硅光电池特性的研究实验报告2
硅光电池实验报告
硅光电池实验报告本实验主要介绍了硅光电池的基本工作原理和实验步骤,以及实验结果与分析。
一、实验目的1.了解硅光电池的基本原理和结构。
2.通过实验测量硅光电池的电流和电压,了解其基本特性。
3.利用测量结果计算硅光电池的效率。
二、实验原理硅光电池是一种将太阳能转化为电能的器件。
其基本原理是利用硅的P-N结,将太阳能转换成电能。
硅光电池的基本结构如图1所示。
太阳能照射在硅光电池的P-N结上,使之内部产生电子和空穴,形成电荷对。
由于P-N结两侧的导体是一个正极,一个负极,所以电荷对被分离开来,形成电流。
这就完成了将太阳能转换为电能的过程。
三、实验步骤1.将硅光电池连接到直流电源上,设定电源的电压为0V。
2.打开电源开关,调节电源输出电压,从0V开始,每隔0.1V记录一次硅光电池的输出电流和电压。
3.将步骤2中记录的数据绘制出输出电压与输出电流的关系曲线。
4.根据输出电流和电压的数据,计算硅光电池的效率。
四、实验结果与分析从图中可以看出,当硅光电池的输出电压逐渐增加时,输出电流也逐渐增加。
当输出电压到达0.4V时,输出电流达到了最大值,此时的最大输出电流为1.56mA。
随后,随着输出电压的进一步增加,输出电流逐渐减小,直到输出电压增长到0.52V时,输出电流降到了0。
根据以上实验数据可以计算硅光电池的效率。
所谓硅光电池的效率,就是指将太阳能转换成电能的比率。
硅光电池的效率 = 输出功率 / 太阳能照射的面积输出功率可以根据实验数据计算出来:最大输出电流 I = 1.56mA输出功率 P = V * I = 0.624mW太阳能照射的面积一般是由硅光电池的面积来决定的。
假设本实验使用的硅光电池面积为200mm^2,则太阳能照射的面积为0.02dm^2。
硅光电池的效率η = 0.624mW / 0.02dm^2 = 31.2%五、实验结论通过本次实验,我们深入了解了硅光电池的基本原理和结构,掌握了硅光电池的测量方法,以及计算其效率的方法。
硅光电池特性的研究实验报告
实验报告姓名:李子汨班级:F0603028 学号:5060309108 实验成绩:同组姓名:钱鹏实验日期:2007/09/21 指导教师:批阅日期:硅光电池特性的研究实验目的:1.了解硅光电池的工作原理及其应用。
2.研究硅光电池的主要参数和基本特性。
实验原理:硅光电池的照度特性硅光电池是属于一种有PN结的单结光电池。
它由半导体硅中渗入一定的微量杂质而制成。
当光照射在PN结上时,由光子所产生的电子与空穴将分别向P区和N区集结,使PN 结两端产生光生电动势。
这一现象称为光伏效应。
1.硅光电池的短路电流与照度关系当光照射硅光电池时,将产生一个由N区流向P区的光生电流I ph,同时由于PN结二极管的特性,存在正向二极管管电流I D。
此电流方向从P区到N区,与光生电流相反,因此实际获得电流I为I=I pℎ−I D=I pℎ−I0[exp(qvnk B T) −1]式中V为结电压,I0为二极管反向饱和电流,I ph是与入射光的强度成正比的光生电流,其比例系数与负载电阻大小以及硅光电池的结构和材料特性有关。
n为理想系数是表示PN 结特性的参数,通常在1-2之间,q为电子电荷,k B为波尔茨曼常数,T为绝对温度。
在一定照度下,光电池被短路(负载电阻为零)则V = 0 由(1)式可得到短路电流I sc=I pℎ硅光电池短路电流与照度特性见图1。
2.硅光电池的开路电压与照度关系当硅光电池的输出端开路时,I = 0,由上两式可得开路电压V oc=nk B Tqln(I scI0+1)硅光电池开路电压与照度特性见图1。
硅光电池的负载特性当硅光电池接上负载R时,硅光电池工作可以在反向偏置电压状态或无偏压状态。
它的伏安特性见图2。
由图中可见,硅光电池的伏安特性曲线由二个部分组成:1.反偏工作状态,光电流与偏压、负载电阻几乎无关(在很大的动态范围内);2.无偏工作状态,光电二极管的光电流随负载电阻变化很大。
由图2可看到,在一定光照下,负载曲线在电流轴上的截距是短路电流I ph,在电压轴上的截距即为开路电压V oc。
硅光电池特性的研究
和长波长处存在一截止波长。
三 发光二极管(LED)的工作原理
当某些半导体材料形成的PN结加正向电压时, 空穴与电子在PN结复合时将产生特定波长的光, 发光的波长与半导体材料的能级间隙Eg有关:
λ=h c / Eg
二 硅光电池的工作原理
硅光电池是一个大面积的光电二极管,它可把入射到 它表面的光能转化为电能。当有光照时,入射光子将把处 于介带中的束缚电子激发到导带,激发出的电子空穴对在 内电场作用下分别漂移到N型区和P型区,当在PN结两端加 负载时就有一光生电流流过负载。
光 电 池 结 构 示 意 图
(1) PN结两端的电流:
I I s (e
ev / KT
1) I P
光电池处于零偏时,V=0,流过PN结的电流I=- IP ;光电池处于反偏时(实验中取V =-5V),流过 PN结的电流I =-IP- Is ,当光电池用作光电转换器 时,必须处于零偏或反偏状态。
(2)光电流IP与输出光功率Pi之间的关系:
I P RPi
发光二极管输出光功率P与驱动电流I的关系: P = ηEp I/ e 本实验用一个驱动电流可调的红色超高亮度发 光二极管作为实验用光源。
实验内容
一、 硅光电池零偏和反偏时光电流与输入光信号 关系特性测定
将硅光电池输出端连接到I / V转换模块输入端,将I /
V转换模块输出端连接到数字电压表头的输入端,调节发 光二极管静态驱动电流,分别测定光电池在零偏和反偏时 光电流与输入光信号关系。在5~15mA内等间距各测10组 数据。比较零偏和反偏时的两条曲线,求出光电池的饱和 电流Is 。
1 10 I S I 零偏 I反偏 10 i=1
光电检测实验报告(2)硅光电池
光电检测实验报告实验名称:硅光电池特性测试实验实验者:实验班级:实验时间:指导老师:宋老师一:实验目的1、学习掌握硅光电池的工作原理2、学习掌握硅光电池的基本特性3、掌握硅光电池基本特性测试方法4、了解硅光电池的基本应用二、实验内容1、硅光电池短路电路测试实验2、硅光电池开路电压测试实验3、硅光电池光电特性测试实验4、硅光电池负载特性测试实验5、硅光电池光谱特性测试实验三、实验仪器1、硅光电池综合实验仪 1个2、光通路组件 1只3、光照度计 1台4、2#迭插头对(红色,50cm) 10根5、2#迭插头对(黑色,50cm) 10根6、三相电源线 1根7、实验指导书 1本8、20M 示波器 1台四、实验步骤1、硅光电池短路电流特性测试:(1)组装好光通路组件,将照度计显示表头与光通路组件照度计探头输出正负极对应相连(红为正极,黑为负极),将光源调制单元J4与光通路组件光源接口使用彩排数据线相连。
