中考圆的基本性质知识点PPT课件
合集下载
初中圆 ppt课件
![初中圆 ppt课件](https://img.taocdn.com/s3/m/59380d07bf1e650e52ea551810a6f524ccbfcbd0.png)
作圆的切线
切线的定义
切线是与圆只有一个公共点的直 线,这个公共点叫做切点。
切线的判定
要判定一条直线是否为圆的切线, 可以通过切线的定义进行判定,即 看直线与圆是否只有一个公共点。
切线的作法
在已知圆上任取一点,过这一点作 圆的切线,这样的切线有且只有一 条。
作圆的直径和半径
01
02
03
直径的定义
通过圆心并且两端都在圆 上的线段叫做圆的直径。
详细描述:在几何证明题中,有时需要通过添加辅助线 来构造与圆相关的图形,从而利用圆的性质来证明题目 中的结论。
详细描述:解决与圆相关的几何证明题需要掌握一些解 题技巧,如利用圆的性质进行等量代换、利用切线性质 进行转化等,这些技巧能够简化问题并提高解题效率。
圆与其他几何图形的关系
总结词:相交和相切 总结词:组合图形
详细描述
圆内接四边形定理指出,圆内接 四边形的对角线互相平分。这个 定理是解决与圆内接四边形相关 问题的重要依据。
切线长定理
总结词
切线长定理是关于圆的切线与经过切点的半径之间关系的定 理。
详细描述
切线长定理指出,从圆外一点引出的两条切线,它们的切线 长相等。这个定理在证明其他与圆有关的定理时经常用到, 如垂径定理。
详细描述:圆与其他几何图形如三角形、矩形等 经常出现相交或相切的情况,这些关系涉及到一 些重要的几何定理和性质,如切线长定理、相交 弦定理等。
详细描述:在解决几何问题时,有时需要将圆与 其他几何图形组合起来形成复杂的组合图形,这 些组合图形具有一些特殊的性质和定理,能够为 解题提供重要的思路和方法。
详细描述:圆形具有优美的对称性和流畅的线条,常用 于装饰和艺术设计中,如建筑设计、绘画和雕塑等。
初中圆的ppt课件
![初中圆的ppt课件](https://img.taocdn.com/s3/m/de37052659fafab069dc5022aaea998fcc224020.png)
02 圆的性质和定理
圆周角定理பைடு நூலகம்
总结词
圆周角定理是圆的基本性质之一,它描述了圆周角与其所夹 弧之间的关系。
详细描述
圆周角定理指出,对于圆上的任意一个圆周角,它所对的弧 与其夹角的度数成比例。具体来说,如果一个圆周角是θ度, 它所对的弧是θ/180*π*r,其中r是圆的半径。
垂径定理
总结词
垂径定理是圆的另一个重要性质,它 描述了通过圆心的直径与圆周之间的 关系。
VS
详细描述
圆锥的侧面展开图是一个扇形,这个扇形 所在的圆就是圆锥的底面。通过这个关系 ,我们可以更好地理解圆锥的几何性质, 例如圆锥的侧面积和底面积之间的关系。 此外,这个关系也为我们提供了解决圆锥 问题的方法,例如求圆锥的表面积或体积 。
圆与圆柱的关系
总结词
圆与圆柱之间存在密切的关系,圆柱的侧面 展开图是一个矩形,而这个矩形的长和宽分 别是圆柱的高和底面圆的周长。
详细描述
圆柱的侧面展开图是一个矩形,这个矩形的 长等于圆柱的高,而宽等于圆柱底面圆的周 长。这个关系可以帮助我们理解圆柱的几何 性质,例如圆柱的侧面积和底面积之间的关 系。此外,这个关系也为我们提供了解决圆 柱问题的方法,例如求圆柱的侧面积或表面 积。
THANKS 感谢观看
初中圆的ppt课件
• 圆的基本概念 • 圆的性质和定理 • 圆的作图和计算 • 圆的在实际生活中的应用 • 圆的拓展知识
01 圆的基本概念
圆的基本定义
总结词
描述圆的定义
详细描述
圆是一个平面图形,由所有与固定点等距离的点组成。这个固定点称为圆心, 而这个等距离的长度称为半径。
圆的性质
总结词
描述圆的性质
周长计算的应用
圆 初三 ppt课件ppt课件ppt
![圆 初三 ppt课件ppt课件ppt](https://img.taocdn.com/s3/m/90e5a765abea998fcc22bcd126fff705cc175cd0.png)
圆的性质
01
圆的直径是半径的两倍 ,半径是直径的一半。
02
圆内接正多边形的所有 边都相等,所有内角也 都相等。
03
圆的外切正多边形的所 有边都相等,所有内角 也都相等。
04
圆的周长和面积都随着 半径的增加而增加。
圆的度量
圆的周长公式
C = 2πr,其中r是圆的半径。
圆的面积公式
A = πr^2,其中r是圆的半径。
圆弧的长度公式
圆内接多边形的周长和面积公式
L = θ/360° × 2πr,其中θ是圆心角的大小 ,r是圆的半径。
P = nπr/180,A = nr^2/4,其中n是多边 形的边数,r是圆的半径。
02 圆的对称性
圆的中心对称性
总结词
圆关于其圆心对称
详细描述
