中考数学有理数提高测试

合集下载

中考数学 第1章 有理数复习题 试题

中考数学 第1章 有理数复习题 试题

卜人入州八九几市潮王学校第1篇代数篇第1章有理数1.1有理数的概念★1.1.1 a 、b 在数轴上的位置如下列图,那么在a +b ,b -2a ,a b -,b -a 中负数的个数是().(A )1(B )2(C )3(D )4★1.1.2设有理数a 、b 、c 在数轴上的对应点如下列图,那么代数式b a -+a c -+c b -=____. ★1.1.3a 、b 是有理数,有以下三式: ①a b +<a b -;②a 2+b 2+a +b +1<0;③a 2+b 2-2a -2b +1<0.其中一定不成立的是(填写上序号)★1.1.4在a 、b 、c 三个数中,有如下三个结论:甲:假设至少有两个数互为相反数,那么a +b +c =0;乙:假设至少有两个数互为相反数,那么(a +b )2+(b +c )2+(c -0)2=0; 丙:假设至少有两个数互为相反数,那么(a +b )(b +c )(c +0)=0.其中正确结论的个数是().(A )0(B )1(C )2(D )3★1.1.5数轴上有A 和B 两点,A 、B 之间的间隔为1,点A 与原点O 的间隔为3,那么所有满足条件的点B 与原点O 的间隔之和等于★★1.1.62()1a b -++(a +b -2)2=1,x +ay =1,bx -y =3,那么2(x )1y -++(x +y -2)2 =★★1.1.7求2x --10x +的最小值.★★1.1.8求1x -+2x -+3x -的最小值.★★1.1.9abcde 是一个五位数,其中a ,b ,c ,d ,e 为阿拉伯数字,且a <b <c <d ,那么a b -+b c -+c d -+d e -的最大值是★★1.1.10设x 、y 、a 都是实数,并且x =1-a ,y =(1-a )(a -1-a 2),试求x +y +a 3+1的值. ★★1.1.11数轴上有一动点a ,从原点出发沿着数轴挪动,每次只允许挪动1个单位.经过10次挪动,a 点挪动到间隔原点6个单位处,问:a 点的挪动方法有多少种?★★1.1.12圆周上有和为94的n 个整数(n >3),每个数都等于它后面(按顺时针方向)的两个数的差的绝对值.问:n 的所有可能值是多少?★★★1.1.13如下列图,数轴上标有2n +1个点,它们对应的整数是-n ,-(n -1),…,-2,-1,0,1,2,…,(n -1),n ,它们称为整点,为了确保从这些整点中可以取出2021个,使其中任意两个点之间的间隔不等于4,问:n 的最小值是多少1.2有理数的大小比较★1.2.1假设有理数a 、b 在数轴上的位置如下列图,那么以下各式中错误的选项是().(A )-ab <2(B )1b >-1a (C )a +b <-12(D )a b<一1 ★1.2.2P =999999,Q =990119,那么P 、Q 的大小关系是(). (A )P >Q (B )P =Q (C )P <Q (D )无法确定★1.2.3假设实数a 、b 、c 满足abc >0,a +b +c =0,a <-b <c ,那么a 、b 、c 的大小为().(A )a >0,b >0,c >0(B )a >0,b <0,c >0(C )a <0,b <0,c >0(D )a <0,b >0,c <0★1.2.4有四个数:a =3.852.57-,b =15341023-,c =-487325,d =-267178,它们的大小关系是(). A .d <c <b <aB .d <b <c <aC .b <c <a <dD .d <a <c <b★1.2.5假设a = 3.143.13-÷3.12,b =2.142.13-÷2.12,c =1.141.13÷(-1.12),那么a 、b 、c 的大小顺序是().(A)a>b>c(B)a>c>b(C)b>c>a(D)c>b>a★★1.2.6比较2234和5100的大小,并说明理由.1.3有理数的运算★1.3.1以下说法中,正确的个数是().(1)n个有理数相乘,当因数有奇数个时,积为负;(2)n个有理数相乘,当正因数有奇数个时,积为负;(3)n个有理数相乘,当负因数有奇数个时,积为负;(4)n个有理数相乘,当积为负数时,负因数有奇数个.(A)1(B)2(C)3(D)4★1.3.2计算:-4012×(114+109144)÷(-0.5)÷34×43-13×[(-2)2-22]=____.★1.3.3计算:(-313)2-413×(-6.5)+(-2)4÷(-6).★1.3.4计算:(-2)5÷(-6)-417×(-8.5)-(-313)2.★1.3.5设a=1÷2÷3÷4,b=1÷(2÷3÷4),c=1÷(2÷3)÷4,d=1÷2÷(3÷4),那么(b÷a)÷(c÷d)=____.★1.3.6某地区2021年2月21-28日的平均气温为-1℃,2月22-29日的平均气温为-0.5℃,2月21日的平均气温为-3C,那么2月29日的平均气温为.★★1.3.7计算:(1+111+113+117)×(111+113+117+119)-(1+111+113+117+119)×(111+113+117)=().(A)111(B)113(C)117(D)119★1.3.8计算:1+2+3+ (100)★1.3.9计算:-1+3-5+7-9+11-…-1993+1995-1997=().(A)999(B)-998(C)998(D)-999★1.3.10计算:-1-(-1)1-(-1)2-(-1)3-…-(-1)99-(-1)100.★★1.3.11计算:(12+32+52+…+992)-(22+42+62+…+1002) ★★1.3.12代数和-1×2021+2×2021-3×2021+4×2021+…-1003×1006+1004×1005的个位数字是 ★★1.3.13计算:11+(21-12)+(31-22+13)+(41-32+23-14)+…+(91-82+73-64+…+19) ★★1.3.14计算:(13-712+920-1130+1342-1556)×23×21. ★1.3.15计算:112⨯+123⨯+134⨯+…+120082009⨯. ★1.3.16求证:113⨯+124⨯+135⨯+146⨯+…+1(n 1)n +=34-232(n 1)(n 2)n +++ ★★1.3.17计算:1+112++1123+++…+11232010++++ ★★1.3.18计算:1-11(12)⨯+-1(12)(123)+⨯++-1(123)(1234)++⨯+++ ★★1.3.19计算:2-22-23-24-…-218-219+220=____. ★★1.3.20S =12-24+38-416+…+(-1)k -12k k +…+200520052-200620062,那么小于S 的最大整数是____. ★★1.3.21计算:1+3+32+33+…+32021.★★★1.3.22计算:12+22+…+n 2. ★★1.3.23比较12+24+38+416+…+2n n 与2的大小. ★★1.3.24计算:(1-2111)×(1-2112)×(1-2113)×…×(1-211994)=. ★★1.3.25m ,n 都是正整数,并且A =(1-12)×(1+12)×(1-13)×(1+13)×…×(1-1m )×(1+1m ), B =(1-12)×(1+12)×(1-13)×(1+13)×…×(1-1n )×(1+1n) (1)证明:A =12m m +,B =12n n+ (2)假设A -B =126,求m 和n 的值. ★★1.3.26算式(1+113⨯)×(1+124⨯)×(1+135⨯)×(1+146⨯)×…×(1+198100⨯)×(1+199101⨯)的整数局部为()(A )1(B )2(C )3(D )4★1.3.27按一定规律排列的一串数11,-13,23,-33,15,-25,35,-45,55,123,,,777--…中,第98个数是____________________. 1.3.28运算*按下表定义,例如3*2=1,那么(2*4)*(1*3)=()A .1B .2C .3D .41.3.29现定义两种运算“⊕〞,“⊗〞,定义,对于任意两个整数a 、b ,1a b a b ⊕=+-,1a b ab ⊗=-, 求4[(68)(35)]⊗⊕⊕⊗.。

2024年中考数学真题汇编专题二 有理数及其运算+答案详解

2024年中考数学真题汇编专题二 有理数及其运算+答案详解

2024年中考数学真题汇编专题二 有理数及其运算+答案详解(试题部分)一、单选题1.(2024·河南·中考真题)如图,数轴上点P 表示的数是( )A .1−B .0C .1D .22.(2024·四川遂宁·中考真题)中国某汽车公司坚持“技术为王,创新为本”的发展理念,凭借研发实力和创新的发展模式在电池、电子、乘用车、商用车和轨道交通等多个领域发挥着举足轻重的作用.2024年第一季度,该公司以62万辆的销售成绩稳居新能源汽车销量榜榜首,市场占有率高达19.4%.将销售数据用科学记数法表示为( )A .60.6210⨯B .66.210⨯C .56.210´D .56210⨯3.(2024·湖南·中考真题)据《光明日报》2024年3月14日报道:截至2023年末,我国境内有效发明专利量达到401.5万件,高价值发明专利占比超过四成,成为世界上首个境内有效发明专利数量突破400万件的国家,将4015000用科学记数法表示应为( )A .70.401510⨯B .64.01510⨯C .540.1510⨯D .34.01510⨯4.(2024·河南·中考真题)据统计,2023年我国人工智能核心产业规模达5784亿元,数据“5784亿”用科学记数法表示为( )A .8578410⨯B .105.78410⨯C .115.78410⨯D .120.578410⨯ 5.(2024·河南·中考真题)计算3···a a a a ⎛⎫ ⎪ ⎪⎝⎭个的结果是( ) A .5a B .6a C .3a a + D .3a a6.(2024·天津·中考真题)据2024年4月18日《天津日报》报道,天津市组织开展了第43届“爱鸟周”大型主题宣传活动.据统计,今春过境我市候鸟总数已超过800000只.将数据800000用科学记数法表示应为( )A .70.0810⨯B .60.810⨯C .5810⨯D .48010⨯7.(2024·四川乐山·中考真题)2023年,乐山市在餐饮、文旅、体育等服务消费表现亮眼,网络零售额突破400亿元,居全省地级市第一.将40000000000用科学记数法表示为( )A .8410⨯B .9410⨯C .10410⨯D .11410⨯8.(2024·广西·中考真题)广西壮族自治区统计局发布的数据显示,2023年全区累计接待国内游客8.49亿人次.将849000000用科学记数法表示为( )A .90.84910⨯B .88.4910⨯C .784.910⨯D .684910⨯ 9.(2024·黑龙江绥化·中考真题)实数12025−的相反数是( ) A .2025 B .2025− C .12025− D .1202510.(2024·甘肃临夏·中考真题)据央视财经《经济信息联播》消息:甘肃天水凭借一碗香喷喷的麻辣烫成为最“热辣滚烫”的顶流.2024年3月份,天水市累计接待游客464万人次,旅游综合收入27亿元.将数据“27亿”用科学记数法表示为( )A .82.710⨯B .100.2710⨯C .92.710⨯D .82710⨯11.(2024·吉林·中考真题)长白山天池系由火山口积水成湖,天池湖水碧蓝,水平如镜,群峰倒映,风景秀丽,总蓄水量约达32040000000m ,数据2040000000用科学记数法表示为( )A .102.0410⨯B .92.0410⨯C .820.410⨯D .100.20410⨯12.(2024·四川达州·中考真题)有理数2024的相反数是( )A .2024B .2024−C .12024D .12024− 13.(2024·重庆·中考真题)下列各数中最小的数是( )A .1−B .0C .1D .214.(2024·广东·中考真题)2024年6月6日,嫦娥六号在距离地球约384000千米外上演“太空牵手”,完成月球轨道的交会对接.数据384000用科学记数法表示为( )A .43.8410⨯B .53.8410⨯C .63.8410⨯D .538.410⨯15.(2024·重庆·中考真题)下列四个数中,最小的数是( )A .2−B .0C .3D .12− 16.(2024·四川德阳·中考真题)下列四个数中,比2−小的数是( )A .0B .1−C .12−D .3−17.(2024·四川广安·中考真题)下列各数最大的是( )A .2−B .12−C .0D .118.(2024·云南·中考真题)中国是最早使用正负数表示具有相反意义的量的国家.若向北运动100米记作100+米,则向南运动100米可记作( )A .100米B .100−米C .200米D .200−米19.(2024·四川广元·中考真题)将1−在数轴上对应的点向右平移2个单位,则此时该点对应的数是( )A .1−B .1C .3−D .320.(2024·四川凉山·中考真题)下列各数中:553025.827−−−+,,,,,,负数有( ) A .1个 B .2个 C .3个 D .4个21.(2024·江苏苏州·中考真题)用数轴上的点表示下列各数,其中与原点距离最近的是( )A .3−B .1C .2D .322.(2024·湖北·中考真题)在生产生活中,正数和负数都有现实意义.例如收入20元记作20+元,则支出10元记作( )A .10+元B .10−元C .20+元D .20−元23.(2024·湖南·中考真题)在日常生活中,若收入300元记作300+元,则支出180元应记作( )A .180+元B .300+元C .180−元D .480−元24.(2024·河北·中考真题)如图显示了某地连续5天的日最低气温,则能表示这5天日最低气温变化情况的是( )A .B .C .D . 25.(2024·广东广州·中考真题)四个数10−,1−,0,10中,最小的数是( )A .10−B .1−C .0D .1026.(2024·贵州·中考真题)下列有理数中最小的数是( )A .2−B .0C .2D .427.(2024·浙江·中考真题)以下四个城市中某天中午12时气温最低的城市是( )A .北京B .济南C .太原D .郑州 28.(2024·四川内江·中考真题)2023年我国汽车出口491万辆,首次超越日本,成为全球第一大汽车出口国,其中491万用科学记数法表示为( )A .44.9110⨯B .54.9110⨯C .64.9110⨯D .74.9110⨯29.(2024·广西·中考真题)下列选项记录了我国四个直辖市某年一月份的平均气温,其中气温最低的是( )A .B .C .D .30.(2024·福建·中考真题)据《人民日报》3月12日电,世界知识产权组织近日公布数据显示,2023年,全球PCT (《专利合作条约》)国际专利申请总量为27.26万件,中国申请量为69610件,是申请量最大的来源国.数据69610用科学记数法表示为( )A .696110⨯B .2696.110⨯C .46.96110⨯D .50.696110⨯31.(2024·北京·中考真题)为助力数字经济发展,北京积极推进多个公共算力中心的建设.北京数字经济算力中心日前已部署上架和调试的设备的算力为17410⨯Flops (Flops 是计算机系统算力的一种度量单位),整体投产后,累计实现的算力将是日前已部署上架和调试的设备的算力的5倍,达到m Flops ,则m 的值为( )A .16810⨯B .17210⨯C .17510⨯D .18210⨯32.(2024·湖北武汉·中考真题)国家统计局2024年4月16日发布数据,今年第一季度国内生产总值接近300000亿元,同比增长5.3%,国家高质量发展取得新成效.将数据300000用科学记数法表示是( )A .50.310⨯B .60.310⨯C .5310⨯D .6310⨯33.(2024·浙江·中考真题)2024年浙江经济一季度GDP 为201370000万元,其中201370000用科学记数法表示为( )A .920.13710⨯B .80.2013710⨯C .92.013710⨯D .82.013710⨯34.(2024·吉林·中考真题)若()3−⨯的运算结果为正数,则W 内的数字可以为( )A .2B .1C .0D .1−35.(2024·内蒙古赤峰·中考真题)央视新闻2024年5月31日报道,世界最大清洁能源走廊今年一季度累计发电超52000000000度,为我国经济社会绿色发展提供了强劲动能.将数据52000000000用科学记数法表示为( )A .95.210⨯B .110.5210⨯C .95210⨯D .105.210⨯36.(2024·内蒙古包头·中考真题)若,m n 互为倒数,且满足3m mn +=,则n 的值为( )A .14B .12C .2D .437.(2024·四川内江·中考真题)下列四个数中,最大数是( )A .2−B .0C .1−D .338.(2024·甘肃·中考真题)下列各数中,比2−小的数是( )A .1−B .4−C .4D .139.(2024·山东威海·中考真题)一批食品,标准质量为每袋454g .现随机抽取4个样品进行检测,把超过标准质量的克数用正数表示,不足的克数用负数表示.那么,最接近标准质量的是( )A .7+B .5−C .3−D .1040.(2024·内蒙古赤峰·中考真题)如图,数轴上点A ,M ,B 分别表示数a a b b +,,,若AM BM >,则下列运算结果一定是正数的是( )A .a b +B .a b −C .abD .a b −二、填空题41.(2024·黑龙江大兴安岭地·中考真题)国家统计局公布数据显示,2023年我国粮食总产量是13908亿斤,将13908亿用科学记数法表示为 .42.(2024·江苏连云港·中考真题)如果公元前121年记作121−年,那么公元后2024年应记作 年. 43.(2024·湖北·中考真题)写一个比1−大的数 .44.(2024·湖南·中考真题)计算:()2024−−= .45.(2024·湖北武汉·中考真题)中国是世界上最早使用负数的国家.负数广泛应用到生产和生活中,例如,若零上3℃记作3+℃,则零下2记作 ℃.46.(2024·陕西·中考真题)小华探究“幻方”时,提出了一个问题:如图,将0,2−,1−,1,2这五个数分别填在五个小正方形内,使横向三个数之和与纵向三个数之和相等,则填入中间位置的小正方形内的数可以是 .(写出一个符合题意的数即可)47.(2024·黑龙江齐齐哈尔·中考真题)共青团中央发布数据显示:截至2023年12月底,全国共有共青团员7416.7万名.将7416.7万用科学记数法表示为 .48.(2024·上海·中考真题)科学家研发了一种新的蓝光唱片,一张蓝光唱片的容量约为5210⨯GB ,一张普通唱片的容量约为25GB ,则蓝光唱片的容量是普通唱片的 倍.(用科学记数法表示) 49.(2024·四川广元·中考真题)2023年10月诺贝尔物理学奖授予三位“追光”科学家,以表彰他们“为研究物质中的电子动力学而产生阿秒光脉冲的实验方法”.什么是阿秒?1阿秒是1810−秒,也就是十亿分之一秒的十亿分之一.目前世界上最短的单个阿秒光学脉冲是43阿秒.将43阿秒用科学记数法表示为秒.50.(2024·北京·中考真题)联欢会有A,B,C,D四个节目需要彩排.所有演员到场后节目彩排开始。