(2)“光照度调节”调到最小,连接好光照度计,直流电源调至最小,打开照度计,此时照度计的读数应为0。
(3)“光源驱动单元”的三掷开关BM2拨到“静态”,将拨位开关S1拨上,S2,S3,S4,S5,S6,S7均拨下。
(4)按图2-11所示的电路连接电路图(5)记录下此时的电流表读数I即为硅光电池短路电流。
图2-11 硅光电池短路电流特性测试2、硅光电池开路电压特性测试(1)组装好光通路组件,将照度计显示表头与光通路组件照度计探头输出正负极对应相连(红为正极,黑为负极),将光源调制单元J4与光通路组件光源接口使用彩排数据线相连。
(2)“光照度调节”调到最小,连接好光照度计,直流电源调至最小,打开照度计,此时照度计的读数应为0。
(3)“光源驱动单元”的三掷开关BM2拨到“静态”,将拨位开关S1拨上,S2,S3,S4,S5,S6,S7均拨下。
(4)按图2-12所示的电路连接电路图(5)记录下此时电压表的读数u即为硅光电池开路电压。
实验五十二 硅光电池特性的研究
实验五十二硅光电池特性的研究一、实验目的1.掌握PN结形成原理及其工作机理;2.了解LED发光二极管的驱动电流和输出光功率的关系;3.掌握硅光电池的工作原理及其工作特性。
二、仪器设备1.TKGD�D1型硅光电池特性实验仪;反偏正偏零偏 2.信号发生器; 3.双踪示波器。
图 1. 半导体PN结在零偏�p反偏�p正偏下的耗尽区三、实验原理1.引言目前半导体光电探测器在数码摄像�p光通信�p太阳电池等领域得到广泛应用,硅光电池是半导体光电探测器的一个基本单元,深刻理解硅光电池的工作原理和具体使用特性可以进一步领会半导体PN结原理�p光电效应理论和光伏电池产生机理。
图1是半导体PN结在零偏�p反偏�p正偏下的耗尽区,当P型和N型半导体材料结合时,由于P型材料空穴多电子少,而N型材料电子多空穴少,结果P型材料中的空穴向N型材料这边扩散,N型材料中的电子向P型材料这边扩散,扩散的结果使得结合区两图2. 发送光的设定、驱动和调制电路框图侧的P型区出现负电荷,N型区带正电荷,形成一个势垒,由此而产生的内电场将阻止扩散运动的继续进行,当两者达到平衡时,在PN结两侧形成一个耗尽区,耗尽区的特点是无自由载流子,呈现高阻抗。
当PN结反偏时,外加电场与内电场方向一致,耗尽区在外电场作用下变宽,使势垒加强;当PN结正偏时,外加电场与内电场方向相反,耗尽区在外电场作用下变窄,势垒削弱,使载流子扩散运动继续形成电流,此即为PN结的单向导电性,电流方向是从P指向N。
2.LED的工作原理当某些半导体材料形成的PN结加正向电压时,空穴与电子在PN结复合时将产生特定波长的光,发光的?p?hc/Eg(1)波长与半导体材料的能级间隙Eg有关。
发光波长λp可由下式确定:式(1)中h为普朗克常数,c为光速。
在实际的半导体材料中能级间隙Eg有一个宽度,因此发光二极管发出光的波长不是单一的,其发光波长半宽度一般在25~40nm左右,随半导体材料的不同而有差别。
硅光电池特性的研究实验报告2
硅光电池基本特性的研究太阳能是一种清洁能源、绿色能源,许多国家正投入大量人力物力对太阳能接收器进行研究和利用。
硅光电池是一种典型的太阳能电池,在日光的照射下,可将太阳辐射能直接转换为电能,具有性能稳定,光谱范围宽,频率特性好,转换效率高,能耐高温辐射等一系列优点,是应用极其广泛的一种光电传感器。
因此,在普通物理实验中开设硅光电池的特性研究实验,介绍硅光电池的电学性质和光学性质,并对两种性质进行测量,联系科技开发实际,有一定的新颖性和实用价值。
[实验目的]1.测量太阳能电池在无光照时的伏安特性曲线;2.测量太阳能电池在光照时的输出特性,并求其的短路电流I SC、开路电压U OC、最大FF3.测量太阳能电池的短路电流I及开路电压U与相对光强J /J0的关系,求出它们的近似函数关系;[实验原理]1、硅光电池的基本结构目前半导体光电探测器在数码摄像﹑光通信﹑太阳电池等领域得到广泛应用,硅光电池是半导体光电探测器的一个基本单元,深刻理解硅光电池的工作原理和具体使用特性可以进一步领会半导体PN结原理﹑光电效应理论和光伏电池产生机理。
零偏反偏正偏图 2-1. 半导体PN结在零偏﹑反偏﹑正偏下的耗尽区图2-1是半导体PN结在零偏﹑反偏﹑正偏下的耗尽区,当P型和N型半导体材料结合时,由于P型材料空穴多电子少,而N型材料电子多空穴少,结果P 型材料中的空穴向N型材料这边扩散,N型材料中的电子向P型材料这边扩散,扩散的结果使得结合区两侧的P型区出现负电荷,N型区带正电荷,形成一个势垒,由此而产生的内电场将阻止扩散运动的继续进行,当两者达到平衡时,在PN结两侧形成一个耗尽区,耗尽区的特点是无自由载流子,呈现高阻抗。
当PN 结反偏时,外加电场与内电场方向一致,耗尽区在外电场作用下变宽,使势垒加强;当PN结正偏时,外加电场与内电场方向相反,耗尽区在外电场作用下变窄,势垒削弱,使载流子扩散运动继续形成电流,此即为PN 结的单向导电性,电流方向是从P 指向N 。
硅光电池特性的研究实验报告2
硅光电池基本特性的研究太阳能是一种清洁能源、绿色能源,许多国家正投入大量人力物力对太阳能接收器进行研究和利用。
硅光电池是一种典型的太阳能电池,在日光的照射下,可将太阳辐射能直接转换为电能,具有性能稳定,光谱范围宽,频率特性好,转换效率高,能耐高温辐射等一系列优点,是应用极其广泛的一种光电传感器。
因此,在普通物理实验中开设硅光电池的特性研究实验,介绍硅光电池的电学性质和光学性质,并对两种性质进行测量,联系科技开发实际,有一定的新颖性和实用价值。
[实验目的]1.测量太阳能电池在无光照时的伏安特性曲线;2.测量太阳能电池在光照时的输出特性,并求其的短路电流 I SC 、开路电压 U OC 、最大FF3.测量太阳能电池的短路电流 I 及开路电压U 与相对光强 J /J 0 的关系,求出它们的近似函数关系;[实验原理]1、硅光电池的基本结构目前半导体光电探测器在数码摄像﹑光通信﹑太阳电池等领域得到广泛应用,硅光电池是半导体光电探测器的一个基本单元,深刻理解硅光电池的工作原理和具体使用特性可以进一步领会半导体PN 结原理﹑光电效应理论和光伏电池产生机理。
