凸函数在不等式证明中的应用《毕业论文》.
几何凸函数及其在不等式证明中的应用毕业论文答辩模板
几何凸函数及其在不等式证明中的应用工作内容阐述: 453922
• 添加相关内容: • 574006几何凸函数及其在不等式证明中的应用几何凸函数及其在 不等式证明中的应用 • 163155几何凸函数及其在不等式证明中的应用几何凸函数及其在 不等式证明中的应用几何凸函数及其在不等式证明中的应用 735000几何凸函数及其在不等式证明中的应用几何凸函数及其在 不等式证明中的应用几何凸函数及其在不等式证明中的应用
几何凸函数及其在不等式证明中的应用工作内容阐述: 33339
• 添加相关内容: • 182920几何凸函数及其在不等式证明中的应用几何凸函数及其在 不等式证明中的应用 • 794907几何凸函数及其在不等式证明中的应用几何凸函数及其在 不等式证明中的应用几何凸函数及其在不等式证明中的应用 964257几何凸函数及其在不等式证明中的应用几何凸函数及其在 不等式证明中的应用几何凸函数及其在不等式证明中的应用
总结:几何凸函数及其在不等式证明中的应用
• 内容123 • 几何凸函数及其在不等式证明中的应用几何凸函数及其在不等式证明中的应用几何凸函数及其在不等 式证明中的应用几何凸函数及其在不等式证明中的应用 • 几何凸函数及其在不等式证明中的应用几何凸函数及其在不等式证明中的应用几何凸函数及其在不等 式证明中的应用 588899
题,请联系末识,联系
方式在最后一页,祝毕 业愉快
绪论
关键字
关键字
关键字
感谢您对末识 PPT 的支
再好的模板也只能起到
如不够华丽,但它足 够实用
锦上添花的作用,最重
要的是你的论文内容和 表述
题,请联系末识,联系
方式在最后一页,祝毕 业愉快
02
文献综述
MORESHI POWERPOINT
凸函数在证明不等式中的应用
摘要凸性是一种重要的几何性质,凸函数在泛函分析,最优化理论,数理经济学等领域都有着广泛的应用.本文首先给出了凸函数的定义和判定定理,同时讨论了凸函数的几条常用性质,最后重点展示了凸函数在证明不等式中的应用.关键词: 凸函数,凸性,判定定理,Jensen不等式AbstractConvexity is an important geometric property. Convex function have extensive applications in functional analysis, optimal theory and mathematical economy. This article first has given the definition of convex function and its decision theorem, meanwhile discussed convex function several commonly used nature,lastly has demonstrated the convex function in inequality proof application.Keywords:convex function,convexity, decision theorem, Jensen inequality1 引言在数学思想方法中,函数思想是一种很重要的思想方法,其精髓在于利用函数的相关性质对讨论的问题进行推理和论证,进而寻求解决问题的途径.凸函数是一类重要的函数,它的概念最早由Jensen 给出.它在纯粹数学和应用数学的众多领域中具有广泛的应用,现已成为数学规划、对策论、数理经济学、变分学和最优控制等学科的理论基础和有力工具.应用研究方面,凸函数作为一类特殊函数,在现代优化学、运筹学、管理学和工程测绘学等多个学科有着重要的意义和很好的应用.在数理经济学中, 对风险厌恶的度量, 也可以表现为对效用函数凸性的选择,函数的凸性是函数在区间上变化的整体性态,把握函数在区间上的整体性态,不仅可以更加科学、准确地描绘出函数的图象,而且有助于对函数的定性分析.由于凸函数具有较好的几何和代数性质,一些常见的不等式都可以从函数的凸性中导出,对不等式的证明最终归结为研究函数的特性,所以研究凸函数的凸性就显得十分必要了,同时利用凸函数的凸性证明不等式,很容易证明不等式的正确性.因此,正确理解凸函数的定义、性质及其它在证明不等式中的应用,更对有关学术问题进行推广研究起着举足轻重的作用.2 凸函数的基本知识2.1 凸函数的定义大家都熟悉函数2()f x x =的图像,它的特点是:曲线2y x =上任意两点间的弧总在这两点连线的下方.我们可以下这样一个定义:设()f x 在[,]a b 上有定义,假设曲线()y f x =上任意两点间的弧总位于连接该两点的线段之下,则称函数()f x 是凸函数.定义[1] 假设函数()f x 对于区间(,)a b 内的任意12,x x 以及任意实数(0,1)λ∈,恒有[]1212(1)()(1)()f x x f x f x λλλλ+-≤+-, 〔1〕则称()f x 为区间(,)a b 上的凸函数.如果〔1〕中的不等式改为严格不等式,则相应的函数称为严格凸函数.常见的凸函数有:① ()(0)k f x x k =≠,x x x f ln )(=均为(0,)+∞内的严格凸函数;②()ln(1),()0)x f x e f x c =+=≠均为(,)-∞+∞内的严格凸函数.2.2 凸函数的判定定理及其性质引理[1] 假设()f x 为区间I 上的凸函数,则对I 上的任意1x <2x <3x ,有()()()()()()213132213132f x f x f x f x f x f x x x x x x x ---≤≤--- 〔2〕 定理1[1] 设f 为区间I 上的可导函数,则以下论断互相等价:1 f 为I 上凸函数;2 'f 为I 上的增函数;3 对I 上的任意两点12,x x ,有()()()()'21121f x f x f x x x ≥+-.定理2[1] 设f 为区间I 上的二阶可导函数,则f 在I 上为凸函数的充要条件是''()0f x ≥〔x I ∈〕.用定义来直接判断一个函数是不是凸函数,往往是很困难的,但用定理2来判断一个光滑函数是否为凸函数,则是相当简便的.在实际应用中常常先用导数来肯定函数的凸性,再反过来利用凸性证明不等式.