圆关于其圆心具有中心对称性 ,即任意一点关于圆心的对称 点也在圆上。
• 总结词:掌握圆的综合问题需要理解圆的性质和定理,以 及与其他几何知识的结合。
圆的综合问题 圆的综合问题
圆的综合题解题思路 利用圆的性质和定理解决实际问题。
结合其他几何知识,如三角形、四边形等,进行解题。
圆的综合问题 圆的综合问题
运用代数、方程等数学方法进行求解。 圆的综合题解题方法
观察题目,分析已知条件和未知量。
C = 2πr,其中r是圆的半 径,π是一个常数约等于 3.14159。
周长计算方法
使用圆的半径计算出周长 ,可以通过公式直接计算 ,也可以使用计算器或图 形计算软件进行计算。
周长计算实例
假设一个圆的半径为5厘 米,那它的周长就是 31.4厘米。
圆在几何作图中的应用
圆规作图
圆规是用来画圆的工具,通过固定半径长度,可以在纸上 画出标准的圆形。
圆初三ppt课件ppt课件
![圆初三ppt课件ppt课件](https://img.taocdn.com/s3/m/8a2425397ed5360cba1aa8114431b90d6c85899f.png)
圆的综合问题
圆的综合问题的解题思路
明确题意
首先需要仔细阅读题目,明确题目所给的 条件和要求。
总结答案
最后,对答案进行总结和整理,确保答案 的准确性和完整性。
分析问题
对题目进行深入分析,找出与圆相关的条 件和信息,并尝试将问题转化为与圆相关 的数学模型。
计算和证明
根据选择的数学工具进行计算和证明,得 出结论。
圆初三ppt课件
目录
• 圆的定义与性质 • 圆的周长与面积 • 圆的切线与弦 • 圆与直线的位置关系 • 圆的综合问题
01
CATALOGUE
圆的定义与性质
圆的定义
圆上三点确定一个圆
在平面内,三个不共线的点可以确定 一个圆,通过这三个点的圆是唯一的 。
圆上两点之间的距离
圆心和半径
圆心是圆上所有点的中心点,半径是 从圆心到圆上任一点的线段。
利用直线与圆交点的个数
通过判断直线与圆交点的个数,可以确定圆与直线的位置关 系。
圆与直线的位置关系的应用
几何作图
在几何作图中,利用圆与直线的位置关系可以确定某些图形的位置和大小。
实际问题解决
在解决实际问题时,如拱桥设计、管道铺设等,需要考虑圆与直线的位置关系以 符合工程要求。
05
CATALOGUE
C = 2πr,其中C表示圆的周长,r表示圆的半径 ,π是一个常数,约等于3.14159。
3
圆的周长的应用
在日常生活和生产实践中,常常需要计算圆的周 长,例如计算车轮的周长、管道的周长等。
圆的面积
圆的面积的定义
圆的面积是指圆所占平面的大小。
圆的面积的计算公式
A = πr²,其中A表示圆的面积,r表示圆的半径,π是一个常数,约 等于3.14159。
圆的综合问题的解题思路
明确题意
首先需要仔细阅读题目,明确题目所给的 条件和要求。
总结答案
最后,对答案进行总结和整理,确保答案 的准确性和完整性。
分析问题
对题目进行深入分析,找出与圆相关的条 件和信息,并尝试将问题转化为与圆相关 的数学模型。
计算和证明
根据选择的数学工具进行计算和证明,得 出结论。
圆初三ppt课件
目录
• 圆的定义与性质 • 圆的周长与面积 • 圆的切线与弦 • 圆与直线的位置关系 • 圆的综合问题
01
CATALOGUE
圆的定义与性质
圆的定义
圆上三点确定一个圆
在平面内,三个不共线的点可以确定 一个圆,通过这三个点的圆是唯一的 。
圆上两点之间的距离
圆心和半径
圆心是圆上所有点的中心点,半径是 从圆心到圆上任一点的线段。
利用直线与圆交点的个数
通过判断直线与圆交点的个数,可以确定圆与直线的位置关 系。
圆与直线的位置关系的应用
几何作图
在几何作图中,利用圆与直线的位置关系可以确定某些图形的位置和大小。
实际问题解决
在解决实际问题时,如拱桥设计、管道铺设等,需要考虑圆与直线的位置关系以 符合工程要求。
05
CATALOGUE
C = 2πr,其中C表示圆的周长,r表示圆的半径 ,π是一个常数,约等于3.14159。
3
圆的周长的应用
在日常生活和生产实践中,常常需要计算圆的周 长,例如计算车轮的周长、管道的周长等。
圆的面积
圆的面积的定义
圆的面积是指圆所占平面的大小。
圆的面积的计算公式
A = πr²,其中A表示圆的面积,r表示圆的半径,π是一个常数,约 等于3.14159。
2024年中考数学一轮复习考点精讲课件—圆的相关概念及性质
![2024年中考数学一轮复习考点精讲课件—圆的相关概念及性质](https://img.taocdn.com/s3/m/72ce32e58662caaedd3383c4bb4cf7ec4afeb6fb.png)
3)圆周角定理成立的条件是“同一条弧所对的”两种角,在运用定理时不要忽略了这个条件,把不同弧所
对的圆周角与圆心角错当成同一条弧所对的圆周角和圆心角.