浙江中考数学备考专题有理数、无理数与实数含答案(精选5份)

浙江中考数学备考专题有理数、无理数与实数含答案(精选5份)

2024年浙江中考数学备考专题有理数、无理数与实数5套含答案一、选择题(每题3分,共36分)1.x是最大的负整数,y是最小的正整数,z是绝对值最小的数,则x−y+z的值是().A.−2B.−1C.0D.22.大于-2.5且小于3.5的整数之和为().A.-3B.2C.0D.33.下列说法中,正确的是().A.两个负数的差一定是负数B.只有0的绝对值等于它本身C.有理数可以分为正有理数和负有理数D.只有0的相反数等于它本身4.下列4个式子,计算结果最小的是()A.−5+(−12)B.−5−(−12)C.−5×(−12)D.−5÷(−1 2)5.用四舍五入法,把4.76精确到十分位,取得的近似数是()A.5B.4.7C.4.8D.4.77 6.下列说法中正确的是()A.正数都带“+”号B.不带“+”号的数都是负数C.负数一定带“−”号D.带“−”号的数都是负数7.下列说法中正确的个数有()①最大的负整数是−1;②相反数是本身的数是正数;③有理数分为正有理数和负有理数;④数轴上表示−a的点一定在原点的左边;⑤几个有理数相乘,负因数的个数是奇数个时,积为负数.A.1个B.2个C.3个D.4个8.如图,a,b是有理数,它们在数轴上的对应点的位置如图所示,把a,−a,b,−b按照从大到小的顺序排列,正确的是()A.b>−a>a>−b B.b>a>−a>−bC.−a>b>a>−b D.−a>−b>a>b9.已知a,b满足|a+3|+(b﹣2)2=0,则a+b的值为()A.1B.5C.﹣1D.﹣5 10.7个有理数相乘的积是负数,那么其中负因数的个数最多有()A.2种可能B.3种可能C.4种可能D.5种可能11.下列对于式子(−3)2的说法,错误的是()A.指数是2B.底数是−3C.幂为−3D.表示2个−3相乘12.法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.下面两个图框是用法国“小九九”计算7×8和8×9的两个示例.若用法国的“小九九”计算7×9,左、右手依次伸出手指的个数是()A.2,3B.3,3C.2,4D.3,4二、填空题(每题3分,共18分)13.绝对值大于2且不大于4的非负整数有.14.﹣123的倒数等于.15.某平台进行“天宫课堂”中国空间站全程直播.某一时刻观看人数达到3790000人.用科学记数法表示3790000=.16.若|a-1|与|b+2|互为相反数,则a+b-12的值为.17.设a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,则a-b+c.18.定义运算a∗b={a b(a≤b,a≠0)b a(a>b,a≠0),若(m−1)∗(m−3)=1,则m的值为.三、计算题(共8分)19.计算(1)(−134)−(+613)−2.25+103;(2)214×(−67)÷(12−2);(3)(−34+56−712)÷(−124);(4)−14−16×[2−(−3)2].四、解答题(共5题,共35分)20.把下列各数的序号填在相应的横线上:①﹣3.14,②2π,③﹣13,④0.618,⑤﹣√16,⑥0,⑦﹣1,⑧+3,⑨227,⑩﹣0.030030003……(每相邻两个3之间0的个数逐渐多1).整数集合:{ ……};分数集合:{ ……};无理数集合:{ ……}.21.在数轴上表示下列各数,并用“<”号把它们按照从小到大的顺序排列.3,−(−1),−1.5,−|−2|,−312.22.如果a、b互为相反数,c、d互为倒数,y+1没有倒数,x−1的绝对值等于2.那么代数式−2|a+b|+cdx+(y−1)(a+b−1)的值是多少?23.暑假《孤注一掷》成为了群众观影的首选,某市7月31日该电影首映日的售票量为1.1万张,8月1日到8月7日售票量的变化如下表(正号表示售票量比前一天多,负号表示售票量比前一天少):请根据以上信息,回答下列问题:(1)8月2日的售票量为多少万张?(2)8月7日与7月31日相比较,哪一天的售票量多?多多少万张?(3)若平均每张票价为50元,则8月1日到8月7日该市销售《孤注一掷》电影票共收入多少万元?24.2022年天猫平台“双十一”促销活动如火如荼地进行.小明发现天猫平台甲、乙、丙三家店铺在销售同一款标价均为30元的杯子,但三家的促销方式不同,具体优惠信息如下:(1)若小明想买25个该款杯子,请你帮小明分别计算一下甲、乙、丙三家店铺优惠后的实际价格,再挑选哪家店铺购买更优惠.(2)若小明想从丙店铺购买n个(n>100)该款杯子,请用含n的代数式表示优惠后购买的总价.(3)若小明想花费3000元在丙店铺来购买该款杯子,且恰好用完,则他能买多少个该款杯子?(注:假设小明均一次性购买)五、实践探究题(共3题,共23分)25.观察下列等式:第1个等式:a1=11×3=12×(1−13);第2个等式:a2=13×5=12×(13−15);第3个等式:a3=15×7=12×(15−17);…青解答下列问题:(1)按以上规律列出第5个等式:a5=.(2)用含有n的代数式表示第n个等式:a n==(n为正整数);(3)求a1+a2+⋯+a100的值.26.阅读理解:若A、B、C为数轴上三点,若点C到A的距离是点C到B的距离2倍,我们就称点C是【A,B】的好点.例如,如图1,点A表示的数为−1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是【A,B】的好点,但点D是【B,A】的好点.知识运用:如图2,M、N为数轴上两点,点M所表示的数为−2,点N所表示的数为4.(1)数所表示的点是【M,N】的好点;(2)如图3,A、B为数轴上两点,点A所表示的数为−20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以2个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B中恰有一个点为其余两点的好点?27.小江同学注意到妈妈手机中的电费短信(如下左图),对其中的数据产生了浓厚的兴趣,谷85度是什么意思电费是如何计算的?第一档与第二档又有什么关系?表1:宁波市居民生活用电标准(部分修改)【解读信息】通过互联网查询后获得上表(如表1).小江家采用峰谷电价计费,谷时用电量为85度,那么峰时用电量就是227−85=142度,由于小江家年用电量处在第一档,故9月份电费为:0.568×142+0.288×85=105.136≈105.14.第一档年用电量的上限为2760度,所以截至9月底小江家已经用电2760-581=2179度.不难发现,第二档所有电价均比第一档提高0.05元/度,第三档所有电价均比第一档提高0.3元/度.【理解信息】(1)若采用普通电价计费,小江家九月份的电费为元.(精确到0.01)(2)若采用峰谷电价计费,假设某月谷时用电量与月用电量的比值为m,那么处在第一档的1度电的电费可以表示成元.(用含有m的代数式表示)(3)【重构信息】12月份,小江家谷时用电量与月用电量的比值为0.2.请根据上述对话完成下列问题:①通过计算判断:截至12月底小江家的年用电量是否仍处于第一档?②12月份谁家的用电量多,多了多少?答案解析部分1.【答案】A 2.【答案】D 3.【答案】D 4.【答案】A 5.【答案】C 6.【答案】C 7.【答案】A 8.【答案】A 9.【答案】C 10.【答案】C 11.【答案】C 12.【答案】C 13.【答案】-3,-4 14.【答案】﹣3515.【答案】3.79×106 16.【答案】−3217.【答案】2 18.【答案】1或419.【答案】(1)解:原式=(−134−214)+(−613+313)=−4−3=−7;(2)解:原式=94×(−67)÷(−32)=94×(−67)×(−23)=94×67×23=97; (3)解:原式=(−34+56−712)×(−24)=−34×(−24)+56×(−24)−712×(−24) =18−20+14=12;(4)解:原式=−1−16×[2−9]=−1−16×(−7)=−1+76=16.20.【答案】解:整数有:⑤﹣√16=﹣4,⑥0,⑦﹣1,⑧+3;分数有:①﹣3.14,③﹣13,④0.618,⑨227;无理数有:②2π,⑩﹣0.030030003……(每相邻两个3之间0的个数逐渐多1)21.【答案】解:如图所示,,由图可知,−312⟨−|−2|<−1.5<−(−1)<3.22.【答案】解:∵a、b互为相反数,c、d互为倒数,y+1没有倒数,x−1的绝对值等于2,∴a+b=0,cd=1,y+1=0,x−1=2或x−1=−2,解得y=−1,x=3或x=−1,当x=3时,原式=0+13+(−2)×(−1)=0+13+2=213;当x=−1时,原式=0+1−1+(−2)×(−1)=−1+2=1;综上,代数式−2|a+b|+cdx+(y−1)(a+b−1)的值是213或1.23.【答案】(1)解:1.1+0.5+0.1=1.7(万张)(2)解:8月1日:1.1+0.5=1.6(万张);8月2日:1.6+0.1=1.7(万张);8月3日:1.7-0.3=1.4(万张);8月4日:1.4-0.2=1.2(万张);8月5日:1.2+0.4=1.6(万张);8月6日:1.6-0.2=1.4(万张);8月7日:1.4+0.1=1.5(万张).1.5-1.1=0.4(万张)答:8月7日的售票量多,多0.4万张.(3)解:1.6+1.7+1.4+1.2+1.6+1.4+1.5=10.4(万张)50x10.4=520(万元)答:共收入520万元24.【答案】(1)解:甲:30×25×90%−30×3=585(元)乙:30×25−60−50×2=590(元)丙:30×10+30×90%×15=705(元)因为585<590<705,所以挑选甲店铺更优惠.(2)解:30×10+30×90%×(50−10)+30×80%×(100−50)+30×70%×(n−100)=21n+480(元)(3)解:假设花费3000元以标价30元来购买该款杯子,则能买3000÷30=100个,那么优惠后至少能买100个.由(2)可知,令21n+480=3000,n=120答:他能买120个该款杯子.25.【答案】(1)19×11=12(19−111)(2)1(2n−1)(2n+1);12(12n−1−12n+1)(3)解:a1+a2+a3+⋯+a100=12(1−13)+12(13−15)+12(15−17)+...+12(1199−1201) =12×(1−13+13−15+15−17+...+1199−1201)=12×(1−1201) =12×200201=100201.26.【答案】(1)2或10(2)解:设点P表示的数为y,分四种情况:①P为【A,B】的好点.由题意,得y−(−20)=2(40−y),解得y=20,t=(40−20)÷2=10(秒);②A为【B,P】的好点.由题意,得40−(−20)=2[y−(−20)],解得y=10,t=(40−10)÷2=15(秒);③P为【B,A】的好点.由题意,得40−y=2[y−(−20)],解得y=0,t=(40−0)÷2=20(秒);④A为【P,B】的好点由题意得y−(−20)=2[40−(−20)]解得y=100(舍).⑤B为【A,P】的好点30=2t,t=15.综上可知,当t为10秒、15秒或20秒时,P、A和B中恰有一个点为其余两点的好点.故答案为:2或10.27.【答案】(1)122.13(2)(0.568-0.28m)(3)解:①假设小江家12月的用电量未超过第一档,那么该月最多支付电费:281×(0.568−0.28×0.2)=143.872(元),∵143.872<154.55,∴小江家12月份的用电量必定超过第一档;②设小江家12月份用电量为x度,143.872+0.8×0.618(x−281)+0.2×0.338(x−281)=154.55,143.872+0.4944x−138.9264+0.0676x−18.9956=154.55解得x=300,300−275=25(度),即小江家用电量多,比小北家多用25度.2024年浙江中考数学备考专题有理数、无理数与实数5套含答案一、选择题(每题3分,共30分)1.-3,4,0,√2这四个数中,无理数是()A.-3B.4C.0D.√2 2.下列运算结果正确的是()A.√10÷√5=√5B.√9=±3C.(−√2)2=2D.√2+√3=√53.下列说法正确的是()A.4的平方根是2B.8的立方根是±2C.如果一个数的立方根是这个数本身,那么这个数是-1,0或1D.如果一个数的平方根是这个数本身,那么这个数是1或04.下列说法中:①立方根等于本身的是﹣1,0,1;②平方根等于本身的数是0,1;③两个无理数的和一定是无理数;④实数与数轴上的点是一一对应的;⑤π−3是负分数;其中正确的个数是()A.0个B.1个C.2个D.3个5.如图,实数-√2+1在数轴上的对应点可能是()A.A点B.B点C.C点D.D点6.若|x−y|−|x−z|=|y−z|,则实数x、y、z之间的大小关系可能为()A.x>y>z B.z>y>x C.y>x>z D.x>z> y7.数轴上依次排列的四个点,它们表示的数分别为a,b,c,d,若|a-c|=6,|a-d|=10,|b-d|=5,则|b-c|的值为().A.6B.5C.4D.1 8.一个正方形的面积是15,估计它的边长大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间9.如图,已知实数a在数轴上的对应点位置如图所示,则化简√(a−2)2的结果是()A.a﹣2B.﹣a﹣2C.1D.2﹣a 10.按顺序排列的若干个数:x1,x2,x3,……,x n(n是正整数),从第二个数x2开始,每一个数都等于1与它前面的那个数的差的倒数,即:x2=11−x1,x3=11−x2……,下列选项正确是()①若x2=5,则x7=45;②若x1=2,则x1+x2+x3+⋯+x2023=1013;③若(x1+1)(x2+1)x6=−1,则x1=√2A.①和③B.②和③C.①和②D.①②③都正确二、填空题(每题3分,共18分)11.比较大小:7-4√30.(填“<”“>”或“=”)12.已知一个立方体的体积是27cm3,那么这个立方体的棱长是cm.13.若y=√x−2+√2−x−3,则x+y的立方根是.14.若a与b互为相反数,m与n互为倒数,k的算术平方根为√2,则2022a+2021b+ mnb+k2的值为.15.对于任何实数a ,可用[a]表示不超过a 的最大整数,如[4]=4,[√3]=1.现对72进行如下操作:72第一次→[√72]=8第二次→[√8]=2第三次→[√2]=1,类似地,只需进行3次操作后变为1的所有正整数中,最大的是 .16.电流通过导线时会产生热量,电流I (单位:A )、导线电阻R (单位:Ω)、通电时间t (单位:s )与产生的热量Q (单位:J )满足关系式Q =I 2Rt .已知导线的电阻为10Ω,通电2s 时间导线产生90J 的热量,则电流I 为 A .三、计算题(共6分)17.计算:(1)(√18−√12)×√3;(2)(√3+1)2−(1−√5)(√5+1).四、作图题(共9分)18.如图,正方形网格中的每个小正方形的边长都是1,每个小方格的顶点叫做格点,以格点为顶点分别按下列要求画三角形:(1)在图1中画一个直角三角形,使它的三边长都是有理数; (2)在图2中画一个直角三角形,使它的三边长都是无理数;(3)在图3中画一个等腰三角形,使它的三边长都是无理数(和图2画的三角形不全等).五、解答题(共4题,共32分)19.把下列各数分别填在相应的括号内.﹣12,0,0.16,312,√3,﹣23√5,π3,√16,﹣√22,﹣3.14 有理数:{ }; 无理数:{ }; 负实数:{ }; 正分数:{ }.20.(1)先化简,再求值.已知a =1,b =−2,求多项式3ab −15b 2+5a 2−6ba +15a 2−2b 2的值. (2)在数轴上表示下列各数,并把这些数按从小到大顺序进行排列,用“<”连接. −1.5,−22,−(−4),0,−|−3|,√921.如图,数轴上点A ,B 分别表示数a ,b ,且a ,b 互为相反数,2a +9是27的立方根.(1)求a ,b 的值及线段AB 的长.(2)点P 在射线BA 上,它在数轴上对应的数为x. ①请用含x 的代数式表示线段BP 的长. ②当x 取何值时,BP =2AP ?22.解答下列各题:(1)计算:√(−10)2−(√15)2+√64.(2)已知点A(2,1),B(−4,a)在反比例函数y =kx(k ≠0)的图象上,试求a 的值. 六、实践探究题(共3题,共25分)23.数学活动课上,张老师说:“√2是无理数,无理数就是无限不循环小数,同学们,你能把√2的小数部分全部写出来吗?”大家议论纷纷,晶晶同学说:“要把它的小数部分全部写出来是非常难的,但我们可以用(√2-1)表示它的小数部分.”张老师说:“晶晶同学的说法是正确的,因为√2的整数部分是1,将这个数减去其整数部分,差就是小数部分.”请你解答:(1)√5的整数部分是 ,小数部分是 .(2)已知8+√3=x +y ,其中x 是一个整数,且0<y <1,请求出3x +(y −√3)2020的值.24.对于任何实数a ,可用[a]表示不超过a 的最大整数,如[4.1]=4.(1)则[11.8]= ;[−11.9]= ;(2)现对119进行如下操作:119→第一次[√119]=10→第二次[√10]=3→第三次[√3]=1,这样对119只需进行3次操作后变为1.①对15进行1次操作后变为▲ ,对200进行3次操作后变为▲ ;②对实数m恰进行2次操作后变成1,则m最小可以取到▲ ;③若正整数m进,3次操作后变为1,求m的最大值.25.阅读材料:若点M,N在数轴上分别表示实数m,n,那么M,N之间的距离可表示为|m−n|.例如|3−1|,即表示3,1在数轴上对应的两点之间的距离;同样:|5+3|= |5−(−3)|表示5,−3在数轴上对应的两点之间的距离.根据以上信息,完成下列题目:(1)已知A,B,C为数轴上三点,点A对应的数为√2,点C对应的数为1.①若点B对应的数为−2,则B,C两点之间的距离为;②若点A到点B的距离与点A到点C的距离相等,则点B对应的数是.(2)对于|x−3|+|x+4|这个代数式.①它的最小值为;②若|x−3|+|x+4|+|y−1|+|y+2|=10,则x+y的最大值为.答案解析部分1.【答案】D2.【答案】C3.【答案】C4.【答案】C5.【答案】B6.【答案】D7.【答案】D8.【答案】B9.【答案】D10.【答案】C11.【答案】>12.【答案】313.【答案】-114.【答案】215.【答案】25516.【答案】3√2217.【答案】(1)解:原式=√54−√36=3√6−6(2)3+2√3+1−1+5=8+2√3 18.