图2-1是半导体PN 结在零偏﹑反偏﹑正偏下的耗尽区,当P 型和N 型半导体材料结合时,由于P 型材料空穴多电子少,而N 型材料电子多空穴少,结果P 型材料中的空穴向N 型材料这边扩散,N 型材料中的电子向P 型材料这边扩散,扩散的结果使得结合区两侧的P 型区出现负电荷,N 型区带正电荷,形成一个势垒,由此而产生的内电场将阻止扩散运动的继续进行,当两者达到平衡时,在PN 结两侧形成一个耗尽区,耗尽区的特点是无自由载流子,呈现高阻抗。
当PN 结反偏时,外加电场与内电场方向一致,耗尽区在外电场作用下变宽,使势垒加强;当PN 结正偏时,外加电场与内电场方向相反,耗尽区在外电场作用下变窄,势垒削弱,使载流子扩散运动继续形成电流,此即为PN 结的单向导电性,电流方向是从P 指向N 。
硅光电池特性的研究
硅光电池特性的研究一、实验目的1.掌握PN 结形成原理及其工作机理; 2.掌握硅光电池的工作原理及其工作特性。
二、仪器设备MD-GD-3型硅光电池特性实验仪; 三、实验原理1.引言目前半导体光电探测器在数码摄像﹑光通信﹑太阳电池等领域得到广泛应用,硅光电池是半导体光电探测器的一个基本单元,深刻理解硅光电池的工作原理和具体使用特性可以进一步领会半导体PN 结原理﹑光伏电池产生机理。
图1是半导体PN 结在零偏﹑反偏﹑正偏下的耗尽区,当P 型和N 型半导体材料结合时,由于P 型材料空穴多电子少,而N 型材料电子多空穴少,结果P 型材料中的空穴向N 型材料这边扩散,N 型材料中的电子向P 型材料这边扩散,扩散的结果使得结合区两侧的P 型区出现负电荷,N 型区带正电荷,形成一个势垒,由此而产生的内电场将阻止扩散运动的继续进行,当两者达到平衡时,在PN 结两侧形成一个耗尽区,耗尽区的特点是无自由载流子,呈现高阻抗。
当PN 结反 偏时,外加电场与内电场方向一致,耗尽区在外电场作用 下变宽,使势垒加强;当PN 结正偏时,外加电场与内电 场方向相反,耗尽区在外电场作用下变窄,势垒削弱,使 载流子扩散运动继续形成电流,此即为PN 结的单向导电 性,电流方向是从P 指向N 。
2.硅光电池的工作原理硅光电池是一个大面积的光电二极管,它被设计用于 把入射到它表面的光能转化为电能,因此,可用作光电 探测器和光电池,被广泛用于太空和野外便携式仪器等 的能源。
光电池的基本结构如图2,当半导体PN 结处于零偏或反偏时,在它们的结合面耗尽区存在一内电场,硅光电池在没有光照时其特性可视为一个二极管,在没有光照时其正向偏压U 与通过电流I零偏 反偏 正偏图 1. 半导体PN 结在零偏﹑反偏﹑正偏下的耗尽区图 2.光电池结构示意硅光零偏图 3.光电池光电信号接的关系式为:当有光照时,入射光子将把处于介带中的束缚电子激发到 导带激发出的电子空穴对在内电场作用下分别飘移到N 型区和 P 型区,当在PN 结两端加负载时就有一光生电流流过负载。
硅光电池基本特性的研究
实验5 硅光电池基本特性的研究硅光电池又称光生伏特电池,简称光电池.它是一种将太阳或其他光源的光能直接转换成电能的器件.由于它具有重量轻、使用安全、无污染等特点,在目前世界性能源短缺和环境保护形势日益严峻的情况下,人们对硅光电池寄予厚望.硅光电池很可能成为未来电力的重要来源,同时,硅光电池在现代检测和控制技术中也有十分重要的地位,在卫星和宇宙飞船上都用硅光电池作为电源.本实验对硅光电池的基本特性做初步研究.一.实验目的1. 了解硅光电池的基本结构及基本原理.2. 研究硅光电池的基本特性:3.硅光电池的开路电压和短路电流以及它们与入射光强度的关系;4.硅光电池的输出伏安特性等。
二. 实验仪器YJ-CGQ-I典型传感特性综合实验仪、光源、负载电阻箱.数字万用表.连接线1. 实验装置实验装置由光源和硅光电池两部分组成, 如图1所示.图12. 负载电阻箱如图2所示.图2三. 实验原理1.硅光电池的基本结构.硅光电池用半导体材料制成,多为面结合PN 结型,靠PN 结的光生伏特效应产生电动势.常见的有硅光电池和硒光电池.在纯度很高、厚度很薄(0.4mm )的N 型半导体材料薄片的表面,采用高温扩散法把硼扩散到硅片表面极薄一层内形成P 层,位于较深处的N 层保持不变,在硼所扩散到的最深处形成PN 结.从P 层和N 层分别引出正电极和负电极,上表面涂有一层防反射膜,其形状有圆形、方形、长方形,也有半圆形.硅光电池的基本结构如图3所示.图32.硅光电池的基本原理当两种不同类型的半导体结合形成PN 结时.由于分界层(PN 结)两边存在着载流子浓度的突变,必将导致电子从N 区向P 区和空穴从P 区向N 区扩散运动,扩散结果将在PN 结附近+ + 负电极N 层PN 结P 层正电极层防反射层产生空间电荷聚集区,从而形成一个由N区指向P区的内电场.当有光照射到PN结上时,具有一定能量的光子,会激发出电子-空穴对.这样,在内部电场的作用下,电子被拉向N区,而空穴被拉向P区.结果在P区空穴数目增加而带正电,在N区电子数目增加而带负电,在PN结两端产生了光生电动势,这就是硅光电池的电动势.若硅光电池接有负载,电路中就有电流产生.这就是硅光电池的基本原理.单体硅光电池在阳光照射下,其电动势为0.5-0.6V,最佳负荷状态工作电压为0.4-0.5V,根据需要可将多个硅光电池串并联使用.3.硅光电池的光电转换效率硅光电池在实现光电转换时,并非所有照射在电池表面的光能全部被转换为电能.例如,在太阳照射下,硅光电池转换效率最高,但目前也仅达22%左右.其原因有多种,如:反射损失;波长过长的光(光子能量小)不能激发电子空穴对,波长过短的光固然能激发电子-空穴对,但能量再大,一个光子也只能激发一个电子-空穴对;在离PN较远处被激发的电子-空穴对会自行重新复合,对电动势无贡献;内部和表面存在晶格缺陷会使电子-空穴对重新复合;光电流通过PN结时会有漏电等.4. 硅光电池的基本特性4.1 硅光电池的开路电压与入射光强度的关系硅光电池的开路电压是硅光电池在外电路断开时两端的电压,用U∞表示,亦即硅光电池的电动势.在无光照射时,开路电压为零.硅光电池的开路电压不仅与硅光电池材料有关,而且与入射光强度有关,而且与入射光强度有关.在相同的光强照射下,不同材料制做的硅光电池的开路电压不同.理论上,开路电压的最大值等于材料禁带宽度有1/2.例如,禁带宽度为1.1eV的硅做硅光电池,开路电压为0.5-0.6V.对于给定的硅光电池,其开路电压随入射光强度变化而变化.其规律是:硅光电池开路电压与入射光强度的对数成正比,即开路电压随入射光强度增大而增大,但入射光强度越大,开路电压增大得越缓慢.4.2 硅光电池的短路电流与入射光的关系硅光电池的短路电流就是它无负载时回路中电流,用I SC表示.