考点二 圆的性质
题型01 由垂径定理及推论判断正误
【例1】(2023·浙江·模拟预测)如图,是⊙ 是直径,是弦且不是直径, ⊥ ,则下列结论不一定正
【详解】解:如图,连接,
∵线段是⊙ 的直径, ⊥ 于点E, = 16,
1
1
∴ = = 2 = 2 × 16 = 8,
∴在Rt △ 中,可有 = 2 + 2 = 62 + 82 = 10,
∴⊙ 半径是10.
故选:D.
考点二 圆的性质
题型03 根据垂径定理与全等三角形综合求解
直径)(4)平分弦所对的优弧(5)平分弦所对的劣弧,若已知五个条件中的两个,那么可推出其中三个,简
称“知二得三”,解题过程中应灵活运用该定理.
常见辅助线做法(考点):1)过圆心,作垂线,连半径,造Rt △,用勾股,求长度;
2)有弦中点,连中点和圆心,得垂直平分.
考点二 圆的性质
3. 弧、弦、圆心角的关系
即的最小值是8.故选:C.
考点二 圆的性质
1. 圆的对称性
内容
补充
圆的轴对称 经过圆心任意画一条直线,并沿此直线圆对折,直线两旁的部分能够 ①圆的旋转不变性是其他中心对称图形所
性
完全重合,因此圆是轴对称图形,每一条直径所在的直线都是它的 没有的性质.
对称轴,圆有无数条对称轴.
圆的中心对 将圆绕圆心旋转180°能与自身重合,因此它是中心对称图形,它
①圆心,它确定圆的位置.
②半径,它确定圆的大小.
的点组成的图形.
对的圆周角与圆心角错当成同一条弧所对的圆周角和圆心角.
考点二 圆的性质
题型01 由垂径定理及推论判断正误
【例1】(2023·浙江·模拟预测)如图,是⊙ 是直径,是弦且不是直径, ⊥ ,则下列结论不一定正
【详解】解:如图,连接,
∵线段是⊙ 的直径, ⊥ 于点E, = 16,
1
1
∴ = = 2 = 2 × 16 = 8,
∴在Rt △ 中,可有 = 2 + 2 = 62 + 82 = 10,
∴⊙ 半径是10.
故选:D.
考点二 圆的性质
题型03 根据垂径定理与全等三角形综合求解
直径)(4)平分弦所对的优弧(5)平分弦所对的劣弧,若已知五个条件中的两个,那么可推出其中三个,简
称“知二得三”,解题过程中应灵活运用该定理.
常见辅助线做法(考点):1)过圆心,作垂线,连半径,造Rt △,用勾股,求长度;
2)有弦中点,连中点和圆心,得垂直平分.
考点二 圆的性质
3. 弧、弦、圆心角的关系
即的最小值是8.故选:C.
考点二 圆的性质
1. 圆的对称性
内容
补充
圆的轴对称 经过圆心任意画一条直线,并沿此直线圆对折,直线两旁的部分能够 ①圆的旋转不变性是其他中心对称图形所
性
完全重合,因此圆是轴对称图形,每一条直径所在的直线都是它的 没有的性质.
对称轴,圆有无数条对称轴.
圆的中心对 将圆绕圆心旋转180°能与自身重合,因此它是中心对称图形,它
①圆心,它确定圆的位置.
②半径,它确定圆的大小.
的点组成的图形.
人教版数学中考复习:圆的有关性质(共17张PPT)
![人教版数学中考复习:圆的有关性质(共17张PPT)](https://img.taocdn.com/s3/m/4e2707270b1c59eef8c7b44a.png)
(C ) A. 45° B. 50° C. 60° D. 75°
2、(2019 聊城)如图,四边形 ABCD 内接于
︵
︵︵
⊙O,F 是CD上一点,且DF=BC,连结
CF 并延长,交 AD 的延长线于点 E,连
结 AC.若∠ABC=105°,∠BAC=25°,则
∠E 的度数为
(B)
A. 45°
B. 50°
2、P是⊙O外一点,PA、PB分别交⊙O于C. D两点,已知弧AB、
弧CD的度数别为88∘、32∘,则∠P的度数为( B)
A. 26∘ B. 28∘ C. 30∘ D. 32∘
考点二 垂径定理
1.圆是轴对称图形,每一条过圆心的直线都是它的对称 轴.圆的对称轴有无数条.
2.垂径定理:垂直于弦的直径平分这条弦,并且平分弦 所对的弧.
变式: C
考点三 圆周角定理及其推论
1.顶点在圆上,两边都和圆相交的角叫作圆周角. 2.圆周角定理:圆周角的度数等于它所对弧上的圆心角
度数的一半. 3.圆周角定理的推论:
(1)半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径.
(2)在同圆或等圆中,同弧或等弧所对的圆周角相等; 相等的圆周角所对的弧也相等.
考点五 圆内接四边形
1.如果一个四边形的各个顶点在同一个圆上,那么这个 四边形叫作圆的内接四边形,这个圆叫作四边形的外 接圆.
2.圆内接四边形的对角互补.