性质1[2] 假设()f x 是区间I 上的凸函数,则对I 上的任一内点x ,单侧导数(),()f x f x +-''皆存在,且()()f x f x -+''≤0()x I ∀∈,这里0I 表示I 的全体内点组成之集合.证明 因x 为内点,故12,,x x I ∃∈使得12x x x <<,,因为()f x 是区间I 上的凸函数,故1212()()()()f x f x f x f x x x x x --≤--,当1x 递增时,11()()f x f x x x--也递增. 故由单调有界原理知,下极限存在且'f -(x)= 11212()()()()limx xf x f x f x f x x x x x→--≤--. 同理,在此式中,令2x x →时,也可知'()f x +存在,且''()()f x f x -+≤. 性质2[2] 假设()f x 在区间I 上为凸函数,则f 在任一内点x ∈0I 上连续. 证明 事实上由性质1知:f +'与f -'存在,所以f 在x 处左右都连续.性质3[2] 设函数()f x 在区间I 上为凸函数,则()f x 在I 上的任一闭子区间上有界. 证明 设[,]a b I ⊂为任一闭子区间,于是有 ①[,],x a b ∀∈取[0,1],x ab aλ-=∈-则(1)x b a λλ=+-,因()f x 为凸函数,所以 ()[(1)]()(1)()(1)f x f b a f b f a M M M λλλλλλ=+-≤+-≤+-=,其中max{(),()}M f a f b =,故()f x 在[,]a b 上有上界M ;②记2a bc +=为,a b 的中点,则[,]x a b ∀∈,有关于c 的对称点x ',因()f x 为凸函数,所以'()()11()()()2222x x f x f x f c f f x M '++=≤≤+,从而 ()2()f x f c M m ≥-≡,即m 为()f x 在[,]a b 上的下界.综上,()f x 在I 上的任一闭子区间上有界.3 凸函数在证明不等式中的应用在许多证明题中,我们常常遇到一些不等式的证明,其中有一类不等式利用凸函数的性质定理来证明可以非常简洁、巧妙,但关键是构造能够解决问题的凸函数,运用函数的凸性及几个等价论断,使不等式简化进而得以证明.Jensen 不等式[1]()f x 是区间I 上的凸函数,12,,...,n x x x I ∀∈,对于满足11ni i λ==∑ 的任意12,,...,0n λλλ> ,有:11()()nni i i i i i f x f x λλ==≤∑∑ 〔3〕凸函数在不等式证明中的应用很大程度上是由Jensen 不等式来表达的,每个凸函数都有一个Jensen 不等式,因而它在一些不等式证明中有着广泛的应用.利用它可以推出常用的一些重要公式,为证明不等式开辟了一条新路.它还可以有如下两种形式:〔1〕Jensen 总和不等式[2] 设()f x 是(,)a b 内的凸函数,则对(,)a b 内的任意一组值12,,...,n x x x 及任意正数12,,...,n p p p 必有不等式:112211221212...()()...()()......n n n n n np x p x p x p f x p f x p f x f p p p p p p ++++++≤++++++ 〔4〕当且仅当i x 都相等时等式成立.〔2〕Jensen 积分不等式[2] 设(),()f x p x 为[,]a b 上的可积函数,而(),()0,()0bam f x M p x p x dx ≤≤≥>⎰,则当()()t m t M ϕ≤≤为凸函数时有()()()[()]()()()bbaabbaap x f x dxp x f x dxp x dxp x dxϕϕ≤⎰⎰⎰⎰〔5〕3.1 凸函数在证明一般不等式中的应用一、利用凸函数的定义证明不等式例1 求证:对任意实数,a b ,有()212a ba bee e +≤+。
凸函数详细论文
目录一、凸函数的定义及其关系 (3)(一)凸函数的几种不同定义 (3)(二)不同定义之间的相互联系 (4)二、凸函数的性质 (4)(一)凸函数的一些简单运算性质 (4)(二)凸函数的其他性质 (7)三、函数凸性的判断方法 (11)四、凸函数的应用 (14)(一)有关凸函数的两个重要不等式 (14)(二)凸函数的性质在证明几个经典不等式中的应用 (15)(三)凸函数在初等不等式证明中的应用 (17)(四)凸函数在积分不等式中的应用 (19)五、总结 (20)参考文献 (18)凸函数的性质及应用马志霞(西北师范大学数学与统计学院,甘肃兰州730070)摘要:凸函数是一类非常重要的函数,它的概念最早见于Jensen著作中在纯粹数学和应用数学的众多领域中具有广泛的应用,现已成为数学规划等学科的理论基础和有力工具。
本文由凸函数的定义出发,给出了凸函数的七种等价定义,讨论了凸函数的有关性质,研究了函数凸性的判定方法,以及它在证明不等式中应用.关键词: 凸函数;不等式;性质;判别;证明;应用The properties and application of convex functionMa Zhixia(School of mathematical and statistical Northwest Normal University,Gan Su LanZhou 730070) Abstract: Convex function is a kind of very important function, the concept of the earliest it can be found in Jensen writings in pure mathematics and applied mathematics has extensive application in many fields, has become the basic theory of mathematical programming disciplines and powerful tool. In this paper, starting from the definition of convex function, seven equivalent definition of convex function are given, some properties of convex function are discussed, the methods for judging the convex function, and its application in proving inequality in.Key words:Convex function;inequalitye;property;distinction;proof;application一、凸函数的定义及其关系(一)凸函数的几种不同定义定义 1 设函数)(x f 定义在区间I 上.