对给定的硅光电池,其短路电流与入射光强度成正比.对此,我们是容易理解的,因为入射光强度越大,光子越多,从而由光子激发的电子-空穴对越多,短路电流也就越大.4.3在一定入射光强度下硅光电池的输出特性当硅光电池两端连接负载而使电路闭合时,如果入射光强度一定,则电路中的电流I和路端电压U均随负载电阻的改变而改变,同时,硅光电池的内阻也随之变化.硅光电池的输出伏安特性曲线如图4所示.图4中,I SC 为U =0,即短路时的电流,I SC .U∞为I=0,即开路时的路端电压,也就是硅光电池在该入射光强度下的开路电压,曲线上任一点对对应的I 和U 的乘积(在图中则是一个矩形的面积),就是硅光电池在相应负载电阻时的输出功率P .曲线上有一点M ,它的对应I mp 和U mp 的乘积(即图中画斜线的矩形面积)最大.可见,硅光电池仅在它的负载电阻值为U mp 和Imp 值时,才有最大输出功率.这个负载电阻称为最佳负载电阻,用R mp 表示.因此,我们通过研究硅光电池在一定入射光强度下的输出特性,可以找出它在该入射光强度下的最佳负载电阻.它在该负载电阻时工作状态为最佳状态,它的输出功率最大.4.4硅光电池在一定入射光强度下的曲线因子(或填充因子)F ·F曲线因子定义式为F ·F =(U mp I mp )/(U ∞I SC )我们知道,在一定入射光强度下,硅光电池的开路电压U ∞和短路电流I SC 是一定的.而U mp 和I mp 分别为硅光电池在该入射光强度下输出功率最大时的电压和电流.可见,曲线因子的物理意义是表示硅光电池在该入射光强度下的最大输出效率.从硅光电池的输出伏安特性曲线来看,曲线因子F ·F 的大小等于斜线矩形的面积(与M 点对应)与矩形I SC U ∞的面积(与M 点对应)之比.如果输出伏安特性曲线越接近矩形,则M 与M ′就越接近重合,曲线因子F · F 就越接近1,硅光电池的最大输出效率就越大.四.实验内容与步骤1. 硅光电池基本常数的测定(1) 测定在一定入射光强度下硅光电池的开路电压U∞和短路电流ISC.调节光源与硅光电池处于适当位置不变.b.测出硅光电池的开路电压U∞c.测出硅光电池的短路电流ISC.(2) 测定硅光电池的开路电压和短路电流与入射光强度的关系.a.光源与硅光电池正对时,测出开路电压U∞1和短路电流ISC1.b.转动硅光电池一定角度(如15o)测出U∞2和ISC2.c.转动硅光电池角度为30o、45o、60o、75o、90o时,测出不同位置下的U∞和ISC.d. 自拟数据表格,并用坐标纸画出ISC—Ө及U∞—Ө曲线.2. 在一定入射光强度下,研究硅光电池的输出特性.保持光源和硅光电池处于适当的位置不变,即保持入射光强度不变.(1) 测量开路电压U∞和短路电流ISC.(2) 分别测出不同负载电阻下的电流I和电压U.(3) 根据U∞、ISC及一系列相应的R、U、I值.填入自拟表格中.(4) 计算在该入射光强度下,与各个R相对应的输出功率P=IU,求出最大输出功率P max,以及相应的硅光电池的最佳负载电阻Rmp、Ump、Imp值.(5) 作P—R及输出伏安特性I—U曲线.(6) 计算曲线因子F·F=(UmpImp)/(U∞ISC).。
硅光电池实验报告
硅光电池实验报告硅光电池实验报告引言:近年来,随着能源危机的日益严重和环境污染问题的日益突出,绿色能源的研究和应用逐渐成为全球关注的焦点。
硅光电池作为一种新型的太阳能电池,具有高效、环保等优点,受到了广泛的关注和研究。
本实验旨在探究硅光电池的工作原理以及其在太阳能转换中的应用。
实验目的:1. 了解硅光电池的工作原理;2. 掌握硅光电池的制备方法;3. 分析硅光电池的性能参数。
实验原理:硅光电池是一种利用硅材料的半导体特性将太阳光能转化为电能的装置。
其工作原理基于光生电压和光生电流效应。
当光照射到硅光电池上时,光子能量被硅材料吸收,使硅中的电子被激发,从而产生电流。
硅光电池通过将这种光生电流引导出来,经过电路的控制和调节,最终将太阳能转化为电能。
实验步骤:1. 实验前准备:准备所需的硅光电池样品、光源、电源等设备;2. 制备硅光电池:将硅光电池样品固定在透明的基座上,确保光线能够正常照射到样品表面;3. 连接电路:将硅光电池与电源、电流表和电压表连接起来,确保电路的正常工作;4. 测量性能参数:通过改变电压和电流的值,记录硅光电池的电流-电压特性曲线,并计算出其最大功率点。
实验结果与分析:通过实验测量,获得了硅光电池的电流-电压特性曲线。
根据曲线,我们可以得到硅光电池的最大功率点。
在实验中,我们发现最大功率点通常出现在硅光电池的额定工作电压附近。
这意味着在实际应用中,我们应该将硅光电池的工作电压调整到最大功率点,以获得最高的能量转换效率。
此外,我们还计算了硅光电池的效率。
效率是指硅光电池将太阳能转化为电能的比例。
通过实验数据的分析,我们可以得到硅光电池的效率约为15%。
这意味着硅光电池能够将太阳能的15%转化为电能,虽然这个转化效率相对较低,但仍然具有一定的应用前景。
讨论与展望:硅光电池作为一种新型的太阳能电池,具有广阔的应用前景。
然而,目前硅光电池的效率仍然较低,制造成本也较高,限制了其在实际应用中的推广。
硅光电池特性研究
硅光电池特性研究硅光电池特性研究【实验⽬的】1.掌握PN结形成原理及其⼯作原理;2.了解LED发光⼆极管的驱动电流和输出功率的关系;3.掌握硅光电池的⼯作原理及其⼯作特性。
【实验原理】1.半导体PN结原理⽬前半导体光电探测器在数码摄像、光通信、太阳电池等领域得到⼴泛应⽤,硅光电池是半导体光电探测器的⼀个基本单元,深刻理解硅光电池的⼯作原理和具体使⽤特性可以进⼀步领会半导体PN结原理、光电效应理论和光伏电池产⽣机理。
零偏WW反偏正偏图17-1. 半导体PN结在零偏、反偏、正偏下的耗尽区图17-1是半导体PN结在零偏、反偏、正偏下的耗尽区,当P型和N型半导体材料结合时,由于P型材料空⽳多电⼦少,⽽N型材料电⼦多空⽳少,结果P型材料中的空⽳向N型材料这边扩散,N型材料中的电⼦向P型材料这边扩散,扩散的结果使得结合区两侧的P型区出现负电荷,N型区带正电荷,形成⼀个势垒,由此⽽产⽣的内电场将组织扩散运动的继续进⾏,当两者达到平衡时,在PN结两侧形成⼀个耗尽区,耗尽区的特点是⽆⾃由载流⼦,呈现⾼阻抗。
当PN结反偏时,外加电场与内电场⽅向⼀致,耗尽区在外电场作⽤下变宽,使势垒加强;当PN结正偏时,外加电场与内电场⽅向相反,耗尽区在外电场作⽤下变窄,使势垒削弱,使载流⼦扩散运动继续形成电流,这就是PN结的单向导电性,电流⽅向是从P指向N。
