()150100102y x =+-⨯⨯, ∴y 与x 的函数关系式为5550y x =-+;(2)∴依题意得()504000y x -=,即()()5550504000x x -+-=,解得:170x =,290x =, ∴7090<∴当该商品每月销售利润为4000,为使顾客获得更多实惠,销售单价应定为70元;(3)设每月总利润为w ,依题意得 ()()()250555050580027500w y x x x x x =-=-+-=-+-∴50-<,此图象开口向下∴当()8008025x =-=⨯-时, w 有最大值为:258080080275004500-⨯+⨯-=(元),∴当销售单价为80元时利润最大,最大利润为4500元,故为了每月所获利润最大,该商品销售单价应定为80元.2.红星工厂研发生产某种产品,成本为3万元/吨,每天最多能生产15吨.工厂为持续发展,尝试与博飞销售公司建立产销合作关系,双方约定:合作第一个月,工厂产品仅由博飞销售公司订购代销,并每天按博飞销售公司当日订购产品数量生产,当日出厂价格y (万元/吨)与当日订购产品数量x (吨)之间的关系如图所示:(1)直接写出y 与x 的函数关系式,并写出自变量x 的取值范围;(2)红星工厂按产销合作模式生产这种产品,设第一个y (万元/吨)月单日所获利润为w (万元), ①求w (万元)与x (吨)的函数关系式;②为响应国家“乡村振兴”政策,红星工厂决定,将合作第一个月中单日所获最大利润捐赠给附近村委会.试问:工厂这次为“乡村振兴”最多捐赠多少万元?【答案】(1)9(05)4(515)x x y x -+≤≤⎧=⎨≤⎩<;(2)①w =26(05)(515)x x x x x ⎧-+≤≤⎨≤⎩<;②工厂这次为“乡村振兴”最多捐赠15万元.【解析】(1)当0≤x ≤5时,设函数关系式为:y =kx +b ,把(0,9),(5,4)代入上式,得945b k b =⎧⎨=+⎩,解得:19k b =-⎧⎨=⎩,∴y =-x +9, 当5<x ≤15时,y =4,综上所述:9(05)4(515)x x y x -+≤≤⎧=⎨≤⎩<; (2)①由题意得:w =(y -3)x =()()6(05)43(515)x x x x x ⎧-+≤≤⎪⎨-≤⎪⎩<,∴w =26(05)(515)x x x x x ⎧-+≤≤⎨≤⎩<; ②当05x ≤≤时,w =()22639x x x -+=--+,此时x =3,w 最大值=9,当515x ≤<时,w =x ,此时,x =15,w 最大值=15,综上所述:工厂这次为“乡村振兴”最多捐赠15万元.3.一大型商场经营某种品牌商品,该商品的进价为每件3元,根据市场调查发现销售量y (件)与售价x (元/件)(x 为正整数)之间满足一次函数关系:(1)求y 与x 的函数关系式(不求自变量的取值范围);(2)在销售过程中要求销售单价不低于成本价,且不高于15元/件.若某一周该商品的销售量不少于6000件,求这一周该商场销售这种商品获得的最大利润及此时的销售单价分别为多少元?【答案】(1)50012000y x =-+;(2)一周该商场销售这种商品获得的最大利润为54000元,销售单价分别为12元【解析】(1)设y 和x 的函数表达式为y kx b =+,则10000495005k b k b =+⎧⎨=+⎩,解得50012000k b =-⎧⎨=⎩, 故y 和x 的函数表达式为50012000y x =-+;.(2)设这一周该商场销售这种商品的利润为w 元,由题意得:3155001200006000x x ≤≤⎧⎨-+≥⎩, 解得312x ≤≤,这一周该商场销售这种商品获得利润:()()()235001200035001350036000w y x x x x x =-=-+-=-+-,∴22750055125551252w x ⎛⎫=--+≤ ⎪⎝⎭, ∴312x ≤≤,故12x =时,w 有最大值为54000,答:一周该商场销售这种商品获得的最大利润为54000元,销售单价为12元.4.夏天到了,宁波人最惦记的水果——杨梅进入成熟期,一水果店老板进行杨梅销售,已知杨梅进价为25元/千克.如果售价为30元/千克,那么每天可售出150千克:如果售价为32元/千克,那么每天可售出130千克.经调查发现:每天销售盘y (千克)与售价x (元/千克)之间存在一次函数关系.(1)求出y 关于x 的一次函数关系式;(2)若杨梅售价不得高于36元/千克,该店主销售杨梅每天要获得960元的毛利润,则销售单价应定为多少元/千克?(毛利润=销售额-进货成本〉(3)设杨梅每天销售的毛利润为W 元,当杨梅的售价定为多少元/千克时,每天销售获得的毛利润最大?最大毛利润是多少元?【答案】(1)y=-10x+450;(2)33元/千克;(3)售价定为35元/千克时,每天销售获得的毛利润最大,最大毛利润是1000元.【解析】(1)∴每天销售量y(千克)与售价x(元/千克)之间存在一次函数关系,∴设y=kx+b,∴x=30时,y=150,x=32时,y=130,则1503013032k bk b=+⎧⎨=+⎩,解得:10450kb=-⎧⎨=⎩,∴y关于x的一次函数关系式:y=-10x+450;(2)设销售单价应定为x元/千克,由题意得:(x-25)(-10x+450)=960,解得:x=37或x=33,∴杨梅售价不得高于36元/千克,∴x=37不合题意,∴x=33,答:销售单价应定为33元/千克;(3)设杨梅的售价定为m元/千克时,每天销售获得的毛利润最大,则W=(m-25)(-10m+450)=-10m2+700m-11250=-10(m-35)2+1000,∴-10<0,∴当m=35时,W有最大值,最大值1000元,答:杨梅的售价定为35元/千克时,每天销售获得的毛利润最大,最大毛利润是1000元.5.某商店从厂家以每件2元的价格购进一批商品,在市场试销中发现,此商品的月销售量y(单位:万件)与销售单价x(单位:元)之间有如下表所示关系:(1)根据表中的数据,在图中描出实数对(,)x y所对应的点,并画出y关于x的函数图象;(2)根据画出的函数图象,求出y关于x的函数表达式;(3)设经营此商品的月销售利润为P(单位:万元).①写出P关于x的函数表达式;②该商店计划从这批商品获得的月销售利润为10万元(不计其它成本),若物价局限定商品的销售单价不.得超过...进价的200%,则此时的销售单价应定为多少元? 【答案】(1)图象见解析;(2)216y x =-+;(3)①222032P x x =-+-;②销售单价应定为3元.【解析】(1)y 关于x 的函数图象如图所示:(2)由(1)可设y 与x 的函数关系式为y kx b =+,则由表格可把()()4,8,5,6代入得:4856k b k b +=⎧⎨+=⎩,解得:216k b =-⎧⎨=⎩,∴y 与x 的函数关系式为216y x =-+; (3)①由(2)及题意可得:()()()22221622032P x y x x x x =-=--+=-+-;∴P 关于x 的函数表达式为222032P x x =-+-;②由题意得:2200x ≤⨯%,即4x ≤,∴22203210x x -+-=,解得:123,7x x ==,∴3x =; 答:此时的销售单价应定为3元.。
(完整版)二次函数的应用(利润问题)(答案)
二次函数的应用(利润问题)(答案)二次函数的实际应用1.将进货单价为70元的某种商品按零售价100元售出时,每天能卖出20个.若这种商品的零售价在一定范围内每降价1元,其日销售量就增加了1个,为了获得最大利润,则应降价_ _元,最大利润为_ _元.2. 某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?3.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半个月内获得最大利润?4.某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,即旅行团每增加一人,每人的单价就降低10元.你能帮助分析一下,当旅行团的人数是多少时,旅行社可以获得最大营业额?5.某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量(件)之间的关系如下表:若日销售量y 是销售价x 的一次函数.⑴求出日销售量y (件)与销售价x (元)的函数关系式; ⑵要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?6.“健益”超市购进一批20元/千克的绿色食品,如果以30元/千克销售,那么每天可售出400千克.由销售经验知,每天销售量y (千克)•与销售单价x (元)(30 x )存在如下图所示的一次函数关系式.⑴试求出y 与x 的函数关系式;⑵设“健益”超市销售该绿色食品每天获得利润P 元,当销售单价为何值时,每天可获得最大利润?最大利润是多少?⑶根据市场调查,该绿色食品每天可获利润不超过4480元,•现该超市经理要求每天利润不得低于4180元,请你帮助该超市确定绿色食品销售单价x 的范围(•直接写出答案).7.,某果品批发公司为指导今年的樱桃销售,对往年的市场销售情况进行了调查统计,得到如下数据: 销售价x (元/千克) (25)24 23 22 … 销售量y (千克) … 2000 2500 3000 3500 …(1)在如图的直角坐标系内,作出各组有序数对(x ,y )所对应的点.连接各点并观察所得的图形,判断y 与x 之间的函数关系,并求出y 与x 之间的函数关系式;(2)若樱桃进价为13元/千克,试求销售利润P (元)与销售价x (元/千克)之间的函数关系式,并求出当x 取何值时,P 的值最大?8.为了落实国务院副总理李克强同志到恩施考察时的指示精神,最近,州委州政府又出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=-2x+80.设这种产品每天的销售利润为y(元) .(1)求y与x之间的函数关系式;(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?二次函数的应用(利润问题)(答案)参考答案1解:设每件价格降价x 元,利润为y 元,则:)20)(70100(x x y +--=600102++-=x x 625)5((2+--=x 当5=x ,625max =y (元)答:价格提高5元,才能在半个月内获得最大利润.2解:设涨价(或降价)为每件x 元,利润为y 元,1y 为涨价时的利润,2y 为降价时的利润 则)10300)(4060(1x x y -+-=)60010(102---=x x 6250)5(102+--=x 当5=x ,即:定价为65元时,6250max =y (元) )20300)(4060(2x x y +--=)15)(20(20+--=x x 6125)5.2(202+--=x 当5.2=x ,即:定价为57.5元时,6125max =y (元)综合两种情况,应定价为65元时,利润最大.3解:设每件价格提高x 元,利润为y 元,则:)20400)(2030(x x y --+=)20)(10(20-+-=x x 4500)5(202+--=x 当5=x ,4500max =y (元)答:价格提高5元,才能在半个月内获得最大利润. 4解:设旅行团有x 人)30(≥x ,营业额为y 元,则:)]30(10800[--=x x y )110(10--=x x 30250)55(102+--=x当55=x ,30250max =y (元)答:当旅行团的人数是55人时,可以获得最大营业额. 5解:⑴设一次函数表达式为b kx y +=. 则1525,220k b k b +=⎧⎨+=⎩ 解得⎩⎨⎧=-=401b k ,即一次函数表达式为40+-=x y . ⑵ 设每件产品的销售价应定为x 元,所获销售利润为w 元 y x w )10(-=)40)(10(+--=x x 400502-+-=x x 225)25(2+--=x当25=x ,225max =y (元)答:销售价应定为25元时,每日获得最大销售利润为225元6解:⑴设y=kx+b 由图象可知,3040020,:402001000k b k k b b +==-⎧⎧⎨⎨+==⎩⎩解之得,即100020+-=x y )5030(≤≤x . ⑵ y x P )20(-=)100020)(20(+--=x x 200001400202-+-=x x∵020<-=a ∴P 有最大值. 当35)20(21400=-⨯=x 时,4500max =P (元) 答:当销售单价为35元/千克时,每天可获得最大利润4500元.⑶∵44804500)35(2041802≤+--≤x 16)35(12≤-≤x ∴31≤x ≤34或36≤x≤39. 7解:(1)由图象可知,y 是x 的一次函数,设y=kx+b ,•∵点(•25,2000),(24,2500)在图象上,∴200025500,:25002414500k b k k b b =+=-⎧⎧⎨⎨=+=⎩⎩解得 ,∴y=-500x+14500. (2)P=(x-13)·y=(x-13)·(-500x+14500))37744144142(500)37742(500)29)(13(50022+-+--=+--=---=x x x x x x=-500(x-21)2+32000∴P 与x 的函数关系式为P=-500x 2+21000x-188500,当销售价为21元/千克时,能获得最大利润,最大利润为32000元.8.解:)802)(20()20(+--=-=x x w x y )40)(20(2---=x x )80060(22+--=x x 200)30(22+--=x 160012022-+-=x x 当30=x ,200max =y (元)(1)y 与x 之间的的函数关系式为;160012022-+-=x x y(2)当销售价定为30元时,每天的销售利润最大,最大利润是200元.(3) 150200)30(22=+--x ,25)30(2=-x 28351>=x (舍去)252=x 答:该农户想要每天获得150元的销售利润,销售价应定为25元.,应选乙地.。
二次函数最大利润应用题(含答案)