若对I 上任意两点12,x x 和任意实数(0,1),λ∈有()()()21211)()1(x f x f x x f λλλλ-+≤-+,则称)(x f 是区间I 上的凸函数.定义2 设函数)(x f 定义在区间I 上.若对I 上任意不同的两点12,x x ,有2)()()2(2121x f x f x x f +≤+ ,则称)(x f 是I 上的凸函数. 定义3 设函数)(x f 定义在区间I 上,对于任意的I x x x n ∈,,21 ,,有()()nx f x f x f n x x x f n n +++≤+++ 2121)()(, 则称)(x f 是区间I 上的凸函数. 定义4 设函数)(x f 定义在区间I 上,对于I 上任意三点123x x x <<,下列不等式中任何两个组成的不等式成立,()()()232313131212)()(()x x x f x f x x x f x f x x x f x f --≤--≤--,则称)(x f 是区间I 上的凸函数.定义5 利用二阶导数判断曲线的向来定义函数的凸性:设函数()f x 在区间(,)a b 内存在二阶导数,则在(,)a b 内有 ()0()f x f x ''>⇒在(,)a b 内严格凸数。
函数凹凸性在不等式证明中的应用毕业论文
【标题】函数凹凸性在不等式证明中的应用【作者】陈小翠【关键词】凸性;不等式;几何特征【指导老师】冯彬【专业】数学与应用数学【正文】1 引言不等式的证明在数学问题中是经常碰到的,我们在中学时代就常常接触到不等式证明的问题,在那时,我们常用的不等式证明方法有初等数学中的综合法、分析法、比较法和数学归纳法等。
进入大学以后,我们又学习了一些高等数学中常用的证明不等式的方法,例如利用函数的单调性、极大、极小值法和泰勒展式等方法,除此以外,我们还学习了一种很重要的方法,即是利用函数的凹凸性性质来证明一些不等式。
函数凹凸性,反映在图像上就是曲线的凹凸方向,为此运用它可以更深入和较准确地掌握函数曲线的形状,这对于描绘函数的图形有很大的作用,关于这些,在高等数学的各类教材中都有详尽的论述,本文是在凹凸性常识的基础上,抛开它的主要作用,介绍了凹凸函数的定义及其几何特征,再通过举例说明函数凹凸性在证明不等式中的应用。
2 凹凸函数定义及几何特征图1-1凹凸函数是区分函数增减方式的两种不同类型的函数,即:虽然函数单调增加,但却可有如图1-1中所示的两种方式增加。
直观地看,函数所表示的曲线是向下凸的,于是我们把形如的增长方式的函数称为下凸(凸)函数,而函数所表示的曲线是向上凸的,于是我们把形如的增长方式的函数称为上凸(凹)函数。
在高等数学的教材中,曲线的凹凸性直观定义为:“设曲线弧的方程为,且曲线弧上每一点都有切线。
如果在某区间内,该曲线弧位于其上任一点切线的上方,则称曲线弧在该区间内是凸的;如果在某区间内,该曲线弧位于其上任一点切线的下方,则称曲线弧在该区间内是凹的。
”2.1 定义的推广在许多教材中,曲线的凹凸性有如下定义:定义2.1 设在内连续,如果对内的任意两点恒有那么称在内的图形是向下凸(凸)的,函数称为下凸(凸)函数;如果恒有那么称在内的图形是严格向下凸(凸)的,函数称为严格下凸(凸)函数如果对内的任意两点,恒有那么称在内的图形是向上凸(凹)的,函数称为上凸(凹)函数;如果恒有那么称在内的图形是严格向上凸(凹)的,函数称为严格上凸(凹)函数。
凸函数的性质及其在证明不等式中的应用
凸函数的性质及其在证明不等式中的应用数学计算机科学学院摘要:凸函数是一类重要的函数.凸函数在不等式的研究中尤为重要,而不等式最终归结为研究函数的特性,这就需要来研究凸函数了.本篇文章论述了凸函数、对数凸函数的定义、引理、定理和性质及其常用的一些判别方法(根据凸函数,对数凸函数的已知的定理、定义、性质,Jensen不等式等一些方法来判断函数是否是凸函数);本文还试就凸函数的等价定义、性质和在证明不等式中的应用等问题作一初步的探讨,以便进一步了解凸函数的性质及其在证明不等式时的作用;并浅谈了一下凸函数在不等式证明中的一些应用(如上述利用凸函数以及对数凸函数的定理,定义,性质,Jensen不等式来证明一些不等式),推广并证明了一些不等式(三角不等式,Jensen不等式等),得到了新的结果.关键词:凸函数;对数凸函数;Jensen不等式;Hadamard不等式;应用Nature of Convex Function and its Application in ProvingInequalitiesChen Huifei, College of Mathematics and Computer ScienceAbstract : Convex function is a kind of important function. Convex function is particularly important in the study of the inequality, and the study of the inequality is reduced to study the characteristics of the convex function,whichmakes it necessary to study convex functions.We discuss definition, lemma, theorem and the nature of some commonly used discriminant methods of the convex function