2.LED⼯作原理当某些半导体材料形成的PN 结加正向电压时,空⽳与电⼦在PN 结复合时将产⽣特定波长的光,发光的波长与半导体材料的能级间隙E g 有关。
发光波长p λ可由下式确定:/p g hc E λ= (17-1)式(17-1)中的h 为普朗克常数,c 为光速。
在实际的半导体材料中能级间隙E g 有⼀个宽度,因此发光⼆极管发出光的波长不是单⼀的,其发光波长半宽度⼀般在25~40nm 左右,随半导体材料的不同⽽有差别。
发光⼆极管输出光功率P 与驱动电流I 的关系由下式决定:/p p E I e η= (17-2)式中η为发光效率,Ep 是光⼦能量,e 是电荷常数。
硅光电池特性的研究实验报告
硅光电池特性的研究实验报告硅光电池特性的研究实验报告引言:太阳能作为一种清洁、可再生的能源,受到了广泛的关注和研究。
而硅光电池作为太阳能电池的主要类型之一,其特性的研究对于提高太阳能转换效率具有重要意义。
本实验旨在通过对硅光电池的特性进行研究,探索其在不同条件下的性能表现,为太阳能利用的进一步发展提供参考。
实验一:光照强度对硅光电池特性的影响在此实验中,我们将调节光照强度,分别测量不同光照强度下硅光电池的输出电压和电流,并计算出对应的功率。
实验结果显示,随着光照强度的增加,硅光电池的输出电压和电流均呈现出增加的趋势。
这是因为光照强度的增加导致硅光电池中光生载流子的产生增加,从而提高了电流的大小。
同时,光照强度的增加也增加了光生载流子的迁移速率,从而提高了输出电压。
然而,当光照强度超过一定阈值后,硅光电池的输出电压和电流增长的速度减缓,甚至趋于饱和。
这是因为光生载流子的产生速率和复合速率达到平衡,导致输出电流和电压不再继续增加。
实验二:温度对硅光电池特性的影响在此实验中,我们将调节硅光电池的工作温度,分别测量不同温度下硅光电池的输出电压和电流,并计算出对应的功率。
实验结果显示,随着温度的升高,硅光电池的输出电压和电流均呈现出下降的趋势。
这是因为温度的升高导致硅光电池内部电阻增加,从而限制了电流的流动。
同时,温度的升高也会增加载流子的非辐射复合速率,降低了光生载流子的寿命,导致输出电流减小。
此外,温度的升高还会增加硅光电池的本底电流,进一步降低了输出电流和电压。
实验三:光照强度和温度的联合影响在此实验中,我们将同时调节光照强度和温度,研究它们对硅光电池特性的联合影响。
实验结果显示,光照强度和温度的变化对硅光电池特性有着复杂的影响。
当光照强度较低且温度较高时,硅光电池的输出电流和电压均较低。
这是因为低光照强度下光生载流子的产生减少,而高温下电阻增加和非辐射复合速率增加导致电流和电压的降低。
相反,当光照强度较高且温度较低时,硅光电池的输出电流和电压均较高。
硅光电池特性研究
硅光电池特性研究【实验目的】1. 掌握PN 结形成原理及其工作原理;2. 了解LED 发光二极管的驱动电流和输出功率的关系;3. 掌握硅光电池的工作原理及其工作特性。
【实验原理】1. 半导体PN 结原理目前半导体光电探测器在数码摄像、光通信、太阳电池等领域得到广泛应用,硅光电池 是半导体光电探测器的一个基本单元,深刻理解硅光电池的工作原理和具体使用特性可以进一步领会半导体 PN 结原理、光电效应理论和光伏电池产生机理。
I • ■ * • ♦0© © ©I * < * « * ©;©©©©© ①:④④@©@1« « * a >P B Q ^!OG O*Q*G*Q°;Q b Q°Q^Q O Q»Q*Q> o 0 ;Q*O*G*内电场E- ■ E WR反偏正偏图17-1.半导体PN 结在零偏、反偏、正偏下的耗尽区图17-1是半导体PN 结在零偏、反偏、正偏下的耗尽区,当P 型和N 型半导体材料结合时,由于P 型材料空穴多电子少,而 N 型材料电子多空穴少,结果 P 型材料中的空穴向N 型材料这边扩散,N 型材料中的电子向 P 型材料这边扩散,扩散的结果使得结合区两侧的 P 型区出现负电荷,N 型区带正电荷,形成一个势垒,由此而产生的内电场将组织扩散运动 的继续进行,当两者达到平衡时,在PN 结两侧形成一个耗尽区,耗尽区的特点是无自由载流子,呈现高阻抗。
当 PN 结反偏时,外加电场与内电场方向一致,耗尽区在外电场作用下 变宽,使势垒加强;当 PN 结正偏时,外加电场与内电场方向相反,耗尽区在外电场作用下 变窄,使势垒削弱,使载流子扩散运动继续形成电流,这就是 PN 结的单向导电性,电流方向是从P 指向N 。
2. LED 工作原理波长的光,发光的波长与半导体材料的能级间隙E g 有关。
武汉职业技术学院光电11302硅光电池特性测试实验报告
硅光电池特性测试实验报告组长:杨博组员:付中亮熊鹏郭晓峰指导教师:王凌波实验日期:2012年10月11日2012年10月16日提交日期:2012年11月11 日一、实验目的1、学习掌握硅光电池的工作原理2、学习掌握硅光电池的基本特性3、掌握硅光电池基本特性测试方法4、了解硅光电池的基本应用二、实验内容1、硅光电池短路电路测试实验2、硅光电池开路电压测试实验3、硅光电池光电特性测试实验4、硅光电池伏安特性测试实验5、硅光电池负载特性测试实验6、硅光电池时间响应测试实验三、实验仪器1、硅光电池综合试验仪1个2、光通路组件1只3、光照度计1台4、2#迭插头对10根5、2#迭插头对10根6、三相电源线1根7、实验指导书1本四、注意事项1、当电压表和电流表显示为“1—”是说明超过量程,应更换为合适量程;2、连线之前保证电源关闭;3、实验过程中,请勿同时拨开两种或两种的电源开关,这样会造成实验所测试的数据不准确。
五、实验步骤1、硅光电池短路电流特性测试2、硅光电池开路电压特性测试3、硅光电池光照特性数据分析得:光电池的短路电流与入射光照度成正比,而开路电压与光照度的对数成反比。
4、硅光电池伏安特性(注:电流单位:uA电压单位:mV) 100LX300Lx500Lx数据分析得:在同一照度下,随着电阻的不断增大,硅光电池的电流不断减小,电压不断增大。
5、 硅光电池负载特性测试 R=510欧R=1K-60-50-40-30-20-100硅光电池伏安特性曲线电流(u A )R=2KR=5KR=10K数据分析得:在我们使用硅光电池时往往都要接负载电阻,输出电流随照度的增加而非线性地增加,并且随负载的增大线性范围也越来越小。
因此,在要求输出电流与光照度呈线性关系时,负载电阻在条件许可的情况下越小越好,并限制在光照范围内使用。