【答案】(1)解:如图1所示,Rt△ABC即为所求;(2)解:如图所示,Rt△DEF即为所求;(3)解:如图所示,OPQ 即为所求.19.【答案】解:有理数:﹣12,0,0.16,312,√16,﹣3.14;无理数:√3,﹣23√5,π3,﹣√22;负实数:﹣12,﹣23√5,﹣√22,-3.14;正分数:0.16,312.20.【答案】(1)解:3ab −15b 2+5a 2−6ba +15a 2−2b 2=−3ab −17b 2+20a 2,当a =1,b =−2时,原式=−3×1×(−2)−17×(−2)2+20×12=6−68+20=−42.(2)解:如图所示:,−22<−|−3|<−1.5<0<√9<−(−4)21.【答案】(1)解:∵2a +9是27的立方根,∴2a +9=√273=3, 则a =−3.∵a ,b 互为相反数,∴b=−a=3.∴AB=3−(−3)=6(2)解:①∵点P在射线BA上,它在数轴上对应的数为x.∴线段BP=3−x②当点P在点A右侧时,∵BP=2AP,∴3−x=2(x+3),解得x=−1.当点P在点A左侧时,∵BP=2AP,∴3−x=2(−3−x),解得x=−9.综上,当x=−1或−9时,BP=2AP.22.【答案】(1)解:原式=10−15+8=3(2)解:∵点A(2,1),B(−4,a)在反比例函数y=kx(k≠0)的图象上,∴k=1×2=−4⋅a,∴a=−1 2.23.【答案】(1)2;√5-2(2)解:∵1<√3<2,∴9<8+√3<10,∵8+√3=x+y,其中x是一个整数,且0<y<1,∴x=9,y=8+√3−9=√3−1∴3x+(y−√3)2020=3×9+(√3−1−√3)2020=27+1=28.24.【答案】(1)11;-12(2)解:①3;1②4;③∵[x]=1,∴1≤x<2,∴1≤√m<2,∴1≤m<4,∴1≤√m<16,∴1≤m<256.∵3次操作,故m≥16.∴16≤m<256.∵m是整数.∴m的最大值为255.25.【答案】(1)3;2√2−1(2)7;42024年浙江中考数学备考专题有理数、无理数与实数5套含答案一、选择题(每题3分,共30分)1.-3,4,0,√2这四个数中,无理数是()A.-3B.4C.0D.√2 2.下列运算结果正确的是()A.√10÷√5=√5B.√9=±3C.(−√2)2=2D.√2+√3=√53.下列说法正确的是()A.4的平方根是2B.8的立方根是±2C.如果一个数的立方根是这个数本身,那么这个数是-1,0或1D.如果一个数的平方根是这个数本身,那么这个数是1或04.下列说法中:①立方根等于本身的是﹣1,0,1;②平方根等于本身的数是0,1;③两个无理数的和一定是无理数;④实数与数轴上的点是一一对应的;⑤π−3是负分数;其中正确的个数是()A.0个B.1个C.2个D.3个5.如图,实数-√2+1在数轴上的对应点可能是()A .A 点B .B 点C .C 点D .D 点6.若|x −y|−|x −z|=|y −z|,则实数x 、y 、z 之间的大小关系可能为( )A .x >y >zB .z >y >xC .y >x >zD .x >z >y7.数轴上依次排列的四个点,它们表示的数分别为a ,b ,c ,d ,若|a -c|=6,|a -d|=10,|b -d|=5,则|b -c|的值为( ). A .6B .5C .4D .18.一个正方形的面积是15,估计它的边长大小在( )A .2与3之间B .3与4之间C .4与5之间D .5与6之间9.如图,已知实数a 在数轴上的对应点位置如图所示,则化简√(a −2)2的结果是( )A .a ﹣2B .﹣a ﹣2C .1D .2﹣a10.按顺序排列的若干个数:x 1,x 2,x 3,……,x n (n 是正整数),从第二个数x 2开始,每一个数都等于1与它前面的那个数的差的倒数,即:x 2=11−x 1,x 3=11−x 2……,下列选项正确是( )①若x 2=5,则x 7=45;②若x 1=2,则x 1+x 2+x 3+⋯+x 2023=1013;③若(x 1+1)(x 2+1)x 6=−1,则x 1=√2 A .①和③ B .②和③ C .①和②D .①②③都正确二、填空题(每题3分,共18分)11.比较大小:7-4√3 0. (填“<”“>”或“=”)12.已知一个立方体的体积是27cm 3,那么这个立方体的棱长是 cm . 13.若y =√x −2+√2−x −3,则x +y 的立方根是 .14.若a 与b 互为相反数,m 与n 互为倒数,k 的算术平方根为√2,则2022a +2021b +mnb +k 2的值为 .15.对于任何实数a ,可用[a]表示不超过a 的最大整数,如[4]=4,[√3]=1.现对72进行如下操作:72第一次→[√72]=8第二次→[√8]=2第三次→[√2]=1,类似地,只需进行3次操作后变为1的所有正整数中,最大的是.16.电流通过导线时会产生热量,电流I(单位:A)、导线电阻R(单位:Ω)、通电时间t(单位:s)与产生的热量Q(单位:J)满足关系式Q=I2Rt.已知导线的电阻为10Ω,通电2s时间导线产生90J的热量,则电流I为A.三、计算题(共6分)17.计算:(1)(√18−√12)×√3;(2)(√3+1)2−(1−√5)(√5+1).四、作图题(共9分)18.如图,正方形网格中的每个小正方形的边长都是1,每个小方格的顶点叫做格点,以格点为顶点分别按下列要求画三角形:(1)在图1中画一个直角三角形,使它的三边长都是有理数;(2)在图2中画一个直角三角形,使它的三边长都是无理数;(3)在图3中画一个等腰三角形,使它的三边长都是无理数(和图2画的三角形不全等).五、解答题(共4题,共32分)19.把下列各数分别填在相应的括号内.﹣12,0,0.16,312,√3,﹣23√5,π3,√16,﹣√22,﹣3.14有理数:{ };无理数:{ };负实数:{ };正分数:{ }.20.(1)先化简,再求值.已知a=1,b=−2,求多项式3ab−15b2+5a2−6ba+15a2−2b2的值.(2)在数轴上表示下列各数,并把这些数按从小到大顺序进行排列,用“<”连接.−1.5,−22,−(−4),0,−|−3|,√921.如图,数轴上点A ,B 分别表示数a ,b ,且a ,b 互为相反数,2a +9是27的立方根.(1)求a ,b 的值及线段AB 的长.(2)点P 在射线BA 上,它在数轴上对应的数为x. ①请用含x 的代数式表示线段BP 的长. ②当x 取何值时,BP =2AP ?22.解答下列各题:(1)计算:√(−10)2−(√15)2+√64.(2)已知点A(2,1),B(−4,a)在反比例函数y =kx(k ≠0)的图象上,试求a 的值. 六、实践探究题(共3题,共25分)23.数学活动课上,张老师说:“√2是无理数,无理数就是无限不循环小数,同学们,你能把√2的小数部分全部写出来吗?”大家议论纷纷,晶晶同学说:“要把它的小数部分全部写出来是非常难的,但我们可以用(√2-1)表示它的小数部分.”张老师说:“晶晶同学的说法是正确的,因为√2的整数部分是1,将这个数减去其整数部分,差就是小数部分.”请你解答:(1)√5的整数部分是 ,小数部分是 .(2)已知8+√3=x +y ,其中x 是一个整数,且0<y <1,请求出3x +(y −√3)2020的值.24.对于任何实数a ,可用[a]表示不超过a 的最大整数,如[4.1]=4.(1)则[11.8]= ;[−11.9]= ;(2)现对119进行如下操作:119→第一次[√119]=10→第二次[√10]=3→第三次[√3]=1,这样对119只需进行3次操作后变为1.①对15进行1次操作后变为 ▲ ,对200进行3次操作后变为 ▲ ;②对实数m恰进行2次操作后变成1,则m最小可以取到▲ ;③若正整数m进,3次操作后变为1,求m的最大值.25.阅读材料:若点M,N在数轴上分别表示实数m,n,那么M,N之间的距离可表示为|m−n|.例如|3−1|,即表示3,1在数轴上对应的两点之间的距离;同样:|5+3|= |5−(−3)|表示5,−3在数轴上对应的两点之间的距离.根据以上信息,完成下列题目:(1)已知A,B,C为数轴上三点,点A对应的数为√2,点C对应的数为1.①若点B对应的数为−2,则B,C两点之间的距离为;②若点A到点B的距离与点A到点C的距离相等,则点B对应的数是.(2)对于|x−3|+|x+4|这个代数式.①它的最小值为;②若|x−3|+|x+4|+|y−1|+|y+2|=10,则x+y的最大值为.答案解析部分1.【答案】D2.【答案】C3.【答案】C4.【答案】C5.【答案】B6.【答案】D7.【答案】D8.【答案】B9.【答案】D10.【答案】C11.【答案】>12.【答案】313.【答案】-114.【答案】215.【答案】25516.【答案】3√2217.【答案】(1)解:原式=√54−√36=3√6−6(2)3+2√3+1−1+5=8+2√3 18.【答案】(1)解:如图1所示,Rt△ABC即为所求;(2)解:如图所示,Rt△DEF即为所求;(3)解:如图所示,OPQ 即为所求.19.【答案】解:有理数:﹣12,0,0.16,312,√16,﹣3.14;无理数:√3,﹣23√5,π3,﹣√22;负实数:﹣12,﹣23√5,﹣√22,-3.14;正分数:0.16,312.20.【答案】(1)解:3ab −15b 2+5a 2−6ba +15a 2−2b 2=−3ab −17b 2+20a 2,当a =1,b =−2时,原式=−3×1×(−2)−17×(−2)2+20×12=6−68+20=−42.(2)解:如图所示:,−22<−|−3|<−1.5<0<√9<−(−4)21.【答案】(1)解:∵2a +9是27的立方根,∴2a +9=√273=3, 则a =−3.∵a ,b 互为相反数,∴b=−a=3.∴AB=3−(−3)=6(2)解:①∵点P在射线BA上,它在数轴上对应的数为x.∴线段BP=3−x②当点P在点A右侧时,∵BP=2AP,∴3−x=2(x+3),解得x=−1.当点P在点A左侧时,∵BP=2AP,∴3−x=2(−3−x),解得x=−9.综上,当x=−1或−9时,BP=2AP.22.【答案】(1)解:原式=10−15+8=3(2)解:∵点A(2,1),B(−4,a)在反比例函数y=kx(k≠0)的图象上,∴k=1×2=−4⋅a,∴a=−1 2.23.【答案】(1)2;√5-2(2)解:∵1<√3<2,∴9<8+√3<10,∵8+√3=x+y,其中x是一个整数,且0<y<1,∴x=9,y=8+√3−9=√3−1∴3x+(y−√3)2020=3×9+(√3−1−√3)2020=27+1=28.24.【答案】(1)11;-12(2)解:①3;1②4;③∵[x]=1,∴1≤x<2,∴1≤√m<2,∴1≤m<4,∴1≤√m<16,∴1≤m<256.∵3次操作,故m≥16.∴16≤m<256.∵m是整数.∴m的最大值为255.25.【答案】(1)3;2√2−1(2)7;42024年浙江中考数学备考专题有理数、无理数与实数5套含答案一、选择题(每题4分,共40分)1.2023的相反数是()A.2023B.|2023|C.12023D.-2023 2.-2023的倒数是()A.2023B.12023C.-2023D.−1 20233.计算3+(−1)的结果为()A.-4B.2C.-2D.4 4.下列计算结果为5的是()A.﹣(+5)B.+(﹣5)C.﹣(﹣5)D.﹣|﹣5| 5.在4,-2,0,13四个数中,最小的为()A.4B.-2C.0D.13 6.下列计算中错误的有()个.( 1 )√9=±3;(2)﹣1﹣1=0 ;(3)(﹣1)﹣1=0;(4)(﹣1)0=1.A.1B.2C.3D.4 7.我们可用数轴直观研究有理数及其运算.如图,将物体从点A向左平移5个单位到点B,可以描述这一变化过程的算式为().A .2+(−5)B .2−(−5)C .2×(−5)D .2÷(−5)8.杭州亚运会赛会志愿者招募自启动以来,得到了社会群体和高校学生的积极响应,注册总人数超32万人.其中32万用科学记数法可表示为( ) A .32×104B .3.2×105C .3.2×106D .0.32×1069.“宁波地铁”发文称,2023年2月13日至6月30日,每天晚上8点后及法定节假日全天,宁波地铁1—5号线全线网皆可免费乘车,免费时段无需购票、刷卡、扫码,可直接进站乘车.2月17日,宁波地铁限时段免费后的首个周五,地铁客流量达到约107.6万人次.数107.6万用科学记数法表示为( ) A .1.076×105B .10.76×105C .1.076×106D .0.1076×10610.如图是某品牌鞋服店推出的优惠活动,小明看中了一双鞋子和一双原价80元的袜子,若购买这双鞋子和这双袜子所付的费用与单独购买这双鞋子所付的费用相同,则这双鞋子的原价可能是( ).A .269元B .369元C .569元D .669元二、填空题(每题5分,共30分)11.若a ,b 互为相反数,则(a +b)2= . 12.请任意写出一个介于−12到−13之间的数 .13.已知(a 2+b 2)2−a 2−b 2−6=0,求a 2+b 2的值为 .14.定义:[x]表示不大于x 的最大整数, (x)表示不小于x 的最小整数, 例如: [2.3]=2, (2.3)=3,[−2.3]=−3,(−2.3)=−2. 则[1.7]+(−1.7)= . 15.如果实数x ,y 满足方程组{x −2y =−1x +y =2,那么(2x -y )2022= .16.请用“<”符号将下面实数(−3)2,√18,−6,|−4|连接起来 .三、计算题(共10分)17.用简便运算进行计算: (1)(12−16+13)×(−24);(2)(−0.25)2019×42020;四、解答题(共3题,共40分)18.先计算,再阅读材料,解决问题: (1)计算: (13−16+12)×12 .(2)认真阅读材料,解决问题: 计算:130÷(23−110+16−25). 分析:利用通分计算 23−110+16−25的结果很麻烦,可以采用以下方法进行计算:解:原式的倒数是:(23−110+16−25)÷130=(23−110+16−25)×30 =23×30−110×30+16×30−25×30 =20−3+5−12=10 . 故原式 =110. 请你根据对所提供材料的理解,选择合适的方法计算: (−152)÷(34−526+12−213) . 19.新农村建设中,某镇成立了新型农业合作社,扩大了油菜种植面积,今年2000亩油菜喜获丰收.该合作社计划租赁5台油菜收割机机械化收割,一台收割机每天大约能收割40亩油菜.(1)求该合作社按计划几天可收割完这些油菜;(2)该合作社在完成了一半收割任务时,从气象部门得知三天后有降雨,于是该合作社决定再租赁3台油菜收割机加入抢收,并把每天的工作时间延长10%,请判断该合作社能否完成抢收任务,并说明理由.20.为节约用水,某市居民生活用水按级收费,水费分为三个等级(如图);例如:某户用水量为35吨,则水费为20×2.5+(30-20)×3.45=101.75(元).(1)若某住户收到一张自来水总公司水费专用发票,其中上期抄表数为587吨,本期抄表数为617吨,请计算本期该用户应付的水费.(2)若该住户的用水量为x吨(20<x≤40),应付水费为y元,求出y关于x的函数表达式.(3)小明爸爸收到水费短信通知:2022年2月本期用水量为45吨,水费为150.5元.根据此通知求出第三级收费标准a的值.答案解析部分1.【答案】D2.【答案】D3.【答案】B4.【答案】C5.【答案】B6.【答案】C7.【答案】A8.【答案】B9.【答案】C10.【答案】C11.【答案】012.【答案】−2513.【答案】314.【答案】015.【答案】116.【答案】-6<|−4|<√18<(−3)217.【答案】(1)解:原式 =12×(−24)−16×(−24)+13×(−24) =(−12)−(−4)+(−8)=(−12)+(−8)+4=−20+4=−16或 原式 =(36−16+26)×(−24) =46×(−24) =−16(2)解:原式= (−0.25)2019×42019×4=(−0.25×4)2019×4=(−1)2019×4=(−1)×4=−4 .18.【答案】(1)解:计算: (13−16+12)×12 =13×12−16×12+12×12 =4−2+6=8(2)解:原式的倒数是: (34−526+12−213)×(−52) , =34×(−52)−526×(−52)+12×(−52)−213×(−52) , =−39+10−26+8 ,=−47 ,故原式 =−147. 19.【答案】(1)解:设该合作社按计划x 天可收割完这些油菜5×40x =2000解得:x =10答:该合作社按计划10天可收割完这些油菜;(2)解:原来一天的收割量:5×40=200(亩),现在一天的收割量:(5+3)×40×(1+10%)=352(亩),现在三天可完成的收割量:352×3=1056(亩)>1000亩.答:该合作社能完成抢收任务.20.【答案】(1)解:用水量:617−587=30(吨).水费:20×2.5+(30−20)×3.45=84.5(元).答:本期该用户应付水费84.5元.(2)解:y =2.5×20+3.45×(x −20)=3.45x −19(20<x ≤40)∴y 关于x 的函数表达式为:y =3.45x −19(20<x ≤40)(3)解:据题意可列方程:20×2.5+20×3.45+(45−40)a =150.5解得a =6.3答:a 的值为6.3.2024年浙江中考数学备考专题有理数、无理数与实数5套含答案一、选择题1.2022的倒数是()A.2022B.-2022C.12022D.−1 20222.手机信号的强弱通常采用负数来表示,绝对值越小表示信号越强(午位:dBm),则下列信号最强的是()A.-50B.-60C.-70D.-80 3.计算结果等于2的是()A.|−2|B.−|2|C.2−1D.(−2)0 4.(−2)2+22=()A.0B.2C.4D.8 5.如图,比数轴上点A表示的数大3的数是()A.-1B.0C.1D.2 6.据中国宁波网消息:2023年一季度宁波全市实现地区生产总值380180000000元,同比增长4.5%.数380180000000用科学记数法表示为()A.0.38018×1012B.3.8018×1011C.3.8018×1010D.38.018×10107.已知数轴上的点A,B分别表示数a,b,其中−1<a<0,0<b<1.若a×b=c,数c在数轴上用点C表示,则点A,B,C在数轴上的位置可能是()A.B.C.D.8.已知M=20222,N=2021×2023,则M与N的大小关系是()A.M>N B.M<N C.M=N D.不能确定9.已知方程组{a−2b=63a−b=m中,a,b互为相反数,则m的值是()A.4B.﹣4C.0D.8 10.在某次演讲比赛中,五位评委要给选手圆圆打分,得到互不相等的五个分数。