要判定一个四边形是否为圆的内接四边形,关键是看 这个四边形的对角是否互补.
特别关注 圆的内接四边形的一个外角等于它的内对角.
1、 如图,四边形 ABCD 内接于⊙O.若四 边形 ABCO 是平行四边形,则∠ADC 的大小为
A.40°
2、(2019 聊城)如图,四边形 ABCD 内接于
︵
︵︵
⊙O,F 是CD上一点,且DF=BC,连结
CF 并延长,交 AD 的延长线于点 E,连
结 AC.若∠ABC=105°,∠BAC=25°,则
∠E 的度数为
(B)
A. 45°
B. 50°
2、P是⊙O外一点,PA、PB分别交⊙O于C. D两点,已知弧AB、
弧CD的度数别为88∘、32∘,则∠P的度数为( B)
A. 26∘ B. 28∘ C. 30∘ D. 32∘
考点二 垂径定理
1.圆是轴对称图形,每一条过圆心的直线都是它的对称 轴.圆的对称轴有无数条.
2.垂径定理:垂直于弦的直径平分这条弦,并且平分弦 所对的弧.
变式: C
考点三 圆周角定理及其推论
1.顶点在圆上,两边都和圆相交的角叫作圆周角. 2.圆周角定理:圆周角的度数等于它所对弧上的圆心角
度数的一半. 3.圆周角定理的推论:
(1)半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径.
(2)在同圆或等圆中,同弧或等弧所对的圆周角相等; 相等的圆周角所对的弧也相等.
考点五 圆内接四边形
1.如果一个四边形的各个顶点在同一个圆上,那么这个 四边形叫作圆的内接四边形,这个圆叫作四边形的外 接圆.
2.圆内接四边形的对角互补.
要判定一个四边形是否为圆的内接四边形,关键是看 这个四边形的对角是否互补.
特别关注 圆的内接四边形的一个外角等于它的内对角.
1、 如图,四边形 ABCD 内接于⊙O.若四 边形 ABCO 是平行四边形,则∠ADC 的大小为
A.40°
中考数学总复习 第六章 圆 第29课 圆的基本性质课件
![中考数学总复习 第六章 圆 第29课 圆的基本性质课件](https://img.taocdn.com/s3/m/72ad9b465901020207409cd6.png)
圆重合.
(3)垂径定理:垂直于弦的直径_平__分__这__条__弦__ ,并且_平__分__弦__所__对__的__弧___ .
推 论 : ① 平 分 弦 ( 不 是 直 径 ) 的 直 径 ____垂__直__于__弦
,并且
__平__分__弦__所__对__的__两__条__弧 ;②弦的垂直平分线经过 圆心 ,并且平分弦所
对的两条弧;③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对
的另一条弧.
(4)在同圆或等圆中,如果__两__个__圆__心__角_ 、__两__条__弧_ 、 两条弦 、 ___两__条__弦__的__弦__心__距__ 中有一组量相等,那么它们所对应的其余各组量都分别 相等.
(5)圆心角与圆周角的关系:一条弧所对的圆周角等于它所对的_圆__心__角__ 的一半.
第六章 圆
第 29 课 圆的基本性质
知识梳理
知识回顾 1.主要概念 (1)圆:在一个平面内,线段 OA 绕它固定的一个端点 O 旋转一周,另一 个端点 A 随之旋转所形成的图形叫做___圆_ .固定的端点叫___圆__心 ,线段 OA 叫做__半__径_ . (2)弧和弦:圆上任意两点之间的部分叫做__圆_弧__ ,连结圆上任意两点 的线段叫做___弦_ ,经过圆心的弦叫做__直__径_ ,直径是最长的 弦 . (3)圆心角:顶点在圆上,角的两边与圆相交的角叫___圆__心__角 . (4)圆周角:顶点在圆上,两边都和圆相交的角叫做___圆__周__角 .