and the logarithmic convex function in this paper(According to known theorems, definitions, nature, Jensen inequality and other methods of convex function and the logarithmic convex function to recognize whether the function is a convex function); In this paper we also try to discuss the equivalent definition and nature of the convex function and the issue of its application in demonstration inequalities of convex function in order to have a better understanding of the nature and role of the convex function in proving inequalities; we also try to discuss some applications of convex function in proving inequalities(Convex function and the use of these convex function theorem, definition, nature, Jensen inequality to prove Inequality). We also have promoted and proved some inequality (Triangle inequality, Jensen inequality) and reached new results.Key words : Convex function;Logarithmic convex function ; Jensen inequality; Hadamard Inequality;Application1引言在很多数学问题的分析与证明中,我们都需要用到凸函数,例如在数学分析、函数论、泛函分析、最优化理论等当中.凸函数是一类重要的函数.凸函数在不等式的研究中尤为重要,而不等式最终归结为研究函数的特性,这就需要来研究凸函数了.常用的凸函数有两种,一种叫上凸函数,即曲线位于每一点切线的下方或曲线上任意两点间的弧段总在这两点连线上方的函数;另一种叫下凸函数,即曲线位于每一点切线的上方或曲线上任意两点间的弧段总在这两点连线下方的函数.本文试就凸函数的等价定义、性质和在证明不等式中的应用等问题作一初步的探讨,以便进一步了解凸函数的性质及其作用.2 概念2.1 凸函数的定义上面对凸函数作了直观的描述,我们用分析式子给出其精确定义.定义[1]2.1设函数()f x 在区间[,]a b 上有定义,若对[,]a b 上任意两点12,x x 和正数λ∈(0,1),总有1212[(1)]()(1)()f x x f x f x λλλλ+-≤+- (A)则f 为区间[,]a b 上的凸函数.(同时也称为上凸函数,若是不等号反向则称为下凸函.)定义[1]2.2 若函数()f x 在D 上是正的,且ln ()f x 在D 上是下凸函数,则称()f x 是D 上的对数下凸函数这时, 对于任意,x y D ∈ 和(0,1)λ∈,有ln [(1)]ln ()(1)ln ()f x y f x f y λλλλ+-≤+-. 即(1)[(1)]()()f x y f x f y λλλλ-+-≤ (B)如果(2) 中的不等号反向,则称()f x 是D 上的对数上凸函数.2.2 对数凸函数的性质 我们已经有了凸函数以及对数凸函数的定义,现在我们来看一下对数的一些引理,定理及其性质等.定理 2.1[2] (对数下(上) 凸函数的判定定理) 设()f x 是D 上的正值函数,且在D 上有二阶导数,则()f x 在D 上为对数下(上) 凸函数的充要条件为对于任意x ∈D ,有2()()(())0(0)f x f x f x '''-≥≤先证下引理引理 2.1[2] (1) 若()g x 是[,]a b 上的下(上) 凸函数,则()()g x f x e = 为[,]a b e e 上的对数下(上) 凸函数.(2) 若()f x 是[,]c d 上的对数下(上) 凸函数,则()ln ()g x f x =为[ln ,ln ]c d 上的下(上) 凸数.证明(1) 任取12,[,]c d x x e e ∈,由()g x 在[,]c d 上是下凸函数,对任意01λ<<有()()121212[(1)]()(1)()121()()112[(1)][][]()()g x x g x g x g x g x f x x e e e e f x f x λλλλλλλλλλ+-+---+-=≤==(2)任取12,[ln ,ln ]x x c d ∈ ,由()f x 是[,]c d 上的对数下凸函数,对任意01λ<<有11212121212[(1)]ln [(1)]ln[()][()]ln ()(1)ln ()()(1)()g x x f x x f x f x f x f x g x g x λλλλλλλλλλ-+-=+-≤=+-=+-所以()g x 为区间[ln ,ln ]c d 上的下凸函数. (用类似方法可证上凸的情形)下证定理2.1[2] “⇐” 设[,]D c d =,()ln ()g x f x =,则 ()()[ln ()]()f xg x f x f x '''==,22()()[()]()()f x f x f x g x f x '''-''= 所以()g x 是为区间[ln ,ln ]c d 上的下凸函数,根据引理1 得()ln ()()g x f x e e f x ==为[ c ,d] 上的对数下凸函数“⇒” 若()f x 为[,]c d 上的对数下凸函数,由引理1 得()ln ()g x f x =为区间[ln ,ln ]c d 上的下凸函数,从而()0g x ''≥ ,对()ln ()g x f x =求二阶导数即得2()()(())0f x f x f x '''-≥. (用类似方法可证上凸的情形) .