中考数学一轮复习专题突破练习—有理数的运算(含解析)

中考数学一轮复习专题突破练习—有理数的运算(含解析)

中考数学一轮复习专题突破练习—有理数的运算(含解析)一、单选题1.(2022·陕西西安交大第二附属中学南校区九年级其他模拟)﹣23的倒数是()A.32B.23C.﹣32D.﹣23【答案】C【分析】根据:除0外的数都存在倒数,两个乘积是1的数互为倒数,0没有倒数;判断即可.【详解】解:﹣23的倒数是﹣32.故答案为:C.2.(2022·重庆字水中学九年级三模)下列各数中,相反数最大的是()A.-5 B.-2 C.-1 D.0【答案】A【分析】求得各选项的相反数,然后比较大小即可. 【详解】解:各选项的相反数分别为5,2,1,0∵5210>>>∴-5的相反数最大故答案为A .3.(2022·西安市铁一中学九年级其他模拟)据新浪财经2022年4月2日报到,第一龙头股贵州茅台一路走高,截至收盘涨近6%至2162元,收涨5.75%,市值激增至272000000元.数据272000000用科学记数法表示为( ) A .627210⨯B .82.7210⨯C .90.27210⨯D .927210⨯ 【答案】B 【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:8272000000 2.7210=⨯,故选:B.4.(2022·长春市解放大路学校九年级其他模拟)下列各数中,比2021-小的数为()A.2022-B.2020-C.0 D.2020【答案】A【分析】根据有理数的大小比较方法即可求解.【详解】∵2022-<2020-<2021-<0<2020故比2021--小的数为2022故选A.5.(2022·福建泉州市·泉州五中九年级其他模拟)据报道,2020年泉州GDP总量突破万亿大关,约为10159亿元,居全国第18位,其中数10159亿元用科学记数法表示为()A.12⨯元C.4⨯元D.51.0159100.1015910⨯元B.131.015910⨯元0.1015910【答案】A【分析】根据题意,运用科学记数法的表示方法可直接得出答案,要注意绝对值大于1的数字科学记数法的表示形式为:10n a ⨯,其中110a ≤<,n 为正整数.【详解】解:10159亿用科学记数法表示为121.015910⨯,故选:A .6.(2022·山东省诸城市树一中学九年级三模)若x x +=0,那么实数x 一定是( )A .负数B .正数C .零D .非正数 【答案】D【分析】先整理,然后根据绝对值等于它的相反数进行解答.【详解】解:由x +|x |=0得,|x |=−x ,∵负数或零的绝对值等于它的相反数,∴x 一定是负数或零,即非正数.故选:D .7.(2022·江苏南京·)下列四个实数中,是负数的是( )A .-(-1)B .(-1)2C .|-1|D .(-1)3【答案】D 【分析】根据相反数的定义、乘方的定义、绝对值的性质及负数和正数的概念判断可得. 【详解】解:A .-(-1)=1,是正数,不符合题意;B .(-1)2=1,是正数,不符合题意;C .|-1|=1,是正数,不符合题意;D .(-1)3=-1,是负数,符合题意;故选:D .8.(2022·河南师大附中九年级三模)1长度单位“埃”,等于一亿分之一厘米,那么一本杂志长为35厘米,等于( )埃.A .73.510⨯B .83.510⨯C .93.510⨯D .83.510-⨯ 【答案】C 【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【详解】解:35cm=35×108埃=3.5×109埃.故选:C.9.(2019·宁夏)如图,是一组按照某种规律摆放而成的图案,第1个图有1个三角形,第二个图有4个三角形,第三个图有8个三角形,第四个图有12个三角形,则图5中三角形的个数是()A.8 B.12 C.16 D.17【答案】C【解析】试题分析:由图可知:第一个图案有三角形1个.第二图案有三角形1+3=4个.第三个图案有三角形1+3+4=8个,第四个图案有三角形1+3+4+4=12,第五个图案有三角形1+3+4+4+4=16,故选C.考点:规律型:图形的变化类.10.(2022·江苏苏州·)21÷(-7)的结果是()A.3 B.-3 C.13D.13【答案】B【分析】直接根据有理数的除法法则进行求解即可;【详解】21÷(-7)=-3,故选:B.二、填空题11.(2022·厦门市第九中学九年级二模)2022年厦门中考生大约39700人,这个数字可用科学记数法表示为__________【答案】3.97×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:39700=3.97×104.故答案为:3.97×104. 12.(2022·广东)已知a ,b 为有理数,如果规定一种新的运算“※”,规定:23a b b a =-※,例如:122231431=⨯-⨯=-=※,计算:()235=※※_________ .【答案】10 【分析】根据a ※b =2b -3a ,可以计算出所求式子的值. 【详解】解:∵a ※b =2b -3a ,∴(2※3)※5=(2×3-3×2)※5=(6-6)※5=0※5=2×5-3×0 =10-0=10,故答案为:10.13.(2022·贵州)某同学在银行存入1000元,记为1000+元,则支出500元,记为______元.【答案】500【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:“正”和“负”相对,所以,若向银行存入1000元,记作“+1000元”,那么向银行支出500元,应记作“﹣500元”.故答案为:﹣500.14.(2022·浙江)已知实数a,b互为相反数,且|a+2b|=1,b<0,则b=_____.【答案】-1【分析】直接利用互为相反数的定义得出a+b=0,进而化简得出答案.【详解】解:∵实数a,b互为相反数,∴a+b=0,∴|a+2b|=|a+b+b|=|b|=1,∵b<0,∴b=﹣1.故答案为:﹣1.15.(2019·云南)如果x的相反数是2019,那么x的值是__________.【答案】2019-【解析】【分析】根据相反数的定义进行分析即可.【详解】解:∵2019-的相反数是2019,x的值是:2019-.故答案为2019-三、计算题16.(2020·河北九年级一模)小盛和丽丽在学完了有理数后做起了数学游戏(1)规定用四个不重复(绝对值小于10)的正整数通过加法运算后结果等于12,小盛:1+2+3+6=12:丽丽:1+2+4+5=12,问是否还有其他的算式,如果有请写出来一个,如果没有,请简单说明理由:(2)规定用四个不重复(绝对值小于10)的整数通过加法运算后结果等于12;【答案】(1)见解析;(2)答案不唯一,-1-3+7+9=12.【分析】(1)由于1+2+3+4=10,要想和为12,在此基础上要加上2,据此进行思考即可;(2)根据有理数加减法法则按要求进行计算即可(答案不唯一).【详解】(1)没有其他算式了,四个小于10的不同的正整数最小的和为1+2+3+4=10,要想得到和为12,需要加2,则任何两个数加1或者任意一个数加2,又因为数字不能重复,所以只能是3+1或4+1,3+2,或4+2;故符合条件的算式有1+2+4+5,1+2+3+6;只有两个;(2)答案不唯一,如:-1-3+7+9=12,写出一个即可.17.(2020·河北保定市·)计算下列各式的值.(1)(﹣53)+(+21)﹣(﹣69)﹣(+37)(2)﹣3.61×0.75+0.61×3+(﹣0.2)×75%.4【答案】(1)0;(2)-2.4【分析】(1)根据有理数的加减运算法则,先省略括号,再进行计算即可得解;(2)逆运用乘法分配律进行计算即可得解.【详解】解:(1)(﹣53)+(+21)﹣(﹣69)﹣(+37)=﹣53+21+69﹣37=﹣90+90=0;(2)33.610.750.61(0.2)75%-⨯+⨯+-⨯4=﹣3.61×0.75+0.61×0.75+(﹣0.2)×0.75=0.75×(﹣3.61+0.61﹣0.2)=0.75×(﹣3.2)=﹣2.4.18.(2022·河南九年级一模)计算下列各题(1)3-----(2)|25|(15)(2)15351-+-+÷-()()2681224(3)23122--⨯--÷-3[(1)()6||]293(4)3331⨯--⨯+-⨯+⨯-2(1)213(1)5(13)7474;(4)-49【答案】(1)4;(2)-9;(3)34【分析】(1)原式先计算乘方及绝对值的代数意义计算即可求出值;(2)原式利用除法法则变形,再利用乘法分配律计算即可求出值;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值;(4)原式逆用乘法分配律计算即可求出值.【详解】解:(1)原式83154=--+=;(2)原式1535=-+-+⨯-()(24)26812=-+-1220910=-;9(3)原式2723=--⨯--⨯9[()6]8923=-++9943=;4(4)原式3311(25)13(2)=-⨯+-⨯+74410=-⨯-⨯71337=--1039=-;4919.(2018·石家庄市第四十一中学九年级二模)计算:(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2)【答案】-57.5【分析】按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.【详解】解:原式=﹣8+(﹣3)×18﹣9÷(﹣2),=﹣8﹣54﹣9÷(﹣2),=﹣62+4.5,=﹣57.5.20.(2020·河北九年级其他模拟)利用运算律有时能进行简便计算.例198×12=(100-2)×12=1 200-24=1 176;例2-16×233+17×233=(-16+17)×233=233.请你参考黑板中老师的讲解,用运算律简便计算: (1)999×(-15);(2)999×11845+999×1-5⎛⎫⎪⎝⎭-999×1835.【答案】(1)-14 985;(2)99 900.【详解】(1)原式=(1 000-1)×(-15)=-15 000+15=-14 985.(2)原式=999×413 118-18555⎡⎛⎫⎤+-⎪⎢⎥⎣⎝⎭⎦=999×100=99 900.21.(2019·浙江中考模拟)计算:–23+6÷3×23.圆圆同学的计算过程如下:原式=–6+6÷2=0÷2=0,请你判断圆圆的计算过程是否正确,若不正确,请你写出正确的计算过程.【答案】–203.【详解】圆圆的计算过程不正确,正确的计算过程为:原式=﹣8+2×23=﹣8+43=﹣203.22.(2022·山东课时练习)求下列各数的绝对值:(1)﹣38;(2)0.15;(3)a(a<0);(4)3b(b>0);(5)a﹣2(a<2);(6)a﹣b.【答案】(1)38;(2)0.15;(3)﹣a;(4)3b;(5)2﹣a;(6)a﹣b≥0时,a ﹣b;a﹣b<0时,b﹣a.【详解】(1)|﹣38|=38;(2)|+0.15|=0.15;(3)∵a<0,∴|a|=﹣a;(4)∵b>0,∴3b>0,∴|3b|=3b;(5)∵a<2,∴a﹣2<0,∴|a﹣2|=﹣(a﹣2)=2﹣a;(6)a﹣b≥0时,|a﹣b|=a﹣b;a﹣b<0时,|a﹣b|=b﹣a.23.(2022·全国课时练习)某沙漠可以粗略看成一个长方体,该沙漠的长度约是4800000m,沙层的深度大约是366cm,已知该沙漠中的体积约为33345km3立方千米.(1)请将沙漠中沙的体积用科学记数法表示出来(单位:m3);(2)该沙漠的宽度是多少米(精确到万位)?(3)如果一粒沙子体积大约是0.036mm3,那么,该沙漠中有多少粒沙子(用科学记数法表示)?【答案】(1)3.334 5×1013m3;(2)1.90×104m;(3)9.26×1023【详解】【分析】(1)首先把3 3345km3换算成33 345 000 000 000m3,再写成科学记数法.(2)沙漠的体积÷撒哈拉沙漠的长度÷沙层的深度=撒哈拉沙漠的宽度.(3)沙漠的体积÷一粒沙子体积=沙漠沙子的粒数.(1)33 345km3=33 345 000 000 000m3=3.334 5×1013m3;(2)3.334 5×1013m3÷4800000m÷366m≈1.90×104m.答:沙漠的宽度是1.90×104m.(3)3.334 5×1013m3=3.334 5×1022mm3,3.3345×1022mm3÷0.036mm3=9.26×1023(粒).答:沙漠中有9.26×1023粒沙子.。

中考数学有理数提高测试.doc

中考数学有理数提高测试.doc

若若若提6.7 .& 《有理数》提高测试(100分钟,100分)-、填空题(每小题5分,共20分):1.绝对值小于4的整数是±3, ±2, ±1, 0 ,其中-3最小,0, 1, 2, 炎是非负数,_Q_的绝对值最小;2. a - b的相反数是b - a ,如果aWb,那么| a - b | = b - a ;3.若a, b,c在数轴上位置如图所示,那么|a| - |b - c| + |c|二一a + b ;a b 0 c4.如果国T Li,那么ni〈 0 ,如果a是有理数,那么三=±1 ;1-川,|T|5.如果每个人的工作效率都相同,且a个人b天做c个零件,那么b个人做a个零件所需的a1天数为——Occ a a a略解:1个人1天做一个零件,那么b个人做a个零件所需的天数为 -------- =一=一ab c c cb ---- ------ab a二、判断题(每小题2分,共16分):1.若 a + b 二 0,贝U|a| = |b| ( V)2.若|a| = |b|,贝lj a 二 b (X)3.若|a| = |b|,则 a + b = 0 (X)4.若 abNO,贝UaNO 且 bNO (X)5.若 ab 二 0,则 a=0 或 b=0 (")a <b < 0,贝lj a2 > b2(")a < b,则 |a| < |b| (X)a3> b3,则 a2> b2(X) :设 a = -0. 1, b = -0. 2,虽有(-0. 1)3>(-0. 2)3,但却有(-0. l)2<(-0. 2)2三、选择题(每小题4分,共24分):1.把0。