3.半径为 3 的圆中,一条弦长为 4,则圆心到这条弦的距离是( C )
A. 3
B. 4
C. 5
D. 7
4.如图,已知⊙O 的直径 AB⊥CD 于点 E,则下列结论一定错误的是( B )
圆 初三 ppt课件ppt课件
![圆 初三 ppt课件ppt课件](https://img.taocdn.com/s3/m/2b5bcf2f001ca300a6c30c22590102020740f2e0.png)
CHAPTER
06
圆的综合题解题思路
圆的综合题解题方法
利用圆的性质
根据圆的性质,如圆周 角定理、垂径定理等, 推导出其他相关条件或
结论。
数形结合
将圆的性质与代数方程 相结合,通过代数运算
解决问题。
构造辅助线
在解题过程中,根据需 要构造辅助线,以连接 圆上的点或与其他图形
建立联系。
运用相似三角形
在解题过程中,通过构 造相似三角形,利用相 似三角形的性质解决问
THANKS
感谢观看
详细描述
圆的一般方程是$x^{2} + y^{2} + Dx + Ey + F = 0$,其中$D, E, F$是三个系数 。这个方程表示所有满足这个方程的点都在圆上。通过解这个方程,可以得到圆 上三个点的坐标。
圆的参数方程
总结词
圆的参数方程是一种基于三角函数的描述圆的方式,它通过 角度和半径来描述圆上的点。
题。
圆的综合题解题技巧
寻找隐含条件
在题目中寻找隐含条件,这些条件可 能对解题起到关键作用。
化复杂为简单
将复杂的问题分解为多个简单的问题 ,逐一解决,最后再综合起来。
利用特殊到一般的思路
先考虑特殊情况,再推广到一般情况 ,这样有助于找到解题思路。
注意图形的变化
在解题过程中,注意图形的变化,如 角度、长度等的变化,并利用这些变 化解决问题。
VS
详细描述
根据圆的对称性质,我们可以利用已知圆 上的任意一点或直径两端点来作出一个与 已知圆相切或重合的新圆。具体操作包括 通过圆心和已知圆上一点作圆,以及通过 两个已知圆的中心和它们之间的距离作圆 。
利用已知点作圆
中考数学复习考点研究课件:26.第26课时 圆的基本性
![中考数学复习考点研究课件:26.第26课时 圆的基本性](https://img.taocdn.com/s3/m/430a3d3a16fc700abb68fc6c.png)
例 1 (2016乐山)如图,C、D是以线段AB为直径的⊙O上两点, 若CA=CD,且∠ACD=40°,则∠CAB=( ) B A. 10° B. 20° C. 30° D. 40°
例1题图
【 解 析 】∵CA = CD , ∠ ACD = 40° , ∴ ∠ D = ∠CAD= 180°-ACD =70°,∵AC所对圆周角是
d是弦心距,h表示弓形高,半径OD与弦AB垂直,
则有(1)r= ⑱___+hd;
(2)r2 (1 a)2 d 2 ( 1 a)2 (r h)2
2
2a
(3)sin∠AOD= ⑲__2r__
(⑳4_)_dr_c_o_s_(∠或AOrDr=h )
圆内接四边 形的性质
圆内接四边形的对角 21 互__补__,如图4, ∠A+∠BCD= 22 _1_8_0_°,∠A+∠BCD= 23 _1_8_0_°_
定理:垂直于弦的直径⑨平__分__弦__,并且平分弦所对的
⑩两__条__弧__ 垂
径
平分弦(不是直径)的直径⑪_垂__直___于弦,并且
定
⑫_平__分___弦所对的两条弧
理
弦的垂直平分线经过圆心,并且平分弦所
及
对的两条弧
其 推
推 论
平分弦所对的一条弧的直径垂直平条弧
圆的两条平行弦所夹的弧⑬ 相__等___
圆内接四边形的任意一个外角等于它的 _2_4_内__对__角__,如图4,∠DCE= 25 _∠_A__
正多边形和圆(2011版新课标新增内容)
名称 内角 外角 中心角 边长
正五边形 108° 72 ° 72 °
2R·sin60 °
正六边形 120 ° 60 ° 60 ° R
例1题图
【 解 析 】∵CA = CD , ∠ ACD = 40° , ∴ ∠ D = ∠CAD= 180°-ACD =70°,∵AC所对圆周角是
d是弦心距,h表示弓形高,半径OD与弦AB垂直,
则有(1)r= ⑱___+hd;
(2)r2 (1 a)2 d 2 ( 1 a)2 (r h)2
2
2a
(3)sin∠AOD= ⑲__2r__
(⑳4_)_dr_c_o_s_(∠或AOrDr=h )
圆内接四边 形的性质
圆内接四边形的对角 21 互__补__,如图4, ∠A+∠BCD= 22 _1_8_0_°,∠A+∠BCD= 23 _1_8_0_°_
定理:垂直于弦的直径⑨平__分__弦__,并且平分弦所对的
⑩两__条__弧__ 垂
径
平分弦(不是直径)的直径⑪_垂__直___于弦,并且
定
⑫_平__分___弦所对的两条弧
理
弦的垂直平分线经过圆心,并且平分弦所
及
对的两条弧
其 推
推 论
平分弦所对的一条弧的直径垂直平条弧
圆的两条平行弦所夹的弧⑬ 相__等___
圆内接四边形的任意一个外角等于它的 _2_4_内__对__角__,如图4,∠DCE= 25 _∠_A__
正多边形和圆(2011版新课标新增内容)
名称 内角 外角 中心角 边长
正五边形 108° 72 ° 72 °
2R·sin60 °
正六边形 120 ° 60 ° 60 ° R
北师大版中考专题复习课件:圆的基本性质(共张)
![北师大版中考专题复习课件:圆的基本性质(共张)](https://img.taocdn.com/s3/m/82b5ecfc1b37f111f18583d049649b6649d7094e.png)
圆与其他图形的交点作图