6、 硅光电池光谱特性测试010203040506070100200300400500600700硅光电池负载特性曲线光照度(Lx)电流(u A )六、实验总结通过这次试验,我们更加深刻地了解到硅光电池的一些基本特性,不仅培养了我们自己的动手实践能力,而且增强了我们团队之间合作的意识。
实验五十二硅光电池特性的研究
试验五十二硅光电池特征研究一、 试验目1.掌握PN 结形成原理及其工作机理; 2.了解LED 发光二极管驱动电流和输出光功率关系;3.掌握硅光电池工作原理及其工作特征。
二、 仪器设备1.TKGD ―1型硅光电池特征试验仪;2.信号发生器;3.双踪示波器。
三、 试验原理1.引言现在半导体光电探测器在数码摄像﹑光通信﹑太阳电池等领域得到广泛应用, 硅光电池是半导体光电探测器一个基础单元, 深刻了解硅光电池工作原理和具体使用特征能够深入领会半导体PN 结原理﹑光电效应理论和光伏电池产生机理。
图1是半导体PN 结在零偏﹑反偏﹑正偏下耗尽区, 当P 型和N 型半导体材料结合时, 因为P 型材料空穴多电子少, 而N 型材料电子多空穴少, 结果P 型材料中空穴向N 型材料这边扩散, N 型材料中电子向P 型材料这边扩散, 扩散结果使得结合区两侧P 型区出现负电荷, N 型区带正电荷, 形成一个势垒, 由此而产生内电场将阻止扩散运动继续进行, 当二者达成平衡时, 在PN 结两侧形成一个耗尽区, 耗尽区特点是无自由载流子, 展现高阻抗。
当PN 结反偏时, 外加电场与内电场方向一致, 耗尽区在外电场作用下变宽,使势垒加强; 当PN 结正偏时, 外加电场与内电场方向相反, 耗尽区在外电场作用下变窄, 势垒减弱,零偏 反偏 正偏 图 1. 半导体PN 结在零偏﹑反偏﹑正偏下耗尽区图 2. 发送光设定、 驱动和调制电路框图 图 3. LED 发光二极管正弦信号调制原理使载流子扩散运动继续形成电流, 此即为PN 结单向导电性,电流方向是从P 指向N 。
2.LED 工作原理当一些半导体材料形成PN 结加正向电压时,空穴与电子在PN 结复合时将产生特定波长光, 发光波长与半导体材料能级间隙E g 相关。
发光波长λp 可由下式确定:式(1)中h 为普朗克常数, c 为光速。
在实际半导体材料中能级间隙E g 有一个宽度, 所以发光二极管发出光波长不是单一, 其发光波长半宽度通常在25~40nm 左右, 随半导体材料不一样而有差异。
硅光电池特性测试实验报告
硅光电池特性测试实验报告硅光电池特性测试实验报告系别:电子信息工程系班级:光电08305班组长:祝李组员:贺义贵、何江武、占志武实验时间:2010年4月2日指导老师:王凌波2010.4.6目录一、实验目的二、实验内容三、实验仪器四、实验原理五、注意事项六、实验步骤七、实验数据及分析八、总结一、实验目的1、学习掌握硅光电池的工作原理2、学习掌握硅光电池的基本特性3、掌握硅光电池基本特性测试方法4、了解硅光电池的基本应用二、实验内容1、硅光电池短路电路测试实验2、硅光电池开路电压测试实验3、硅光电池光电特性测试实验4、硅光电池伏安特性测试实验5、硅光电池负载特性测试实验6、硅光电池时间响应测试实验7、硅光电池光谱特性测试实验设计实验1:硅光电池光控开关电路设计实验设计实验2:简易光照度计设计实验三、实验仪器1、硅光电池综合实验仪 1个2、光通路组件 1只3、光照度计 1台4、2#迭插头对(红色,50cm) 10根5、2#迭插头对(黑色,50cm) 10根6、三相电源线 1根7、实验指导书 1本8、20M 示波器 1台四、实验原理1、硅光电池的基本结构目前半导体光电探测器在数码摄像﹑光通信﹑太阳电池等领域得到广泛应用,硅光电池是半导体光电探测器的一个基本单元,深刻理解硅光电池的工作原理和具体使用特性可以进一步领会半导体PN结原理﹑光电效应理论和光伏电池产生机理。
零偏反偏正偏图 2-1. 半导体PN结在零偏﹑反偏﹑正偏下的耗尽区图2-1是半导体PN结在零偏﹑反偏﹑正偏下的耗尽区,当P型和N型半导体材料结合时,由于P型材料空穴多电子少,而N型材料电子多空穴少,结果P型材料中的空穴向N型材料这边扩散,N型材料中的电子向P型材料这边扩散,扩散的结果使得结合区两侧的P型区出现负电荷,N型区带正电荷,形成一个势垒,由此而产生的内电场将阻止扩散运动的继续进行,当两者达到平衡时,在PN结两侧形成一个耗尽区,耗尽区的特点是无自由载流子,呈现高阻抗。
硅光电池特性的研究实验报告
实验报告姓名:李子汨班级:F0603028 学号:5060309108 实验成绩:同组姓名:钱鹏实验日期:2007/09/21 指导教师:批阅日期:硅光电池特性的研究实验目的:1.了解硅光电池的工作原理及其应用。
2.研究硅光电池的主要参数和基本特性。
实验原理:硅光电池的照度特性硅光电池是属于一种有PN结的单结光电池。
它由半导体硅中渗入一定的微量杂质而制成。
当光照射在PN结上时,由光子所产生的电子与空穴将分别向P区和N区集结,使PN 结两端产生光生电动势。
这一现象称为光伏效应。
1.硅光电池的短路电流与照度关系当光照射硅光电池时,将产生一个由N区流向P区的光生电流I ph,同时由于PN结二极管的特性,存在正向二极管管电流I D。
此电流方向从P区到N区,与光生电流相反,因此实际获得电流I为I=I pℎ−I D=I pℎ−I0[exp(qvnk B T) −1]式中V为结电压,I0为二极管反向饱和电流,I ph是与入射光的强度成正比的光生电流,其比例系数与负载电阻大小以及硅光电池的结构和材料特性有关。
n为理想系数是表示PN 结特性的参数,通常在1-2之间,q为电子电荷,k B为波尔茨曼常数,T为绝对温度。
在一定照度下,光电池被短路(负载电阻为零)则V = 0 由(1)式可得到短路电流I sc=I pℎ硅光电池短路电流与照度特性见图1。
2.硅光电池的开路电压与照度关系当硅光电池的输出端开路时,I = 0,由上两式可得开路电压V oc=nk B Tqln(I scI0+1)硅光电池开路电压与照度特性见图1。
硅光电池的负载特性当硅光电池接上负载R时,硅光电池工作可以在反向偏置电压状态或无偏压状态。
它的伏安特性见图2。
由图中可见,硅光电池的伏安特性曲线由二个部分组成:1.反偏工作状态,光电流与偏压、负载电阻几乎无关(在很大的动态范围内);2.无偏工作状态,光电二极管的光电流随负载电阻变化很大。
由图2可看到,在一定光照下,负载曲线在电流轴上的截距是短路电流I ph,在电压轴上的截距即为开路电压V oc。
硅光电池特性实验