0068用科学记数法表示为6。

8 X10n,则n的值是(A)(A) -3 (B) -2 (C) 3 (D) 22.若a和一互为相反数,则a的负倒数是(D)2 (A) -2b (B)b2(C) b 2(D)—b3.如果是a负数,那么~a,2a,a +a| ,a j这四个数中,也是负数的个数是(B)(A) 1 (B)2 (C3 (D) 44.设x是有理数,那么下列各式中一定表示正数的是(D )(A) 2008x (B) x + 2008 (C) |2008x| (D) |x| + 20085.如果a, b都是有理数,且有b < 0,那么下列不等关系中,正确的是(C )(A) a < a + b < a - b (B) a < a - b < a + b(C) a + b < a < a - b (D) a~b<a + b<a6.如果a是有理数,那么下列说法中正确的是(D)19(A)(6Z+-)2是正数(B) a'+l的值大于11 , 1 ,(c) -(a--)2的值是负数 (D) -(a--)2+i的值不大于1提示:要考虑a是负数或o的情形;当a = Onf, a2 + 1 = 1,所以. 1 , 1、2 .(B)不正确;当a =一时,一(。

中考数学专题复习《有理数》提高测试

中考数学专题复习《有理数》提高测试

2019-2020年中考数学专题复习《有理数》提高测试 一、填空题(每小题5分,共20分): 1. 绝对值小于4的整数是 ±3,±2,±1,0 ,其中 –3 最小,0,1,2,3 是非负数, 0 的绝对值最小;2. a - b 的相反数是 b – a ,如果 a ≤b ,那么 | a – b | = b – a ;3. 若a,b,c 在数轴上位置如图所示,那么|a|–|b – c| + |c| = -a + b ;a b 0 c4. 如果 m < 0 , 如果a 是有理数,那么= ±1 ;5. 如果每个人的工作效率都相同,且a 个人b 天做c 个零件,那么b 个人 做a 个零件所需的天数为 。

略解:1个人1天做个零件,那么b 个人做a 个零件所需的天数为 .2c a a c a ab c b a==⋅ 二、判断题(每小题2分,共16分):1.若 a + b = 0,则 |a|=|b| (√)2. 若|a|=|b|,则 a = b (×)3. 若|a|=|b|,则a + b = 0 (×)4. 若ab ≥0,则a ≥0且b ≥0 (×)5. 若ab = 0,则 a=0或 b=0 (√)6. 若a < b < 0,则 a 2 > b 2 (√)7. 若 a < b ,则 |a| < |b| (×)8. 若 a 3 > b 3,则a 2 > b 2 (×)提示:设 a = -0.1, b = -0.2,虽有(-0.1)3 > (-0.2)3,但却有(-0.1)2<(-0.2)23. 如果是a 负数,那么 –a, 2a , a + |a| , 这四个数中,也是负数 的个数是( B )(A ) 1 (B )2 (C )3 (D )44. 设x 是有理数,那么下列各式中一定表示正数的是( D )(A )xxx (B )x + xx (C )|xxx| (D )|x| + xx5. 如果a,b 都是有理数,且有b < 0,那么下列不等关系中,正确的是( C )(A ) a < a + b < a – b (B ) a < a – b < a + b(C ) a + b < a < a – b (D ) a - b < a + b < a6. 如果a 是有理数,那么下列说法中正确的是(D )(A) 是正数 (B) a 2 +1 的值大于1(C) 的值是负数 (D) +1 的值不大于1提示:要考虑a 是负数或0的情形;当时,a 2 + 1 = 1,所 以(B )不正确;当时,= 0,所以(C )不正确;当时,有 = 0, 所以(A )不正确; 当时,+1 = 1;当 时,+1 < 1, 所以说+1 的值不大于1。

中考数学专题练习 有理数试题

中考数学专题练习 有理数试题

介父从州今凶分市天水学校<有理数>一、选择题:1.一运发动某次跳水的最高点离跳台2m,记作+2m,那么水面离跳台10m可以记作〔〕A.-10m B.-12m C.+10m D.+12m2.以下每对数中,不相等的一对是〔〕A.〔-2〕3和-23 B.〔-2〕2和22 C.〔-2〕4和-24 D.|-2|3和|2|33.如果a+b<0,且b>0,那么a2与b2的关系是〔〕A.a2≥b2 B.a2>b2 C.a2≤b2 D.a2<b226.绝对值小于3的所有整数的和与积分别是27.当a <0,化简 a a a -=28.b b a a +()o ab ≠的所有可能的值有29.计算:-1+3-5+7-9+11-…-1989+1991-1993=30.观察以下数列:根据其中的变化规律,请计算a+b 值为 . 第30题图三、计算题:31. -〔-3〕2-[3+0.4×〔211-〕]÷〔-2〕 32. 2221227317713713⨯⨯⎪⎭⎫ ⎝⎛-⨯ 33. −0.52+41−|−22−4|−(211-)3×94 34. ()12121413124⨯⎪⎭⎫ ⎝⎛+-÷- 35. 36.37. [-23+2-〔-3〕2×2-5×〔-8〕]÷〔-2〕3 38. 四、解答题:39.在以下列图的集合圈里,有6个有理数,请计算其中的正数的和与负数的积的差.40.:有理数m 所表示的点到点3距离4个单位,a ,b 互为相反数,且都不为零,c ,d 互为倒数.求:2a +2b +(ba −3cd )−m 的值41.:|x|=3,|y|=5,|z|=7,假设x <y <z ,求x+y+z 的值.42.如图,是一个有理数混合运算程序的流程图,请根据这个程序答复以下问题:当输入的x 为-16时,最后输出的结果y 是多少?〔写出计算过程〕240161119⨯⎪⎭⎫ ⎝⎛-。

初中数学中考专项复习有理数(解答题)复习习题401-500(含答案解析)

初中数学中考专项复习有理数(解答题)复习习题401-500(含答案解析)

初中数学中考专项复习有理数(解答题)复习习题401-500(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、解答题1.若|x+3|+(y-2)2=0,求x y+2(x+y)的值.2.在数轴上表示下列各数,再用“<”号把各数连接起来.+2,﹣(+4),+(﹣1),|﹣3|,﹣1.53.如图,已知数轴上点A表示的数为﹣7,点B表示的数为5,点C到点A,点B的距离相等,动点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动的时间为t(t>0)秒.(1)点C表示的数是;(2)求当t等于多少秒时,点P到达点B处;(3)点P表示的数是(用含有t的代数式表示);(4)求当t等于多少秒时,PC之间的距离为2个单位长度.4.把下列各数填入相应集合的括号内.+8.5,﹣312,0.3,0,﹣3.4,12,﹣9,﹣1.2,20%,﹣2.(1)正数集合:{_____…};(2)整数集合:{_____…};(3)非正整数集合:{_____…};(4)负分数集合:{_____…}.5.在数轴上表示下列各数,并用“<”把它们连接起来.3,﹣|﹣5|,0,﹣72,﹣(﹣2).6.数轴上点A对应的数是﹣1,B点对应的数是1,一只小虫甲从点B出发沿着数轴的正方向以每秒4个单位的速度爬行至C点,再立即返回到A点,共用了4秒钟.(1)求点C对应的数;(2)若小虫甲返回到A点后再作如下运动:第1次向右爬行2个单位,第2次向左爬行4个单位,第3次向右爬行6个单位,第4次向左爬行8个单位,…依次规律爬下去,求它第10次爬行所停在点所对应的数;(3)若小虫甲返回到A后继续沿着数轴的负方向以每秒4个单位的速度爬行,这时另一小虫乙从点C出发沿着数轴的负方向以每秒7个单位的速度爬行,设甲小虫对应的点为E点,乙小虫对应的点为F点,设点A、E、F、B所对应的数分别是x A、x E、x F、x B,当运动时间t不超过1秒时,请你结合数轴求出|x A﹣x E |﹣|x E﹣x F |+ |x F﹣x B |= .(直接写出答案)7.把下列各数在数轴上表示出来,按从小到大的顺序用“<”连接起来.+(﹣2),-(-1)100,0,412,﹣|﹣2.5|,﹣(﹣3)8.如图,点A、B都在数轴上,O为原点.(1)点B表示的数是_________________;(2)若点B以每秒2个单位长度的速度沿数轴向右运动,则2秒后点B表示的数是________;(3)若点A、B分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O不动,t秒后,A、B、O三个点中有一个点是另外两个点为端点的线段的中点,求t 的值.9.已知一个数轴上有A,B,C三点,它们所表示的数分别为2,﹣3,x.(1)若点C是线段AB的中点,请直接写出x的值;(2)若OC=OB﹣OA,求出x的值;(3)若2AC+13OB=7,求x的值.10.先化简,再求值:2222222a b a ba ab b b a a ab⎛⎫-+÷⎪-+--⎝⎭,其中,a b满足b=.11.已知A、B、C三点在数轴上的位置如图所示,它们表示的数分别是a、b、c(1) 填空:abc________0,a+b________ac,ab-ac________0;(填“>”,“=”或“<”)(2) 若|a|=2,且点B到点A、C的距离相等①当b2=16时,求c的值② 求b 、c 之间的数量关系③ P 是数轴上B ,C 两点之间的一个动点设点P 表示的数为x .当P 点在运动过程中,bx +cx +|x -c |-10|x +a |的值保持不变,求b 的值 12.已知22223A a b ab =-+-,2221255B a b ab =---. (1)化简:()()232A B A B +--; (2)当12a +与2b 互为相反数时,求(1)中化简后的式子值. 13.先化简,再求值:22223322232x y xy x x y xy xy ⎡⎤⎛⎫---++ ⎪⎢⎥⎝⎭⎣⎦,其中x 、y 满足2|3|(31)0x y -++=14.计算: (1)111(24)836⎛⎫-+⨯-⎪⎝⎭; (2)20131|2|(1)322-⨯--÷⨯;(3)2211(10.5)[2(3)]3---⨯⨯--;(4)817(36)76⎛⎫⨯-⨯-⨯ ⎪⎝⎭. 15.在数轴上表示下列各数,再将其按从大到小的顺序用“>”连接起来 |3|,﹣5,0,﹣2.5,﹣22,﹣(﹣1). 16.如图,a 、b 、c 在数轴上的位置如图所示,(1)请用“<”或“>”判断下列代数式的大小;+a b ______0,a c +______0,c b -______0; (2)试化简a b a c c b +++--17.外卖小哥骑车从商家出发,向东骑了3千米到达小林家,继续骑2.5千米到达小红家,然后向西骑了10千米到达小明家,最后返回商家。

2022年中考数学考点提分专练——有理数

2022年中考数学考点提分专练——有理数

2022年中考数学考点提分专练——有理数一、选择题1.下列说法正确的是( )A.近似数1.50和1.5是相同的B.3520精确到百位等于3500C.6.610精确到千分位D.2.70×104精确到百分位2.两个有理数相加,如果和小于每一个加数,那么()A.这两个加数同为负数; B.这两个加数同为正数C.这两个加数中有一个负数,一个正数; D.这两个加数中有一个为零3. 下列算式中,运算结果为负数的是()) D.(−3)2A.−|−1|B.−(−2)3C.−(−524.若a、b互为相反数,则2(a+b)﹣3的值为()A.﹣1 B.﹣3 C.1 D.25.如图,已知点A,B,C,D将周长为4的圆周4等分,现将点A与数轴上表示﹣1的点重合.将圆沿数轴向右连续滚动,则点A,B,C,D中与表示2020的点重合的是()A.点A B.点B C.点C D.点D6.两个互为相反数的有理数相除,商为()A. 正数B. 负数C. 不存在D. 负数或不存在7.如果一个数的平方与这个数的差等于0,那么这个数只能是()A.0B.-1 C .1 D.0或18.现规定一种新的运算,x*y=xy+x﹣y﹣1,其中x,y为有理数,那么a*b+b*a等于()A.2ab﹣2 B.2ab+2C.2ab+2a﹣2b﹣2 D.09.的值是( )A .B .C .D . 10.如图,M ,N ,P ,R 分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a 对应的点在M 与N 之间,数b 对应的点在P 与R 之间,若3=+b a ,则原点是( )A.M 或RB.N 或PC.M 或ND.P 或R11.如果一个正整数可以表示为两个连续奇数的立方差,则称这个正整数为“和谐数”.如:2=13﹣(﹣1)3,26=33﹣13,2和26均为和谐数.那么,不超过2019的正整数中,所有的“和谐数”之和为( )A .6858B .6860C .9260D .9262 12.某商店以每套80元的进价购进8套服装,并以90元左右的价格卖出.如果以90元为标准,超过标准的售价记为正数,不足标准的售价记为负数,出售价格记录如下:+2,﹣3,+5,+1,﹣2,﹣1,0,﹣5(单位:元).其它收支不计,当商店卖完这8套服装后( )A.盈利B.亏损C.不盈不亏D.盈亏不明13. 已知数轴上A 、B 两点坐标分别为−3、−6,若在数轴上找一点C ,使得A 与C 的距离为4;找一点D ,使得B 与D 的距离为1,则下列何者不可能为C 与D 的距离( )A.0B.2C.4D.614.规定图形表示运算a ﹣b ﹣c ,图形表示运算x+z ﹣y ﹣w ,则+的值是( )A .﹣8B .﹣6C .0D .215.下列图形都是由几个黑色和白色的正方形按一定规律组成,图①中有2个黑色正方形,2-()212-0102-图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形……依此规律,图中黑色正方形的个数是( )A .32B .29C .28D .26二、填空题16.计算:(-1)6+(-1)7=____________。

(完整版)有理数提高题(有答案)

(完整版)有理数提高题(有答案)

2有理数基础训练题一、填空:1、 在数轴上表示一2的点到原点的距离等于( )。

2、 若 I a I =— a,则 a () 0.3、 任何有理数的绝对值都是( )。

4、 如果a+b=O,那么a 、b 一定是()。

5、 将0.1毫米的厚度的纸对折20次,列式表示厚度是( )。

6 已知 |a| 3,| b| 2,| a b| a b ,则 a b ( )7、 |x 2| |x 3|的最小值是()。

1 18、 在数轴上,点A 、B 分别表示 -,则线段AB 的中点所表示的数是()4 2a b20109、 若a,b 互为相反数,m, n 互为倒数,P 的绝对值为3,则 ------- mn p 2 p ()。

10、若 abc ^0,则 |a| |b|a b|c|的值是( c).11、下列有规律排列的一列数:.32531、 一、 一、一、 一、•…,其中从左到右第100个数是( ) 二、解答问题:1、已知x+3=0,|y+5|+4的值是4, z 对应的点到-2对应的点的距离是7, 求 x 、y 、 z 这三个数两两之积的和。

3、若2x |4 5x| |1 3x| 4的值恒为常数,求x 满足的条件及此时常数的值4、若 a,b,c 为整数,且 |a b |2010 |c a |2010 1,试求 |c a| |a b| |b c| 的值5 7 9 11 13 15 171 5、计算:一—+ _ 一----- 1 --- ——-- 1 --- — ----- 1--- 66 12 20 30 42 56 720 1能力培训题知识点一:数轴例1:已知有理数a 在数轴上原点的右方,有理数 b 在原点的左方,那么()2、利用数轴能直观地解释相反数;例2:如果数轴上点 A 到原点的距离为 3,点B 到原点的距离为 5,那么A 、B 两点的距离 为 ________________ 。

拓广训练:1、 在数轴上表示数a 的点到原点的距离为 3,则a 3__________ .2、 已知数轴上有 A 、B 两点,A 、B 之间的距离为1,点A 与原点O 的距离为3,那么所有满 足条件的点 B 与原点O 的距离之和等于 _____________________ 。

中考数学专题《有理数》复习试卷含答案解析

中考数学专题《有理数》复习试卷含答案解析

中考数学专题复习卷: 有理数一、选择题1.在-4,0,-1,3这四个数中,既不是正数又不是负数的数是( )A. -4B. 0C. -1D. 32.计算:的结果是()A. -3B. 0C. -1D. 33.下列各式不正确的是()A. |﹣2|=2B. ﹣2=﹣|﹣2|C. ﹣(﹣2)=|﹣2|D. ﹣|2|=|﹣2|4.零上13℃记作+13℃,零下2℃可记作()A. 2B. -2C. -2℃D. 2℃5.据有关部门统计,“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为()A. 1.442×107B. 0.1442×107C. 1.442×108D. 0.1442×1086.比-1小2的数是()A. 3B. 1C. -2D. -37.-的相反数是()A. B. - C. D.8.舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约499.5亿千克,这个数用科学记数法(精确到十亿位),应表示为()A. 4.995×1010B. 4.995×1011C. 5.0×1010D. 4.9×10109.的绝对值是( ).A. B. C. D.10.-的倒数是()A. B. - C. D. -11.下列各数中,绝对值最小的数是()A.πB.C.-2D.-12.一个数的相反数小于它本身,这个数是()A. 正数B. 负数C. 非正数D. 非负数二、填空题13.计算: =________.14.根据如图所示的车票信息,车票的价格为________元.15.数轴上的两个数﹣3与a,并且a>﹣3,它们之间的距离可以表示为________.16.计算:(﹣2)2=________.17.实数16 800 000用科学计数法表示为________.18.在有理数中,既不是正数也不是负数的数是________.19.计算:0-=________.20.已知,则a+b=________21.若△ABC的三边长分别为a,b,c,则|a﹣b﹣c|﹣|b﹣a﹣c|=________.22.观察规律并填空.⑴⑵⑶________(用含n的代数式表示,n 是正整数,且n ≥ 2)三、解答题23.计算:(1)﹣15+(﹣8)﹣(﹣11)﹣12(2)(3)(4)﹣23+[(﹣4)2﹣(1﹣32)×3].24. 计算:(1)(2)[(2x﹣y)2﹣(2x+y)(2x﹣y)+4xy]÷2y.25.已知a、b互为相反数,c、d互为倒数,|m|=3,求的值.答案解析一、选择题1.【答案】B【解析】:∵0既不是正数也不是负数,∴答案为:B【分析】根据0既不是正数也不是负数,可得出答案。