二次函数最大利润应用题参考答案与试题解析1.某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD、线段CD分别表示该产品每千克生产成本y1(单位:元)、销售价y2(单位:元)与产量x(单位:kg)之间的函数关系.(1)请解释图中点D的横坐标、纵坐标的实际意义;(2)求线段AB所表示的y1与x之间的函数表达式;(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?【解答】解:(1)点D的横坐标、纵坐标的实际意义:当产量为130kg时,该产品每千克生产成本与销售价相等,都为42元;(2)设线段AB所表示的y1与x之间的函数关系式为y=k1x+b1,∵y=k1x+b1的图象过点(0,60)与(90,42),∴∴,∴这个一次函数的表达式为;y=﹣0.2x+60(0≤x≤90);(3)设y2与x之间的函数关系式为y=k2x+b2,∵经过点(0,120)与(130,42),∴,解得:,∴这个一次函数的表达式为y2=﹣0.6x+120(0≤x≤130),设产量为xkg时,获得的利润为W元,当0≤x≤90时,W=x[(﹣0.6x+120)﹣(﹣0.2x+60)]=﹣0.4(x﹣75)2+2250,∴当x=75时,W的值最大,最大值为2250;当90≤x≤130时,W=x[(﹣0.6x+120)﹣42]=﹣0.6(x﹣65)2+2535,由﹣0.6<0知,当x>65时,W随x的增大而减小,∴90≤x≤130时,W≤2160,∴当x=90时,W=﹣0.6(90﹣65)2+2535=2160,因此当该产品产量为75kg时,获得的利润最大,最大值为2250.2.某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元,为按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y只,y与x满足下列关系式:y=.(1)李明第几天生产的粽子数量为420只?(2)如图,设第x天每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大,最大利润是多少元?(利润=出厂价﹣成本)(3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m天的利润至少多48元,则第(m+1)天每只粽子至少应提价几元?【解答】解:(1)设李明第n天生产的粽子数量为420只,由题意可知:30n+120=420,解得n=10.答:第10天生产的粽子数量为420只.(2)由图象得,当0≤x≤9时,p=4.1;当9≤x≤15时,设P=kx+b,把点(9,4.1),(15,4.7)代入得,,解得,∴p=0.1x+3.2,=513(元);①0≤x≤5时,w=(6﹣4.1)×54x=102.6x,当x=5时,w最大②5<x≤9时,w=(6﹣4.1)×(30x+120)=57x+228,∵x是整数,=741(元);∴当x=9时,w最大③9<x≤15时,w=(6﹣0.1x﹣3.2)×(30x+120)=﹣3x2+72x+336,∵a=﹣3<0,∴当x=﹣=12时,w=768(元);最大综上,当x=12时,w有最大值,最大值为768.(3)由(2)可知m=12,m+1=13,设第13天提价a元,由题意得,w=(6+a﹣p)(30x+120)=510(a+1.5),13∴510(a+1.5)﹣768≥48,解得a=0.1.答:第13天每只粽子至少应提价0.1元.3.近期,海峡两岸关系的气氛大为改善.大陆相关部门对原产台湾地区的15种水果实施进口零关税措施,扩大了台湾水果在大陆的销售.某经销商销售了台湾水果凤梨,根据以往销售经验,每天(1)写出y与x间的函数关系式;(2)如果凤梨的进价是20元/千克,若不考虑其他情况,那么单价从40元/千克下调多少元时,当天的销售利润W最大?利润最大是多少?(3)目前两岸还未直接通航,运输要绕行,需耗时一周(七天),凤梨最长的保存期为一个月(30天),若每天售价不低于32元/千克,问一次进货最多只能是多少千克?(4)若你是该销售部负责人,那么你该怎样进货、销售,才能使销售部利润最大?【解答】解:(1)y=60+5x(2)w=(40﹣x﹣20)y=﹣5(x﹣4)2+1280∴下调4元时当天利润最大是1280元(3)设一次进货m千克,由售价32元/千克得x=40﹣32=8,此时y=60+5x=100,∴m≤100×(30﹣7)=2300,答:一次进货最多2300千克(4)下调4元时当天利润最大,由x=4,y=60+5x=80,m=80×(30﹣7)=1840千克∴每次进货1840千克,售价36元/千克时,销售部利润最大.4.某店因为经营不善欠下38400元的无息贷款的债务,想转行经营服装专卖店又缺少资金.“中国梦想秀”栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息).已知该店代理的品牌服装的进价为每件40元,该品牌服装日销售量y(件)与销售价x(元/件)之间的关系可用图中的一条折线(实线)来表示.该店应支付员工的工资为每人每天82元,每天还应支付其它费用为106元(不包含债务).(1)求日销售量y(件)与销售价x(元/件)之间的函数关系式;(2)若该店暂不考虑偿还债务,当某天的销售价为48元/件时,当天正好收支平衡(收人=支出),求该店员工的人数;(3)若该店只有2名员工,则该店最早需要多少天能还清所有债务,此时每件服装的价格应定为多少元?【解答】解:(1)当40≤x≤58时,设y与x的函数解析式为y=k1x+b1,由图象可得,解得.∴y=﹣2x+140.当58<x≤71时,设y与x的函数解析式为y=k2x+b2,由图象得,解得,∴y=﹣x+82,综上所述:y=;(2)设人数为a,当x=48时,y=﹣2×48+140=44,∴(48﹣40)×44=106+82a,解得a=3;(3)设需要b天,该店还清所有债务,则:b[(x﹣40)•y﹣82×2﹣106]≥68400,∴b≥,当40≤x≤58时,∴b≥=,x=﹣时,﹣2x2+220x﹣5870的最大值为180,∴b,即b≥380;当58<x≤71时,b=,当x=﹣=61时,﹣x2+122x﹣3550的最大值为171,∴b,即b≥400.综合两种情形得b≥380,即该店最早需要380天能还清所有债务,此时每件服装的价格应定为55元.5.某公司经营杨梅业务,以3万元/吨的价格向农户收购杨梅后,分拣成A、B两类,A类杨梅包装后直接销售;B类杨梅深加工后再销售.A类杨梅的包装成本为1万元/吨,根据市场调查,它的平均销售价格y(单位:万元/吨)与销售数量x(x≥2)之间的函数关系如图;B类杨梅深加工总费用s(单位:万元)与加工数量t(单位:吨)之间的函数关系是s=12+3t,平均销售价格为9万元/吨.(1)直接写出A类杨梅平均销售价格y与销售量x之间的函数关系式;(2)第一次,该公司收购了20吨杨梅,其中A类杨梅有x吨,经营这批杨梅所获得的毛利润为w 万元(毛利润=销售总收入﹣经营总成本).①求w关于x的函数关系式;②若该公司获得了30万元毛利润,问:用于直销的A类杨梅有多少吨?(3)第二次,该公司准备投入132万元资金,请设计一种经营方案,使公司获得最大毛利润,并求出最大毛利润.【解答】解:(1)①当2≤x<8时,如图,设直线AB解析式为:y=kx+b,将A(2,12)、B(8,6)代入得:,解得,∴y=﹣x+14;②当x≥8时,y=6.所以A类杨梅平均销售价格y与销售量x之间的函数关系式为:y=;(2)设销售A类杨梅x吨,则销售B类杨梅(20﹣x)吨.①当2≤x<8时,wA=x(﹣x+14)﹣x=﹣x2+13x;wB=9(20﹣x)﹣[12+3(20﹣x)]=108﹣6x∴w=wA +wB﹣3×20=(﹣x2+13x)+(108﹣6x)﹣60=﹣x2+7x+48;当x≥8时,wA=6x﹣x=5x;wB=9(20﹣x)﹣[12+3(20﹣x)]=108﹣6x∴w=wA +wB﹣3×20=(5x)+(108﹣6x)﹣60 =﹣x+48.∴w关于x的函数关系式为:w=.②当2≤x<8时,﹣x2+7x+48=30,解得x1=9,x2=﹣2,均不合题意;当x≥8时,﹣x+48=30,解得x=18.∴当毛利润达到30万元时,直接销售的A类杨梅有18吨.(3)设该公司用132万元共购买了m吨杨梅,其中A类杨梅为x吨,B类杨梅为(m﹣x)吨,则购买费用为3m万元,A类杨梅加工成本为x万元,B类杨梅加工成本为[12+3(m﹣x)]万元,∴3m+x+[12+3(m﹣x)]=132,化简得:x=3m﹣60.①当2≤x<8时,wA=x(﹣x+14)﹣x=﹣x2+13x;wB=9(m﹣x)﹣[12+3(m﹣x)]=6m﹣6x﹣12∴w=wA +wB﹣3×m=(﹣x2+13x)+(6m﹣6x﹣12)﹣3m=﹣x2+7x+3m﹣12.将3m=x+60代入得:w=﹣x2+8x+48=﹣(x﹣4)2+64 ∴当x=4时,有最大毛利润64万元,此时m=,m﹣x=;②当x≥8时,wA=6x﹣x=5x;wB=9(m﹣x)﹣[12+3(m﹣x)]=6m﹣6x﹣12∴w=wA +wB﹣3×m=(5x)+(6m﹣6x﹣12)﹣3m=﹣x+3m﹣12.将3m=x+60代入得:w=48∴当x>8时,有最大毛利润48万元.综上所述,购买杨梅共吨,其中A类杨梅4吨,B类吨,公司能够获得最大毛利润,最大毛利润为64万元.6.为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式.(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?【解答】解:(1)由题意得出:w=(x﹣20)∙y=(x﹣20)(﹣2x+80)=﹣2x2+120x﹣1600,故w与x的函数关系式为:w=﹣2x2+120x﹣1600;(2)w=﹣2x2+120x﹣1600=﹣2(x﹣30)2+200,∵﹣2<0,∴当x=30时,w有最大值.w最大值为200.答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元.(3)当w=150时,可得方程﹣2(x﹣30)2+200=150.解得 x1=25,x2=35.∵35>28,∴x2=35不符合题意,应舍去.答:该农户想要每天获得150元的销售利润,销售价应定为每千克25元.7.某公司销售一种进价为20元/个的计算器,其销售量y(万个)与销售价格x(元/个)的变化(1)观察并分析表中的y与x之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识写出y(万个)与x(元/个)的函数解析式.(2)求出该公司销售这种计算器的净得利润z(万元)与销售价格x(元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?(3)该公司要求净得利润不能低于40万元,请写出销售价格x(元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?【解答】解:(1)根据表格中数据可得出:y与x是一次函数关系,设解析式为:y=ax+b,则,解得:,故函数解析式为:y=﹣x+8;(2)根据题意得出:z=(x﹣20)y﹣40=(x﹣20)(﹣x+8)﹣40=﹣x2+10x﹣200,=﹣(x2﹣100x)﹣200=﹣[(x﹣50)2﹣2500]﹣200=﹣(x﹣50)2+50,故销售价格定为50元/个时净得利润最大,最大值是50万元.(3)当公司要求净得利润为40万元时,即﹣(x﹣50)2+50=40,解得:x1=40,x2=60.如上图,通过观察函数y=﹣(x﹣50)2+50的图象,可知按照公司要求使净得利润不低于40万元,则销售价格的取值范围为:40≤x≤60.而y与x的函数关系式为:y=﹣x+8,y随x的增大而减少,因此,若还需考虑销售量尽可能大,销售价格应定为40元/个.8.某大学生利用暑假40天社会实践参与了一家网店的经营,了解到一种成本为20元/件的新型商x(2)求该网店第x天获得的利润y关于x的函数关系式;(3)这40天中该网店第几天获得的利润最大?最大的利润是多少?【解答】解:(1)当1≤x≤20时,令30+x=35,得x=10,当21≤x≤40时,令20+=35,得x=35,经检验得x=35是原方程的解且符合题意即第10天或者第35天该商品的销售单价为35元/件.(2)当1≤x≤20时,y=(30+x﹣20)(50﹣x)=﹣x2+15x+500,当21≤x≤40时,y=(20+﹣20)(50﹣x)=﹣525,即y=,(3)当1≤x≤20时,y=﹣x2+15x+500=﹣(x﹣15)2+612.5,∵﹣<0,∴当x=15时,y有最大值y1,且y1=612.5,当21≤x≤40时,∵26250>0,∴随x的增大而减小,当x=21时,最大,于是,x=21时,y=﹣525有最大值y2,且y2=﹣525=725,∵y1<y2,∴这40天中第21天时该网店获得利润最大,最大利润为725元.9.某公司生产的一种健身产品在市场上受到普遍欢迎,每年可在国内、国外市场上全部售完.该公司的年产量为6千件,若在国内市场销售,平均每件产品的利润y1(元)与国内销售量x(千件)的关系为:y1=若在国外销售,平均每件产品的利润y2(元)与国外的销售数量t(千件)的关系为(1)用x的代数式表示t为:t= 6﹣x ;当0<x≤4时,y2与x的函数关系为:y2= 5x+80 ;当 4 ≤x< 6 时,y2=100;(2)求每年该公司销售这种健身产品的总利润w(千元)与国内销售数量x(千件)的函数关系式,并指出x的取值范围;(3)该公司每年国内、国外的销售量各为多少时,可使公司每年的总利润最大?最大值为多少?【解答】解:(1)由题意,得x+t=6,∴t=6﹣x;∵,∴当0<x≤4时,2≤6﹣x<6,即2≤t<6,此时y2与x的函数关系为:y2=﹣5(6﹣x)+110=5x+80;当4≤x<6时,0<6﹣x≤2,即0<t≤2,此时y2=100.故答案为:6﹣x;5x+80;4,6;(2)分三种情况:①当0<x≤2时,w=(15x+90)x+(5x+80)(6﹣x)=10x2+40x+480;②当2<x≤4时,w=(﹣5x+130)x+(5x+80)(6﹣x)=﹣10x2+80x+480;③当4<x≤6时,w=(﹣5x+130)x+100(6﹣x)=﹣5x2+30x+600;综上可知,w=;(3)当0<x≤2时,w=10x2+40x+480=10(x+2)2+440,此时x=2时,w最大=600;当2<x≤4时,w=﹣10x2+80x+480=﹣10(x﹣4)2+640,此时x=4时,w最大=640;当4<x≤6时,w=﹣5x2+30x+600=﹣5(x﹣3)2+645,4<x<6时,w<640;∵a=﹣5,∴当x>3时,w随x的增大而减小,∴没有w最大.故该公司每年国内、国外的销售量各为4千件、2千件,可使公司每年的总利润最大,最大值为640千元.10.某公司投资700万元购甲、乙两种产品的生产技术和设备后,进行这两种产品加工.已知生产甲种产品每件还需成本费30元,生产乙种产品每件还需成本费20元.经市场调研发现:甲种产品的销售单价为x(元),年销售量为y(万件),当35≤x<50时,y与x之间的函数关系式为y=20﹣0.2x;当50≤x≤70时,y与x的函数关系式如图所示,乙种产品的销售单价,在25元(含)到45元(含)之间,且年销售量稳定在10万件.物价部门规定这两种产品的销售单价之和为90元.(1)当50≤x≤70时,求出甲种产品的年销售量y(万元)与x(元)之间的函数关系式.(2)若公司第一年的年销售量利润(年销售利润=年销售收入﹣生产成本)为W(万元),那么怎样定价,可使第一年的年销售利润最大?最大年销售利润是多少?(3)第二年公司可重新对产品进行定价,在(2)的条件下,并要求甲种产品的销售单价x(元)在50≤x≤70范围内,该公司希望到第二年年底,两年的总盈利(总盈利=两年的年销售利润之和﹣投资成本)不低于85万元.请直接写出第二年乙种产品的销售单价m(元)的范围.【解答】解:(1)设y与x的函数关系式为y=kx+b(k≠0),∵函数图象经过点(50,10),(70,8),∴,解得,所以,y=﹣0.1x+15;(2)∵乙种产品的销售单价在25元(含)到45元(含)之间,∴,解之得45≤x≤65,①45≤x<50时,W=(x﹣30)(20﹣0.2x)+10(90﹣x﹣20),=﹣0.2x2+16x+100,=﹣0.2(x2﹣80x+1600)+320+100,=﹣0.2(x﹣40)2+420,∵﹣0.2<0,∴x>40时,W随x的增大而减小,∴当x=45时,W有最大值,W最大=﹣0.2(45﹣40)2+420=415万元;②50≤x≤65时,W=(x﹣30)(﹣0.1x+15)+10(90﹣x﹣20),=﹣0.1x2+8x+250,=﹣0.1(x2﹣80x+1600)+160+250,=﹣0.1(x﹣40)2+410,∵﹣0.1<0,∴x>40时,W随x的增大而减小,∴当x=50时,W有最大值,W最大=﹣0.1(50﹣40)2+410=400万元.综上所述,当x=45,即甲、乙两种产品定价均为45元时,第一年的年销售利润最大,最大年销售利润是415万元;(3)根据题意得,W=﹣0.1x2+8x+250+415﹣700=﹣0.1x2+8x﹣35,令W=85,则﹣0.1x2+8x﹣35=85,解得x1=20,x2=60.