6.3吸收(或解析)塔的计算

合集下载

6.3吸收(或解析)塔的计算解析

6.3吸收(或解析)塔的计算解析

x
h0 H OL NOL
G dy H G , NG kya y y i ya
b L dx H L , NL kx a x x xa i
yb
h0 H G NG
h0 H L N L
x
填料层高度 传质单元高度 传质单元数
(1) 传质单元数
G,yb
L,xb
逆流操作的塔
N A K y y y K x x x



dh

气相:Gdy N A adh
Gdy K y a y y dh
G b dy h0 y y K ya y a
y
N A K y y y





h0
G dy dh K a y y y 0 ya
GBY- 气 相 中A 的 量 L S X- 液 相 中A 的 量
Lb,xb
2、操作线方程
由前式知,如用y、x浓度表示,操作线方程为:
对塔顶到任一截面作物料衡算:
G y La xa Ga ya Lx
y G y La xa L x a a G G
Ga,ya La,xa
操作线上任意一点代表塔内某一截面上的气、液 相组成的大小。 如用Y、X浓度表示,则操作线方程为:
L,xa
1. 吸收过程基本方程式
对高度dh微元段: 气相:Gdy N A adh
y+dy x+dx
液相:Ldx N Aadh
a-单位体积填料层的有效传质面积,m2/m3 adh-单位体积填料层提供的有效传质体积 G、L-气体、液体的摩尔流率,kmol/m2.s NA-组分A的传质速率,kmol/m2.s

吸收塔塔径计算公式

吸收塔塔径计算公式

吸收塔塔径计算公式吸收塔是化工、环保等领域中常见的设备,用于实现气体混合物中某些组分的吸收。

而吸收塔塔径的计算可是个关键环节,这直接关系到吸收塔的性能和工作效率。

要计算吸收塔的塔径,咱们得先弄清楚几个重要的参数和概念。

首先就是气体的流量,这就好比是一条河流的水流量,流量越大,需要的河道就得越宽。

还有气体的流速,它决定了气体在塔内流动的快慢。

另外,吸收塔的操作条件,比如温度、压力,也会对塔径产生影响。

那具体的计算公式是啥呢?一般来说,吸收塔塔径可以通过下面这个公式来计算:D = √(4Q / πv),这里的 D 就是塔径啦,Q 是气体的体积流量,v 是适宜的空塔气速,π 就是大家熟悉的圆周率。

举个例子吧,就说咱们在一家化工厂,要设计一个用于吸收二氧化硫的吸收塔。

经过前期的工艺计算和分析,已知气体的体积流量是1000 立方米每秒,通过实验和经验数据,确定适宜的空塔气速为 2 米每秒。

那咱们就可以这样来算塔径:先把数字代入公式,D = √(4×1000 / 3.14×2),经过计算,得出塔径大约是 31.8 米。

可别以为这就算完事儿了,实际情况可复杂得多。

比如说,气体的性质也得考虑进去。

如果气体中含有一些容易堵塞或者粘结的成分,那咱们在选择塔径的时候就得留有余地,稍微选大一点,免得后期出现堵塞影响生产。

还有啊,不同的吸收工艺对塔径的要求也不一样。

有的工艺需要气体和吸收液充分接触,那塔径就得适当大一些,以增加接触面积和时间。

在实际操作中,计算塔径还得考虑设备的成本、安装和维护的便利性等因素。

就像我之前参与过的一个项目,最初计算出的塔径从理论上来说是没问题的,但考虑到工厂的场地限制和后续的维护难度,我们不得不重新调整计算参数,经过多次的讨论和修改,最终确定了一个既能满足工艺要求,又能适应实际情况的塔径。