初一有理数提高练习题及答案

初一有理数提高练习题及答案

、选择题A .- 4B . - 2D.4个10、在一次智力竞赛中,主持人问了这样的一道题目:“ -<■是最小的正整数,勺是最大的负整数的相反数,厂是绝对值最小的有理数,请问 2 :-<> :、 「三数之和为多少?”你能回答主持人的问题吗?其和应为()A - 1B 、0C 1D11、 若」< a.•;:-,则 的大小关系1空1 2 2 1a <— —<a <a—<aa < cJ < — 是().A .B .C. -JD.a12、有理数 a 、 b 、c 、d 在数轴上的位置如图所示, 下列结论中错误的是 ()rb----------- ---- ---- ►订 1 ' |;A.a+bvOB.c+d>0C.|a+c|=a+cD.|b+d|=b+d13、如图,主、—「在数轴上的位置如图所示,一 _ -厂 则- I- 'I I'-:1 _______14、对于有理数 二、:’,如果L :L '- ■',,则下列各式成立的是(>0上<a 且01 3 C . a <D 20且同為D .盘占uQ 且有理数提高训练1、已知|a|=2 , |b|=3,且在数轴上表示有理数 b 的点在 a 的左边,则 a -b 的值为( )A.-1 B.-5 C.-1 或-5 D.1 或52、下列说法正确的是()A.负数没有倒数 B.正数的倒数比自身小 C.任何有理数都有倒数 D. - 1的倒数是-13、如果a 和2b 互为相反数,且b 工0,那么a 的倒数是(2)A.B.--1C.D.4、如下图,数轴的单位长度为 1.如果点A ,B 表示的数的绝对值相等, 那么点A 表示的数是(5、如果二与1互为相反数,则'等于()A. 2-26、已知a ,b 是有理数,若a 在数轴上的对应点的位置如图所示,结论:①<0 ;②b —Q D ;③卜°| S ④门 .Q则所有正确的结论是( )A.①,④B.①,③C. ②,③7、下列说法正确的是 ( )①0是绝对值最小的有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数 ④两个数比较,绝对值大的反而小A ①②B ①③C ①②③①②③④8、下列说法中,正确的是( )。

七年级有理数(提升篇)(Word版 含解析)

七年级有理数(提升篇)(Word版 含解析)

一、初一数学有理数解答题压轴题精选(难)1.如图,在数轴上每相邻两点间的距离为一个单位长度,点、、、对应的数分别是,且 .(1)那么 ________, ________:(2)点以个单位/秒的速度沿着数轴的正方向运动,秒后点以个单位/秒的速度也沿着数轴的正方向运动,当点到达点处立刻返回,与点在数轴的某点处相遇,求这个点对应的数;(3)如果、两点以(2)中的速度同时向数轴的负方向运动,点从图上的位置出发也向数轴的负方向运动,且始终保持,当点运动到时,点对应的数是多少?【答案】(1)-6;-8(2)解:由(1)可知:,,,,点运动到点所花的时间为,设运动的时间为秒,则对应的数为,对应的数为: .当、两点相遇时,,,∴ .答:这个点对应的数为;(3)解:设运动的时间为对应的数为:对应的数为:∴∵∴∵对应的数为∴①当,;②当,,不符合实际情况,∴∴答:点对应的数为【解析】【解答】解:(1)由图可知:,∵,∴,解得,则;【分析】(1)由a、d在数轴上的位置可得d=a+8,代入已知的等式可求得a的值,再根据数轴可确定原点的位置;(2)根据相遇问题可求得相遇时间,然后结合题意可求解;(3)根据AB=AC列方程,解含绝对值的方程可求解.2.已知 a、b、c 在数轴上的位置如图:(1)用“<”或“>”填空:a+1________0;c-b________0;b-1________0;(2)化简:;(3)若a+b+c=0,且b与-1的距离和c与-1的距离相等,求下列式子的值:2b -c - (a - 4c - b).【答案】(1)>;<;<(2)解:∵a+1>0,c-b<0,b-1<0,∴原式=a+1-(b-c)-(1-b)=a+1-b+c-1+b=a+c(3)解:由已知得:b+1=-1-c,即b+c=-2,∵a+b+c=0,即-2+a=0,∴a=2,则2b -c - (a - 4c - b).=2b -c - a + 4c + b=3(b+c)-2=【解析】【解答】解:(1)根据题意得:c<0<b<1<a∴a+1>0;c-b<0;b-1<0【分析】(1)根据数轴上点的位置进行计算比较大小即可;(2)利用数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果(3)根据题意列出关系式,求出a与b+c的值,原式去括号合并得到最简结果,将a与b+c的值代入计算即可求出值.3.点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数轴,根据数形结合思想,回答下列问题:(1)已知|x|=3,则x的值是________.(2)数轴上表示2和6两点之间的距离是________,数轴上表示1和﹣2的两点之间的距离为________;(3)数轴上表示x和1两点之间的距离为________,数轴上表示x和﹣3两点之间的距离为________(4)若x表示一个实数,且﹣5<x<3,化简|x﹣3|+|x+5|=________;(5)|x+3|+|x﹣4|的最小值为________,|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|+|x﹣5|的最小值为________.(6)|x+1|﹣|x﹣3|的最大值为________.【答案】(1)(2)4;3(3)|x﹣1|;|x+3|(4)8(5)7;6(6)4【解析】【解答】解:(1)∵,则;故答案为:;(2),,故答案为:4,3;(3)根据两点间距离公式可知:数轴上表示x和1两点之间的距离为:;数轴上表示x和-3两点之间的距离为:;故答案为:,;(4)x对应点在点-5和3之间时的任意一点时|x-3|+|x+5|的值都是8;故答案为:8;(5)x对应点在点-4和3之间时的任意一点,|x-3|+|x+4|的值最小是7;当x对应点是3时,|x-1|+|x-2|+|x-3|+|x-4|+|x-5|的最小值为6;故答案为:7,6;(6)当x对应点不在-1和3对应点所在的线段上,即x<-1或x>3时,|x+1|-|x-3|的最大值为4;故答案为:4.【分析】(1)根据绝对值的意义,即可得到答案;(2)(3)直接代入公式即可;(4)实质是在表示3和-5的点之间取一点,计算该点到点3和-5的距离和;(5)可知x对应点在对应-3和4的点之间时|x+3|+|x-4|的值最小;x对应点在3时,|x-1|+|x-2|+|x-3|+|x-4|+|x-5|值最小;(6)可知x对应点在表示-1和3的点所形成的线段外时,|x+1|-|x-3|的值最大.4.点P,Q在数轴上分别表示的数分别为p,q,我们把p,q之差的绝对值叫做点P,Q之间的距离,即.如图,在数轴上,点A,B,O,C,D的位置如图所示,则;;.请探索下列问题:(1)计算 ________,它表示哪两个点之间的距离? ________(2)点M为数轴上一点,它所表示的数为x,用含x的式子表示PB=________;当PB=2时,x=________;当x=________时,|x+4|+|x-1|+|x-3|的值最小.(3)|x-1|+|x-2|+|x-3|+…+|x-2018|+|x-2019|的最小值为________.【答案】(1)5;A与C(2)x+2;-4或0;1(3)1019090【解析】【解答】解:(1)|1−(−4)|=|1+4|=|5|=5,|1−(−4)|表示点A与C之间的距离,故答案为:5,点A与C;(2)∵点P为数轴上一点,它所表示的数为x,点B表示的数为−2,∴PB=|x−(−2)|=|x+2|,当PB=2时,|x+2|=2,得x=0或x=−4,当x≤−4时,|x+4|+|x−1|+|x−3|=−x−4+1−x+3−x=−x≥4;当−4<x<1时,|x+4|+|x−1|+|x−3|=x+4+1−x+3−x=8−x,当1≤x≤3时,|x+4|+|x−1|+|x−3|=x+4+x−1+3−x=6+x,当x>3时,|x+4|+|x−1|+|x−3|=x+4+x−1+x−3=3x>9,∴当x=1时,|x+4|+|x−1|+|x−3|有最小值;故答案为:|x+2|;−4或0;1(3)|x−1|+|x−2019|≥|1−2019|=2018,当且仅当1≤x≤2019时,|x−1|+|x−2019|=2018,当且仅当2≤x≤2018时,|x−2|+|x−2018|≥|2−2018|=2016,…同理,当且仅当1009≤x≤1011时,|x−1009|+|x−1011|≥|1009−1011|=2,|x−1010|≥0,当x=1010时,|x−1010|=0,∴|x−1|+|x−2|+|x−3|+…+|x−2018|+|x−2019|≥0+2+4+…+2018=1019090,∴|x−1|+|x−2|+|x−3|+…+|x−2018|+|x−2019|的最小值为1019090;故答案为1019090.【分析】(1)由所给信息,结合绝对值的性质可求;(2)由绝对值的性质,分段去掉绝对值符号,在不同的x范围内确定|x+4|+|x−1|+|x−3|的最小值;(3)由所给式子的对称性,结合绝对值的性质,将所求绝对值式子转化为求0+2+4+…+2018的和.5.如图,在数轴上点A表示数−20,点C表示数30,我们把数轴上两点之间的距离用表示两点的大写字母一起标记.比如,点A与点B之间的距离记作AB,点B与点C之间的距离记作BC…(1)点A与点C之间的距离记作AC,则AC的长为________;若数轴上有一点D满足CD=AD,则D点表示的数为________;(2)动点B从数1对应的点开始向右运动,速度为每秒1个单位长度,同时点A、C在数轴上运动,点A、C 的速度分别为每秒2个单位长度,每秒3个单位长度,运动时间为t秒.①若点A向右运动,点C向左运动,AB=BC,求t的值________;②若点A向左运动,点C向右运动,2AB−m×BC的值不随时间t的变化而改变,则2AB−m×BC的值为________(直接写出答案).【答案】(1)50;5(2)10或;-45.【解析】【解答】(1)解:∵A表示的数为-20,C表示的数为30,∴AC=30-(-20)=50;∵CD=AD∴点D为AC的中点∴D所表示的数为 =5,故答案为50;5(2)解:①根据题意,A所表示的数为-20+2t,C所表示的数为30-3t,B 所表示的数为1+t,AB=|-20+2t-(1+t)|=|-21+t|,BC=|30-3t-(1+t)|=|29-4t|,∵AB=BC∴|-21+t|=|29-4t|,-21+t=29-4t,解得t=10,-21+t=4t-29解得t= .∴当AB=BC时,t=10或.②根据题意,A所表示的数为-20-2t,B所表示的数为1+t,C所表示的数为30+3t,AB=1+t-(-20-2t)=21+3t,BC=30+3t-(1+t)=29+2t,∴2AB-m×BC=2(21+3t)-m×(29+2t)=42+6t-29m-2mt,∵2AB-m×BC的值不随时间t的变化而改变,∴6t-2mt=0,∴m=3,∴42+6t-29m-2mt=-45,∴2AB-m×BC=-45.故答案为-45.【分析】(1)在数轴上表示两点所组成的线段长度用右边点所表示的数减去左边点所表示的数即可.(2)当数轴上想表示两个点之间的距离,根据绝对值的意义可用绝对值进行处理.动点在数轴上运动,在已知运动的方向和速度之后,就可以利用原来所在的数如果向右移动就加上向右移动的距离,如果向左移动,就减去向左移动的距离.6.阅读材料:在数轴上,点 A 在原点 0 的左边,距离原点 4 个单位长度,点 B 在原点的右边,点 A 和点B 之间的距离为 14个单位长度.(1)点 A 表示的数是________,点 B 表示的数是________;(2)点 A、B 同时出发沿数轴向左移动,速度分别为 1 个单位长度/秒,3 个单位长度/秒,经过多少秒,点 A 与点 B重合?(3)点 M、N 分别从点 A、B 出发沿数轴向右移动,速度分别为 1 个单位长度/秒、2 个单位长度/秒,点 P 为 ON 的中点,设 OP-AM 的值为 y,在移动过程中,y 值是否发生变化?若不变,求出 y 值;若变化,说明理由.【答案】(1)-4;10(2)解:由题意知,此时为速度问题里面的追击问题,则由速度差×相遇时间=相距距离可知:设经过x秒后重合,即x秒后AB相遇.则(3-1)x=14解得:x=7故7秒后点A,B重合.(3)解:y不发生变化,理由如下:设运动时间为x秒,则AM=x而OP=则y=OP-AM=故y为定值,不发生变化.【解析】【解答】解:(1)由A在原点左边4个单位长度可知A点表示的数是-4,由B 在原点右边且与点A距离14个单位长度可知,-4+14=10,则B点表示的数是10.【分析】(1)由A在原点左边4个单位长度可知A点表示的数是-4,再根据B 在原点右边且与点A距离14个单位长度,可由-4+14=10可得B点表示的数.(2)把A,B看成距离为14个单位长度的追击问题,由速度差×相遇时间=相距距离列出等式求解.(3)设移动时间为x秒,用含有x的代数式表示出OP与AM的长度,然后根据y= OP-AM列出关系式判断,若式中不含x项则不发生变化,含x项则发生变化.7.观察下列等式,,,把以上三个等式两边分别相加得:.(1)猜想并写出: ________.(2)直接写出下面算式的计算结果:=________.【答案】(1)(2)【解析】【解答】解:(1);故答案为: .(2)..故答案为:.【分析】(1)分子是1,分母是两个连续自然数的乘积,可以拆成以这两个自然数为分母,分子为1的两个分数的差,由此规律得出答案即可;(2)根据规律将式子的每一项拆分,拆分后抵消得出答案即可.8.已知:线段AB=20cm.(1)如图1,点P沿线段AB自A点向B点以2厘米/秒运动,点Q沿线段BA自B点向A 点以3厘米/秒运动,经过________秒,点P、Q两点能相遇.(2)如图1,点P沿线段AB自A点向B点以2厘米/秒运动,同时点Q沿线段BA自B点向A点以3厘米/秒运动,问再经过几秒后P、Q相距5cm?(3)如图2,AO=4cm,PO=2cm,∠POB=60°,点P绕着点O以60°/秒的速度逆时针旋转一周停止,同时点Q沿直线BA自B点向A点运动,假若点P、Q两点能相遇,求点Q 运动的速度.【答案】(1)4(2)解:设经过a秒后P、Q相距5cm,由题意得,20-(2+3)a=5,解得:,或(2+3)a−20=5,解得:a=5,答:再经过3秒或5秒后P、Q相距5cm(3)解:点P,Q只能在直线AB上相遇,则点P旋转到直线AB上的时间为 s或s,设点Q的速度为ycm/s,当2s时相遇,依题意得,2y=20−2=18,解得y=9当5s时相遇,依题意得,5y=20−6=14,解得y=2.8答:点Q的速度为9cm/s或2.8cm/s.【解析】【解答】解:(1)设经过x秒两点相遇,由题意得,(2+3)x=20,解得:x=4,即经过4秒,点P、Q两点相遇;故答案为:4.【分析】(1)设经过x秒两点相遇,根据总路程为20cm,列方程求解;(2)设经过a秒后P、Q相距5cm,分两种情况:用AB的长度−点P和点Q走的路程;用点P和点Q走的路程−AB的长度,分别列方程求解;(3)由于点P,Q只能在直线AB上相遇,而点P旋转到直线AB上的时间分两种情况,所以根据题意列出方程分别求解.9.(1)阅读下面材料:点、在数轴上分别表示实数,,、两点之间的距高表示为当、两点中有一点在原点时,不妨设点在原点,如图1,;当、都不在原点时,①如图2,点、都在原点的右侧,;②如图3,点、都在原点的左侧,;③如图4,点、在原点的两侧,;(1)回答下列问题:①数轴上表示2和5的两点间的距离是________,数轴上表示-2和-5的两点之间的距离是________,数轴上表示1和-3的两点之间的距离是________;②数轴上表示和-1的两点和之间的距离是________,如果,那么为________;③当代数式取最小值时,相应的的取值范围是________;④求的最小值,提示:.【答案】(1)3;3;4;;1或-3;-1≤x≤2;解:④.④由③可知,要使最小,则在1和2015之间即可,要使最小,则在2和2014之间即可…… 以此类推,要使最小,则在1007和1009之间即可,最后还剩余最小时,取即可,当时,原式【解析】【解答】解:①表示2和5的两点间的距离为,表示-2和-5的两点之间的距离为,表示1和-3的两点之间的距离为;②表示和-1的两点和之间的距离为,若,则,∴,∴或③ ,是到的距离,表示到的距离,当在和2之间时,距离之和最小,∴取最小值时,相应的的取值范围是【分析】①根据(1)中的两点间距离公式可求答案;②根据(1)中的两点间距离公式列出方程求解;③根据线段上的点到两端的距离之和最小可得结果;④根据线段上的点到两端的距离之和最小列出算式计算即可;10.已知多项式,次数是b,3a与b互为相反数,在数轴上,点A表示数a,点B表示数b.(1)数轴上A、B之间的距离记作,定义:设点C在数轴上对应的数为x,当时,直接写出x的值.(2)有一动点P从点A出发第一次向左运动1个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度按照如此规律不断地左右运动,当运动了2019次时,求点P所对应的有理数.(3)若小蚂蚁甲从点A处以1个单位长度秒的速度向左运动,同时小蚂蚁乙从点B处以2单位长度秒的速度也向左运动,一同学观察两只小蚂蚁运动,在它们刚开始运动时,在原点O处放置一颗饭粒,乙在碰到饭粒后立即背着饭粒以原来的速度向相反的方向运动,设运动的时间为t秒,求甲、乙两只小蚂蚁到原点的距离相等时所对应的时间t.【答案】(1)解:由多项式的次数是6可知,又3a和b互为相反数,故.①当C在A左侧时,,,;②C在A和B之间时,,点C不存在;③点C在B点右侧时,,,;故答案为或8.(2)解:依题意得:.点P对应的有理数为.(3)解:①甲、乙两小蚂蚁均向左运动,即时,此时,,,解得,;甲向左运动,乙向右运动时,即时,此时,,依题意得,,解得,.答:甲、乙两小蚂蚁到原点的距离相等时经历的时间是秒或8秒.【解析】【分析】(1)根据题意可得,;(2)对点C的位置进行分类讨论,并用x表示出和的长度,利用“ ”列出方程即可求出答案;(3)对乙蚂蚁运动的方向进行分类讨论,根据到原点距离相等列出方程求解即可.11.在数轴上,点A,点B分别表示数,则线段AB的长度可以用表示.例如:在数轴上点A表示5,点B表示2,则线段AB的长表示为 .(1)若线段AB的长表示为6, ,则ab的值等于________;(2)已知数轴上的任意一点P表示的数是x,且的最小值是4,若,则b=________;(3)已知点A在点B的右边,且,若,,试判断的符号,说明理由.【答案】(1)-9(2)5或-3(3)解:为负号,理由如下:∵点在点的右边且,∴,∵,∴,∴,∵,∴,∴,∴的值为负号.【解析】【解答】解:(1)∵线段AB的长表示为6,∴,∵,∴,∴∴ =-9;(2)∵的最小值是4,∴ AB=4,∴,∵,∴,∴或-3;【分析】(1)根据线段的长表示为6,可以得出,再结合可得互为相反数,即得到答案 =-9;(2)根据的含义为点P到点,点的距离和,其取最小值4,故P在点,之间,即PA+PB=AB=4,再根据和可以求出的值;(3)根据点在点的右边且可以判定出,由可知,即,根据可以判断的符号.12.已知表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离请试着探索:(1)找出所有符合条件的整数,使,这样的整数是________;(2)利用数轴找出,当时,的值是________;(3)利用数轴找出,当取最小值时,的范围是________.【答案】(1)-4,-3,-2,-1,0,1,2(2)-5或4(3)【解析】【解答】解:(1)∵ = 表示x与-4两数在数轴上所对应的两点之间的距离,表示x与2两数在数轴上所对应的两点之间的距离,又∵表示2与-4两数在数轴上所对应的两点之间的距离为6,∴当数轴上表示x的点在表示-4的点的左侧时,,不符合题意,当数轴上表示x的点在表示2的点的右侧时,,不符合题意,当数轴上表示x的点在表示-4的点与表示2的点之间(包括表示-4与2的点)时,,符合题意,∴,∴使,整数是-4,-3,-2,-1,0,1,2.故答案是:-4,-3,-2,-1,0,1,2;(2)∵ = 表示x与-3两数在数轴上所对应的两点之间的距离,表示x与2两数在数轴上所对应的两点之间的距离,∴当x=-5时,表示-5与-3两数在数轴上所对应的两点之间的距离为2,表示-5与2两数在数轴上所对应的两点之间的距离为7,即:,∴x=-5符合题意,当x=4时,表示4与-3两数在数轴上所对应的两点之间的距离为7,表示4与2两数在数轴上所对应的两点之间的距离为2,即:,∴x=4符合题意,综上所述:当时,的值是:-5或4.故答案是:-5或4;(3)∵ = 表示x与-7两数在数轴上所对应的两点之间的距离,表示x与4两数在数轴上所对应的两点之间的距离,∴当数轴上表示x的点在表示-7的点的左侧时,,当数轴上表示x的点在表示4的点的右侧时,,当数轴上表示x的点在表示-7的点与表示4的点之间(包括表示-7与4的点)时,,∴当取最小值时,.故答案是:.【分析】(1)根据绝对值的几何意义,得表示x与-4两数在数轴上所对应的两点之间的距离,表示x与2两数在数轴上所对应的两点之间的距离,结合条件,即可求解;(2)根据绝对值的几何意义,得表示x与-3两数在数轴上所对应的两点之间的距离,表示x与2两数在数轴上所对应的两点之间的距离,结合条件,即可求解;(3)根据绝对值的几何意义,得表示x与-7两数在数轴上所对应的两点之间的距离,表示x与4两数在数轴上所对应的两点之间的距离,结合条件,即可求解.。