圆与其他图形的交点:圆与其他图形的交点可以是直线、曲线、点等。 直线与圆的交点:直线与圆的交点可以是一个点,也可以是两个点。 曲线与圆的交点:曲线与圆的交点可以是一个点,也可以是多个点。 点与圆的交点:点与圆的交点可以是一个点,也可以是多个点。
圆与其他图形的相切作图
确定半径:选择任意长 度作为半径
圆周角与圆心角的关系
圆周角:圆周上任意一点与圆心连线所成的角
圆心角:圆心与圆周上任意一点连线所成的角
关系:圆周角等于圆心角的一半
证明:利用圆周角与圆心角的定义,结合三角形内角和定理,可以证明圆周角等于圆心角的 一半。
圆与直线的位置关系
圆与直线相交: 圆心到直线的 距离小于半径
圆与直线相切: 圆心到直线的 距离等于半径
连接切点:连接切点与 圆心,得到切线
确定切点:选择与圆相 切的点
确定切线:选择与圆相 切的线
连接切点:连接切点与 圆心,得到切线
确定圆心:选择任意一 点作为圆心
确定切点:选择与圆相 切的点
确定切线:选择与圆相 切的线
连接切点:连接切点与 圆心,得到切线
确定切点:选择与圆相 切的点
汇报人:PPT
圆心性质
圆心是圆的中心点, 也是圆的对称中心
圆心到圆上任意一 点的距离相等,这 个距离称为半径
圆心是圆的内接正 多边形的中心,也 是圆的外切正多边 形的中心
圆心是圆的内接正 多边形的顶点,也 是圆的外切正多边 形的顶点
半径性质
半径是圆的基本属性之一,决 定了圆的大小
半径是连接圆心和圆上任意一 点的线段
内接多边形的边长:等于圆 的半径
内接多边形的边数:与圆的 直径数相同
内接多边形的面积:等于圆 的面积乘以边数
中考复习--圆PPT课件
![中考复习--圆PPT课件](https://img.taocdn.com/s3/m/c353b6bc561252d381eb6e95.png)
-
1
圆的相关概念
-
2
1.圆的定义:平面上到定点的距离等于定长的所有点 所组成的图形叫做圆;其中定点称为圆心,定长称为 半径。 2.圆有对称性 (1)圆是轴对称图形,其对称轴是直径所在的直线; 对称轴有无数多条。 (2)圆是中心对称图形,对称中心是圆心。
3.圆中的有关概念: (1)弦:连结圆上任意两点间的线段叫做弦,经过 圆心的弦是直径. (2).圆上任意两点间的部分叫做弧;大于半圆的 弧叫优弧;小于半圆的弧叫做劣弧。半圆也是弧.
A
D
B
●O
┏
A′ D′ B′
如由条件: ③AB=A′B′
可推出
①∠AOB=∠A′O′B′
⌒⌒
②AB=A′B′
④ OD=O′D′
-
9
三、圆周角定理及推论
D
C
C
B
E
●O A
●O
BA
●O
B
A
C
定理: 在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这弧 所对的圆心角的一半.
推论:直径所对的圆周角是 直角 .
三、选择题:
下列命题正确的是( C )
A、三角形外心到三边距离相等
B、三角形的内心不一定在三角形的内部
C、等边三角形的内心、外心重合
D、三角形一定有一个外切圆
四、一个三角形,它的周长为30cm,它的内切圆半径 为2cm,则这个三角形的面积为__3_0_cm__.
-
27
• 1.如图:圆O中弦AB等于半径R,则这条弦所对的 圆心角是_6_0度_,圆周角是__30_或1_50_度_.
nr 2 S= 360
因此扇形面积的计算公式为
l n rபைடு நூலகம்2
1
圆的相关概念
-
2
1.圆的定义:平面上到定点的距离等于定长的所有点 所组成的图形叫做圆;其中定点称为圆心,定长称为 半径。 2.圆有对称性 (1)圆是轴对称图形,其对称轴是直径所在的直线; 对称轴有无数多条。 (2)圆是中心对称图形,对称中心是圆心。
3.圆中的有关概念: (1)弦:连结圆上任意两点间的线段叫做弦,经过 圆心的弦是直径. (2).圆上任意两点间的部分叫做弧;大于半圆的 弧叫优弧;小于半圆的弧叫做劣弧。半圆也是弧.
A
D
B
●O
┏
A′ D′ B′
如由条件: ③AB=A′B′
可推出
①∠AOB=∠A′O′B′
⌒⌒
②AB=A′B′
④ OD=O′D′
-
9
三、圆周角定理及推论
D
C
C
B
E
●O A
●O
BA
●O
B
A
C
定理: 在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这弧 所对的圆心角的一半.
推论:直径所对的圆周角是 直角 .
三、选择题:
下列命题正确的是( C )
A、三角形外心到三边距离相等
B、三角形的内心不一定在三角形的内部
C、等边三角形的内心、外心重合
D、三角形一定有一个外切圆
四、一个三角形,它的周长为30cm,它的内切圆半径 为2cm,则这个三角形的面积为__3_0_cm__.
-
27
• 1.如图:圆O中弦AB等于半径R,则这条弦所对的 圆心角是_6_0度_,圆周角是__30_或1_50_度_.
nr 2 S= 360
因此扇形面积的计算公式为
l n rபைடு நூலகம்2
第9讲圆的基本性质复习课件(共46张PPT)
![第9讲圆的基本性质复习课件(共46张PPT)](https://img.taocdn.com/s3/m/3cfcdfb4b9f67c1cfad6195f312b3169a451ea25.png)
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
垂径定理的应用 例3 如图3-9-4所示,某窗户由矩形和弓形组成,已知 弓形的跨度AB=3 m,弓形的高EF=1 m,现计划安装玻璃, 请帮工程师求出弧AB所在圆O的半径.