又由题意知,50≤x≤65,根据函数与x轴的交点可知50≤x≤60,即50≤90﹣m≤60,∴30≤m≤40.11.某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量y (万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣制造成本)(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,厂商每月能获得350万元的利润?当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?(3)根据相关部门规定,这种电子产品的销售单价不能高于32元,如果厂商要获得每月不低于350万元的利润,那么制造出这种产品每月的最低制造成本需要多少万元?【解答】解:(1)z=(x﹣18)y=(x﹣18)(﹣2x+100)=﹣2x2+136x﹣1800,∴z与x之间的函数解析式为z=﹣2x2+136x﹣1800(x>18);(2)由z=350,得350=﹣2x2+136x﹣1800,解这个方程得x1=25,x2=43所以,销售单价定为25元或43元,将z=﹣2x2+136x﹣1800配方,得z=﹣2(x﹣34)2+512(x>18),答;当销售单价为34元时,每月能获得最大利润,最大利润是512万元;(3)结合(2)及函数z=﹣2x2+136x﹣1800的图象(如图所示)可知,当25≤x≤43时z≥350,又由限价32元,得25≤x≤32,根据一次函数的性质,得y=﹣2x+100中y随x的增大而减小,∵x最大取32,∴当x=32时,每月制造成本最低.最低成本是18×(﹣2×32+100)=648(万元),答:每月最低制造成本为648万元.12.某科技开发公司研制出一种新型的产品,每件产品的成本为2400元,销售单价定为3000元,在该产品的试销期间,为了促销,鼓励商家购买该新型产品,公司决定商家一次购买这种新型产品不超过10件时,每件按3000元销售;若一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低10元,但销售单价均不低于2600元.(1)商家一次购买这种产品多少件时,销售单价恰好为2600元?(2)设商家一次购买这种产品x件,开发公司所获得的利润为y元,求y(元)与x(件)之间的函数关系式,并写出自变量x的取值范围.(3)该公司的销售人员发现:当商家一次购买产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获得的利润反而减少这一情况.为使商家一次购买的数量越多,公司所获得的利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)【解答】解:(1)设件数为x,依题意,得3000﹣10(x﹣10)=2600,解得x=50,答:商家一次购买这种产品50件时,销售单价恰好为2600元;(2)当0≤x≤10时,y=(3000﹣2400)x=600x,当10<x≤50时,y=[3000﹣10(x﹣10)﹣2400]x,即y=﹣10x2+700x当x>50时,y=(2600﹣2400)x=200x∴y=(3)由y=﹣10x2+700x可知抛物线开口向下,当x=﹣=35时,利润y有最大值,此时,销售单价为3000﹣10(x﹣10)=2750元,答:公司应将最低销售单价调整为2750元.13.某商家经销一种绿茶,用于装修门面已投资3000元,已知绿茶每千克成本50元,在第一个月(1)请根据上表,写出w与x之间的函数关系式(不必写出自变量x的取值范围);(2)求y与x之间的函数关系式(不必写出自变量x的取值范围).并求出x为何值时,y的值最大?(3)若在第一个月里,按使y获得最大值的销售单价进行销售后,在第二个月里受物价部门干预,销售单价不得高于90元,要想在全部收回投资的基础上使第二个月的利润达到1700元,那么第二个月里应该确定销售单价为多少元?【解答】解:(1)设w=kx+b,将(70,100),(75,90)代入上式得:,解得:,则w=﹣2x+240;(2)y=(x﹣50)•w=(x﹣50)•(﹣2x+240)=﹣2x2+340x﹣9000,因此y与x的关系式为:y=﹣2x2+340x﹣9000,=﹣2(x﹣85)2+2450,故当x=85时,y的值最大为2450.(3)故第1个月还有3000﹣2450=550元的投资成本没有收回,则要想在全部收回投资的基础上使第二个月的利润达到1700元,即y=2250才可以,可得方程﹣2(x﹣85)2+2450=2250,解这个方程,得x1=75,x2=95;根据题意,x2=95不合题意应舍去.答:当销售单价为每千克75元时,可获得销售利润2250元,即在全部收回投资的基础上使第二个月的利润达到1700元.14.某大众汽车经销商在销售某款汽车时,以高出进价20%标价.已知按标价的九折销售这款汽车9辆与将标价直降0.2万元销售4辆获利相同.(1)求该款汽车的进价和标价分别是多少万元?(2)若该款汽车的进价不变,按(1)中所求的标价出售,该店平均每月可售出这款汽车20辆;若每辆汽车每降价0.1万元,则每月可多售出2辆.求该款汽车降价多少万元出售每月获利最大?最大利润是多少?【解答】解:(1)设进价为x万元,则标价是1.2x万元,由题意得:1.2x×0.9×9﹣9x=(1.2x﹣0.2)×4﹣4x,解得:x=10,1.2×10=12(万元),答:进价为10万元,标价为12万元;(2)设该款汽车降价a万元,利润为w万元,由题意得:w=(20+×2)(12﹣10﹣a),=﹣20(a﹣)2+45,∵﹣20<0,∴当a=时,w最大=45,答:该款汽车降价0.5万元出售每月获利最大,最大利润是45万元.15.荆州市“建设社会主义新农村”工作组到某县大棚蔬菜生产基地指导菜农修建大棚种植蔬菜.通过调查得知:平均修建每公顷大棚要用支架、农膜等材料费2.7万元;购置滴灌设备,这项费用(万元)与大棚面积(公顷)的平方成正比,比例系数为0.9;另外每公顷种植蔬菜需种子、化肥、农药等开支0.3万元.每公顷蔬菜年均可卖7.5万元.(1)基地的菜农共修建大棚x(公顷),当年收益(扣除修建和种植成本后)为y(万元),写出y 关于x的函数关系式.(2)若某菜农期望通过种植大棚蔬菜当年获得5万元收益,工作组应建议他修建多少公顷大棚.(用分数表示即可)(3)除种子、化肥、农药投资只能当年受益外,其它设施3年内不需增加投资仍可继续使用.如果按3年计算,是否修建大棚面积越大收益越大?修建面积为多少时可以得到最大收益?请帮工作组为基地修建大棚提一项合理化建议.【解答】解:(1)y=7.5x﹣(2.7x+0.9x2+0.3x)=7.5x﹣2.7x﹣0.9x2﹣0.3x=﹣0.9x2+4.5x.(2)当﹣0.9x2+4.5x=5时,整理得:9x2﹣45x+50=0,解得:x1=,x2=,从投入、占地与当年收益三方面权衡,应建议修建公顷大棚.(3)设3年内每年的平均收益为Z(万元)Z=7.5x﹣(0.9x+0.3x2+0.3x)=7.5x﹣0.9x﹣0.3x2﹣0.3x=﹣0.3x2+6.3x=﹣0.3(x﹣10.5)2+33.075(10分)不是面积越大收益越大.当大棚面积为10.5公顷时可以得到最大收益.(11分)建议:①在大棚面积不超过10.5公顷时,可以扩大修建面积,这样会增加收益.②大棚面积超过10.5公顷时,扩大面积会使收益下降.修建面积不宜盲目扩大.③当﹣0.3x2+6.3x=0时,x1=0,x2=21.大棚面积超过21公顷时,不但不能收益,反而会亏本.(说其中一条即可)(12分)16.今年我国多个省市遭受严重干旱,受旱灾的影响,4月份,我市某蔬菜价格呈上升趋势,其前y(元/千克)从5月第1周的2.8元/千克下降至第2周的2.4元/千克,且y与周数x的变化情况满足二次函数y=﹣x2+bx+c.(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识直接写出4月份y与x的函数关系式,并求出5月份y与x的函数关系式;(2)若4月份此种蔬菜的进价m(元/千克)与周数x所满足的函数关系为m=x+1.2,5月份此种蔬菜的进价m(元/千克)与周数x所满足的函数关系为m=x+2.试问4月份与5月份分别在哪一周销售此种蔬菜一千克的利润最大?且最大利润分别是多少?(3)若5月份的第2周共销售100吨此种蔬菜.从5月份的第3周起,由于受暴雨的影响,此种蔬菜的可供销量将在第2周销量的基础上每周减少a%,政府为稳定蔬菜价格,从外地调运2吨此种蔬菜,刚好满足本地市民的需要,且使此种蔬菜的销售价格比第2周仅上涨0.8a%.若在这一举措下,此种蔬菜在第3周的总销售额与第2周刚好持平,请你参考以下数据,通过计算估算出a 的整数值.(参考数据:372=1369,382=1444,392=1521,402=1600,412=1681)【解答】解:(1)4月份y与x满足的函数关系式为y=0.2x+1.8把x=1,y=2.8和x=2,y=2.4,分别代入y=﹣+bx+c得解得:,∴5月份y与x满足的函数关系式为y=﹣0.05x2﹣0.25x+3.1;(2)设4月份第x周销售此种蔬菜一千克的利润为W1元,5月份第x周销售此种蔬菜一千克的利润为W2元.则:W1=(0.2x+1.8)﹣(x+1.2)=﹣0.05x+0.6∵﹣0.05<0,∴W1随x的增大而减少∴当x=1时,W1最大=﹣0.05+0.6=0.55W2=(﹣0.05x2﹣0.25x+3.1)﹣(﹣x+2)=﹣0.05x2﹣0.05x+1.1∵对称轴为x=﹣=﹣0.5,且﹣0.05<0,∴当x=1时,W2最大=1∴4月份销售此种蔬菜一千克的利润在第1周最大,最大利润为0.55元,5月份销售此种蔬菜一千克的利润在第1周最大,最大利润为1元.(3)由题意知:[100000(1﹣a%)+2000]×2.4(1+0.8a%)=2.4×100000,整理,得a2+23a﹣250=0,解得a=∵392=1521,402=1600,而1529更接近1521,∴取≈39∴a≈﹣31(舍去)或a≈8.17.某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为y=x+150,成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w内(元)(利润=销售额﹣成本﹣广告费).若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,10≤a≤40),当月销量为x(件)时,每月还需缴纳x2元的附加费,设月利润为w外(元)(利润=销售额﹣成本﹣附加费).(1)当x=1000时,y= 140 元/件,w内= 57500 元;(2)分别求出w内,w外与x间的函数关系式(不必写x的取值范围);(3)当x为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值;(4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内还是在国外销售才能使所获月利润较大?参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是().【解答】解:(1)x=1000,y=×1000+150=140,w内=(140﹣20)×1000﹣62500=57500.(2)w内=x(y﹣20)﹣62500=x2+130x﹣62500,w外=x2+(150﹣a)x.(3)当x==6500时,w内最大;由题意在国外销售月利润的最大值与在国内销售月利润的最大值相同,得:=,解得a1=30,a2=270(不合题意,舍去).∴a=30.(4)当x=5000时,w 内=337500,w 外=﹣5000a+500000.若w 内<w 外,则a <32.5;若w 内=w 外,则a=32.5;若w 内>w 外,则a >32.5.∴当10≤a<32.5时,选择在国外销售;当a=32.5时,在国外和国内销售都一样;当32.5<a≤40时,选择在国内销售.18.红星公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内时间t (天) 1 3 6 10 36 …日销售量m (件) 94 90 84 76 24 …未来40天内,前20天每天的价格y 1(元/件)与时间t (天)的函数关系式为y 1=t+25(1≤t≤20且t 为整数),后20天每天的价格y 2(元/件)与时间t (天)的函数关系式为y 2=﹣t+40(21≤t≤40且t 为整数).下面我们就来研究销售这种商品的有关问题:(1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的m (件)与t (天)之间的关系式;(2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少?(3)在实际销售的前20天中,该公司决定每销售一件商品就捐赠a 元利润(a <4)给希望工程.公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t (天)的增大而增大,求a 的取值范围.【解答】解:(1)设一次函数为m=kt+b ,将和代入一次函数m=kt+b 中,有,∴. ∴m=﹣2t+96.经检验,其它点的坐标均适合以上解析式,故所求函数解析式为m=﹣2t+96;(2)设前20天日销售利润为p 1元,后20天日销售利润为p 2元.由p 1=(﹣2t+96)(t+25﹣20)=(﹣2t+96)(t+5)=﹣t 2+14t+480=﹣(t ﹣14)2+578,∵1≤t≤20,∴当t=14时,p 1有最大值578(元).由p 2=(﹣2t+96)(﹣t+40﹣20) =(﹣2t+96)(﹣t+20)=t 2﹣88t+1920=(t﹣44)2﹣16.∵21≤t≤40,此函数对称轴是t=44,在21≤t≤40上,在对称轴左侧,随t的增大而减小.∴函数p2有最大值为(21﹣44)2﹣16=529﹣16=513(元).∴当t=21时,p2∵578>513,故第14天时,销售利润最大,为578元;(3)p=(﹣2t+96)(t+25﹣20﹣a)=﹣t2+(14+2a)t+480﹣96a 1对称轴为t=14+2a.∵1≤t≤20,∴当t≤2a+14时,P随t的增大而增大,又∵每天扣除捐赠后的日利润随时间t的增大而增大,∴20≤2a+14,又∵a<4,∴3≤a<4.。
二次函数的实际应用(利润问题)
建立模型
将问题抽象为二次函数模型,确定各项参数。
验证和调整
通过实际数据验证模型的准确性,并根据实际 情况进行调整和优化。
2 图像特点
二次函数的图像形状通常为抛物线,具有顶点、对称轴和开口方向等特点。
3 重要概念
二次函数的最值、最值点、零点等重要概念对利润问题的分析很有帮助。
二次函数的利润问题
利润问题是二次函数在实际应用中的一个典型问题。通过二次函数,我们可以计算出不同销量对应的利润,并 进一步分析销量与利润之间的关系。
利润的计算公式
1 收入
收入是销量乘以单价,可以表示为 R = px,其中 p 表示单价,x 表示销量。
2 成本
成本是与销量相关的固定成本和单位成本的乘积,可以表示为 C = a + bx。
3 利润
利润是收入减去成本,可以表示为 P = R - C。
二次函数在利润问题中的应用举例
例一:最大利润
根据给定的销量-利润函数,我们 可以通过分析函数的图像找到最 大利润所对应的销量。
例二:利润变化率
我们可以通过利润函数的一阶导 数(利润对销量的变化率)来分 析利润的增减情况。
例三:最佳生产量