初中数学中考专项练习《有理数》50道解答题包含与解析(中考冲刺)

初中数学中考专项练习《有理数》50道解答题包含与解析(中考冲刺)

初中数学中考专项练习《有理数》50道解答题包含与解析(中考冲刺)(时间:60分钟满分:100分)班级:_________ 姓名:_________ 分数:_________一、解答题(共50题)1、在数轴上表示数,,,,。

并把这些数用“<”连接。

2、一种纯净水水桶的下面是圆柱形,水桶的容积是20升,正放时,纯净水高度正好是圆柱部分的高,是38cm;倒放时空余部分的高度为2cm,请问桶内现有纯净水多少升.3、在数轴上分别标出表示有理数2.5,-2的点A,B,并求|AB|4、某检测小组乘汽车检修供电线路,约定向东方向出发为正,向西方向出发为负,某天检测小组自A地出发到收工时,行驶情况(单位:km)为:+22,-3,+4,-2,-8,+17,-2,-3,+12,+7,-5 .(1)收工时车辆停在何处?(2)若每千米耗油0.2升,从A地出发到收工共耗油多少升?5、某公司今年第一季度收入与支出情况如表所示(单位:万元)月份一月二月三月收入32 48 50支出12 13 10请问:(1)该公司今年第一季度总收入与总支出各多少万元?(2)如果收入用正数表示,则总收入与总支出应如何表示?(3)该公司第一季度利润为多少万元?6、据统计:我国西部10个省(市、区)的人口约为284700000人,土地面积约为537196000平方千米,请回答:①用四舍五入法取上述两数的近似值(精确到百万位);②求西部10个省(市、区)人均占有的土地面积(精确到0.1平方千米)7、将下列各数填在相应的集合里.-3.8,-20%,4.3,-∣- ∣,,0,-(- ),整数集合:{ …};分数集合:{ …};正数集合:{ …};负数集合:{ …}.8、画一条数轴,用数轴上的点把如下的有理数表示出来,并用“<”号把它们连接起来.-2,|-1|,-0.5,0,-(-4)9、把下列各数填在相应的大括号里:(漏选或少选均不给分),,-12, -1.04,,+5,-(-3),3.1415,-8正数集合{ …}分数集合{ …}负整数集合{ …}负有理数集合{ …}10、在教师节晚会上,主持人小丽和小蓉进行一场游戏,游戏规则如下:①每人每次抽取4张卡片;如果抽取到形如“□”的卡片,那么加上卡片上的数字,如果抽取到形如“○”的卡片,那么减去卡片上的数字.②比较两人所抽取的4张卡片计算结果,结果大的为胜,结果小的为大家唱歌.小丽和小蓉所抽取的卡片如图所示.你知道本次游戏结束后谁会为大家唱歌?请说明理由.11、把下面的直线补充成一条数轴,然后在数轴上标出下列各数,并按从小到大的顺序用“ ”连接起来.12、已知:|a|=2,|b|=3且a>b,求a+b的值.13、已知x与y互为相反数,且y=-(+2),求代数式3x-y的值.14、画出数轴,并用数轴上的点表示下列各数,-3.5,,-1,4,0,再用“ ”号把它们连接起来.15、画一根数轴,用数轴上的点把如下的有理数﹣2,﹣0.5,0,﹣4表示出来,并用“<”把它们连接起来.16、在数轴上表示出下列各数,3.5,-5, -4.5, 2, 0.并把这些数用“>”连接起来17、把下列各数在数轴上表示出来,并用“ ”号把这些数连接起来.18、在数轴上表示下列各数:0,-4,,-2,|-5|,-(-1),并用“<”号连接.19、有一批食品罐头,标准质量为每听450克,现抽取10听罐头进行检测,结果如下:440,455,450,455,450,450,445,450,455,460.规定每听罐头超过标准质量的克数记作正数,不足的克数记作负数.请先用正负数依次表示这罐头的质量,再计算这10听罐头一共重多少克?20、试用配方法证明:代数式的值不小于3.21、画一条数轴,并在数轴上表示:3.5和它的相反数,和它的倒数,绝对值等于3的数,最大的负整数和它的平方,并把这些数由小到大用“<”连接起来.22、把下列各数分类:,,,,,,,.正数{ };负整数{ };分数{ };负数{ }.23、已知a,b互为相反数,c,d互为倒数,m的绝对值是1.求2013(a+b)﹣cd+2m.24、已知:a与b互为相反数,c、d互为倒数,x的绝对值是2,y不能作除数,求的值.25、如图,指出数轴上的点A、B、C所表示的数,并把﹣4,, 6这三个数用点D、E、F分别在数轴上表示出来.26、已知|a﹣1|=4,|b+2|=6,且a+b<0,求a﹣b的值.27、已知a、b互为相反数,m、n互为倒数,x绝对值为2,求﹣2mn+﹣x 的值.28、请你把32、(﹣2)3、|﹣|、﹣、0、﹣(﹣3)、﹣1.5这七个数按照从小到大,从左到右的顺序串成一个糖葫芦.29、小泽学了有理数的乘方,知道23=8,25=32,他问老师,有没有20, 2﹣2,如果有,等于多少?老师耐心提示他:25÷23=4,25﹣3=4,即25÷23=25﹣3=4.小泽,你现在知道20, 2﹣2等于多少了吗?小泽说,我想一想.亲爱的同学,你想出来了吗?请仿照老师的方法,推算出20, 2﹣2的值.30、若a、b互为相反数,c、d互为倒数,m的绝对值是3,求d 的值.31、先分解因式化简,再求值:()2﹣()2,其中x=﹣,y=2010.32、在数轴上近似表示出数,0,,,并把它们从小到大用“ ”连接起来.33、若有理数x、y满足|x|=5,|y|=2,且|x+y|=x+y,求x﹣y的值.34、一天,小红与小莉利用温差测量山峰的高度,小红在山顶测得温度是-1 ℃,小莉此时在山脚测得温度是5 ℃.已知该地区高度每增加100米,气温大约降低0.8 ℃,则这个山峰的高度大约是多少米?35、已知a,b互为相反数,c,d互为倒数,的绝对值为2.求的值。

中考数学专题复习卷有理数与无理数

中考数学专题复习卷有理数与无理数

中考数学专题复习卷: 有理数一、选择题1.在-4,0,-1,3这四个数中,既不是正数又不是负数的数是( )A. -4B. 0C. -1D. 32.计算:的结果是()A. -3B. 0C. -1D. 33.下列各式不正确的是()A. |﹣2|=2B. ﹣2=﹣|﹣2|C. ﹣(﹣2)=|﹣2|D. ﹣|2|=|﹣2|4.零上13℃记作+13℃,零下2℃可记作()A. 2B. -2C. -2℃D. 2℃5.据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为()A. 1.442×107B. 0.1442×107C. 1.442×108D. 0.1442×1086.比-1小2的数是()A. 3B. 1C. -2D. -37.-2018的相反数是()A. 2018B. -2018C.D.8.舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约499.5亿千克,这个数用科学记数法(精确到十亿位),应表示为()A. 4.995×1010B. 4.995×1011C. 5.0×1010D. 4.9×10109.的绝对值是( ).A. B. C. D.10.-的倒数是()A. B. - C. D. -11.下列各数中,绝对值最小的数是()A.πB.C.-2D.-12.一个数的相反数小于它本身,这个数是()A. 正数B. 负数C. 非正数D. 非负数二、填空题13.计算: =________.14.根据如图所示的车票信息,车票的价格为________元.15.数轴上的两个数﹣3与a,并且a>﹣3,它们之间的距离可以表示为________.16.计算:(﹣2)2=________.17.实数16 800 000用科学计数法表示为________.18.在有理数中,既不是正数也不是负数的数是________.19.计算:20180-=________.20.已知,则a+b=________21.若△ABC的三边长分别为a,b,c,则|a﹣b﹣c|﹣|b﹣a﹣c|=________.22.观察规律并填空.⑴⑵⑶________(用含n的代数式表示,n是正整数,且n≥ 2)三、解答题23.计算:(1)﹣15+(﹣8)﹣(﹣11)﹣12 (2)\(3)(4)﹣23+[(﹣4)2﹣(1﹣32)×3].24. 计算:(1)(2)[(2x﹣y)2﹣(2x+y)(2x﹣y)+4xy]÷2y.25.已知a、b互为相反数,c、d互为倒数,|m|=3,求的值.答案解析一、选择题1.【答案】B【解析】:∵0既不是正数也不是负数,∴答案为:B【分析】根据0既不是正数也不是负数,可得出答案。

中考数学模拟题汇总《有理数》专项练习(附答案解析)

中考数学模拟题汇总《有理数》专项练习(附答案解析)