总之,吸收塔塔径的计算可不是个简单的数学问题,它需要综合考虑各种因素,还得结合实际经验,才能得出一个既合理又实用的结果。

吸收(或解吸)塔的计算

吸收(或解吸)塔的计算

h = H OG N OG
对液相总传质系数和推动力: 对液相总传质系数和推动力:
X L dX h= ∫X X X K X a
b a e
若令
HO L =
L K X a
NO L = ∫
Xb
Xa
dX Xe X
h = H OL N OL
液相总传质单元高度, HOL —— 液相总传质单元高度,m; 液相总传质单元数,无因次。 NOL —— 液相总传质单元数,无因次。
L, Xa
VYb + LX a = VYa + LX b
下标“ 代表填料层上顶截面 代表填料层上顶截面; 下标“a”代表填料层上顶截面; 进塔惰性气体流量V和组成Y 进塔惰性气体流量V和组成Yb由吸收 下标“ 代表塔内填料层下底截面 代表塔内填料层下底截面。 下标“b”代表塔内填料层下底截面。 任务规定的,进塔吸收剂温度和组成Xa 任务规定的,进塔吸收剂温度和组成Xa 惰性气体B的摩尔流率kmol/s kmol/s; V —— 惰性气体B的摩尔流率kmol/s 一般由工艺条件确定, 一般由工艺条件确定,吸收剂用量由设 ; 计者给出,出塔气体组成Ya kmol/s; Ya则由任务给 计者给出,出塔气体组成Ya则由任务给 吸收剂S的摩尔流率kmol/s L —— 吸收剂S的摩尔流率kmol/s; 定或由给定的吸收率求出, 吸收率求出 定或由给定的吸收率求出,由上式可求 ; 溶质A在气相中的摩尔比浓度; Y —— 溶质A在气相中的摩尔比浓度 算出吸收剂出口浓度X 算出吸收剂出口浓度Xb。 溶质A在液相中的摩尔比浓度。 X —— 溶质A在液相中的摩尔比浓度。
h = ∫Y
Yb
a
V dY kY a Y Yi L dX k X a X i X

吸收塔计算说明

吸收塔计算说明

吸收塔计算说明一.操作条件:操作温度 20℃操作压力 101.325KPa二.填料选型:选用DN50塑料鲍尔环三.物料衡算:混合气体的体积流量 Vs=10000m 3/h硫酸雾质量流量 W H2SO4=42Kg/h ×38%=15.96Kg/h硫酸雾摩尔流量V H2SO4=kmolKg h Kg /98/96.15 =0.1629kmol/h 混合气体摩尔流量V MV =kmolm h m /4.22/1000033 =446.43 kmol/h H 2SO 4气相摩尔分数 y=hkmol h kmol /43.446/1629.0 =0.00036 因酸雾浓度过大,故采用双塔串联逆流吸收。

设吸收率为η 硫酸雾排放限值为45mg/ m 3硫酸雾进塔浓度C 硫酸=hm h Kg /10000/96.153 =1596 mg/ m 31596mg/ m 3×(1-η)2≤45mg/ m 3 η≥0.84取η=0.9 Y 1=yy -1=00036.0100036.0-=0.00036 Y 2=Y 1×(1-η)=0.00036×(1-0.9)=0.000036G B =446.43 kmol/h此过程属低浓度吸收,平衡关系为直线,最小液气比可按下式计算:m i n ⎪⎪⎭⎫ ⎝⎛B S G L =2121/X m Y Y Y --m 取值:该体系可近似看作是理想体系,想平衡常数可按下式计算: m=P P i 0三氧化硫的饱和蒸气压依据安托因方程:CT B A P +-=0ln 安托因常数查表有:A=9.05085 B=1735.31 C=236.5计算得 P 0=6.3×105Pam=6.3对于纯溶剂吸收,进塔液相组成X 2=0 min⎪⎪⎭⎫ ⎝⎛B S G L =3.6/00036.0000036.000036.0- =5.67 取操作液气比 BS G L =1.5 min ⎪⎪⎭⎫ ⎝⎛B S G L =1.5×5.67=8.51 L S = G B ×8.51=446.43 kmol/h ×8.51=3799.12 kmol/hG B (Y 1-Y 2)= L S (X 1-X 2)X 1=0.000038四.塔径计算:混合气体的密度取20℃时空气的密度,查表ρV =1.205 Kg/ m 3W v =ρV ×Vs=1.205 Kg/ m 3×10000m 3/h=12050 Kg/h吸收液体的质量流量:W L =18 Kg/kmol ×3799.12 kmol/h=68384.16 Kg/h 计算 L V V LW W ρρ=33/1000/205.1/12050/16.68384m Kg m Kg h Kg h Kg =0.197 查压降与泛点气速关联图: LV L Bg G ρρψϕμ2.02=0.11取μL =1Pa.s 查表 φ=140m -1 u f =133140/205.1/100081.911.0-⨯⨯⨯m m Kg m Kg =2.529m/s u=0.6 u f =0.6×2.529 m/s=1.52 m/sD=u V S π4=sm h m /52.1360014.3/1000043⨯⨯⨯=1.526m 圆整取1.6m(1).泛点率校核:u=23)8.0(14.33600/10000m h m ⨯÷=1.18m/s f u u =sm s m /529.2/18.1=0.46 (在允许范围内) (2)填料规格核算:d D =mmmm 501600=32>15 (3)液体喷淋密度校核:液体喷淋密度是指单位时间,单位塔截面积上的喷淋量,计算式为:u=2785.0D L h 。