全效优等生
图3-9-4
大师导航 归类探究 自主招生交流平台 思维训练
推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所 对的两条弧.
3.同圆或等圆中,两个圆心角、两条弧、两条弦、两个 弦心距中有一组量相等,它们所对应的其余各组量也分别相等.
确定圆的条件: 确定一个圆必须明确两个要素:①圆心(决定圆的位置); ②半径(决定圆的大小).
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
∵PE⊥AB,∴AE=BE=12AB=12×4 2=2 2. 在 Rt△PBE 中,PB=3, ∴PE= 32-(2 2)2=1, ∴PD= 2PE= 2, ∴a=3+ 2.
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
垂径定理 1.与弦有关的题目,要求解边与角时,连结半径构造等 腰三角形是常用的辅助线. 2.求圆中的弦长时,通常作辅助线,由半径、弦的一半 以及弦心距构成直角三角形运用勾股定理进行求解.
【思路生成】根据垂径定理可得 AF=12AB,再表示出 AO, OF,然后利用勾股定理列式进行计算.
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
解:∵弓形的跨度 AB=3 m,EF 为弓形的高, ∴OE⊥AB,∴AF=12AB=32 m, 设 AB 所在圆 O 的半径为 r,弓形的高 EF=1 m,∴AO =r,OF=r-1. 在 Rt△AOF 中,AO2=AF2+OF2, 即 r2=322+(r-1)2, 解得 r=183. 答:弧 AB 所在圆 O 的半径为183 m.
大师导航 归类探究 自主招生交流平台 思维训练
垂径定理的应用 例3 如图3-9-4所示,某窗户由矩形和弓形组成,已知 弓形的跨度AB=3 m,弓形的高EF=1 m,现计划安装玻璃, 请帮工程师求出弧AB所在圆O的半径.
全效优等生
图3-9-4
大师导航 归类探究 自主招生交流平台 思维训练
推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所 对的两条弧.
3.同圆或等圆中,两个圆心角、两条弧、两条弦、两个 弦心距中有一组量相等,它们所对应的其余各组量也分别相等.
确定圆的条件: 确定一个圆必须明确两个要素:①圆心(决定圆的位置); ②半径(决定圆的大小).
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
∵PE⊥AB,∴AE=BE=12AB=12×4 2=2 2. 在 Rt△PBE 中,PB=3, ∴PE= 32-(2 2)2=1, ∴PD= 2PE= 2, ∴a=3+ 2.
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
垂径定理 1.与弦有关的题目,要求解边与角时,连结半径构造等 腰三角形是常用的辅助线. 2.求圆中的弦长时,通常作辅助线,由半径、弦的一半 以及弦心距构成直角三角形运用勾股定理进行求解.
【思路生成】根据垂径定理可得 AF=12AB,再表示出 AO, OF,然后利用勾股定理列式进行计算.
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
解:∵弓形的跨度 AB=3 m,EF 为弓形的高, ∴OE⊥AB,∴AF=12AB=32 m, 设 AB 所在圆 O 的半径为 r,弓形的高 EF=1 m,∴AO =r,OF=r-1. 在 Rt△AOF 中,AO2=AF2+OF2, 即 r2=322+(r-1)2, 解得 r=183. 答:弧 AB 所在圆 O 的半径为183 m.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/11/20
22
C
D
B
O
O
F
A
E
C
A
B
8.已知:如图,AB,CD是⊙O直径D,F是AE中点,AE与CDE交于F,
Байду номын сангаас
⑵平分弦所对的一条弧的直径一定平分这条弦所对的
另一条弧.
(√ )
⑶经过弦的中点的直径一定垂直于弦.( )
(4)弦的垂直平分线一定平分这条弦所对的弧. (√ )
2020/11/20
13
试一试:
如图,已知⊙O的半径OA长为5, 弦AB的长8,OC⊥ACB=于BCC,则OC 的长为 ___3____.
A
●O
A
●O
●O
B
C
B
C
锐角三角形的外心位于三角形内,
直角三角形的外心位于直角三角形斜边中点,
钝角三角形的外心位于三角形外.
2020/11/20
10
过三点的圆及外接圆
1.过一点的圆有__无__数____个 2.过两点的圆有__无__数_____个,这些圆的
圆心的都在 连结着两点的线段上的垂. 直平分线
知识体系
圆
相关概念
基本性质
基本计算
圆、弦 (直径) 弧、优弧 劣弧、等 圆、同圆 同心圆、 等弧、点 与圆的位 2020/11/20 置关系、 外心等
圆 圆的
的
轴对 称性
确 垂径
定 定理
及推
论
圆的 中心 对称 性
圆的 旋转 不变 性
圆心角、圆 周角、弧、 弦之间的关 系定理
半径、 弧长、
弦和 扇形
弦心
面积 和圆
距的 锥的
相关
侧面 积相
计算 关计
算3
知识点一 知识点二 知识点三 知识点四 知识点五
知识点六
点和圆的位置关系 ; 圆的确定; 圆的轴对成性; 圆的旋转不变性; (1)圆心角与圆周角 (2) 圆周角与弧 圆锥的侧面积和全面积
2020/11/20
4
知识点1
点和圆的位置关系:
d<r
r
O
垂直于弦,并且平分弦所对的两条弧;
(2)平分弦所对的一条弧的直径, 垂直平分弦并且平分弦所对的另一条弧
(3)弦的垂直平分线一定经过圆心,并平分 弦所对的另一条弧
2020/11/20
(4)平行弦所夹的弧相等
12
仔细辩一辩 D
AE
B
判断:
C
C
⑴垂直于弦的直线平分这条弦,并且平分弦所对的两
条弧.