通过分析利润函数的零点,我们 可以确定最佳生产量以最大化利 润。
最大化利润和最小化亏损
最大化利润
通过优化销量,控制成本和定价策略,我们可以最 大化企业的利润。
最小化亏损
在经营中,我们也需要考虑如何降低亏损,避免经 营困难。
求解利润最大化的方法
1
利润函数建模
将利润问题建立二次函数模型,确定各项参数。
2
图像分析
分析二次函数图像的顶点、开口方向等特点,确定最值点。
第05讲二次函数利润问题的四种题型(带答案)
第05讲二次函数利润问题的四种题型题型一:“每每”的利润问题商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施,经调查发现,每件商品每降价1元,商场每天可多售出2件,设每件商品降低x元,“每每”问题的做题步骤①找出原来的销量:30件,原来的每件盈利:50元;②确定每件产品降价(或涨价)后的利润:(50-x)元;③计算出降价(或涨价)后销量的变化量:2x件;④找出降价(或涨价)后的销量,本题里有明确的“多出”字样,即为:(30+2x)件;⑤利润=每件利润×数量:=5−5+B计算注意事项①若题中要求价格为整数,而二次函数的对称轴不是整数,要用二次函数的性质取适当的整数求最值;②结果可能不唯一,例如题中要求结果为整数,而对称轴是51.5,那么51和52都可以;③看清楚题中是否有“最优惠”等条件,算出多个结果需要舍根。
【例1】商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施,经调查发现,每件商品每降价1元,商场每天可多售出2件,设每件商品降低x元,据此规律,请回答:(1)商场日销售量增加件,每件商品盈利元(用含x的代数式表示);(2)在上述条件不变,销售正常的情况下,设商场日盈利y元,求y与x的函数关系式;(3)在(2)的条件下,每件商品降价多少元时,商场日盈利最高?【答案】(1)2x ,()50x -;(2)2701500y x x =--+(3)每件商品降价35元时,商场日盈利最高.【分析】(1)每件商品每降价1元,商场平均每天可多售出2件.设每件商品降价x 元.商场日销售量增加2x 件,每件商品盈利()50x -元;(2)根据(1)得,单件利润乘以销售量等于利润,即可得到y 与x 的函数关系式;(3)由题意得:利润函数的表达式为()()50302y x x =-+,再化为顶点式得()2352725y x =-++,得,当35x =时,y 有最大值.【详解】(1)解:每天销售30件,每件盈利50元,每件商品每降价1元,商场平均每天可多售出2件,∴当降价x 元时,商场日销售量增加2x 件,每件商品盈利为()50x -元,故答案为:2x ,()50x -;(2)解:根据题意得:=50−30+2=−2−70+1500.(3)解:()22701500352725y x x x =--+=-++,当35x =时,y 有最大值,答:每件商品降价35元时,商场日盈利最高.【点睛】本题考查二次函数的销售问题,涉及到利润函数=单件利润乘以销售数量,利用二次函数的性质求最值,通常都是化为顶点式来解决问题.1.(2022·贵州遵义·三模)红星公司销售一种成本为4元/件的产品,若月销售单价不高于5元/件.一个月可售出5万件;月销售单价每涨价1元,月销售量就减少0.1万件.其中月销售单价不低于成本.设月销售单价为x (单位:元/件),月销售量为y (单位:万件).(1)直接写出y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)当月销售单价是多少元/件时,月销售利润最大,最大利润是多少万元?(3)为响应国家“乡村振兴”政策,该公司决定在某月每销售件产品便向大别山区捐款a 元,已知该公司捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元,求a 的值2.(2022·辽宁朝阳·模拟预测)商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施,经调查发现,每件商品每降价1元,商场每天可多售出2件,设每件商品降低x元据此规律,请回答:(1)商场日销售量增加件,每件商品盈利元(用含x的代数式表示);(2)在上述条件不变,销售正常的情况下,设商场日盈利y元,求y与x的函数关系式;(3)在(2)的条件下,每件商品降价多少元时,商场日盈利最高?3.(贵州遵义·统考一模)某水果批发店销售一种优质水果,已知这种优质水果的进价为10元/千克.经市场调查发现:若售价为12元/千克时,每天的销售量为180千克;若售价每千克提高1元,每天的销售量就会减少10千克.设每天的销售量为y千克,每千克的售价为x元.请解答以下问题:(1)为让利给顾客,当这种优质水果售价为多少时,每天可获得利润960元.(2)当售价定为多少时,每天可获得最大利润,并求最大利润是多少?4.(2022·四川巴中·统考中考真题)端午节吃粽子是中华民族的传统习俗,市场上猪肉粽进价比豆沙粽进价每盒贵10元,一盒猪肉粽加两盒豆沙粽进价为100元.(1)求每盒猪肉粽和豆沙粽的进价;(2)在销售中,某商家发现当每盒猪肉粽售价为50元时,每天可售出100盒,若每盒售价提高1元,则每天少售出2盒.设每盒猪肉粽售价为a元,销售猪肉粽的利润为w元,求该商家每天销售猪肉粽获得的最大利润.5.(2022·山东青岛·统考中考真题)李大爷每天到批发市场购进某种水果进行销售,这种水果每箱10千克,批发商规定:整箱购买,一箱起售,每人一天购买不超过10箱;当购买1箱时,批发价为8.2元/千克,每多购买1箱,批发价每千克降低0.2元.根据李大爷的销售经验,这种水果售价为12元/千克时,每天可销售1箱;售价每千克降低0.5元,每天可多销售1箱.(1)请求出这种水果批发价y(元/千克)与购进数量x(箱)之间的函数关系式;(2)若每天购进的这种水果需当天全部售完,请你计算,李大爷每天应购进这种水果多少箱,才能使每天所获利润最大?最大利润是多少?6.(2022·贵州铜仁·统考中考真题)为实施“乡村振兴”计划,某村产业合作社种植了“千亩桃园”.2022年该村桃子丰收,销售前对本地市场进行调查发现:当批发价为4千元/吨时,每天可售出12吨,每吨涨1千元,每天销量将减少2吨,据测算,每吨平均投入成本2千元,为了抢占市场,薄利多销,该村产业合作社决定,批发价每吨不低于4千元,不高于5.5千元.请解答以下问题:(1)求每天销量y(吨)与批发价x(千元/吨)之间的函数关系式,并直接写出自变量x的取值范围;(2)当批发价定为多少时,每天所获利润最大?最大利润是多少?1.(2022·贵州遵义·三模)红星公司销售一种成本为4元/件的产品,若月销售单价不高于5元/件.一个月可售出5万件;月销售单价每涨价1元,月销售量就减少0.1万件.其中月销售单价不低于成本.设月销售单价为x(单位:元/件),月销售量为y(单位:万件).(1)直接写出y与x之间的函数关系式,并写出自变量x的取值范围;(2)当月销售单价是多少元/件时,月销售利润最大,最大利润是多少万元?(3)为响应国家“乡村振兴”政策,该公司决定在某月每销售件产品便向大别山区捐款a元,已知该公司捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元,求a的值【答案】(1)()540500.110(50100)xyx x⎧≤≤=⎨-+<≤⎩(2)7元/件,最大利润为9万元(3)4a=【分析】(1)分4050x≤≤和50x>两种情况,根据“月销售单价每涨价1元,月销售量就减少0.1万件”即可得函数关系式,再根据0y≥求出x的取值范围;(2)在(1)的基础上,根据“月利润=(月销售单价-成本价)⨯月销售量”建立函数关系式,分别利用一次函数和二次函数的性质求解即可得;万元,先根据捐款当月的月销售单价、月销售2.(2022·辽宁朝阳·模拟预测)商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施,经调查发现,每件商品每降价1元,商场每天可多售出2件,设每件商品降低x 元据此规律,请回答:(1)商场日销售量增加件,每件商品盈利元(用含x 的代数式表示);(2)在上述条件不变,销售正常的情况下,设商场日盈利y 元,求y 与x 的函数关系式;(3)在(2)的条件下,每件商品降价多少元时,商场日盈利最高?【答案】(1)2x ,()50x -;(2)2701500y x x =--+(3)每件商品降价35元时,商场日盈利最高.【分析】(1)每件商品每降价1元,商场平均每天可多售出2件.设每件商品降价x 元.商场日销售量增加2x 件,每件商品盈利()50x -元;(2)根据(1)得,单件利润乘以销售量等于利润,即可得到y 与x 的函数关系式;(3)由题意得:利润函数的表达式为()()50302y x x =-+,再化为顶点式得()2352725y x =-++,得,当35x =时,y 有最大值.【详解】(1)解:每天销售30件,每件盈利50元,每件商品每降价1元,商场平均每天可多售出2件,∴当降价x 元时,商场日销售量增加2x 件,每件商品盈利为()50x -元,故答案为:2x ,()50x -;(2)解:根据题意得:()()250302701500y x x x x =-+=--+.(3)解:()22701500352725y x x x =--+=-++,当35x =时,y 有最大值,答:每件商品降价35元时,商场日盈利最高.【点睛】本题考查二次函数的销售问题,涉及到利润函数=单件利润乘以销售数量,利用二次函数的性质求最值,通常都是化为顶点式来解决问题.3.(贵州遵义·统考一模)某水果批发店销售一种优质水果,已知这种优质水果的进价为10元/千克.经市场调查发现:若售价为12元/千克时,每天的销售量为180千克;若售价每千克提高1元,每天的销售量就会减少10千克.设每天的销售量为y 千克,每千克的售价为x 元.请解答以下问题:(1)为让利给顾客,当这种优质水果售价为多少时,每天可获得利润960元.(2)当售价定为多少时,每天可获得最大利润,并求最大利润是多少?【答案】(1)当这种优质水果售价为18元时,每天可获得利润960元(2)当售价定为20元时,每天可获得最大利润,最大利润是1000元【分析】(1)先根据题意求得销量与售价的关系,然后根据销量乘以每千克的利润等于总利润,列出一元二次方程,解方程即可求解;(2)设利润为w ,根据题意列出二次函数,根据二次函数的性质即可求解.【详解】(1)解:设每天的销售量为y 千克,每千克的售价为x 元,根据题意得,()180121010300y x x =--⨯=-+,()()1010300960x x --+=,解得:1218,22x x ==,∵为让利给顾客,∴18x =,答:当这种优质水果售价为18元时,每天可获得利润960元;(2)解:设利润为w ,则()()()22101030010400300010201000w x x x x x =--+=-+-=--+,∴20x =时,w 最大,最大利润是1000元,答:当售价定为20元时,每天可获得最大利润,最大利润是1000元.【点睛】本题考查了一元二次方程的应用,二次函数的应用,根据题意列出方程和函数关系式是解题的关键.4.(2022·四川巴中·统考中考真题)端午节吃粽子是中华民族的传统习俗,市场上猪肉粽进价比豆沙粽进价每盒贵10元,一盒猪肉粽加两盒豆沙粽进价为100元.(1)求每盒猪肉粽和豆沙粽的进价;(2)在销售中,某商家发现当每盒猪肉粽售价为50元时,每天可售出100盒,若每盒售价提高1元,则每天少售出2盒.设每盒猪肉粽售价为a 元,销售猪肉粽的利润为w 元,求该商家每天销售猪肉粽获得的最大利润.【答案】(1)每盒猪肉粽的进价为40元,每盒豆沙粽进价为30元(2)1800元【分析】(1)设每盒猪肉粽的进价为x 元,每盒豆沙粽的进价为y 元,根据猪肉粽进价比豆沙粽进价每盒贵10元,一盒猪肉粽加两盒豆沙粽进价为100元列出方程组,解出即可.(2)根据当50a =时,每天可售出100盒,每盒猪肉粽售价为a 元时,每天可售出猪肉粽()100250a --⎡⎤⎣⎦盒,列出二次函数关系式,再化成顶点式即可得解.(1)设每盒猪肉粽的进价为x 元,每盒豆沙粽的进价为y 元,由题意得:102100x y x y -=⎧⎨+=⎩解得:4030x y =⎧⎨=⎩∴每盒猪肉粽的进价为40元,每盒豆沙粽进价为30元.(2)(40)[1002(50)]w a a =---22(70)1800a =--+.∴当70a =时,w 最大值为1800元.∴该商家每天销售猪肉粽获得的最大利润为1800元.【点睛】本题主要考查了二元一次方程组的实际应用以及二次函数的实际应用,根据题意列出相应的函数关系式是解此题的关键.5.(2022·山东青岛·统考中考真题)李大爷每天到批发市场购进某种水果进行销售,这种水果每箱10千克,批发商规定:整箱购买,一箱起售,每人一天购买不超过10箱;当购买1箱时,批发价为8.2元/千克,每多购买1箱,批发价每千克降低0.2元.根据李大爷的销售经验,这种水果售价为12元/千克时,每天可销售1箱;售价每千克降低0.5元,每天可多销售1箱.(1)请求出这种水果批发价y (元/千克)与购进数量x (箱)之间的函数关系式;(2)若每天购进的这种水果需当天全部售完,请你计算,李大爷每天应购进这种水果多少箱,才能使每天所获利润最大?最大利润是多少?【答案】(1)0.28.4y x =-+(110x ≤≤且x 为整数).(2)李大爷每天应购进这种水果7箱,获得的利润最大,最大利润是140元.【分析】(1)根据题意列出8.20.2(1)y x =--,得到结果.(2)根据销售利润=销售量⨯(售价-进价),利用(1)结果,列出销售利润w 与x 的函数关系式,即可求出最大利润.【详解】(1)解:由题意得8.20.2(1)y x =--0.28.4x =-+∴批发价y 与购进数量x 之间的函数关系式是0.28.4y x =-+(110x ≤≤,且x 为整数).(2)解:设李大爷销售这种水果每天获得的利润为w 元则[120.5(1)]10w x y x=---⋅[120.5(1)(0.28.4)]10x x x=----+⋅2341x x=-+∵30a =-<园”.2022年该村桃子丰收,销售前对本地市场进行调查发现:当批发价为4千元/吨时,每天可售出12吨,每吨涨1千元,每天销量将减少2吨,据测算,每吨平均投入成本2千元,为了抢占市场,薄利多销,该村产业合作社决定,批发价每吨不低于4千元,不高于5.5千元.请解答以下问题:(1)求每天销量y (吨)与批发价x (千元/吨)之间的函数关系式,并直接写出自变量x 的取值范围;(2)当批发价定为多少时,每天所获利润最大?最大利润是多少?【答案】(1)220y x =-+,4 5.5x ≤≤(2)将批发价定为每吨5.5千元时,每天获得的利润最大,最大利润是31.5千元.【分析】(1)根据题意直接写出y 与x 之间的函数关系式和自变量的取值范围;(2)根据销售利润=销售量×(批发价-成本价),列出销售利润w (元)与批发价x (千元/吨)之间的函数关系式,再依据函数的增减性求得最大利润.(1)解:根据题意得()()12242204 5.5y x x x =--=-+≤≤,所以每天销量y (吨)与批发价x (千元/吨)之间的函数关系式220y x =-+,自变量x 的取值范围是4 5.5x ≤≤(2)解:设每天获得的利润为w 千元,根据题意得()()222202224402(6)32w x x x x x =-+-=-+-=--+,∵20-<,∴当6x <,W 随x 的增大而增大.∵4 5.5x ≤≤,∴当 5.5x =时,w 有最大值,最大值为22 5.563231.5-⨯-+=(),∴将批发价定为每吨5.5千元时,每天获得的利润最大,最大利润是31.5千元.【点睛】本题考查二次函数应用,解题的关键是读懂题意,列出函数关系式.