吸收塔的计算

吸收塔的计算

吸收塔的计算1.全塔物料衡算与操作线方程1.全塔物料衡算对逆流操作的填料吸收塔,作全塔溶质组分的物料衡算,可得:吸收塔的分离效果,通常用溶质的回收率来衡量,回收率定义为:吸收过程中,回收率恒低于100%。

一般情况下,进塔混合气的组成和流量是已知的,如果吸收剂的组成和流量已经确定,则V、Y1、L 和X2皆为已知数,又根据吸收任务所规定的回收率,可得知气体出塔时应有的浓度Y2,如此,通过全塔物料衡算便可求得塔底排除的吸收液的浓度X1,于是,在填料层底部和顶部两个端面上液气组成都为已知。

2 吸收操作线方程和操作线在塔底或塔顶与踏中任意截面间列溶质的物料衡算,可整理得:或上两式是等效的,皆称为吸收塔操作线。

该方程在X-Y图上为一直线,称为吸收塔操作线。

操作线位置仅决定于塔顶、塔底两端的气、液相组成,该直线的斜率为液气比L/V。

操作线上任何一点代表塔内任一截面上的气、液相组成已被确定。

吸收过程操作线总是位于平衡曲线的上方,两线相距愈远,表示吸收推动力愈大,有利于吸收过程。

应注意,操作线是由物料衡算决定的,仅与V、L及二相组成有关,而与塔型及压强、温度等无关。

对并流操作的填料吸收塔,或其它组合操作的吸收塔,读者应能依据上述原则作出它们的操作线。

3-2.吸收剂最小用量和适宜用量在极限情况下,操作线和平衡线相交(有特殊平衡线时为相切),此点推动力为零,所需填料层为无限高,对应的吸收剂用量即为最小用量。

该操作线斜率为最小液气比(等)。

因此最小吸,因此最小吸收剂用量可用下式求得:若气液平衡关系服从亨利定律,则式中可由亨利定律算出,否则可由平衡曲线读出。

适宜的吸收剂用量应通过经济衡算确定,但一般在设计中可取经验值,即:应注意,对填料塔选定吸收剂用量时,还应保证能充分润湿填料,一般喷淋密度不应低于5m3/(m2·h)。

可见待设计确定塔径后,还应校验喷淋密度。

3.塔径的计算计算塔径的关键在于确定适宜的空塔气速,其选定方法见“塔设备”章。

吸收塔的计算

吸收塔的计算

(7-40)便可求出塔底排出的吸收液的组成X1,即
吸收塔的计算
2. 吸收塔的操作线方程式
在稳态操作的情况下,操作线方程可通过对吸收塔 内任一横截面M-N与塔底端面之间进行对溶质A作物料衡 算获得,即
VY+LX1=VY1+LX
吸收塔的计算
式(7-43)和式(7-44)称为逆流吸收塔的操作线方程,两式 可相互转化。它们表明了在吸收塔内任一截面上气相组成Y与液相组 成X的关系。
吸收塔的计算
1. 物料衡算
图7-7所示为一处于稳定操作状态下,逆流操作吸收塔 内气、液两相流量与组成的变化情况。混合气体通过吸收塔 的过程中,可溶组分不断被吸收,故气体的总量沿塔高而变, 液体也因其中不断溶入可溶组分,其量也沿塔高而变。但是, 通过吸收塔的惰性气体量和吸收剂量是不变的。因此,在进 行物料衡算时,以不变的惰性气体流量V和吸收剂量L作为计 算基准。现对全塔作物料衡算,可得
(2)坐标X、Y代表吸收塔内某一截面的液相和气相组成。 (3)当进行吸收操作时,因塔内任一截面处的 Y > Y*或X* > X, 故吸收操作线位于平衡线的上方。反之,如果操作线位于平衡线的下方, 则为解吸操作。 (4)操作线上的任一点A与平衡线之间的垂直距离和水平距离,表 示塔内某一截面的气相和液相传质推动力。操作线离平衡线愈远,吸收 的推动力愈大。
吸收塔的计算
通常,进塔混合气的组成与流量是由吸收任务规定了的,如
果吸收剂的进塔组成和流量确定。同时又规定了吸收率η,则气体
出塔时的组成Y2为
Y2=Y1(1-η)
(7-42)
式中,η为混合气体中被吸收的溶质量V(Y1-Y2)占总的溶质量
VY1的百分率,称为吸收率或回收率。