推论2.1[2] 设12(),()f x f x 是D 上的对数下(上) 凸函数,则1212()(),()()f x f x f x f x +也是D 上的对数下(上) 凸函数证明:设1212()()(),,,(0,1)g x f x f x x x D λ=+∀∈∈121122121111112221221121122212((1))((1))((1))()()()()[()()][()()]()()g x x f x x f x x f x f x f x fx f x f x f x f x g x g x λλλλλλλλλλλλλλ----+-=+-++-≤+≤+⨯+= 其中(A) 由..H older 不等式得到根据定义 2.2 得出1121()()f x f x +是D 上的对数下凸函数.122112[()()]()()()()f x f x f x f x f x f x '''=+12211212[()()]()()2()()()()f x f x f x f x f x f x f x f x ''''''''=++2121212222221111222[()()][()()]{[()()]}(){()()[()]}(){()()[()]}0f x f x f x f x f x f x f x f x f x f x f x f x f x f x '''-=''''''-+-≥根据定理2.1 得12(),()f x f x 是D 上的对数下凸函数. (用类似方法可证上凸的情形)用数学归纳法可将推论1 推广到有限情形.推论 2.2[2] 设()f x 是定义在D 上的正值函数,1) 若()f x 是对数下凸函数,则1()f x 在区间D 上是对数上凸函数. 2) 若()f x 是对数上凸函数,则1()f x 在区间D 上是对数下凸函数. 证明 1) 设1()()x f x φ=22322224241()()()2(())()(),()[]()()()()()2(())()()()(())()()[()][][][]()()()f x f x f x f x x x f x f x f x f x f x f x f x f x f x f x x x x f x f x f x φφφφφ''''-''''==-=-'''''''--'''-=--=-显然是小于0的,所以1()()x f x φ=是对数上凸函数,同理可证2) . 定理 2.2[2] (Jensen 型不等式) 设()f x 是D 上的正值对数下凸函数, 12,01, (1)i i n x D λλλλ∈<<+++=12112212(...)()()...()n n n n f x x x f x f x f x λλλλλλ+++≤ (*)若()f x 是D 上的正值对数上凸函数,则(*) 中不等号反向.证明 (用数学归纳法) 当2n =时,由定义2.2 知不等式(*) 成立. 假设n k =时不等式(*) 成立,即121122121(...)()()...()(1,0)kkk k k i i i f x x x f x f x f x λλλλλλλλ=+++≤=>∑ ,(1,2,...,1),i x D i k ∈=+设1(1,0)ki i i λλ==>∑111211121111221111111121111211[...()()]()()...()()()()...()()()k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k x x f x x x x x f x f x f x f f x f x f x f x f x λλλλλλλλλλλλλλλλλλλλλλλλλλλ-+-+++--++++++-++-+++++++++≤+≤++ 所以当1n k =+时,不等式(*) 成立,从而对于一切自然数(2)n n ≥ 不等式(*) 成立. 用同样方法可证明上凸情形.当然这里的定理对凸函数也是成立的.在下面的运算性质中有介绍.也就是下面的Jensen 不等式 1,Jensen 不等式 2.引理 2.2[2] (凸函数的Hadamard 不等式) 设()x φ是区间D 上的下凸函数则对于任意,.a b D a b ∈≤有11()[()()]22b a a b x dx a b b aφφφφ+⎛⎫≤≤+ ⎪-⎝⎭⎰ (#) 若()x φ是区间D 上的上凸函数,则对于任意,.a b D a b ∈≤,(#)中不等号反向.定理 2.3[2] ( Hadamard 型不等式) 设():[,](0,)f x a b →+∞对数下凸函数,则11()()[()()]2ln ()ln ()b a a b f f x dx f b f a b a f a f b +≤≤---⎰ () 若():[,](0,)f x a b →+∞对数下凸函数,则(5) 中不等号反向.证明 由引理2.1 和引理2.2有1ln ()ln ()11ln ()()lim lim lim n f a bb f x n a a n i f a n n n b a f x dx e dx e n +∆→∞=+∆→∞→∞-==≥=∑⎰⎰nn 由平均值i=1(b-a )e (b-a )11(ln ())()2lim ()ln ()()()()2n i b ai f a b n n b a a n a b lmf b a e f x dxa b b a e b a f =-+∆-→∞+∑==-+≥-=-⎰1b-a (b-a)e (其中b a ∆=-)又令()ln ()x f x φ=,根据定义2.1,对于a x b <<,有()()()()()a b x b x a x b aφφφ-+-≤- ()()()()()()ln ()()()()()()()()()()()exp()|()()[]()()ln ()ln (b a x b a a b x b x a b b b b f x x b a a a a a b a a b b a a b b b b a b aa ab a f x dx edx e dx e dx b a b a e e dx e x b a b a b a b a e e b a f b f a φφφφφφφφφφφφφφφφφ-⎡⎤⎢⎥-⎣⎦-+------==≤--⎡⎤==⎢⎥--⎣⎦--=-=--⎰⎰⎰⎰⎰[()()])f b f a - 定理得证.2.3[3] 凸函数的性质 在讨论了一些对数凸函数的定理,引理,我们来看一看凸函数的运算性质以及它们实用的定理:(1) 若()f x 与()g x 均为区间[,]a b 上的凸函数,则()f x +()g x 也是区间[,]a b 上的凸函数.