题型二:二次函数和一次函数综合的利润问题【例2】2022年春,新冠肺炎有所蔓延,市场对口罩的需求量仍然较大.某公司销售一种进价为12元/袋的口罩,其销售量y (万袋)与销售价格x (元/袋)的变化如表:价格x (元/袋)…14161820…销售量y(万袋)…5432…另外,销售过程中的其他开支(不含进价)总计6万元.(1)根据表中数据变化规律及学过的“一次函数、二次函数、反比例函数”知识,请判断销售量y (万袋)与价格x (元/袋)满足什么函数?并求出y 与x 之间的函数表达式;(2)设该公司销售这种口罩的净利润为w (万元),当销售价格定为多少元时净利润最大,最大值是多少?,可判断该函数是一次函数;设1.(2022·贵州遵义·校考一模)农经公司以30元/千克的价格收购一批农产品进行销售,为了得到日销售量p(千克)与销售价格x(元/千克)之间的关系,经过市场调查获得部分数据如下表:销售价格x(元/千克)3035404550日销售量p(千克)6004503001500(1)请直接写出p与x之间的函数关系式:(2)农经公司应该如何确定这批农产品的销售价格,才能使日销售利润最大?(3)若农经公司每销售1千克这种农产品需支出a元(a>0)的相关费用,当40≤x≤45时,农经公司的日获利的最大值为2430元,求a的值.2.(2021·四川德阳·二模)某工厂制作A、B两种手工艺品,B每件获利比A多105元,制作16件A与制作2件B获利相同.(1)制作一件A和一件B分别获利多少元;(2)工厂安排65人制作A,B两种手工艺品,每人每天制作2件A或1件B.现在在不增加工人的情况下,增加制作C工艺品.已知每人每天可制作1件C(每人每天只能制作一种手工艺品),要求每天制作A,C两种手工艺品的数量相等,设每天安排x人制作B,y人制作A.写出y与x之间的函数关系式;(3)在(1)(2)的条件下,每天制作B不少于5件.当每天制作B为5件时,每件B获利不变,若B每增加1件,则当天平均每件B获利减少2元,已知C每件获利30元,求每天制作三种手工艺品可获得的总利润W(元)的最大值及相应x的值.3.(2022·辽宁大连·校考模拟预测)新冠肺炎疫情后期,我县某药店进了一批口罩,成本价为2元/个,投入市场销售,其销售单价不低于成本,按物价局规定销售利润率不高于80%.经一段时间调查,发现每天销售量y(个)与销售单价x(元/个)之间存在一次函数关系,且有两天数据为:销售价定为2.3元,每天销售1080个;销售价定为2.5元,每天销售1000个.(1)直接写出y与x之间的函数关系式,并写出自变量x的取值范围.(2)如果该药店销售口罩每天获得800元的利润,那么这种口罩的销售单价应定为多少元?(3)设每天的总利润为w元,当销售单价定为多少元时,该药店每天的利润最大?最大利润是多少元?1.(2022·贵州遵义·校考一模)农经公司以30元/千克的价格收购一批农产品进行销售,为了得到日销售量p (千克)与销售价格x (元/千克)之间的关系,经过市场调查获得部分数据如下表:销售价格x (元/千克)3035404550日销售量p (千克)600450300150(1)请直接写出p 与x 之间的函数关系式:(2)农经公司应该如何确定这批农产品的销售价格,才能使日销售利润最大?(3)若农经公司每销售1千克这种农产品需支出a 元(a >0)的相关费用,当40≤x ≤45时,农经公司的日获利的最大值为2430元,求a 的值.【答案】(1)301500p x =-+(2)这批农产品的销售价格定为40元,才能使日销售利润最大(3)a 的值为2.【分析】(1)首先根据表中的数据,可猜想y 与x 是一次函数关系,任选两点求表达式,再验证猜想的正确性;(2)根据题意列出日销售利润w 与销售价格x 之间的函数关系式,根据二次函数的性质确定最大值即可;(3)根据题意列出日销售利润w '与销售价格x 之间的函数关系式,并求得抛物线的对称轴,再分两种情况进行讨论,依据二次函数的性质求得a 的值.【详解】(1)解:由表格的数据可知:p 与x 成一次函数关系,设函数关系式为p=kx+b ,则3060040300k b k b +=⎧⎨+=⎩,解得:k=-30,b=1500,∴p=-30x+1500,∴所求的函数关系为p=-30x+1500;(2)解:设日销售利润w=p (x-30)=(-30x+1500)(x-30),即223024004500030(40)3000w x x x =-+-=--+,∵-30<0,∴当x=40时,w 有最大值3000元,故这批农产品的销售价格定为40元,才能使日销售利润最大;(3)解:日获利w '=p (x-30-a )=(-30x+1500)(x-30-a ),即230(240030)(150045000)w x a x a '=-++-+,作16件A与制作2件B获利相同.(1)制作一件A和一件B分别获利多少元;(2)工厂安排65人制作A,B两种手工艺品,每人每天制作2件A或1件B.现在在不增加工人的情况下,增加制作C工艺品.已知每人每天可制作1件C(每人每天只能制作一种手工艺品),要求每天制作A,C两种手工艺品的数量相等,设每天安排x人制作B,y人制作A.写出y与x之间的函数关系式;(3)在(1)(2)的条件下,每天制作B不少于5件.当每天制作B为5件时,每件B获利不变,若B每增加1件,则当天平均每件B获利减少2元,已知C每件获利30元,求每天制作三种手工艺品可获得的总利润W(元)的最大值及相应x的值.3.(2022·辽宁大连·校考模拟预测)新冠肺炎疫情后期,我县某药店进了一批口罩,成本价为2元/个,投入市场销售,其销售单价不低于成本,按物价局规定销售利润率不高于80%.经一段时间调查,发现每天销售量y (个)与销售单价x (元/个)之间存在一次函数关系,且有两天数据为:销售价定为2.3元,每天销售1080个;销售价定为2.5元,每天销售1000个.(1)直接写出y 与x 之间的函数关系式,并写出自变量x 的取值范围.(2)如果该药店销售口罩每天获得800元的利润,那么这种口罩的销售单价应定为多少元?(3)设每天的总利润为w 元,当销售单价定为多少元时,该药店每天的利润最大?最大利润是多少元?【答案】(1)4002000(2 3.6)y x x =-+≤≤(2)3元(3)3.5元,900元【分析】(1)设y 与x 之间的函数关系式为y kx b =+,用待定系数法可得y 与x 之间的函数关系式为4002000y x =-+,根据销售单价不低于成本,按物价局规定销售利润率不高于80%,可得2 3.6x ≤≤;(2)根据题意得:()()24002000800x x --+=,即可解得答案;(3)由题意得:()()24002000w x x =--+,整理计算,再利用二次函数的性质可得答案.【详解】(1)设y 与x 之间的函数关系式为y kx b =+,将销售价定为2.3元,每天销售1080个;销售价定为2.5元,每天销售1000个代入得:2.310802.51000k b k b +=⎧⎨+=⎩,解得4002000k b =-⎧⎨=⎩,y ∴与x 的函数关系式为4002000y x =-+,销售单价不低于成本,按物价局规定销售利润率不高于80%,22280%x x ≥⎧∴⎨-≤⨯⎩,解得2 3.6x ≤≤,()40020002 3.6y x x ∴=-+≤≤;(2)根据题意得:()()24002000800x x --+=,整理得:27120x x -+=,解得:13x =,24(x =不合题意,舍去),答:如果每天获得800元的利润,销售单价应定为3元;(3)由题意得:()()24002000w x x =--+240028004000w x x =+-()2400712.2512.254000w x x =--+--2400( 3.5)900w x =--+4000-< ,∴抛物线开口向下,w 有最大值,3.5x ∴=时,w 最大值是900,答:销售单价定为3.5元时,每天的利润最大,最大利润是900元.【点睛】本题考查一元二次方程及二次函数的应用,解题关键是读懂题意,找到等量关系列方程和函数关系是.题型三:二次函数和分段函数综合的利润问题①写分段函数解析式是要明确自变量的取值范围;②要分段求利润的最值,再比较两段之间的最大值;③注意自变量的范围和结果的取舍。
《二次函数与利润问题》课件
探究点 根据二次函数的性质解决最大利润问题
[例题] 某超市销售某种玩具,进货价为20元.根据市场调查:在0件,而销售单价每上涨1元,就会少售出10件玩具,超市要 完成不少于300件的销售任务,又要获得最大利润,则销售单价应定为多少元?最大 利润为多少元?
第2课时 二次函数与利润问题
一、商品利润问题 1.每件商品的利润=售价- 进价 . 2.商品的总利润=每件商品的利润× 商品的数量 . 3.在解决最大利润问题时,能利用二次函数顶点坐标确定利润的最大值,把最大利 润问题转化为求函数的顶点坐标问题. 二、利用二次函数解决利润问题的一般步骤 1.根据题目中的等量关系,列出利润与售价之间的函数表达式. 2.根据条件求出自变量的取值范围. 3.根据函数表达式及自变量的取值范围确定最大利润.
[导学探究] 1.设销售单价定为x元,则每件利润为 (x-20)元,销售数量为 [400-10(x-30)] 件. 2.根据销售数量不少于300件列出不等式为 400-10(x-30)≥300 ,从而确定自变 量的取值范围.
解:设销售单价应定为x元,总利润为W元,根据题意,得 W=(x-20)[400-10(x-30)]=-10x2+900x-14 000=-10(x-45)2+6 250. 因为超市要完成不少于300件的销售任务, 所以400-10(x-30)≥300,解得x≤40. 因为a=-10<0, 所以x≤40时,W随x的增大而增大. 所以x=40时利润最大. 此时W最大=-10(40-45)2+6 250=6 000. 故销售单价应定为40元,最大利润为6 000元.
点击进入 训练案
二次函数的应用(利润问题)
二次函数的应用——利润问题[例1]:求以下二次函数的最值:〔1〕求函数322-+=x x y 的最值. 解:4)1(2-+=x y当1-=x 时,y 有最小值4-,无最大值.〔2〕求函数322-+=x x y 的最值.)30(≤≤x 解:4)1(2-+=x y∵30≤≤x ,对称轴为1-=x∴当12330有最大值时;当有最小值时y x y x =-=.[例2]:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,商品的进价为每件40元,如何定价才能使利润最大?解:设涨价〔或降价〕为每件x 元,利润为y 元,1y 为涨价时的利润,2y 为降价时的利润 那么:)10300)(4060(1x x y -+-=)60010(102---=x x6250)5(102+--=x当5=x ,即:定价为65元时,6250max =y 〔元〕)20300)(4060(2x x y +--= )15)(20(20+--=x x6125)5.2(202+--=x当5.2=x ,即:定价为57.5元时,6125max =y 〔元〕综合两种情况,应定价为65元时,利润最大.[练习]:1.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半个月内获得最大利润? 解:设每件价格提高x 元,利润为y 元, 那么:)20400)(2030(x x y --+= )20)(10(20-+-=x x 4500)5(202+--=x 当5=x ,4500max =y 〔元〕答:价格提高5元,才能在半个月内获得最大利润.2.某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,即旅行团每增加一人,每人的单价就降低10元.你能帮助分析一下,当旅行团的人数是多少时,旅行社可以获得最大营业额?月 日解:设旅行团有x 人)30(≥x ,营业额为y 元, 那么:)]30(10800[--=x x y )110(10--=x x 30250)55(102+--=x 当55=x ,30250max =y 〔元〕答:当旅行团的人数是55人时,旅行社可以获得最大营业额.[例3]: 某产品每件本钱10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如下表: 假设日销售量y 是销售价x 的一次函数. ⑴求出日销售量y (件)与销售价x (元)的函数关系式;⑵要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?解:⑴设一次函数表达式为b kx y +=.那么1525,220k b k b +=⎧⎨+=⎩ 解得⎩⎨⎧=-=401b k ,•即一次函数表达式为40+-=x y .⑵ 设每件产品的销售价应定为x 元, 所获销售利润为w 元y x w )10(-=)40)(10(+--=x x400502-+-=x x225)25(2+--=x当25=x ,225max =y 〔元〕答:产品的销售价应定为25元时,每日获得最大销售利润为225元.【点评】解决最值问题应用题的思路与一般应用题类似,也有区别,主要有两点: ⑴在“当某某为何值时,什么最大(或最小、最省)〞的设问中, “某某〞要设为自变量,“什么〞要设为函数;⑵求解方法是依靠配方法或最值公式,而不是解方程. 3.〔2006十堰市〕市“健益〞超市购进一批20元/千克的绿色食品,如果以30•元/千克销售,那么每天可售出400千克.由销售经验知,每天销售量y (千克)•与销售单价x (元) (30≥x 〕存在如以下图所示的一次函数关系式. ⑴试求出y 与x 的函数关系式;⑵设“健益〞超市销售该绿色食品每天获得利润P 元,当销售单价为何值时,每天可获得最大利润?最大利润是多少?⑶根据市场调查,该绿色食品每天可获利润不超过4480元,•现该超市经理要求每天利润不得低于4180元,请你帮助该超市确定绿色食品销售单价x 的范围(•直接写出答案).x 〔元〕 15 20 30 … y 〔件〕 25 20 10 …解:⑴设y=kx+b 由图象可知,3040020,:402001000k b k k b b +==-⎧⎧⎨⎨+==⎩⎩解之得, 即一次函数表达式为100020+-=x y )5030(≤≤x . ⑵ y x P )20(-=)100020)(20(+--=x x 200001400202-+-=x x∵020<-=a ∴P 有最大值.当35)20(21400=-⨯=x 时,4500max =P 〔元〕〔或通过配方,4500)35(202+--=x P ,也可求得最大值〕答:当销售单价为35元/千克时,每天可获得最大利润4500元.⑶∵44804500)35(2041802≤+--≤x 16)35(12≤-≤x ∴31≤x ≤34或36≤x≤39.作业布置: 1.二次函数1212-+=x x y ,当x=_-1,_时,y 有最_小_值,这个值是23-. 2.某一抛物线开口向下,且与x 轴无交点,那么具有这样性质的抛物线的表达式可能为12--=x y (只写一个),此类函数都有_大_值(填“最大〞“最小〞).3.不管自变量x 取什么实数,二次函数y =2x 2-6x +m 的函数值总是正值,你认为m 的取值范围是29>m ,此时关于一元二次方程2x 2-6x +m =0的解的情况是_有解_(填“有解〞或“无解〞)解:29)23(22-+-=m x y ∵0)23(22≥-x ,要使0>y ,只有029>-m ∴29>m 4.小明在某次投篮中,球的运动路线是抛物线21 3.55y x =-+的一局部,如下图,假设命中篮圈中心,那么他与篮底的距离L 是 4.5米 .月 日解:当05.3=y 时,21 3.55y x =-+05.3= 45.052⨯=x ,5.1=x 或5.1-=x 〔不合题意,舍去〕5.