吸收或解吸塔的计算

吸收或解吸塔的计算
2.设计计算的主要内容与步骤 (1) 吸收剂的选择及用量的计算; (2) 设备类型的选择;
(3) 塔径计算;
(4) 填料层高度或塔板数的计算; (5) 确定塔的高度; (6) 塔的流体力学计算及校核; (7) 塔的附件设计。
第四节 吸收(或解吸)塔的计算
3.校核计算的主要内容与步骤 (1) 吸收率的计算 (2) 吸收剂用量、组成及操作温度对吸收塔的影响
V, Yb
L, Xb
第四节 吸收(或解吸)塔的计算
3.操作线方程与操作线
在任一截面与 L( X X a )
Y L L X Ya X a V V
V, Ya
V, Y
L, X V, Yb
操作线方程
L, Xb
例题: 在20℃,1atm下,用清水分离氨-空气的混合气体,混 合气体中氨的分压为1330Pa,经吸收后氨的分压降为 7Pa, 混合气体的处理量为 1020kg/h ,操作条件下平衡关系为 Ye=0.755X 。若适宜的吸收剂用量为最小用量的 2 倍,求所 需吸收剂用量及离塔氨水的浓度。
V, ya 吸 收 塔 V, yb xb=? xa , L=?
V, Ya
V, Yb
L, Xb
第四节 吸收(或解吸)塔的计算
2.吸收率的定义:
混合气中溶质A被吸收的量占总量的百分率,称 为溶质的吸收率或回收率,以φ表示,即:
L, Xa
Yb Ya Ya A 1 Yb Yb
V, Ya
Ya Yb (1 A )
已知进料中A的组成为50%(mol%),要 求气体吸收率为90%,则塔顶尾气中A的组成: A:9% B:7% C: 5% D:3%
由物平可知通过该微元层物质的传递量为:

化工原理吸收塔的计算

化工原理吸收塔的计算

填料层高度=传质单元高度×传质单元数
(1)传质单元数(以NOG为例)
•定义:NOG
Y1 dY Y2 Y Y *
气相总传质单元数
NOG

Y1 dY Y2 Y Y *

Y1 Y2 (Y Y *)m
气相组成变化 平均传质推动力
• 传质单元数的意义:
反映了取得一定吸收效果的难易程度。
当所要求的(Y1-Y2)为一定值时,平均吸收推动力(YY*)m越大,NOG就越小,所需的填料层高度就越小。
(2)传质单元高度
•定义:
H OG

G Kya
气相总传质单元高度,m。
•传质单元高度的意义:
完成一个传质单元分离效果所需的填料层高度,
反映了吸收设备效能的高低。
•传质单元高度影响因素:
填料性能、流动状况
四、吸收塔的操作计算 1.吸收过程的强化
Y1
Y*1
Y2
T △Y2
Y*2
O X2
B △Y1
X1
吸收推动力 NA 吸收阻力
目标:提高吸收过程的推动力; 降低吸收过程的阻力。
从L、G、m、X2、Y1、Y2着手。
其它因素: 1)降低吸收剂入口温度; 2)提高吸收的压力; 3)提高流体流动的湍动程度; 4)改善填料的性能。
Y1 dY Y2 Y
NOG

Y1 Y1
Y2 Y2
ln
Y1 Y2
X1
NOG

Y1 Y2 Ym
Ym (Y1 Y2)/ ln Y1 / Y2
注意: •平均推动力法适用于平衡线为直线,逆流、并流 吸收皆可。 •平衡线与操作线平行时,
Ym Y1 Y2 X m X1 X 2

吸收塔的计算

吸收塔的计算

NOG
(Y Y ) m Y1 Y2
气体流经一段填料层前后的浓度变化恰等于此段填料层内 以气相浓度差表示的总推动力的的平均值时,那么,这段 填料层的高度就是一个气相总传质单元高度。
吸收过程的传质阻力越大,填料层的有效比面积越小, 每个传质单元所相当的填料层高度越大。 传质单元数反映吸收过程的难度,任务所要求的气体浓 度变化越大,过程的平均推动力越小,则意味着过程难度越
NOG
1 Y1 Y2 ln[( 1 S ) S] * 1 S Y2 Y2
*
mV ——脱吸因数。平衡线斜率和操作线斜率的比值 S L
无因次。S愈大,脱吸愈易进行。
1 L A ——吸收因数 S mV
分析 :
•横坐标 Y1 Y2
* *
Y2 Y2
值的大小,反映了溶质吸收率的高低。
* * (Y1 Y1 ) (Y2 Y2 ) * Y1 Y1 ln * Y2 Y2
——塔顶与塔底两截面上吸收推动力的对数平均,称为对 数平均推动力。
1 Y1 当 相应的对数平均推动力可用算术平均 2 时, 2 Y2
推动力代替。
写出NOL、NG、NL的表达式。
N OL
X1 X 2 X m
dY KY a dZ * V Y Y KY a Z Y1 dY Y2 0 dZ * V Y Y
K X a dX dZ * L X X
X1 X 2
K X a Z dX 0 dZ * L X X
低浓度气体吸收时填料层的基本关系式为
L dX X1 V Y1 dY 及Z X 2 * Z Y2 K X a X X KY a Y Y *
在气液进出口浓度一定的情况下,吸收率愈高,Y2愈小, 横坐标的数值愈大,对应于同一S值的NOG愈大。 •S反映吸收推动力的大小 在气液进出口浓度及溶质吸收率已知的条件下,若增大S