(2)若()f x 与()g x 为区间[,]a b 上的凸函数,则ⅰ)0λ≥,则()f x λ是[,]a b 上的凸函数;ⅱ)0λ<,则()f x λ是[,]a b 上的凹函数.(3) 设()f x 与()g x 都是[,]a b 上的非负单调递增的凸函数,则()()()h x f x g x =也是[,]a b 上的凸函数.证明:对任意12,x x ∈[,]a b 且12x x <和任意λ∈(0,1),因()f x 与()g x 在[,]a b 上单调递增,故 :1212[()()][()()]0f x f x g x g x --≥即: 12211122()()()()()()()()f x g x f x g x f x g x f x g x +≤+ (1) 又因为()f x 与()g x 在[,]a b 上的凸函数,故1212[(1)]()(1)()f x x f x f x λλλλ+-≤+-,2121g(x +(1-)x )g(x )+(1-)g(x )λλλλ≤ 而()0,()0f x g x ≥≥,设将上面两个不等式相乘,可得2122222211211[(1)][(1)]()()(1)[()()()()](1)()()f x x g x g x f x f x g x f x g x f x g x λλλλλλλλ+-+-≤+-++-又由⑴知21212222211211[(1)][(1)]()()(1)[()()()()(1)()()]f x x g x x g x f x f x g x f x g x f x g x λλλλλλλ+-+-≤+-++-=1122(1)()()()()f x g x f x g x λλ-+由凸函数的定义知:()()()h x f x g x =是[,]a b 上的凸函数.注:1°()f x 与()g x 非负不能少,2°(),()f x g x 单调递增不能少. (4)[4][5] 设()u ϕ是单调递增的凸函数,()u f x =是凸函数,则复合函数[()]f x ϕ也是凸函数.对于其他情况也有类似的情况的命题,如下列:我们也可以看一下单值有反函数的函数的反函数与自身的凸凹性的关系. 如下表:(5) 若()f x 为区间I 的凸函数,且()f x 不是常数,则()f x 在I 部不能达到最大值.2.4[3] 凸函数的等价定义和判定设函数f 在区间(,)a b 上有定义,则下列命题彼此互相等价:(1)对任意12,x x ∈(,)a b 及任意恒有1212[(1)]()(1)()f x x f x f x λλλλ+-≤+-(2)对任意i x ∈(,)a b 及任意i p >0. 1,2,...,i n =. 11n i i p -=∑ 恒有11()n ni i i i i i f p x p f x ==⎛⎫≤ ⎪⎝⎭∑∑ (3)对任意1,2,(,)x x x a b ∈, 12x x x <<,恒有12121212()()()()()()f x f x f x f x f x f x x x x x x x---≤≤--- (4)在(,)a b 上曲线在其每一点处具有不垂直于x 轴的左、右切线,并且曲线在左、右切线之上.(5)若在(,)a b 存在单调递增的函数()x ϕ.以及0x ∈(,)a b ,使得对任意(,)x a b ∈,恒有00()()()xx f x f x t dt ϕ-=⎰,(6)对任意12,x x ∈(,)a b ,12x x <,恒有21121221()()1()22x x x x f x f x f f t dt x x ++⎛⎫≤≤ ⎪-⎝⎭⎰ (7)对任意12,(,)x x a b ∈,恒有1212()()22x x f x f x f ++⎛⎫≤ ⎪⎝⎭对于凸函数定义等价性的证明,可参看[4]及[5].对于等价定义(5)事实上,我们也有类似的这样一个定理: 定理 2.4 设函数f 在[,]a b 上连续,在(,)a b 上可导,则f 在[,]a b 上为上(下)凸函数(严格上(下)凸函数)的一个必要充分条件f '是在(,)a b 上递增(减)(严格递增(减)).证明 先证条件是必要的.设()12,(,)x x a b ⊂.只要x x '与满足12x x x x '<<<,由于等价定义(3)可知12121212()()()()()()f x f x f x f x f x f x x x x x x x '---≤≤'--- 在上式中令12,x x x x +-'→→,得211221()()()()f x f x f x f x x x -''≤≤-. 在是严格上凸函数的情形,我们取一点*x 满足*12x x x <<,从而得出**1212**12()()()()()()f x f x f x f x f x f x x x x x--''≤<≤--. 这样就得出了严格的不等式12()()f x f x ''<,必要性得证.再证充分性.设f '是在(,)a b 上递增.对任何()12,x x x ∈,由Lagrange 中值定理,可只存在()12,x x ξ∈与()12,x x η∈,使得11()()()f x f x f x x ξ-'=-,22()()()f x f x f x x η-'=- 因为x ξη<<,所以()()f f ξη''≤.从而有1212()()()()f x f x f x f x x x x x--≤--所以,可知函数f 在[,]a b 上为上凸函数.容易看出,当f '严格递增时,()()f f ξη''<.上述不等式中成立着严格的不等号,从而函数f 在[,]a b 上是严格的上凸函数.同理可以证明下凸时的情景.