( )
复习课题:圆的基本性质复习
2020/11/20
1
圆心、半径、直径
概念
弧、弦、弦心距、等弧
圆
圆心角、圆周角 三角形外接圆、圆的内接三角形
圆的基本性质
点和圆的位置关系
不在同一直线上的 三点确定一个圆
轴对称性
圆的中心对称性和旋转不变性
垂径定理 2020/1及1/20其逆定理
圆心角定理 圆周角定理
2
圆的有关计算
3.过三点的圆有__0_或___1__个
4.如何作过不在同一直线上的三点的圆 (或三角形的外接圆、找外心、破镜重圆、 到三个村庄距离相等)
2020/11/20
11
知识点3 圆的轴对称性
D AE
CE=DE
垂径定理:AB是直径
AB CD于E
AC=AD
B 推论:
CB=DB
C
C (1)平分弦 (不是直径) 的直径
C.8cm
D.10cm
2020/11/20
20
3.如图,AB是⊙O的直径,CD为弦,DC⊥AB于E,则下列结论不一 定正确的是( C )
A.∠COE=∠DOE B.CE=DE C.OE=BE D.BD=BC
4.已知⊙O半径为2cm,弦AB长为 2 3 cm,则这条弦的中点到 这条弦所对的劣弧中点的距离为( A )
➢圆的确定:不在同一直线上
的三点确定一个圆。
2020/11/20
7
(2010 新疆乌鲁木齐)如图 2,在平面直角坐标系中,
点 A、B、C 的坐标分别为(1,4),(5,4),(1,-2),
D 则 ABC 外接圆的圆心坐标是
A.(2,3)
B.(3,2)
C.(1,3)
D.(3,1)
2020/11/20
将问题转化 为直角三角
形的问题。
2020/11/20
15
如图,已知AB是⊙O的直径,AB与弦CD相交于 点M,∠AMC=300 ,AM=6cm,MB=2cm,求CD的长。
C
NM
AO
B D
2根号15
2020/11/20
16
如图,AB是⊙O的直径,AB=10,弦AC=8, D是⌒AC的中点,连结CD,求CD的长。
8
(2010 四川乐山)如图,一圆弧过方格的格点 A、B、C, 试在方格中建立平面直角坐标系,使点 A 的坐标为(-2,4), 则该圆弧所在圆的圆心坐标是( ) A. (-1,2)B. (1,-1)C. (-1,1)D. (2,1)
AC
B
2020/11/20
9
三角形的外心是否一定在三角形的内部?
B
O
DE A
M
N FC
2020/11/20
19
O
A
C
B
1.在一个圆中任意引圆的两条直径,顺次连接它们的四个端点, 组成一个四边形,则这个四边形一定是( D )
A.菱形
B.等腰梯形
C.正方形
D.矩形
2.如图,在半径为5cm的圆中,圆心O到弦AB的距离为3cm,则弦
AB的长为( C )
A.4cm
B.6cm
B O
AM
C
D
2020/11/20
17
变式一:
如图,AB是⊙O的直径,CD是弦,AE⊥CD, BF⊥CD ,AB=10,CD=6,求AE+BF的长。
B O
A E D M CF
2020/11/20
18
变式二:
如图,AB是⊙O的直径,CD是弦,AE⊥CD, BF⊥CD ,AB=10,CD=6,求BF-AE的长。
A.1cm B.2cm C. 2 cm D. 3 cm
A
2020/11/20
O
E C
B
D
21
5.如图,在⊙O中,AB,AC是互相垂直的两条弦,OD⊥AB于 D,OE⊥AC于E,且AB=8cm,AC=6cm,那么⊙O的半径为( B ) A.4cm B.5cm C6cm D8cm
C
E
O
A
D
B
6.在半径为2cm的圆中,垂直平分半径的弦长为 2 3 .
d
●
P
点P在圆内
r O d ●P
d=r
2020/11/20
点P在圆上
d>r
r
d
●
P
点P在圆外
5
一个点到圆的最小距离为4cm,
最大距离为10cm,则该圆的半径是
。
2020/11/20
6
知识点2
圆的确定
●
A ●B
A AA
O
●C
C CC
B
O OO
B B
▲▲AABB∠CCC是是=钝锐9角0角°三三角角形形
2020/11/20
O
半径
弦心 距
A
C 半弦长 B
14
练一练:
如图,P为⊙O的弦BA延长线上一点,PA=AB
=8,PO=13,则⊙O的半径=__4_1 _。
圆中跟弦有关的计算
问题,常常需要过圆心
B
MA
P
作弦的垂线段,这是一
条非常重要的辅助线。
O
圆心到弦的距离(弦
心距)、半径、一半弦
长构成直角三角形,便