化工原理 第三节 吸收(或脱吸)塔的计算上

化工原理 第三节 吸收(或脱吸)塔的计算上

Y
B B’ Yb
E
A Ya O
Xa
Xb Xb*
Lai Qingke
用摩尔分率表示的操作线方程:
y 1 y


LS GB

1
x
x


1
ya ya


LS GB

1
xa xa

非直线,为双曲线
低浓度气体yb<1 近似处理 直线
y ya yb ya LS x xa xb xa GB
一、总物料衡算
稳态逆流
参数:Ga、Gb;La、Lb;G、 L(kmol/m2·s);ya、yb(kmol(A)/kmol (A+B));xa、 xb(kmol(A)/kmol (A+S));x、y。
Ga,ya La,xa
气 液
y、G x 、L
如何衡算?
G,y L,x
找一固定量
吸收剂和惰性气体的量

Y

LS GB
X
Yb
LS GB
X b
逆流吸收塔的 操作线方程式
代表吸收塔的任意截面上气、液相浓度之间的关系。
Department of Chemical Engineering CTGU
Lai Qingke
稳态
LS、Xb、GB、Yb为定值
操作线方程式
在XY坐标中应为直线
一般以塔顶为基准
操作线方程
Department of Chemical Engineering CTGU
Lai Qingke
二、吸收塔操作线方程与操作线
对于塔顶 GB (Y Ya ) LS ( X Xa )

吸收塔计算.doc

吸收塔计算.doc

吸收过程既可在板式塔内进行,也可在填料塔内进行。

在板式塔中气液逐级接触,而在填料塔中气液则呈连续接触。

本章对于吸收操作的分析和计算主要结合连续接触方式进行。

填料塔内充以某种特定形状的固体填料以构成填料层。

填料层是塔实现气、液接触的主要部位。

填料的主要作用是:①填料层内空隙体积所占比例很大,填料间隙形成不规则的弯曲通道,气体通过时可达到很高的湍动程度;②单位体积填料层内提供很大的固体表面,液体分布于填料表面呈膜状流下,增大了气、液之间的接触面积。

通常填料塔的工艺计算包括如下项目:(1)在选定吸收剂的基础上确定吸收剂的用量;(2)计算塔的主要工艺尺寸,包括塔径和塔的有效高度,对填料塔,有效高度是填料层高度,而对板式塔,则是实际板层数与板间距的乘积。

计算的基本依据是物料衡算,气、液平衡关系及速率关系。

下面的讨论限于如下假设条件:(1)吸收为低浓度等温物理吸收,总吸收系数为常数;(2)惰性组分 B 在溶剂中完全不溶解,溶剂在操作条件下完全不挥发,惰性气体和吸收剂在整个吸收塔中均为常量;(3)吸收塔中气、液两相逆流流动。

吸收塔的物料衡算与操作线方程式全塔物料衡算图 2-12 所示是一个定态操作逆流接触的吸收塔,图中各符号的意义如下:V-惰性气体的流量, kmol(B)/ s;L—纯吸收剂的流量, kmol(S)/ S;Y1;、Y2—分别为进出吸收塔气体中溶质物质量的比,kmol( A)/ kmol( B);X1、X2——分别为出塔及进塔液体中溶质物质量的比,kmol(A)/kmol( S)。

注意,本章中塔底截面一律以下标“l ”表示,塔顶截面一律以下标“2”表示。

在全塔范围内作溶质的物料衡算,得:VY1+ LX2= VY2+ LX1或 V(Y -Y )= L( X -X )(2-38)1 2 1 2一般情况下,进塔混合气体的流量和组成是吸收任务所规定的,若吸收剂的流量与组成已被确定,则V、Y、L 及 X2。