在距离地面2m 高的某处把一物体以初速度V 0〔m/s 〕竖直向上抛出,•在不计空气阻力的情况下,其上升高度s 〔m 〕与抛出时间t 〔s 〕满足:S=V 0t-12gt 2〔其中g 是常数,通常取10m/s 2〕,假设V 0=10m/s ,那么该物体在运动过程中最高点距离地面__7_m .解:t t s 1052+-=5)1(52+--=t当1=t 时,5max =s ,所以,最高点距离地面725=+(米).6.影响刹车距离的最主要因素是汽车行驶的速度及路面的摩擦系数.有研究说明,晴天 在某段公路上行驶上,速度为V 〔km/h 〕的汽车的刹车距离S 〔m 〕可由公式S=1100V 2确定;雨天行驶时,这一公式为S=150V 2.如果车行驶的速度是60km/h ,•那么在雨天 行驶和晴天行驶相比,刹车距离相差_36_米.7.将进货单价为70元的某种商品按零售价100元售出时,每天能卖出20个.假设这种商品的零售价在一定范围内每降价1元,其日销售量就增加了1个,为了获得最大利润,那么应降价_5_元,最大利润为_625_元. 解:设每件价格降价x 元,利润为y 元, 那么:)20)(70100(x x y +--=600102++-=x x 625)5((2+--=x当5=x ,625max =y 〔元〕答:价格提高5元,才能在半个月内获得最大利润.8.如图,一小孩将一只皮球从A 处抛出去,它所经过的路线是某个二次函数图象的一局部,如果他的出手处A 距地面的距离OA 为1 m ,球路的最高点B (8,9),那么这个二次函数的表达式为______,小孩将球抛出了约______米(精确到0.1 m) .解:设9)8(2+-=x a y ,将点A )1,0(代入,得81-=a12819)8(8122++-=+--=x x x y令0=y ,得09)8(812=+--=x y98)8(2⨯=-x268±=x ,)0,268(+C ,∴5.242688≈++=OC (米)9.〔2006年青岛市〕在2006年青岛崂山北宅樱桃节前夕,•某果品批发公司为指导今年的樱桃销售,对往年的市场销售情况进行了调查统计,得到如下数据:销售价x 〔元/千克〕 … 25 242322…销售量y 〔千克〕… 2000 2500 3000 3500 …〔1〕在如图的直角坐标系内,作出各组有序数对〔x ,y 〕所对应的点.连接各点并观察所得的图形,判断y 与x 之间的函数关系,并求出y 与x 之间的函数关系式; 〔2〕假设樱桃进价为13元/千克,试求销售利润P 〔元〕与销售价x 〔元/千克〕之间的函数关系式,并求出当x 取何值时,P 的值最大? 解:〔1〕由图象可知,y 是x 的一次函数,设y=kx+b ,• ∵点〔•25,2000〕,〔24,2500〕在图象上,∴200025500,:25002414500k bk k b b =+=-⎧⎧⎨⎨=+=⎩⎩解得 , ∴y=-500x+14500. 〔2〕P=(x-13)·y=(x-13)·(-500x+14500))37744144142(500)37742(500)29)(13(50022+-+--=+--=---=x x x x x x=-500(x-21)2+32000∴P 与x 的函数关系式为P=-500x 2+21000x-188500,当销售价为21元/千克时,能获得最大利润,最大利润为32000元.10.有一种螃蟹,从海上捕获后不放养,最多只能存活两天.如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去.假设放养期内蟹的个体质量根本保持不变,现有一经销商,按市场价收购这种活蟹1000 kg 放养在塘内,此时市场价为每千克30元,据测算,此后每千克活蟹的市场价每天可上升1元,但是,放养一天需支出各种费用为400元,且平均每天还有10 kg 蟹死去,假定死蟹均于当天全部销售出,售价都是每千克20元.(1)设x 天后每千克活蟹的市场价为p 元,写出p 关于x 的函数关系式; (2)如果放养x 天后将活蟹一次性出售,并记1000 kg 蟹的销售总额为Q 元,写出Q 关于x 的函数关系式.(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=Q -收购总额)? 解:(1)由题意知:p=30+x,(2)由题意知:活蟹的销售额为(1000-10x)(30+x)元,死蟹的销售额为200x 元.月 日∴Q=(1000-10x)(30+x)+200x=-10x 2+900x+30000. (3)设总利润为W 元那么:W=Q -1000×30-400x=-10x 2+500x=-10(x 2-50x) =-10(x -25)2+6250.当x=25时,总利润最大,最大利润为6250元. 答:这批蟹放养25天后出售,可获最大利润.11.(2021湖北恩施)为了落实国务院副总理李克强同志到恩施考察时的指示精神,最近,州委州政府又出台了一系列“三农〞优惠政策,使农民收入大幅度增加.某农户生产经销一种农副产品,这种产品的本钱价为20元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=-2x+80.设这种产品每天的销售利润为y(元) .(1)求y与x之间的函数关系式;(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少? (3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元? 解:)802)(20()20(+--=-=x x w x y)40)(20(2---=x x)80060(22+--=x x 200)30(22+--=x160012022-+-=x x当30=x ,200max =y 〔元〕(1)y 与x 之间的的函数关系式为;160012022-+-=x x y(2)当销售价定为30元时,每天的销售利润最大,最大利润是200元. (3) 150200)30(22=+--x ,25)30(2=-x28351>=x 〔不合题意,舍去〕252=x答:该农户想要每天获得150元的销售利润,销售价应定为25元.12.(2021河北)研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x (吨)时,所需的全部费用y (万元〕与x 满足关系式9051012++=x x y ,投入市场后当年能全部售出,且在甲、乙两地每吨的售价,〔万元〕均与满足一次函数关系.〔注:年利润=年销售额-全部费用〕〔1〕成果说明,在甲地生产并销售吨时,,请你用含的代数式表示甲地当年的年销售额,并求年利润〔万元〕与之间的函数关系式;〔2〕成果说明,在乙地生产并销售吨时,〔为常数〕,且在乙地当年的最大年利润为35万元.试确定的值;〔3〕受资金、生产能力等多种因素的影响,某投资商方案第一年生产并销售该产品18吨,根据〔1〕,〔2〕中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润?解:〔1〕甲地当年的年销售额为万元;.〔2〕在乙地区生产并销售时,年利润.由,解得或.经检验,不合题意,舍去,.〔3〕在乙地区生产并销售时,年利润,将代入上式,得〔万元〕;将代入,得〔万元〕.,应选乙地.。
二次函数的实际应用利润问题 ppt课件
y x 8 0 10 x 0 30
10x2110x0
10x55 2302. 50
二次函数的实际应用利润问题
20
某宾馆有50个房间供游客居住,当每个 房间的定价为每天180元时,房间会全部住 满。当每个房间每天的定价每增加10元时, 就会有一个房间空闲。如果游客居住房间, 宾馆需对每个房间每天支出20元的各种费用. 房价定为多少时,宾馆利润最大?
二次函数的实际应用利润问题
9
小结
1.正确理解利润问题中几个量之间的关系
2.当利润的值时已知的常数时,问题通过 方程来解;当利润为变量时,问题通过函 数关系来求解.
二次函数的实际应用利润问题
10
某商品现在的售价为每件60元, 每星期可卖出300件,市场调查反 映:每涨价1元,每星期少卖出10 件;每降价1元,每星期可多卖出 18件,已知商品的进价为每件40 元,如何定价才能使利润最大?
6250 6000
05
可以看出,这个函数的
图像是一条抛物线的一
部分,这条抛物线的顶
点是函数图像的最高点,
也就是说当x取顶点坐
标的横坐标时,这个函
数有最大值。由公式可
30
以求出顶点的横坐标. x \ 元 二次函数的实际应用利润问题
13
做一做
在降价的情况下,最大利润是多少? 请你参考(1)的过程得出答案。
解:设每个房间每天增加x元,宾馆的利润为y元
Y=(50-x/10)(180+x)-20(50-x/10)
Y=-1/10x2+34x+8000
二次函数的实际应用利润问题
21
(三)销售问题
1.某商场销售一批名牌衬衫,平均每天可售出 20件,每件盈利40元,为了扩大销售,增加 盈利,尽快减少库存,商场决定采取适当的 降价措施。经调查发现,如果每件衬衫每降 价1元,商场平均每天可多售出2件。
二次函数与实际问题中利润问题(附答案)
②T恤衫何时获得最大利润,销售量与单价满足如下关系:在一时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件.当销售单价为多少元时,可以获得最大利润,最大利润是多少元?
(1)写出售价x(元/件)与每天所得利润y(元)之间的函数关系式;
(2)每件定价多少元时,才能使一天的利润最大?
⑥纯牛奶何时利润最大:
6.某商场销售某种品牌的纯牛奶,已知进价为每箱40元,生产厂家要求每箱售价在40元~70元之间.市场调查发现:若每箱发50元销售,平均每天可售出90箱,价格每降低1元,平均每天多销售3箱;价格每升高1元,平均每天少销售3箱.
(2)当销售单价定为55元时,计算出月销售量和销售利润;
(3)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?
(1)
(2)
(3)
⑧化工材料何时利润最大:
8 .某化工材料经销公司购进了一种化工原料共700千克,已知进价为30元/千克,物价部门规定其销售价在30元~70元之间.市场调查发现:若单价定为70元时,日均销售60千克.价格每降低1元,平均每天多售出2千克.在销售过程中,每天还要支出其它费用500元(天数不足一天时,按整天计算).
设销售价为x元(x≤13.5元),利润是y元,则
③日用品何时获得最大利润:
3.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半个月内获得最大利润?
设销售价为x元(x≥30元),利润为y元,则
二次函数y=ax2+bx+c(a≠0)的性质:
(完整版)有关二次函数的利润最值问题
(有关二次函数的利润最值问题1.某商场将每件进价为 80 元的某种商品原来按每件 100 元出售,一天可售出 100 件.后来经过市场调查,发现这种商品单价每降低 1 元,其销量可增加 10 件.(1)求商场经营该商品原来一天可获利润多少元?(2)设后来该商品每件降价 x 元,商场一天可获利润 y 元.①若商场经营该商品一天要获利润 2160 元,则每件商品应降价多少元?②求出 y 与 x 之间的函数关系式,并通过画该函数图象的草图,观察其图象的变化趋势,结合题意写出当x 取何值时,商场获利润不少于 2160 元.2.某衬衣店将进价为 30 元的一种衬衣以 40 元售出,平均每月能售出 600 件,调查表明:这种衬衣售价每上涨 1 元,其销售量将减少 10 件.(1)写出月销售利润 y (单位:元)与售价 x (单位:元/件)之间的函数解析式.(2)当销售价定为 45元时,计算月销售量和销售利润. 3)衬衣店想在月销售量不少于 300 件的情况下,使月销售利润达到 10000元,销售价应定为多少?(4)当销售价定为多少元时会获得最大利润?求出最大利润.3.某商品的进价为每件 40 元,如果售价为每件 50 元,每个月可卖出 210 件;如果售价超过 50 元但不超过 80 元,每件商品的售价每上涨 1 元,则每个月少卖 1 件;如果售价超过 80 元后,若再涨价,则每涨 1元每月少卖 3 件.设每件商品的售价为 x 元,每个月的销售量为 y 件.(1)求 y 与 x 的函数关系式并直接写出自变量 x 的取值范围;(2)设每月的销售利润为 W ,请直接写出 W 与 x 的函数关系式;(3)每件商品的售价定位多少元时,每个月可获得最大利润?最大的月利润是多少元?4.某电子科技公司开发一种新产品,公司对经营的盈亏情况每月最后一天结算1次.在1~12月份中,公司前x个月累计获得的总利润y(万元)与销售时间x(月)之间满足二次函数关系式y=a(x﹣h)2+k,二次函数y=a(x﹣h)2+k的一部分图象如图所示,点A为抛物线的顶点,且点A、B、C的横坐标分别为4、10、12,点A、B的纵坐标分别为﹣16、20.(1)试确定函数关系式y=a(x﹣h)2+k;(2)分别求出前9个月公司累计获得的利润以及10月份一个月内所获得的利润;(3)在前12个月中,哪个月该公司一个月内所获得的利润最多?最多利润是多少万元?5.某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式,并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?6.某公司生产一种新型节能电水壶并加以销售,现准备在甲城市和乙城市两个不同地方按不同销售方案进行销售,以便开拓市场.若只在甲城市销售,销售价格为 y (元/件)、月销量为 x (件),y 是 x 的一次函数,如表,月销量 x (件)销售价格 y (元/件)1500 185 2000180 成本为 50 元/件,无论销售多少,每月还需支出广告费 72500 元,设月利润为 W 甲(元)(利润=销售额﹣成本﹣广告费).若只在乙城市销售,销售价格为 200 元/件,受各种不确定因素影响,成本为 a 元/件(a为常数,40≤a ≤70),当月销量为 x (件)时,每月还需缴纳x 2元的附加费,设月利润为 W 乙(元)(利润=销售额﹣成本﹣附加费).(1)当 x=1000 时,y 甲=元/件,w 甲= 元;(2)分别求出 W 甲,W 乙与 x 间的函数关系式(不必写 x 的取值范围);(3)当 x 为何值时,在甲城市销售的月利润最大?若在乙城市销售月利润的最大值与在甲城市销售月利润的最大值相同,求 a 的值;(4)如果某月要将 5000 件产品全部销售完,请你通过分析帮公司决策,选择在甲城市还是在乙城市销售才能使所获月利润较大?7.某服装店购进一批秋衣,价格为每件 30 元.物价部门规定其销售单价不高于每件 60 元,不低于每件30 元.经市场调查发现:日销售量 y (件)是销售单价 x (元)的一次函数,且当 x=60 时,y=80;x=50 时,y=100.在销售过程中,每天还要支付其他费用 450 元.(1)求出 y 与 x 的函数关系式,并写出自变量 x 的取值范围.(2)求该服装店销售这批秋衣日获利 w (元)与销售单价 x (元)之间的函数关系式.(3)当销售单价为多少元时,该服装店日获利最大?最大获利是多少元?8.某水果店购买一批时令水果,在20天内销售完毕,店主将本次此销售数据绘制成函数图象,如图①,日销售量y(千克)与销售时间x(天)之间的函数关系;如图②,销售单价p(元/千克)与销售时间x (天)之间的函数关系式.(1)求y关于x和p关于x的函数关系式;(2)若日销售量不低于36千克的时间段为“最佳销售期”,则此次销售过程中“最佳销售期”共有多少天?在此期间销售金额最高是第几天?9.某机器零件经销商,购进甲型零件600个,其进价为200元,甲型零件有两种售货渠道:A渠道是批发给其他小型经销商;B渠道是零售,零售价为250元.