中考数学模拟题汇总《有理数》专项练习(附答案解析)一、单选题1、2的相反数是( )A .2B .12C .2-D .4-2、2021年3月5 日,李克强总理在政府工作报告中指出,我国脱贫攻坚成果举世瞩目,5575万农村贫困人口实现脱贫.5575万=55750000,用科学记数法将55750000表示为( )A .4557510⨯B .555.7510⨯C .75.57510⨯D .80.557510⨯3、下列是有理数的是( )A .tan 45︒B .sin 45︒C .cos45︒D .sin 60︒4、如图,数轴上点A 表示的数为( )A .﹣2B .﹣1C .0D .15、在2, 1.5-,0,23-这四个数中最小的数是( ) A .2 B . 1.5- C .0 D .23- 6、中国人最先使用负数,魏晋时期的数学家刘徽在其著作《九章算术注》中,用不同颜色的算筹(小棍形状的记数工具)分别表示正数和负数(红色为正,黑色为负).如图1表示的是(+2)+(-2),根据这种表示法,可推算出图2所表示的算式是( )A .()()36+++B .()()36++-C .()()36-++D .()(36)-+-7、如图,在数轴上,点A 、B 分别表示a 、b ,且0a b +=,若6AB =,则点A 表示的数为( )A .3-B .0C .3D .6-8、下列说法正确的是( )A .||x x <B .若|1|2x -+取最小值,则0x =C .若11x y >>>-,则||||x y <D .若|1|0x +≤,则1x =- 9、下列各式的值最小的是( )A .20B .|﹣2|C .2﹣1D .﹣(﹣2)10、计算()32---的最后结果是( )A .1B .1-C .5D .5-11、计算42=( )A .8B .18C .16D .11612、截止2021年4月17日,全国接种新冠病毒疫苗达到81.89810⨯剂次,则数据81.89810⨯表示的原数是( )A .1898000B .18980000C .189800000D .1898000000 13、计算:2﹣(﹣2)等于( )A .﹣4B .4C .0D .114、我们规定向左为负,向右为正.一个物体先向左运动5m ,再向左运动3m ,那么两次运动的最后结果可列算式( )A .538+=B .(5)(3)8-+-=-C .532-+=D .5(3)2+-=15、﹣5的相反数是( )A .﹣5B .5C .15D .15- 16、﹣2021的相反数是( )A .﹣2021B .2021C .﹣12021D .1202117、2021-的绝对值是( )A .2021-B .2021C .12021D .12021- 18、下列各数化简后与3相等的是( )A .13-B .()31-CD .13⎛⎫-- ⎪⎝⎭19、下列各数中,绝对值最小的是( )A .﹣2B .3C .0D .﹣320、数轴上表示-3的点到原点的距离是( )A .-3B .3CD .1321、在数轴上表示与2的点距离2个单位长度的数是( )A .0B .4C .0或4D .222、在数轴上,点A 表示-2.若从点A 出发,沿数轴的正方向移动4个单位长度到达点B ,则点B 表示的数是( )A .-6B .-4C .2D .423、某财务科为保密起见采取新的记账方式,以5万元为1个记数单位,并记100万元为0,少于100万元记为负,多于100万元记为正.例如,95万元记为-1,105万元记为1等等依此类推,75万元应该记为( )A .-3B .-4C .-5D .-624、计算23--的结果是( )A .-5B .-1C .1D .525、计算:()31+-,其结果等于( )A .2B .2-C .4D .4-26、如图,数轴上点N 所对应的实数为n ,则下列实数中所对应的点在数轴上位于-1和0之间的是( )A .1n -B .2n -C .2n -D .2n +27、我市2021年的最高气温为33℃,最低气温为零下27℃,则计算2021年温差列式正确的是( )A .()(33)–27+-B .()(3327)+++C .()(33)–27++D .2)33()(7-++28、能与3645⎛⎫-- ⎪⎝⎭相加得0的是( ) A .3645-- B .6354+ C .6354-+ D .3645-+ 29、随着北京公交制票价调整,乘客在乘车时可以通过新版公交站牌计算乘车费用,新版站牌每一个站名上方都有一个相应的数字,将上下车站站名称对应数字相减取绝对值就是乘车路程,再按照其所在计价区段,参考票制规则计算票价,具体来说:字是20,那么小明乘车的费用是( )A .1.6元B .2元C .2.4元D .3.2元30、按如图所示的运算程序,若输入x =2,y =6,则输出结果是( )A .4B .16C .32D .34 31、34表示的含义是( )A .3+3+3+3B .3×4C .3×3×3×3D .4×4×432、数学上有很多著名的猜想,“奇偶归一猜想”就是其中之一,它至今未被证明,但研究发现,对于任意一个小于11710⨯的正整数,如果是奇数,则乘3加1;如果是偶数,则除以2,得到的结果再按照上述规则重复处理,最终总能够得到1.对任意正整数m ,按照上述规则,恰好实施5次运算结果为1的m 所有可能取值的个数为( )A .8B .6C .4D .333、如图,有理数a 、b 、c 、d 在数轴上的对应点分别是A 、B 、C 、D ,若0a c +=,则()d b c +的值( )A .大于0B .小于0C .等于0D .不确定34、如果向东走2km ,记作+2km ,那么﹣3km 表示( )A .向东走3kmB .向南走3kmC .向西走3kmD .向北走3km35、如果温度上升2°记作2+℃,那么温度下降5°记作( )A .2+℃B .2-℃C .5+℃D .5-℃36、某公司抽检盒装牛奶的容量,超过标准容量的部分记为正数,不足的部分记为负数.从容量的角度看,以下四盒牛奶容量最接近标准的是( )A .B .C .D .二、填空题37、计算:10122--+-=_______. 38、实数a 与b 在数轴上对应点的位置如图所示,a <c <﹣b ,且c 为整数,则实数c 的值为________.39、中国古代的算筹计数法可追溯到公元前5世纪.摆法有纵式和横式两种(如图所示),以算筹计数的方法是摆个位为纵,十位为横,百位为纵,千位为横……这样纵横依次交替,宋代以后出现了笔算,在个位数划上斜线以表示负数,如表示752-, 表示2369,则表示________.40、中国人最先使用负数,数学家刘徽在“正负数”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.根据刘微的这种表示法,图①表示算式()()110++-=,则图②表示算式__________.【答案】()()321++-=41、()0222cos451 3.14π--+︒--=____________42、新华社北京5月11日电11日发布的第七次全国人口普查结果显示,全国人口共141178万人,与2010年第六次全国人口普查数据相比,增加7206万人,增长5.38%,年平均增长率为0.53%.数据表明,我国人口10年来继续保持低速增长态势.用科学记数法将数据“7206万”表示为 __.三、解答题43、计算:()()3425284+-⨯--÷.44、计算:1020211(1)|2|3-⎛⎫+-+--- ⎪⎝⎭(-2021).45、计算: 120201(1)3-⎛⎫-+ ⎪⎝⎭46、计算:()()20111323π--+---+⎛⎫ ⎪⎝⎭参考答案与解析一、单选题1、【答案】C【解析】解:2的相反数是-2,故选C .2、【答案】C【思路分析】根据科学记数法的定义“把一个大于10的数表示成10n a ⨯的形式(其中a 是整数位只有一位的数,即a 大于或等于1且小于10,n 是正整数),这样的记数方法叫做科学记数法”进行解答即可得.【解析】解:755750000 5.57510=⨯,故选C .【点拨】本题考查了科学记数法,解题的关键是熟记科学记数法的定义.3、【答案】A【解析】解:A 、tan 451︒=,是有理数,符合题意;B 、sin 45=°不是有理数,不符合题意;C 、cos 45=°不是有理数,不符合题意;D 、sin 60︒=A .4、【答案】B【解析】解:由图可知:点A 在﹣1的位置,表示的数为﹣1.故选:B .5、【答案】B【解析】解:∵2>0,0>﹣1.5,0>﹣23,又∵|﹣1.5|=32,|﹣23|=23,∴32>23,∴﹣1.5<﹣23, 综上所述,﹣1.5<﹣23<0<2.故选:B . 6、【答案】B【思路分析】根据题意图2中,红色的有三根,黑色的有六根可得答案.【解析】解:由题知, 图2红色的有三根,黑色的有六根,故图2表示的算式是(+3)+ (-6) .故选:B .【点拨】本题主要考查正负数的含义,解题的关键是理解正负数的含义.7、【答案】A【思路分析】由AB 的长度结合A 、B 表示的数互为相反数,即可得出A ,B 表示的数【解析】解:∵0a b +=∴A ,B 两点对应的数互为相反数,∴可设A 表示的数为a ,则B 表示的数为a -,∵6AB =∴6a a --=,解得:3a =-,∴点A 表示的数为-3,故选:A .【点拨】本题考查了绝对值,相反数的应用,关键是能根据题意得出方程6a a --=.8、【答案】D【思路分析】根据绝对值的定义和绝对值的非负性逐一分析判定即可.【解析】解:A .当0x =时,||=x x ,故该项错误;B .∵10x -≥,∴当1x =时|1|2x -+取最小值,故该项错误;C .∵11x y >>>-,∴1x >,1y <,∴||||x y ,故该项错误;D .∵|1|0x +≤且|1|0x +≥,∴|1|0x +=,∴1x =-,故该项正确;故选:D .【点拨】本题考查绝对值,掌握绝对值的定义和绝对值的非负性是解题的关键.9、【答案】C【思路分析】直接利用零指数幂的性质以及负整数指数幂的性质、绝对值的性质、相反数分别化简得出答案.【解析】解:20=1,|-2|=2,2-1=12,-(-2)=2, ∵12<1<2,∴最小的是2-1.故选:C .【点拨】此题主要考查了零指数幂的性质以及负整数指数幂的性质、绝对值的性质、相反数,正确化简各数是解题关键.10、【答案】C【思路分析】先计算绝对值,再将减法转化为加法运算即可得到最后结果.【解析】解:原式325=+=,故选:C .【点拨】本题考查了绝对值化简和有理数的加减法运算,解决本题的关键是牢记绝对值定义与有理数运算法则,本题较基础,考查了学生对概念的理解与应用.11、【答案】C【解析】解:24=2×2×2×2=16,故选:C .12、【答案】C【解析】解:81.89810⨯=189800000, 故选C .13、【答案】B【解析】解:2﹣(﹣2)=2+2=4.故选择B .14、【答案】B【解析】由题知先向左运动5m 即5-.再向左运动3m 即3-,则(5)(3)8-+-=-.故选B .15、【答案】B【解析】解:-5的相反数是5,故选:B .16、【答案】B【解析】解:-2021的相反数是2021,故选:B .17、【答案】B【解析】解:2021-的绝对值为2021,故选B .18、【答案】C【解析】解:33=A 、1133-=,不符合题意;B 、()311-=-,不符合题意;C 3=,符合题意;D 、1133⎛⎫--= ⎪⎝⎭,不符合题意;故选C19、【答案】C【解析】解:|-2|=2,|3|=3,|0|=0,|-3|=3,所以绝对值最小的是0.故选:C .20、【答案】B【解析】解:在数轴上表示-3的点与原点的距离是|-3|=3.故选:B .21、【答案】C【解析】本题分两种情况:当点在表示2的点的左边时,此时数为:2+(-2)=0,当点在表示2的点的右边时,此时数为;2+(+2)= 4,因此,该点表示的数为0或4.故选:C .22、【答案】C【解析】解:由题意可得,点B 表示的数为-2+4=2,故选:C .23、【答案】C【解析】解:由于以5万元为1个记数单位,且少于100万元记为负,多于100万元记为正; ∴75万元应该记为-(100-75)÷5,即-5;故选C .24、【答案】B 【解析】23--231=-=-故选:B25、【答案】A【解析】()31+-=2故选A .26、【答案】D【解析】解:根据点N 在数轴上的位置,设实数n 为 2.3,则:A 、11( 2.3)1 2.3 3.3n -=--=+=, 处在3和4之间,不符合题意;B 、2 2.32 4.3n -=--=-,处在4-和5-之间,不符合题意;C 、22( 2.3)2 2.3 4.3n -=--=+=,处在4和5之间,不符合题意;D 、2 2.320.3n +=-+=-,处在-1和0之间,符合题意;故选:D .27、【答案】A【解析】解:把0C ︒以上记作正数,把0C ︒以下记作负数,则:最高温度为33C +︒,最低温度为27C -︒, ∴温差(33)(27)=+--,故选:A .28、【答案】C 【解析】解:方法一:363636630045454554⎡⎤⎛⎫⎛⎫---=+-=-=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦; 方法二:3645⎛⎫-- ⎪⎝⎭的相反数为3645⎛⎫- ⎪⎝⎭;故选:C . 29、【答案】C【解析】解:因为小明乘车的路程是:20-5=15,所以小明乘车的费用是:3×0.8=2.4(元).故选:C . 30、【答案】C【解析】2x =,6y =,x y ∴<,∴把2x =,6y =代入22y x -得:226-2=36-4=32.故选:C .31、【答案】C【解析】解:34=3×3×3×3.故选:C .32、【答案】D【解析】解:如果实施5次运算结果为1,则变换中的第6项一定是1,则变换中的第5项一定是2,则变换中的第4项一定是4,则变换中的第3项可能是1,也可能是8.则变换中的第2项可能是2,也可能是16.当变换中的第2项是2时,第1项是4;当变换中的第2项是16时,第1项是32或5,则m 的所有可能取值为4或32或5,一共3个,故选:D .33、【答案】B【解析】∵0a c +=,∴a ,c 互为相反数,∴原点是AC 的中点,∴0c >,0b >,0d <,∴0b c +>, ∴()0d b c +<.故选:B .34、【答案】C【解析】解:如果向东走2km 表示+2km ,那么﹣3km 表示向西走3km .故选:C .35、【答案】D【解析】解:上升2℃记作+2℃,下降5℃记作-5℃;故选:D .36、【答案】C 【解析】解:0.80.8+=, 1.2 1.2-=,0.50.5-=,11+=,因为0.50.81 1.2<<<,所以从容量的角度看,这四盒牛奶容量最接近标准的是选项C ,故选:C .二、填空题37、【答案】0 【解析】原式111022=-+=,故答案为:0. 38、【答案】3【解析】解:如图由a <c <﹣b ,且c 为整数,故实数c 的值为3,故答案为:3.39、【答案】7416-【解析】根据算筹记数的规定可知,“”表示一个4位负数,再查图找出对应关系即可得表示的数.解:由已知可得:“”表示的是4位负整数,是7416-.故答案为:7416-. 40、【答案】()()321++-=第 11 页 共 11 页 【解析】根据题意列出算式()()32++-,利用有理数加法法则计算可得.解:根据题意知,图②表示的算式为()()321++-=.故答案为:()()321++-=.41、()0222cos451 3.14π--+︒--=____________ 【答案】314【解析】解:()0222cos451 3.14π--+︒--121)14=-++1114=-+314=. 故答案为:314. 42、【答案】77.20610⨯【解析】解:7206万77.20610=⨯故答案为:77.20610⨯.三、解答题43、计算:()()3425284+-⨯--÷.【答案】29-【解析】()()3425284+-⨯--÷ 485(7)=-⨯--1140=-29=-44、计算:1020211(1)|2|3-⎛⎫+-+--- ⎪⎝⎭(-2021). 【答案】-5【解析】原式1(1)(3)2=+-+--5=-.45、计算:120201(1)3-⎛⎫-+ ⎪⎝⎭ 【答案】2.【解析】原式132=+-2=.46、计算:()()20111323π--+---+⎛⎫ ⎪⎝⎭ 【答案】3【解析】解:原式11233=+-+=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学有理数提高测试
(100分钟,100分)
一、填空题(每小题5分,共20分):
1. 绝对值小于4的整数是 ±3,±2,±1,0 ,其中 –3 最小,0,1,2,
3 是非负数, 0 的绝对值最小;
2. a - b 的相反数是 b – a ,假如 a ≤b ,那么 | a – b | = b – a ;
3. 若a,b,c 在数轴上位置如图所示,那么|a|–|b – c| + |c| = -a + b ;
a b 0 c
4. 假如 那么,111
=--m m m < 0 , 假如a 是有理数,那么a
a = ±1 ;
5. 假如每个人的工作效率都相同,且a 个人b 天做c 个零件,那么b 个人 做a 个零件所需的
天数为 c a 2。

略解:1个人1天做ab c 个零件,那么b 个人做a 个零件所需的天数为 .2c a a c a ab c b a
==⋅ 二、判定题(每小题2分,共16分):
1.若 a + b = 0,则 |a|=|b| (√)
2. 若|a|=|b|,则 a = b (×)
3. 若|a|=|b|,则a + b = 0 (×)
4. 若ab ≥0,则a ≥0且b ≥0 (×)
5. 若ab = 0,则 a=0或 b=0 (√)
6. 若a < b < 0,则 a 2 > b 2 (√)
7. 若 a < b ,则 |a| < |b| (×)
8. 若 a 3 > b 3,则a 2 > b 2 (×)
提示:设 a = -0.1, b = -0.2,虽有(-0.1)3 > (-0.2)3,但却有(-0.1)2<(-0.2)2
三、选择题(每小题4分,共24分):
1.把0。

0068 用科学记数法表示为6。

8 ×10n ,则n 的值是(A )
(A ) -3 (B ) -2 (C ) 3 (D ) 2
2. 若a 和
2
b 互为相反数,则a 的负倒数是(D ) (A ) -2b (B ) 2b (C )b (D )b
2 3. 假如是a 负数,那么 –a, 2a , a + |a| ,a a 这四个数中,也是负数 的个数是( B ) (A ) 1 (B )2 (C )
3 (D )4
4. 设x 是有理数,那么下列各式中一定表示正数的是( D )
(A )2008x (B )x + 2008 (C )|2008x| (D )|x| + 2008
5. 假如a,b 差不多上有理数,且有b < 0,那么下列不等关系中,正确的是( C )
(A ) a < a + b < a – b (B ) a < a – b < a + b
(C ) a + b < a < a – b (D ) a - b < a + b < a
6. 假如a 是有理数,那么下列说法中正确的是(D )
(A) 2)2
1(+a 是正数 (B) a 2 +1 的值大于1 (C) 2)21(--a 的值是负数 (D) 2)2
1(--a +1 的值不大于1 提示:要考虑a 是负数或0的情形;当0=a 时,a 2
+ 1 = 1,所 以
(B )不正确;当21=a 时,2)21(--a = 0,因此(C )不正确;
当21-
=a 时,有2)21(+a = 0, 因此(A )不正确; 当21=a 时,2)21(--a +1 = 1;当 21≠a 时,2)21(--a +1 < 1, 因此说2)21(--a +1 的值不大于1。

应选(D )。

四、运算(每小题15分,共30分):
1. 484.5)2(34.32
-⨯+-⨯12)3
243125(⨯+-- 解:484.5)2(34.32-⨯+-⨯12)3
243125(⨯+-- =484.5)4(34.3⨯⨯+-⨯895-+-
=(44)34.384.5-⨯- =(4)34.484.5⨯- = 45.1⨯ = 6; 2.()][)] ⎝
⎛-+⨯-⎢⎣⎡⨯--÷⨯5.5211932175.153315.66.318585.441 解:()][)] ⎝
⎛-+⨯-⎢⎣⎡⨯--÷⨯5.5211932175.153315.66.318585.441 =()][)] ⎝⎛-+⨯-⎢⎣⎡⨯--⨯⨯2
11211921354751820123518518209741 =211215447518)1201232097(41+⨯--+⨯ =211295181041+-⨯⨯ = 9 + 1 =10。

五、(本题10分)三个互不相等的有理数,既能够表示为 1, a+b, a 的形式,也能够表示为0, a b , b 的形式,试求 a 2001+b 2002 的值,并说明理由。

略解:由已知,着三个数中有0和1,且 a ≠0 ,因此必有 a + b = 0, 也确实是a = - b ,因此可知 a
b = -1 ,由此可得 a = - 1 , b = 1 , 则有
a 2001+b
2002 = ( - 1 )2001 + 12002
= -1 + 1
= 0。

附加题(20分):
(1)求值:S = +⨯++⨯++⨯+)4313()3212()2111(。

+);21
20120(⨯+ (2) 推出(1)中个括号相加的情形,用关于n 的代数式来表示S 。

简解:(1) S = (1 + 2 + 3 +。

+20 )+)21
201......431321211(
⨯++⨯+⨯+⨯ = 21⨯10 + ()21
1201(......)4131()3121()211-++-+-+- = 210 + (1 - )21
1 = 210;2120 (2) S = (1 +
2 +
3 +。

+n )+[])1(1......431321211+++⨯+⨯+⨯n n
.)1(232)1(22)1(12)1(232+++=+++=+++n n n n n n n n n n n n。

相关文档
最新文档