硅光电池特性实验硅光电池是一种能够将太阳能转化为电能的半导体器件。
在这个实验中,我们将探究硅光电池的特性,包括其随着光照强度、温度和负载电阻的变化,以及其I-V曲线和P-V 曲线。
实验材料:1.硅光电池2.台式数字万用表3.90W白色LED灯4.恒流源5.电阻箱实验步骤:1.电路连接:将硅光电池通过恒流源连接到数字万用表上,并用电阻箱连接一个负载电阻。
2.测量I-V曲线:将电路连接好后,使用数字万用表测量电路中的电流和电压,记录数据。
3.测量P-V曲线:根据上一步测量所获得的数据,计算出该电路对应的功率,并绘制出P-V曲线。
4.测量光照强度对硅光电池输出功率的影响:在不同光照强度下,使用相同的负载电阻测量输出功率,并绘制出曲线。
5.测量温度对硅光电池输出功率的影响:在不同温度下,使用相同的负载电阻测量输出功率,并绘制出曲线。
6.观察负载电阻对硅光电池输出功率的影响:在相同光照强度和温度下,使用不同的负载电阻测量输出功率,并绘制出曲线。
实验结果:1.I-V曲线和P-V曲线:随着电压的增加,电流也会逐渐增加,但当电压达到一定值后,电流增加缓慢。
而功率则是电流和电压的乘积,呈现出一个“山峰”状的曲线,当电压达到一个最大值后,功率也会达到最大值,随后急剧下降。
2.光照强度对输出功率的影响:当光照强度增加时,输出功率也会随之增加。
但是当光照强度超过一定范围后,输出功率不再增加,反而开始下降。
3.温度对输出功率的影响:随着温度的升高,输出功率逐渐下降。
这是因为高温会使硅光电池的导电能力下降,从而降低其输出功率。
4.负载电阻对输出功率的影响:负载电阻的变化会影响电路中的电流和电压,从而对输出功率产生影响。
当负载电阻较小时,电路的电流较大,但电压较小,这会导致输出功率较低。
而当负载电阻较大时,电路的电流较小,但电压较大,可以使输出功率达到最大值。
结论:通过本次实验,我们得到了以下结论:1.硅光电池的I-V曲线和P-V曲线呈现出一定规律性,当电压达到一定值后,电流增加缓慢,随后Gong率开始下降。
实验二硅光电池负载特性的测试打印
实验二十二 硅光电池 一、实验目的 1. 掌握硅光电池的正确使用方法; 2. 了解光电池零负载,以及不同负载时光电流与照度的关系。
二、工作原理 光电池具有半导体结型器件无源直接负载下的工作特性,工作原理如图1所示:外接负载为RL、Ip为光电流,ID为二极管结电流。
I为通过负载的外电流: /(1)Tv v D sc I I I I I eφφ=−=−− (1) 其中ISC为光电流反向饱和电流。
当qK V TT =为温度电压当量时,负载RL上的电压V=IRL 给光电池正向偏压。
1. 当零负载时(RL=0),(1)式外电流为短路电流: sc p I I SE== (2) S为光电流灵敏度,短路电流ISC和照度E成正比。
2. 当开路时,(RL=∞),(1)式外电流I=0则开路电压为 ln(1p oc T SCI V V I =+ (3) 开路电压Voc与照度E几乎无关;所有照度下的开路电压Voc趋于光电池正向开启电压V=0.6伏。
并小于这个电压值。
3. 最佳负载,负载在RL=0~∞之间变化按经验公式求出最佳负载 光I FR LI D IANP图1 光电池工作原理图m (0.60.8)(0.60.8)I m oc oc opt sc V V V R I SE =≈=:: (4) 当RL≤Ropt时,并忽略光电池结电流,负载电流近似等于恒定短路电流。
当RL>Ropt时,光电池结电流按指数增加,负载电流近似于指数形式减小。
三、实验内容 1. 测定电池零负载下Ip和E的关系; 2. 测定光电池不同负载情况下特性数据。
四、实验仪表和器材 照度计、钨丝灯、调压变压器、稳定电源、毫伏电压表、微安表、电阻和电位计等。
五、实验线路装置 光电池负载实验线路装置如图2所示。
光电池受光照后,产生光电流I2。
在A、B两点的毫伏电压会产生偏转。
调节稳压电源VE后,产生补偿电流I1,I1和光电流I2方向相反。
调节电位计R5(粗调)和R6(细调)使补偿电流I1与光电流I2相减,并促使毫伏电压表G1指示为零。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
硅光电池基本特性的研究
太阳能是一种清洁能源、绿色能源,许多国家正投入大量人力物力对太阳能接收器进行研究和利用。
硅光电池是一种典型的太阳能电池,在日光的照射下,可将太阳辐射能直接转换为电能,具有性能稳定,光谱围宽,频率特性好,转换效率高,能耐高温辐射等一系列优点,是应用极其广泛的一种光电传感器。
因此,在普通物理实验中开设硅光电池的特性研究实验,介绍硅光电池的电学性质和光学性质,并对两种性质进行测量,联系科技开发实际,有一定的新颖性和实用价值。
[实验目的]
1.测量太阳能电池在无光照时的伏安特性曲线;
2.测量太阳能电池在光照时的输出特性,并求其的短路电流I SC、开路电压
U OC、最大FF
3.测量太阳能电池的短路电流I及开路电压U与相对光强J /J0的关系,求出它们的近似函数关系;
[实验原理]
1、硅光电池的基本结构
目前半导体光电探测器在数码摄像﹑光通信﹑太阳电池等领域得到广泛应用,硅光电池是半导体光电探测器的一个基本单元,深刻理解硅光电池的工作原理和具体使用特性可以进一步领会半导体PN结原理﹑光电效应理论和光伏电池产生机理。
零偏反偏正偏
图 2-1. 半导体PN结在零偏﹑反偏﹑正偏下的耗尽区
图2-1是半导体PN结在零偏﹑反偏﹑正偏下的耗尽区,当P型和N型半导体材料结合时,由于P型材料空穴多电子少,而N型材料电子多空穴少,结果P 型材料中的空穴向N型材料这边扩散,N型材料中的电子向P型材料这边扩散,扩散的结果使得结合区两侧的P型区出现负电荷,N型区带正电荷,形成一个势垒,由此而产生的电场将阻止扩散运动的继续进行,当两者达到平衡时,在PN 结两侧形成一个耗尽区,耗尽区的特点是无自由载流子,呈现高阻抗。
当PN结反偏时,外加电场与电场方向一致,耗尽区在外电场作用下变宽,使势垒加强;当PN结正偏时,外加电场与电场方向相反,耗尽区在外电场作用下变窄,势垒
削弱,使载流子扩散运动继续形成电流,此即为PN 结的单向导电性,电流方向是从P 指向N 。
2、硅光电池的工作原理
太阳能电池能够吸收光的能量,并将所吸收光子的能量转化为电能。
这一能
量转换过程是利用半导体 P-N 结的光伏效应(Photovoltaic Effect )进行的。
在没有光照时太阳能电池的特性可简单的看作一个二极管,其正向偏压 U 与通过电流 I 的关系式为:
, (1)
(1) 式中,I 0和β是常数。
其中,I 、U 为 P-N 结二极管的电流及电压,k 为 波尔兹曼常数(1.38×10 J/K ),q 为电子电荷量(1.602×10 库仑),T 为绝
对温度, Io 是二极管的反向饱和电流,是理想二极管参数,q
nKT
β=
由半导体理论,二极管主要是由能隙为EC -EV 的半导体构成,如图1所示。
EC 为半导体电带,EV 为半导体价电带。
当入射光子能量大于能隙时,光子会被半导体吸收,产生电子和空穴对。
电子和空穴对会分别受到二极管之电场的影响而产生光电流。
图1
假设太阳能电池的理论模型是由一理想电流源(光照产生光电流的电流源)、一个理想二极管、一个并联电阻与一个电阻所组成,如图2所示。
图2
图2中,为太阳能电池在光照时该等效电源输出电流,为光照时,通过太阳能电
(1)U o I I e β=-E C
E V
导电带
价电带能隙光子
空穴电子I ph I d
I ph -I d
R s R sh I R L +-U
池部二极管的电流。
由基尔霍夫定律得:
, (2)
(2)式中,I 为太阳能电池的输出电流,U 为输出电压。
由(1)式可得, , (3)
假定 和 ,太阳能电池可简化为图3所示电路。
图3
这里, 。
在短路时,U =0, ;
而在开路时,I =0, ; , (4)
(4)式即为在 和 的情况下,太阳能电池的开路电压 和短路电流 的关系式。
其中 为开路电压, 为短路电流,而I 0 、β是常数。
3、硅光电池的基本特性 (1) 短路电流
图2-3 硅光电池短路电流测试
如图2-3所示,不同的光照的作用下, 毫安表如显示不同的电流值。
即为硅光电池的短路电流特性。
(2)开路电压
I ph
I d
I
U
1
ln[
1]sc
OC I U I β
=
+∴
()0s ph d sh IR U I I I R +---=(1)s ph d sh sh
R U I I I R R +=--sh R =∞0s R =0(1)
U ph d ph I I I I I e β=-=--ph sc I I =0
(1)0oc
U sc I I e β--=sh R =∞0s R =OC U SC
I
OC U SC I A
PN 结
电极
A
I
I
(a )
(b )
硼扩散层
P型电极
N型硅片
.
图2-4 硅光电池开路电压测试
如图2-4所示,不同的光照的作用下, 电压表如显示不同的电压值。
即为硅光电池的开路电压特性。
(3) 光照特性
光电池在不同光照度下, 其光电流和光生电动势是不同的,它们之间的关系就是光照特性,如图2-5。
图2-5 硅光电池的光照电流电压特性
(4)伏安特性
如图2-6,在硅光电池输入光强度不变时,测量当负载一定的围变化时,光电池的输出电压及电流随负载电阻变化关系曲线称为硅光电池的伏安特性。
图2-6 硅光电池的伏安特性测试
(5)负载特性(输出特性)
光电池作为电池使用如图2-7所示。
在电场作用下,入射光子由于光电效应把处于介带中的束缚电子激发到导带,而产生光伏电压,在光电池两端加一个负载就会有电流流过,当负载很小时,电流较小而电压较大;当负载很大时,电流较大而电压较小。
实验时可改变负载电阻RL 的值来测定硅光电池的负载特性。
0.3 0.2 0.1 0
光
生 电 流
/ m A
0.6 0.4 0.2 0
2 000 4 000
短路电流 开路电压
光 生
电 压 /
V 光照度 /Lx
V
PN 结
电极
V
I
I
(a)
(b)
硼扩散层
SiO2膜P 型电极
N 型硅片
V
A
图2-7 硅光电池负载特性的测定
[实验仪器]光具座、滑块、白炽灯、太阳能电池、光功率计、遮光罩、电压表、
电流表、电阻箱、导线等
[实验容]
1. 在没有光源(全黑)的条件下,测量太阳能电池正向偏压时的I -U 特性(直流偏压从0—3.0V )。
(1)设计测量电路图,并连接。
图1
(2)利用测得的正向偏压时I -U 关系数据,画出I-U 曲线并求出常数q nKT
β=和0I 的值。
2、在不加偏压时,用白色光源照射,测量太阳能电池一些特性。
注意此时光源到太阳能电池距离保持为20cm 。
(1)设计测量电路图,并连接。
图2
(2)测量电池在不同负载电阻下,I 对U 变化关系,画出I -U 曲线图。
(3)求短路电流SC I 和开路电压OC U 。
(4)求太阳能电池的最大输出功率及最大输出功率时负载电阻。
(5)计算填充因子max SC OC FF P I U
3、测量太阳能电池的光照效应与光电性质。
在暗箱中(用遮光罩挡光),取离白光源20cm 水平距离光强作为标准光照强度,用光功率计测量该处的光照强度J 0;改变太阳能电池到光源的距离x ,用光功率计测量该处的光照强度J ,求光强J 与位置X 关系。
测量太阳能电池接受到相对光强度J /J 0不同值时,相应的SC I 和OC U 的值。
(1)设计测量电路图,并连接。
(2)测量太阳能电池接受到相对光强度J /J 0不同值时,相应的SC I 和OC U 的值。
(3)描绘SC I 和与相对光强J /J 0之间的关系曲线,求SC I 和与相对光强J /J 0之间的近似关系函数。
(4)描绘OC U 和与相对光强J /J 0之间的关系曲线,求OC U 和与相对光强J /J 0
之间的近似关系函数。
[注意事项]
1.实验测试结果会受到实验室杂散光的影响,使用中尽量保持较暗的测试环境。
2.连接电路时,保持电源开关断开,以免发生触电事故。
3.改变负载电阻,测量相应的负载电流时,适当安排测量点的分布:在估算的最佳负载电阻值附近的测量点应密,其他测量点可疏。
4.由于各台仪器使用的太阳能电池光电转换效率、白炽灯的发射光谱存在一定的个体差异,而且实验仪器所处的环境亮度不尽相同,这类因素均可能导致各台仪器之间测量结果存在一定差异,但并不影响物理规律的反映。
[问题与讨论]
(1)如何确定硅光电池的阻?其大小与哪些因素有关?
(2)实验时光源的相对强度发生了变化,对测量结果有何影响?
(3)什么是最佳匹配电阻?对给定的硅光电池如何确定其最佳匹配电阻?
参考资料
[1] 述武,立竹,国土.普通物理实验(3)·光学部分[M].高等教育, 2007.12,(02):93-95 [2] 原所佳主编,许振峰副主编.物理实验教程.国防工业,2006年08月第1版. :262-264 [3] 锐.太阳能电池的原理及制作[J].教学仪器与实验2006.03,(01):123-125。