当函数f 在[,]a b 有二阶导数时,我们有下列应用起来就会更方便的定理 定理 2.5 设函数f 在[,]a b 上连续,f 在(,)a b 有二阶导数,则f 在[,]a b 上为上凸函数(下凸函数)的充分条件0(0)f f ''''≥≤在(,)a b 成立;而f 在[,]a b 上为严格上(下)凸函数的充分必要条件是0(0)f f ''''≥≤在(,)a b 成立并且在(,)a b 的任何开的子区间f ''不恒等于0.证明 第一个结论,由于0f ''≥得出f '在(,)a b 上递增再由定理4可得出.同理可证明下凸时的情景; 第二个结论,先证充分性 由于0f ''≥在(,)a b 成立并且在(,)a b 的任何开的子区间f ''不恒等于0.对任意12,(,)x x a b ∈,12x x <,又由于2121()()()x x f x f x f x dx ''''=+⎰,所以21()()f x f x ''>.所以函数f 在[,]a b 上为严格的凸函数.充分性得证.再证必要性(反证法) 因为函数f 在[,]a b 上为严格凸函数,对任意12,(,)x x a b ∈,12x x <,则21()()f x f x ''>,而由于2121()()()x x f x f x f x dx ''''=+⎰,若是有一个(,)a b 的子区间恒等于0.不妨设为(,)(,)a b ξη⊂,对任意(,)x ξη∈,()0f x ''=.则由于21()()()x x f f f x dx ηξ''''=+⎰,()()f f ξη''=,这与已知条件相矛盾.所以,必要性得证.同理可证明下凸时的情景. 所以,定理得证.关于凸函数的判定有很多,应用围最广的是Jensen 不等式. Jensen 不等式 1 设()f x 在区间I 上有定义,()f x 为凸函数,当且仅当12,,...,n x x x I ∀∈1212...()()...()n n x x x f x f x f x f n n ++++++⎛⎫≤⎪⎝⎭(J1) 此外,当且仅当12...n x x x === 时,上式等号成立(证明略请参考附[1]). Jensen 不等式 2 12,,...,[,]n x x x a b ∀∈,12,,...,0n λλλ>,且11ni i λ==∑,1.则()f x 为凸函数的充要条件为:11()()n ni i i i i i f x f x λλ==≤∑∑ (J2)此外,上式当且仅当12...n x x x === 时,等号成立.(证明略请参考附[1]). 这里对任意12,,...,0n βββ>,若是令1ii nii βλβ==∑,那么就有1111()nni i i i i i n n i i i i x f x f ββββ====⎛⎫ ⎪ ⎪≤⎪ ⎪⎝⎭∑∑∑∑ (J3) 每个凸函数都有一个Jensen 不等式,Jensen 不等式的应用围甚广,既可用于求解不等式问题,又可用于证明不等式定理,应用Jensen 不等式解题的关键有两条:一是必须先判明函数的上(下)凸性,二是直接应用Jensen 不等式有困难时,可以根据命题的特点,选择恰当的上凸函数和下凸函数,然后再进行解答.3 凸函数以及对数凸函数的应用在许多证明题中,我们常常遇到一些不等式的证明,其中有一类不等式利用凸函数的性质来证明可以非常简洁、巧妙.证明不等式是凸函数的一个重要应用领域,但关键是构造能够解决问题的凸函数.例 1[1] 利用凸函数证明调和平均值H ≤几何平均值G ≤对数平均值L ≤指数平均值E ≤算术平均值A.证明:事实上,我们可以用凸函数理论证明,对任意0(1,2,...,)ix i n = 有1212 (111)...nnx x x n nx x x +++≤≤+++ (2)只要将不等式各部分同时取对数,这时左边的不等式可变为121111...1111ln (ln ln ...ln )n nx x x n n x x x +++-≤----.从而由函数()ln f x x =-在(0,)+∞上的(严格)凸性可得;右边的不等式可直接由()ln g x x =上的(0,)+∞(严格)下凸性可得.(具体证明可参看[2])为了证明例1 中的连不等式,我们先来看下面两个小题:(1) 设0(1,2,...,)i a i n >=且不全相等,0(1,2,...,)i p i n >=有不等式链11111ln ln exp exp n n nii i i i i i i i i nn n ii i i i n i i p a p a p a a p p p a ======⎛⎫⎛⎫ ⎪ ⎪ ⎪≤≤ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭∑∑∑∑∑∑ (3) 证:凸函数()ln f x x =-的Jensen 不等式:取0i q >,11ni i q ==∑,0(1,2,...,).i a i n >=得11ln ln n n i i i i i i q a q a ==-≤-∑∑ [4] 111ln ln nn i i i i i i q q a a ==-≤-∑∑ (5)在[4]中令1i ini ii ip a q p a ==∑得 1111exp ln nn niiii ni i i i iii ip p p a p a a a ====⎛⎫≤ ⎪⎝⎭∑∑∑∑ (6)又由(4),(5)可得 1111in nq i i i n i i i i ia q a q a ===≤≤∑∏∑ (7)在此令1ini i i p q p ==∑,可得111111ln exp nn ni i i i ii i i n n n ii i i i i i p p a p a p p p a ======⎛⎫ ⎪≤≤ ⎪ ⎪ ⎪⎝⎭∑∑∑∑∑∑ (8) 联立(6),(8)既得证 (3).(2) 设()()f x p x 与在[,]a b 上正的连续函数且()f x ≠常数,在⑻中作代换i b a p p a i n -⎛⎫=+ ⎪⎝⎭,i b a a f a i n -⎛⎫=+ ⎪⎝⎭并在“∑”号后均乘b a n -,由0b a ->,不改变原不等号方向.