第二讲 吸收塔的计算

第二讲 吸收塔的计算
mV 1 L Y dY mV Y2 (mX 2 b) L
Y1
Y2
Y1
Y2
mV 令S L
NOG
Y2
dY 1 S Y SY2 Y2*) (
N OG
* ( ] 1 Y1 d[1 S Y SY2 Y2 ) 1 S Y2 1 S Y SY2 Y2*) (
NOG
Y1 Y2* 1 ln[1 S S] * 1 S Y2 Y2
2. 对数平均推动力法
塔顶推动力:Y2 Y2 -Y2* 塔底推动力:Y1 Y1 -Y1*
塔内任一截面推动力:Y Y -Y * V Y (mX b) Y m[ (Y Y2 ) X 2 ] b L mV mV (1 )Y ( Y2 mX 2 b) L L
X2
X1*
X
(2) 平衡线为凸形
Y Y1 C
(L/V)min B
X2
Y*=f(X)
Y2
o
X1,max X1*
X
?吸收剂用量的确定
L L 1.1 ~ 2.0 V V min
L 1.1~ 2.0 Lmin
在常压填料吸收塔中,用清水逆流吸收混合气中的氨气。已 知入塔混合气体中含有氨气为1%(体积%),要求氨气的回收
高度为 dZ 的微元填料层
dGA VdY LdX
NA取为定值
dGA =NAdA=NA (adZ )
NA=KY(Y-Y*) NA=KX(X*-X)
dGA VdY K Y Y Y * adZ
dGA LdX K X X * X adZ
填料层高度的基本计算式

化工原理 第三节 吸收(或脱吸)塔的计算上

化工原理 第三节 吸收(或脱吸)塔的计算上

解:进入吸收塔的惰性气体摩尔流量为
GB
G 22.4
t
273 p (1 273 101.3
yb )
1000 22.4
273 273 27
105 (1 0.02) 101.3
41.27kmol
/
h
进塔气体中芳烃的摩尔比
Yb
yb 1 yb
0.02 0.0204 1 0.02
?!
出塔气体中芳烃的摩尔比 Ya Yb (1) 0.0204(1 0.95) 0.00102
Gb,yb Lb,xb
GB、LS ;比摩尔分率。
逆流吸收塔的物料衡算
对于A组分有: GBYb LS X a GBYa LS X b
GB (Yb Ya ) LS ( Xb X a )
Department of Chemical Engineering CTGU
Lai Qingke
式中各量的计算:
Lai Qingke
积分
ho
又 N A K y y y *
K yay y *dh Gdy
h 1, y ya; h ho , y yb
ho
yb G dy
dh
低浓度气体
0
ya K ya y y *
G yb dy
ho K ya ya y y *
气相传质方程
G yb dy
ho k ya ya y yi
yb ya
Δyb P Δx
Δy
R B’
A Δxa Δya Q
于是,ho计算式的积分项
A’
O
x
yb dy
ya y y*
yb ya
yb d y
yb ya ya y

6.3吸收(或解析)塔的计算

6.3吸收(或解析)塔的计算

yb
N OG
ya

dy y y
无因次
NOG仅与气体的进出口浓度、相平衡关系有关,与塔的结构、操作条
件(G、L)无关,反映分离任务的难易程度。
(2) 传质单元高度
G H OG= K ya
kmol 2 m s m 单位: kmol 3 m s
HOG与操作条件G、L、物系的性质、填料几何特性有关,反映吸收设 备性能的高低。其值由实验确定,一般为0.15—1.5米。
xa xb
并流操作的操作线
L,xb
并流操作的塔
3.吸收剂用量的确定与最小液气比
Yb
B
Yb
Ya
A
Ya
X b max Xb Xa LS Y X X a Ya GB
Xa
X bX b max
最小液气比
Yb Ya Yb Ya LS G X X Xb Xa B min b max a
(1) 操作型问题的命题 第一类:已知塔高h0、L、G、xa、yb,相平衡关系,Kya、Kxa,求:
气液的出口浓度ya、xb。
第二类:已知h0、G、ya、yb,相平衡关系,Kya、Kxa,求:吸收 剂用量L及其出口浓度xb。
(2) 计算方法:仍利用物料衡算式、相平衡关系、吸收过程的基本方
程,但往往这些方程是非线性的,有时需试差。
GBY- 气 相 中A 的 量 L S X- 液 相 中A 的 量
Lb,xb
2、操作线方程
由前式知,如用y、x浓度表示,操作线方程为:
对塔顶到任一截面作物料衡算:
G y La xa Ga ya Lx
y G y La xa L x a a G G