该经销商准备用A渠道销售甲型零件所得的全部销售款购进一批乙型零件,乙型零件的进价为150元,零售价为300元.已知该经销商用A渠道销售甲型零件时,其批发价y(元/个)与批发个数x(个)之间的函数关系为y=﹣x+200.(1)求该经销商用B渠道销售的甲型零件的销售额p1(元)与批发个数x(个)之间的函数关系式;(2)求零售乙型零件的销售额p2(元)与批发个数x(个)之间的函数关系式;(3)求该经销商售完这批甲型、乙型零件后的总利润w(元)与批发个数x(个)之间的函数关系式,并求出当批发多少个甲型零件时,利润最大,最大利润是多少?10.某水果店新进一种水果,进价为20元/盒,为了摸清行情,决定试营销10天,商家通过这10天的市场调查发现:①销售价y(元/盒)与销售天数x(天)满足以下关系:天数销售价格y1≤x≤5x+246≤x≤1030②每天的销售量p(盒数)与销售天数x关系如图所示.(1)试求每天的销售量p(盒数)与销售天数x之间函数关系式;(2)设水果店的销售利润为s(元),求销售利润s(元)与销售天数x(天)之间的函数关系式,并求出试营销期间一天的最大利润.(有关二次函数利润的最值问题参考答案与试题解析一.解答题(共 10 小题)1.(2017•高安市一模)某商场将每件进价为 80 元的某种商品原来按每件 100元出售,一天可售出 100 件.后来经过市场调查,发现这种商品单价每降低 1元,其销量可增加 10 件.(1)求商场经营该商品原来一天可获利润多少元?(2)设后来该商品每件降价 x 元,商场一天可获利润 y 元.①若商场经营该商品一天要获利润 2160 元,则每件商品应降价多少元?②求出 y 与 x 之间的函数关系式,并通过画该函数图象的草图,观察其图象的变化趋势,结合题意写出当 x 取何值时,商场获利润不少于 2160 元.【分析】 1)利润=单件利润×销售量;(2)根据利润的计算方法表示出关系式,解方程、画图回答问题.【解答】解:(1)若商店经营该商品不降价,则一天可获利润 100×(100﹣80)=2000(元);(3 分)(2)①依题意得:(100﹣80﹣x )(100+10x )=2160(5 分)即 x 2﹣10x +16=0解得:x 1=2,x 2=8(6 分)经检验:x 1=2,x 2=8 都是方程的解,且符合题意,(7 分)答:商店经营该商品一天要获利润 2160 元,则每件商品应降价 2 元或 8 元;(8分)②依题意得:y=(100﹣80﹣x )(100+10x )(9 分)∴y=﹣10x 2+100x +2000=﹣10(x ﹣5)2+2250 (10 分)画草图:(观察图象可得:当 2≤x ≤8 时,y ≥2160∴当 2≤x ≤8 时,商店所获利润不少于 2160 元.(13 分)【点评】本题关键是求出利润的表达式,体现了函数与方程、不等式的关系.2.(2017•南通一模)某衬衣店将进价为 30 元的一种衬衣以 40 元售出,平均每月能售出 600 件,调查表明:这种衬衣售价每上涨 1 元,其销售量将减少 10 件.(1)写出月销售利润 y (单位:元)与售价 x (单位:元/件)之间的函数解析式.(2)当销售价定为 45 元时,计算月销售量和销售利润.(3)衬衣店想在月销售量不少于 300 件的情况下,使月销售利润达到 10000 元,销售价应定为多少?(4)当销售价定为多少元时会获得最大利润?求出最大利润.【分析】 1)利用已知表示出每件的利润以及销量进而表示出总利润即可;(2)将 x=45 代入求出即可;(3)当 y=10000 时,代入求出即可;(4)利用配方法求出二次函数最值即可得出答案.【解答】解:(1)由题意可得:y=(x ﹣30)[600﹣10(x ﹣40)]=﹣10x 2+1300x ﹣30000;(2)当 x=45 时,600﹣10(x ﹣40)=550(件),y=﹣10×452+1300×45﹣30000=8250(元);( (3)当 y=10000 时,10000=﹣10x 2+1300x ﹣30000解得:x 1=50,x 2=80,当 x=80 时,600﹣10(80﹣40)=200<300(不合题意舍去)故销售价应定为:50 元;(4)y=﹣10x 2+1300x ﹣30000=﹣10(x ﹣65)2+12250,故当 x=65(元),最大利润为 12250 元.【点评】此题主要考查了二次函数的应用以及配方法求二次函数最值,得出 y 与x 的函数关系是解题关键.3.(2017•山东一模)某商品的进价为每件 40 元,如果售价为每件 50 元,每个月可卖出 210 件;如果售价超过 50 元但不超过 80 元,每件商品的售价每上涨 1元,则每个月少卖 1 件;如果售价超过 80 元后,若再涨价,则每涨 1 元每月少卖 3 件.设每件商品的售价为 x 元,每个月的销售量为 y 件.(1)求 y 与 x 的函数关系式并直接写出自变量 x 的取值范围;(2)设每月的销售利润为 W ,请直接写出 W 与 x 的函数关系式;(3)每件商品的售价定位多少元时,每个月可获得最大利润?最大的月利润是多少元?【分析】 1)当售价超过 50 元但不超过 80 元,每件商品的售价每上涨 1 元,则每个月少卖 1 件,y=260﹣x ,50≤x ≤80,当如果售价超过 80 元后,若再涨价,则每涨 1 元每月少卖 3 件,y=420﹣3x ,80<x <140,(2)由利润=(售价﹣成本)×销售量列出函数关系式,(3)分别求出两个定义域内函数的最大值,然后作比较.【解答】解:(1)当 50≤x ≤80 时,y=210﹣(x ﹣50),即 y=260﹣x ,当 80<x <140 时,y=210﹣(80﹣50)﹣3(x ﹣80),即 y=420﹣3x .则 ,( (2)由利润=(售价﹣成本)×销售量可以列出函数关系式w=﹣x 2+300x ﹣10400(50≤x ≤80)w=﹣3x 2+540x ﹣16800(80<x <140),(3)当 50≤x ≤80 时,w=﹣x 2+300x ﹣10400,当 x=80 有最大值,最大值为 7200,当 80<x <140 时,w=﹣3x 2+540x ﹣16800,当 x=90 时,有最大值,最大值为 7500,故售价定为 90 元.利润最大为 7500 元.【点评】本题主要考查二次函数的应用,应用二次函数解决实际问题比较简单.4.(2017•利辛县一模)某电子科技公司开发一种新产品,公司对经营的盈亏情况每月最后一天结算 1 次.在 1~12 月份中,公司前 x 个月累计获得的总利润 y(万元)与销售时间 x (月)之间满足二次函数关系式 y=a (x ﹣h )2+k ,二次函数 y=a (x ﹣h )2+k 的一部分图象如图所示,点 A 为抛物线的顶点,且点 A 、B 、C 的横坐标分别为 4、10、12,点 A 、B 的纵坐标分别为﹣16、20.(1)试确定函数关系式 y=a (x ﹣h )2+k ;(2)分别求出前 9 个月公司累计获得的利润以及 10 月份一个月内所获得的利润;(3)在前 12 个月中,哪个月该公司一个月内所获得的利润最多?最多利润是多少万元?【分析】 1)根据题意此抛物线的顶点坐标为(4,﹣16),设出抛物线的顶点式,把(10,20)代入即可求出 a 的值,把 a 的值代入抛物线的顶点式中即可确定出抛物线的解析式;(2)相邻两个月份的总利润的差即为某月利润.(3)根据前x个月内所获得的利润减去前x﹣1个月内所获得的利润,再减去16即可表示出第x个月内所获得的利润,为关于x的一次函数,且为增函数,得到x取最大为12时,把x=12代入即可求出最多的利润.【解答】解:(1)根据题意可设:y=a(x﹣4)2﹣16,当x=10时,y=20,所以a(10﹣4)2﹣16=20,解得a=1,所求函数关系式为:y=(x﹣4)2﹣16.﹣﹣﹣﹣﹣﹣﹣(4分)(2)当x=9时,y=(9﹣4)2﹣16=9,所以前9个月公司累计获得的利润为9万元,又由题意可知,当x=10时,y=20,而20﹣9=11,所以10月份一个月内所获得的利润11万元.﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)(3)设在前12个月中,第n个月该公司一个月内所获得的利润为s(万元)则有:s=(n﹣4)2﹣16﹣[(n﹣1﹣4)2﹣16]=2n﹣9,因为s是关于n的一次函数,且2>0,s随着n的增大而增大,而n的最大值为12,所以当n=12时,s=15,所以第12月份该公司一个月内所获得的利润最多,最多利润是15万元.﹣﹣(4分)【点评】本题考查了二次函数的应用,主要考查学生会利用待定系数法求函数的解析式,灵活运用二次函数的图象与性质解决实际问题,是一道综合题.5.(2017•高台县模拟)某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式,并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(【分析】1)根据进价为每件40元,售价为每件50元,每个月可卖出210件,再根据每件商品的售价每上涨1元,则每个月少卖10件和销售利润=件数×每件的利润列出关系式,即可得出答案.(2)根据(1)得出的函数关系式,再进行配方得出y=﹣10(x﹣5.5)2+2402.5,当x=5.5时y有最大值,从而得出答案.【解答】解:(1)由题意得:y=(210﹣10x)(50+x﹣40)=﹣10x2+110x+2100(0<x≤15且x为整数);(2)根据(1)得:y=﹣10x2+110x+2100,y=﹣10(x﹣5.5)2+2402.5,∵a=﹣10<0,∴当x=5.5时,y有最大值2402.5.∵0<x≤15,且x为整数,当x=5时,50+x=55,y=2400(元),当x=6时,50+x=56,y=2400(元)∴当售价定为每件55或56元,每个月的利润最大,最大的月利润是2400元.【点评】本题考查二次函数的实际应用,关键是读懂题意,找出之间的等量关系,根据每天的利润=一件的利润×销售件数,建立函数关系式,此题为数学建模题,借助二次函数解决实际问题.6.(2017•微山县模拟)某公司生产一种新型节能电水壶并加以销售,现准备在甲城市和乙城市两个不同地方按不同销售方案进行销售,以便开拓市场.若只在甲城市销售,销售价格为y(元/件)、月销量为x(件),y是x的一次函数,如表,月销量x(件)销售价格y(元/件)15001852000180成本为50元/件,无论销售多少,每月还需支出广告费72500元,设月利润为W 甲(元)( (利润=销售额﹣成本﹣广告费).若只在乙城市销售,销售价格为 200 元/件,受各种不确定因素影响,成本为 a元/件(a 为常数,40≤a ≤70),当月销量为 x (件)时,每月还需缴纳 x 2 元的附加费,设月利润为 W (元)(利润=销售额﹣成本﹣附加费). 乙 (1)当 x=1000 时,y = 190 元/件,w = 67500 元;甲 甲(2)分别求出 W ,W 与 x 间的函数关系式(不必写 x 的取值范围);甲 乙(3)当 x 为何值时,在甲城市销售的月利润最大?若在乙城市销售月利润的最大值与在甲城市销售月利润的最大值相同,求 a 的值;(4)如果某月要将 5000 件产品全部销售完,请你通过分析帮公司决策,选择在甲城市还是在乙城市销售才能使所获月利润较大?【分析】 1)设 y =kx +b ,列出方程组即可解决,再根据 w =x (y ﹣50)﹣72500, 甲 甲求出 w 的解析式,分别求出 x=1000 时,y ,w ,即可.甲 甲 甲(2)根据利润=销售额﹣成本﹣附加费,即可解决问题.(3)①x=﹣,y 最大值= 进行计算即可.②利用公式列出方程即可计算.(4)当 x=5000 时,w =427500,w =﹣5000a +750000,再列出不等式或方程即 甲乙可解决问题.【解答】解:(1)设 y =kx +b , 甲由题意,解得 ,∴y =﹣ x +200,甲 ∴x=1000 时,y =190,甲 w =x (y ﹣50)﹣72500=﹣ 甲x=1000 时,w =67500, 甲故答案分别为 190,67500.x 2+150x ﹣72500,(2)w =x (y ﹣50)﹣72500=﹣ 甲 x 2+150x ﹣72500,w =﹣ x 2+(200﹣a )x ,乙( ( (3)∵0<x <15000∴当 x=﹣ =7500 时,w 最大; 甲由题意得,= ,解得 a 1=60,a 2=340(不合题意,舍去).所以 a=60.(4)当 x=5000 时,w =427500,w =﹣5000a +750000,甲 乙若 w <w ,427500<﹣5000a +750000,解得 a <64.5;甲 乙若 w =w ,427500=﹣5000a +750000,解得 a=64.5;甲 乙若 w >w ,427500>﹣5000a +750000,解得 a >64.5.甲 乙所以,当 40≤a <64.5 时,选择在乙销售;当 a=64.5 时,在甲和乙销售都一样;当 64.5<a ≤70 时,选择在甲销售.【点评】本题考查二次函数的应用、一次函数的应用、待定系数法,解题的关键是学会利用二次函数求函数的最值问题,学会利用不等式或方程解决方案问题,属于中考常考题型.7. 2017•宁波一模)某服装店购进一批秋衣,价格为每件30 元.物价部门规定其销售单价不高于每件 60 元,不低于每件 30 元.经市场调查发现:日销售量 y(件)是销售单价 x (元)的一次函数,且当 x=60 时,y=80;x=50 时,y=100.在销售过程中,每天还要支付其他费用 450 元.(1)求出 y 与 x 的函数关系式,并写出自变量 x 的取值范围.(2)求该服装店销售这批秋衣日获利 w (元)与销售单价 x (元)之间的函数关系式.(3)当销售单价为多少元时,该服装店日获利最大?最大获利是多少元?【分析】 1)根据 y 与 x 成一次函数解析式,设为 y=kx +b ,把 x 与 y 的两对值代入求出 k 与 b 的值,即可确定出 y 与 x 的解析式,并求出 x 的范围即可;(2)根据利润=单价×销售量列出 W 关于 x 的二次函数解析式即可;( (3)利用二次函数的性质求出 W 的最大值,以及此时 x 的值即可.【解答】解:(1)设 y=kx +b ,根据题意得,解得:k=﹣2,故 y=﹣2x +200(30≤x ≤60);(2)W=(x ﹣30)(﹣2x +200)﹣450=﹣2x 2+260x ﹣6450=﹣2(x ﹣65)2+2000;(3)W=﹣2(x ﹣65)2+2000,∵30≤x ≤60,∴x=60 时,w 有最大值为 1950 元,∴当销售单价为 60 元时,该服装店日获利最大,为 1950 元.【点评】此题考查了二次函数的应用,待定系数法求一次函数解析式,以及二次函数的性质,熟练掌握二次函数性质是解本题的关键.8. 2017•新野县一模)某水果店购买一批时令水果,在20 天内销售完毕,店主将本次此销售数据绘制成函数图象,如图①,日销售量 y (千克)与销售时间 x(天)之间的函数关系;如图②,销售单价 p (元/千克)与销售时间 x (天)之间的函数关系式.(1)求 y 关于 x 和 p 关于 x 的函数关系式;(2)若日销售量不低于 36 千克的时间段为“最佳销售期”,则此次销售过程中“最佳销售期”共有多少天?在此期间销售金额最高是第几天?【分析】(1)分两种情况进行讨论:① 0≤x ≤15;②15<x ≤20;针对每一种情况,都可以先设出函数的解析式,再将已知点的坐标代入,利用待定系数法求解;①0≤x <10 时 p=25,10≤x ≤20 时,设解析式为 p=mx +n ,利用待定系数法求解;(2)日销售金额=日销售单价×日销售量.日销售量不低于 36 千克,即 y ≥36.