化工原理第五章(吸收塔的计算)ppt课件

化工原理第五章(吸收塔的计算)ppt课件

2020/6/7
.
设备费
L适宜=(1.1~2.0)Lmin
L适宜
L
4、最小液气比的确定
(1)图解法
【方法一】(1)在 X-Y图上分别画出平 衡线与操作线;
(2)根据交点坐标 值计算:
L Gm
in

Y1 X1*
Y2 X2
2020/6/7
.
操作线
平衡线
斜率=(L/G)min
【方法二】操作线与平衡线相切,则:
算,则得到:
G1 YLX G Y L1X 或 YG LX(Y1G LX1)
G, Y2 L, X2
G, Y
m
n
L, X
【吸收操作线方程式的作用】 表明了塔内任一截面上气相组 成Y与液相组成X之间的关系。
G, Y1 L,X1 逆流吸收操作线推导示意图
2020/6/7
.
【逆流吸收操作线方程的有关讨论的特点】
2020/6/7
.
(2)传质单元数
【定义】
NOG
Y1 dY Y2 YY*
——无因次。
称为气相总传质单元数。
因此,根据传质单元高度与传质单元数的定义, 填料层高度可表示为:
ZNOGHOG
Hd
H——塔高(从A到B,不包括封头、裙
座高),m;
Z——填料层高.m;
Hf——装置液体再分布器的空间高,m Hf ;
Hd——塔顶空间高(不包括封头部分),
m,一般取Hd=0.8~1.4m;
Hb——塔底空间高(不包括封头部分),
m,一般取Hb=1.2~1.5m;
Hb
n——填料层分层数
2020/6/7
2020/6/7
.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五、解

吸收:N A K y y y K x x x
解吸:N A K y
x
y -y K x x
1、解吸的方法:
a.通入惰性气体-气提,即降低y
b.加热使液体升温-提高气液平衡常数m c.降低系统的压力-提高气液平衡常数m 2、解吸塔高的计算: 方法与吸收塔相似,只是推动力与吸收时相反
y L ( x xa ) y a G
Xa
X
Xb
并流吸收塔的操作
并流操作的操作线方程
从塔顶到任一截面作物料衡算:
G,ya L,xa
y ya L ( x xa ) G
G y ya L x xa
ya yb
(塔顶)
A
斜率
L G
y
x
(塔底)
B
G,yb
yb
同样可推出液相:
L b dx h0 K x a x x x a
x
Kya-气相总体积吸收系数,kmol/m3.s Kxa-液相总体积吸收系数,kmol/m3.s 以气相或液相为推动力表示:
N A k y y yi k x xi x
x
G dy h0 y yi kya y a
吸收剂进口浓度的上限
经济上:xa h0 设备费用 但解吸要求高,费用 ,需综合考虑
L L =1.1 ~ 2.0 G G min
(3)吸收剂用量的确定:
L ym N OG h 即设备费降低 G 但L 操作费用提高
四、吸收塔的操作型计算
yb
N OG
ya
1 S y Sy
dy
a
mxa b

1 yb mxa b ln 1 S S 1 S ya mxa b
NOG
1 yb mxa ln 1 S S 1 S ya mxa
G,yb
L,xb
逆流操作的塔
N A K y y y K x x x



dh

气相:Gdy N A adh
Gdy K y a y y dh
G b dy h0 y y K ya y a
y
N A K y y y





h0
G dy dh K a y y y 0 ya
xa xb
并流操作的操作线
L,xb
并流操作的塔
3.吸收剂用量的确定与最小液气比
Yb
B
Yb
Ya
A
Ya
X b max Xb Xa LS Y X X a Ya GB
Xa
X bX b max
最小液气比
Yb Ya Yb Ya LS G X X Xb Xa B min b max a
S yb mxa ln 1 S S 1 S y mx a a
NOL SNOG
讨论:
yb mxa S一定,提高吸收率 ya NOG h ya mxa y mxa 一定, b 不变 S N OG h y a mxa
NOL 1 xb y1 / m ln 1 A A 1 A xa y1 / m
NOG 1 yb mxa ln 1 S S 1 S ya mxa
ya
xa
y b
yb
N OG
ya

yb dy yb ya d y yb ya yb ln y y* yb ya y ( yb ya ) ya ya
令:ym
yb ya yb ln ya
N OG
yb ya ym
操作线方程的图示
L Ga ya La xa y x G G
yb
(塔底)
B
y
ya