先解不等式 3x ≥36,得 x ≥12,再解不等式﹣9x +180≥36,得 x ≤16,则求出“最佳销售期”共有 4 天;然后根据 p=﹣x +35(10≤x ≤20),利用一次函数的性质,即可解答.【解答】解:(1)分两种情况:①当 0≤x ≤15 时,设日销售量 y 与销售时间 x 的函数解析式为 y=k 1x ,∵直线 y=k 1x 过点(15,45),∴15k 1=45,解得 k 1=3,∴y=3x (0≤x ≤15); ②当 15<x ≤20 时,设日销售量 y 与销售时间 x 的函数解析式为 y=k 2x +b , ∵点(15,45),(20,0)在 y=k 2x +b 的图象上,∴解得:∴y=﹣9x +180(15<x ≤20);综上,可知 y 与 x 之间的函数关系式为:y=.①当 0≤x <10 时,p=25,当 10≤x ≤20 时,设销售单价 p (元/千克)与销售时间 x (天)之间的函数解析式为 p=mx +n ,∵点(10,25),(20,15)在 p=mx +n 的图象上,∴解得:, ,∴p=﹣x +35(10≤x ≤20),∴p=;(2)若日销售量不低于 36 千克,则 y ≥36.当 0≤x ≤15 时,y=3x ,(解不等式:3x ≥36,得,x ≥12;当 15<x ≤20 时,y=﹣9x +180,解不等式:﹣9x +180≥36,得 x ≤16,∴12≤x ≤16,∴“最佳销售期”共有:16﹣12+1=5(天);∵p=﹣x +35(10≤x ≤20),k=﹣1<0,∴p 随 x 的增大而减小,∴当 12≤x ≤16 时,x 取 12 时,p 有最大值,此时 p=﹣12+35=23(元/千克).答:此次销售过程中“最佳销售期”共有 5 天,在此期间销售金额最高是第 12 天.【点评】此题考查了一次函数的应用,有一定难度.解题的关键是理解题意,利用待定系数法求得函数解析式,注意数形结合思想与函数思想的应用.9.(2017•临沭县校级模拟)某机器零件经销商,购进甲型零件 600 个,其进价为 200 元,甲型零件有两种售货渠道:A 渠道是批发给其他小型经销商;B 渠道是零售,零售价为 250 元.该经销商准备用 A 渠道销售甲型零件所得的全部销售款购进一批乙型零件,乙型零件的进价为 150 元,零售价为 300 元.已知该经销商用 A 渠道销售甲型零件时,其批发价 y (元/个)与批发个数 x (个)之间的函数关系为 y=﹣ x +200.(1)求该经销商用 B 渠道销售的甲型零件的销售额 p 1(元)与批发个数 x (个)之间的函数关系式;(2)求零售乙型零件的销售额 p 2(元)与批发个数 x (个)之间的函数关系式;(3)求该经销商售完这批甲型、乙型零件后的总利润 w (元)与批发个数 x (个)之间的函数关系式,并求出当批发多少个甲型零件时,利润最大,最大利润是多少?【分析】 1)根据题意知用 B 渠道销售甲零件(600﹣x )个,由销售额=销售价×销售量可得;(2)先求得 A 渠道销售甲型零件的全部销售款,再求得购进乙型零件的总数量,( ( 从而得到零售乙型零件的销售额;(3)根据“总利润=B 渠道销售所得利润+A 渠道销售所得利润+销售乙零件所得利润”列出函数解析式,再根据二次函数的性质可得答案.【解答】解: 1)当经销商用 A 渠道销售甲型零件 x 个时,则用 B 渠道销售甲零件(600﹣x )个,∴p 1=250(600﹣x )=﹣250x +150000;(2)∵经销商用 A 渠道销售甲型零件的全部销售款为(﹣ x +200)x ,∴购进乙型零件的总数量为 ,则零售乙型零件的销售额 p 2=×300=﹣ x 2+400x ;(3)根据题意,得:w=(600﹣x )(250﹣200)+(﹣ x +200﹣200)x +(300﹣150)•=﹣ x 2+150x +30000=﹣ (x ﹣ )2+ ,∵x 为整数,∴x=187 或 x=188 时,w 取得最大值,最大值为 44062.4,答:当批发 187 或 188 个甲型零件时,利润最大,最大利润是 44062.4 元.【点评】本题主要考查二次函数的应用,根据题意弄清销售过程中 A 渠道、B 渠道及销售乙产品的销售价及销售量等基本量是解题的关键.10. 2017•安徽模拟)某水果店新进一种水果,进价为 20 元/盒,为了摸清行情,决定试营销 10 天,商家通过这 10 天的市场调查发现:①销售价 y (元/盒)与销售天数 x (天)满足以下关系:天数1≤x ≤56≤x ≤10( ( 销售价格 yx +24 30②每天的销售量 p (盒数)与销售天数 x 关系如图所示.(1)试求每天的销售量 p (盒数)与销售天数 x 之间函数关系式;(2)设水果店的销售利润为 s (元),求销售利润 s (元)与销售天数 x (天)之间的函数关系式,并求出试营销期间一天的最大利润.【分析】 1)待定系数法求解可得;(2)根据“总利润=单件利润×销售量”结合 x 的范围分别求解可得.【解答】解:(1)设销售量 p 与销售天数 x 关系式为 p=kx +b ,由图象可得 ,解得:,∴每天的销售量 p 与销售天数 x 之间函数关系式为 p=﹣2x +24;(2)当 1≤x ≤5 时,s=(y ﹣20)p=( x +24﹣20) ﹣2x +24)=﹣(x ﹣2)2+100,当 x=2 时,s 取得最大值 100;当 6≤x ≤10 时,s=(y ﹣20)p=(30﹣20)(﹣2x +24)=﹣20x +240,当 x=6 时,s 取得最大值 120;综上,试营销期间一天的最大利润为 120 元.【点评】本题主要考查二次函数的应用,根据 x 的范围分情况得到 s 关于 x 的函数解析式及熟练掌握二次函数和一次函数的性质是解题的关键.。
二次函数与实际问题中利润问题(附答案)
(2)每箱定价多少元时,才能使平均每天的利润最大?最大利润是多少?
⑦水产品何时利润最大:
.某商店销售一种销售成本为40元的水产品,若按50元/千克销售,一月可售出5000千克,销售价每涨价1元,月销售量就减少10千克.
(1)写出售价x(元/千克)与月销售利润y(元)之间的函数关系式;
二次函数y=ax2+bx+c(a≠0)的性质:
顶点式,对称轴和顶点坐标公式:
利润=售价-进价
总利润=每件利润×销售数量
①何时橙子总产量最大:
1.某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.增种多少棵橙子树时,总产量最大?
求销售单价为x(元/千克)与日均获利y(元)之间的函数关系式,并注明x的取值范围(提示:日均获利=每千克获利与×均销售量-其它费用)和获得的最大利润.
(2)当销售单价定为55元时,计算出月销售量和销售利润;
(3)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?
(1)
(2)
(3)
⑧化工材料何时利Βιβλιοθήκη 最大:8 .某化工材料经销公司购进了一种化工原料共700千克,已知进价为30元/千克,物价部门规定其销售价在30元~70元之间.市场调查发现:若单价定为70元时,日均销售60千克.价格每降低1元,平均每天多售出2千克.在销售过程中,每天还要支出其它费用500元(天数不足一天时,按整天计算).
如果设果园增种x棵橙子树,总产量为y个,则
利润问题(二次函数应用题)含答案
利润问题(二次函数应用题)1、某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100)x件,应如何定价才能使定价利润最大?最大利润是多少元?2、某超市茶叶专柜经销一种绿茶,每千克成本为50元,市场调查发现,在一段时间内,每天的销售量y(千克)随销售单价x(元/(1)求y与x的函数关系式;(2)设这种绿茶在这段时间内的销售利润为W(元).那么该茶叶每千克定价为多少元时,获得最大利润?且最大利润为多少元?3、某商店经营一种小商品,进价为2元,据市场调查,销售单价是13元时平均每天销售量是500件,而销售价每降低1元,平均每天就可以多售出100件.(1)设每件商品定价为x元时,销售量为y件,求出y与x的函数关系式;(2)若设销售利润为s,写出s与x的函数关系式;(2)每件小商品销售价是多少元时,商店每天销售这种小商品的利润最大?最大利润是多少?4、某宾馆有50个房间供游客居住,当每个房间的定价为每天180元时,房间会全部住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.房价定为多少时,宾馆利润最大?5、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售2件。
(1)设每件衬衫降价x元,平均每天可售出y件,写出y与x的函数关系式___________________。
(2)每件衬衫降价多少元时,商场平均每天盈利最多?6、某商场销售一批产品零件,进价货为10元,若每件产品零件定价20元,则可售出10件,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件产品零件每降价2元,商场平均每天可多售8件。
(1)设每件产品零件降价x元,平均每天可售出y件,写出y与x的函数关系式___________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数应用题利润问题
例1、商场促销,将每件进价为80元的服装按原价100元出售,一天可售出140件,后经市场调查发现,该服装的单价每降低1元,其销量可增加10件
现设一天的销售利润为y元,降价x元。
(1)求按原价出售一天可得多少利润?
(2)求销售利润y与降价x的的关系式
(3)商场要使每天利润为2850元并且使得玩家得到实惠,应该降价多少元?
(4)要使利润最大,则需降价多少元?并求出最大利润
(一)涨价或降价为未知数
例1、某旅社有客房120间,每间房间的日租金为50元,每天都客满,旅社装修后要提高租金,经市场调查,如果一间客房的日租金每增加5元,则每天出租的客房会减少6间。
不考虑其他因素,旅社将每间客房的日租金提高到多少元时,客房日租金的总收入最高?比装修前的日租金总收入增加多少元?
变式:1、某商场销售一批名牌衬衫,平均每天售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天多售出2件。
①若商场平均每天要盈利1200元,每件衬衫应降价多少元?
②若每件衬衫降价x 元时,商场平均每天盈利y元,写出y与x的函数关系式。
例2、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?
变式:2、某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨元(为正整数),每个月的销售利润为元.
(1)求与的函数关系式并直接写出自变量的取值范围;
(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?
(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?
(二)售价为未知数
例3、某食品零售店为仪器厂代销一种面包,未售出的面包可退回厂家,经统计销售情况发现,当这种面包的单价定为7角时,每天卖出160个。
在此基础上,这种面包的单价每提高1角时,该零售店每天就会少卖出20个。
考虑了所有因素后该零售店每个面包的成本是5角。
设这种面包的单价为x(角),零售店每天销售这种面包所获得的利润为
y(角)。
⑴用含x的代数式分别表示出每个面包的利润与卖出的面包个数;
⑵求y与x之间的函数关系式;
⑶当面包单价定为多少时,该零售店每天销售这种面包获得的利润最大?最大利润为多少?
变式:3、青年企业家刘敏准备在北川禹里乡投资修建一个有30个房间供旅客住宿的旅游度假村,并将其全部利润用于灾后重建.据测算,若每个房间的定价为60元∕天,房间将会住满;若每个房间的定价每增加5元∕天时,就会有一个房间空闲.度假村对旅客住宿的房间将支出各种费用20元∕天·间(没住宿的不支出).问房价每天定为多少时,度假村的利润最大?
例4、某商店购进一批单价为18元的商品,如果以单价20元出售,那么一个星期可售出100件。
根据销售经验,提高销售单价会导致销售量减少,即当销售单价每提高1元,销售量相应减少10件,如何提高销售单价,才能在一个星期内获得最大利润?最大利润是多少?
变式:4、某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?
例5、为了落实国务院副总理李克强同志到恩施考察时的指示精神,最近,州委州政府又出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=-2x+80.设这种产品每天的销售利润为y(元).
(1)求y与x之间的函数关系式.
(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?
(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?
变式:5、某商店经营一批进价为10元的商品,据市场分析,每件售价15元,则一天可售55件,如果售价每降1元,则日销售量可增加3件,(为了方便结账,定价取整数)设销售单价为x元,日销售量为y件,日获利为w元。
解答下列问题:
(1)试写出y与x之间的函数关系式;
(2)试写出w与x之间的函数关系式;
(3)计算单价为12元时的日销售量和日销售利润;
(4)若使日销售利润达到200元,且老板要尽快减少库存,则售价应定为多少元?
(5)定价为多少元时,日获利最多,为多少?
(6)分别写出本题中w与x的取值范围。
课后练习
1. 某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件;如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价为元,每个月的销售量为件.
(1)求与的函数关系式并直接写出自变量的取值范围;
(2)设每月的销售利润为,请直接写出与的函数关系式;
(3)每件商品的售价定位多少元时,每个月可获得最大利润?最大的月利润是多少元
2.某商品的进价为每件30元,现在的售价为每件40元,每星期可卖出150件.市场调查反映:如果每件的售价每涨1元(售价每件不能高于45元),那么每星期少卖10件.设每件涨价x元(x为非负整数),每星期的销量为y件.(1)求y与x的函数关系式及自变量x的取值范围;(2)如何定价才能使每星期的利润最大且每星期销量较大?每星期的最大利润是多少?
3.某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:
(1)若设每件降价元、每星期售出商品的利润为元,请写出与的函数关系式,并求出自变量的取值范围;
(2)当降价多少元时,每星期的利润最大?最大利润是多少?
4.某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.设每个房间每天的定价增加元.求:
(1)房间每天的入住量(间)关于(元)的函数关系式.
(2)该宾馆每天的房间收费(元)关于(元)的函数关系式.
(3)该宾馆客房部每天的利润(元)关于(元)的函数关系式;当每个房间的定价为每天多少元时,有最大值?最大值是多少?
5.旅行社为某旅游团包飞机去旅游,其中旅行社的包机费为15000元,旅游团中的每人的飞机票按以下方式与旅行社结算:若旅游团的人数在30人或30人以下,飞机票每张收费900元;若旅游团的人数多于30人,则给与优惠,每多1人,机票费每张减少10元,但旅游团的人数最多有75人,那么旅游团的人数为多少时,旅行社可获得的利润最大?。