(塔顶)
A
LS Y ( X X a ) Ya GB
(塔底)
xa Yb
x
xb
B
Y
Ya
(塔顶)
M A
当低浓度吸收(进气浓度低于5~10%) 时,L、G随塔高的变化较小,可认为 近似不变。则以y、x表示的操作线也 可认为是一条直线。
GBY LS X a GaYa LS X
Y LS ( X X a ) Ya GB
G,y L,x
Gb,yb
Lb,xb
或对塔底到任一截面作物料衡算:
L Gb yb Lb xb y x G G
LS Y ( X X b ) Yb GB
逆流操作的塔
吸收操作中,G、L随塔高变化,而GB、LS则不随塔高变化。Y~X之间的 关系为一线性关系,而y~x之间的关系不为线性关系。
(1) 操作型问题的命题 第一类:已知塔高h0、L、G、xa、yb,相平衡关系,Kya、Kxa,求:
气液的出口浓度ya、xb。
第二类:已知h0、G、ya、yb,相平衡关系,Kya、Kxa,求:吸收 剂用量L及其出口浓度xb。
(2) 计算方法:仍利用物料衡算式、相平衡关系、吸收过程的基本方
程,但往往这些方程是非线性的,有时需试差。
xb xa 令 : xm xb ln xa
N OL
xb xa xm
(2)脱吸因数(S=mG/L)法:
平衡线为直线: y*=mx+b
操作线:x G ( y ya ) xa L
G mG mG y y y mx b y m ( y ya ) xa b 1 y y mx b a a L L L
HOG的物理意义:
dy 当 1时,h0 H OG y y ya
yb
yb-ya=(y-y*)m
yb-ya=(y-y*)m
总结
1 1 m K y k y kx
1 1 1 K x k x mk y
G G L mG K ya k ya kxa L
L L G L K x a k x a k y a mG
G、L随塔 高而变
GB Gb 1 yb Ga 1 ya
Y y 1 y
Y Y GB (Yb Ya ) LS ( X b X a ) 吸收率= b a 100% Yb Gb,yb
LS La 1 xa Lb 1 xb
X x 1 x
最小液气比 yb y a * xb x a
L L =1.1 ~ 2.0 倍 G G min 实际选:1.2~1.5倍 适宜液汽比
二、填料层高度的计算(低浓度气体吸收) G,ya
低浓度气体吸收的特点: • • • G、L(GB、LS)不随塔高变化 吸收过程为等温 传质系数为常数 y x
yb
N OG
ya

dy y y
无因次
NOG仅与气体的进出口浓度、相平衡关系有关,与塔的结构、操作条
件(G、L)无关,反映分离任务的难易程度。
(2) 传质单元高度
G H OG= K ya
kmol 2 m s m 单位: kmol 3 m s
HOG与操作条件G、L、物系的性质、填料几何特性有关,反映吸收设 备性能的高低。其值由实验确定,一般为0.15—1.5米。
yb
L b dx h0 k x a x xi x a
2、传质单元数与传质单元高度
令: G H OG K ya
yb ya
称为气相总传质单元高度,m
称为气相总传质单元数,无因次

dy N OG y y
h0 H OG NOG
b L dx H OL , NOL Kxa x x xa
1. 全塔物料衡算 La 、Lb -液体入塔、出塔流率,kmol/(m2.s) Gb、Ga-气体入塔、出塔流率,kmol/(m2.s)
Ga,ya
La,xa
Gb yb La xa Ga ya Lb xb
GB-气体中惰性组分B的流率,kmol/(m2.s) LS-液体中纯溶剂S 的流率,kmol/(m2.s)
x
h0 H OL NOL
G dy H G , NG kya y y i ya
b L dx H L , NL kx a x x xa i
yb
h0 H G NG
h0 H L N L
x
填料层高度 传质单元高度 传质单元数
(1) 传质单元数
LS LS 适宜液气比: =1.1 ~ 2.0 GB GB min
低浓度吸收时的最小液气比
yb
A
B B B
yb
ya
xa
ya xb
最小液气比
* xb
xa
L G min
xb x * b
L y x xa y a G
L 设备费降低 G 但L 操作费用提高
传质单元数
dy y y ya xb dx N OL= x x xa N OG= N G=
yb ya xb yb
h0 H OG NOG
h0 H OL NOL
L H OL= K xa
h0 H G NG
h0 H L N L
G H G= kya L H L= kxa
H OG H G SH L
H OL H L AH G
H OG SH OL或N OG=AN OL
使用场合
溶解度大或中等的 体系 溶解度小或中等的 体系 相平衡关系为非线 性的体系
相关文档
最新文档