令n →∞ 便得(3)的积分形式:ln ln exp exp b bb ba aa ab b bba aa ap fdx pdxp fdx pfdx f p p pdx pdxdx dx f f ⎛⎫⎛⎫ ⎪⎪ ⎪≤≤≤ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰⎰⎰⎰⎰⎰(3)'在(3)'中令()1,()p x f x x ==()11ln ln ln ln 2b ab a b a b ab a e ----+⎛⎫≤≤≤⎪-⎝⎭再联立(2),得出H G L E A ≤≤≤≤.例 2 (1)在锐角ABC ∆中,证明1cos cos cos 2A B C ++≤, (2)12,,...,n a a a 设为正数,证明恒成立12...n a a a n +++≥. 证明 (1)令()cos()f x x =-,(0,)x π∈.由于()cos()0f x x ''=>,(0,)2x π∈.所以()f x 在(0,)2x π∈上凸函数,所以由于(J1)()()()()33f A f B f C A B Cf ++++≥,即cos()cos()cos()s()33A B C A B C co ---++≥-1()2=-即1cos cos cos 2A B C ++≤;(2) 令()ln ,(0,)g x x x =-∈+∞,所以21()0,(0,)g x x x''=>∈+∞, 故()g x 是在(0,)+∞上的上凸函数.也是根据(J1)121212121212()()...()...()ln ln ...ln ...ln()ln ln ...ln ...ln()n nn nn n g a g a g a a a a g n n a a a a a a n na a a a a a n n++++++≥++++++-≥-++++++≤即即从而,有12...n a a a n+++≥.下面我们再看一个用对数凸函数证明的不等式题. 例 3[2]10,0,12ni i i πλλ=<<>=∑i 设x ,则12112212sin(...)sin sin ...sin n n n n x x x x x x λλλλλλ+++≥ (&)12112212cos(...)cos cos ...cos n n n n x x x x x x λλλλλλ+++≥(%)证明 设()sin()f x x =,由于2()()[()]10f x f x f x '''-=-<,故sin()x 是(0,)2π上的对数凸函数,同理cos()x 也是(0,)2π上对数凸函数.根据定理2即可得(&),(%).例 4 设()f x 在[,]a b 上可积,且()m f x M ≤≤,()t ϕ是在[,]m M 上的连续下凸函数,则11()(())b b a a f x dx f x dx b a b a ϕϕ⎛⎫≥ ⎪--⎝⎭⎰⎰. 证明 令,()k n k f f a b a n ⎛⎫=+- ⎪⎝⎭,,1()k n x b a n ∆=-.由于()t ϕ是凸函数,故有1,2,,1,2,,...()()...()n n n n n n n n f f f f f f n n ϕϕϕϕ++++++⎛⎫≥⎪⎝⎭. 由定积分的定义,上式就相当于,,,,11()n ni n i n i n i ni i f f b a b a ϕϕ==⎛⎫∆∆ ⎪ ⎪≥-- ⎪⎪⎝⎭∑∑,,1()k n x b a n ∆=- 在上式中令n →∞时, 则有11()(())b b a a f x dx f x dx b a b a ϕϕ⎛⎫≥⎪--⎝⎭⎰⎰. 命题得证.例 5[7]设,i i a b R +∈,111,2,...,,,n n i i i i i n a b ====∑∑则21112nni i i i i ia a ab ==≥+∑∑.证明 记1ni i s a ==∑,11ni i a s ==∑,将21112nni i i i i i a a a b ==≥+∑∑变为11121n ii i ia b s a =≥+∑,那么取11i ib a +作为函数1()1f x x =+,则由于3()2(1)0f x x -''=+>,再令i i i b x a =,i i a sλ=所以根据凸函数性质和(J3)得出11111211ni n i i i i i i a b s x a λ==≥=++∑∑结论本文主要讨论了凸函数以及对数凸函数一类重要的函数的概念,包括它们的一些定义,性质,定理,引理和它们在证明一些不等式的重要应用.本文介绍了Jensen不等式,Hadamard不等式,叙述了一些定理,引理,性质并给出了它们的证明,并指出它们在判断凸函数的应用.本文还试就凸函数的等价定义、性质和在证明不等式中的应用等问题作一初步的探讨,以便进一步了解凸函数的性质及其在证明不等式时的作用.最后举出了一些例题来具体的来体现凸函数以及对数凸函数在不等式证明的应用.参考文献:[1]汪文珑.数学分析选讲[M].文理学院数学系,2001[2] 琼.对数凸函数的Jensen型和Hadamard型不等式[J].学报,,2005,3[3]查良凇.凸函数及其在不等式证明中的应用[J].工贸职业技术学院学报,,2005,3[4]燕建梁,喜善.凸函数的性质及其在不等式证明中的应用[J].教育学院学报,,2002,4[5]T.M菲赫金哥尔茨普.微积分教程[M].1965: 290-300[6]常庚哲,史济怀.数学分析教程(上册)(M).高等教育,2003:167-176[7]碧荣.凸函数及其性质在不等式证明中的应用[J].广西师学院学报,,2004,2[8]白景华.图函数的性质、等价定义及应用[J].大学学报,,2003,2[9]Satish Shirali, Harkrishan L. Vasudeva. Mathematical analysis[M]. Alpha Science International Ltd., c2006.[10]Tom M. Apostol.Mathematical analysis[M].China Machine Press, 2004.致这是本人的第一篇论文,所以在多方面没有指导老师金洪老师的指导是很难进行下去的.老师从我的选题开始便给予了很大帮助,在以后的开题,开题报告,初稿的资料搜索,初稿出来后的校正,进一步的改进都给予了极大帮助,使我在论文的完成进程中得以较为平坦地进行下去.在论文的写作的进行中,我同组等同学也给了我很多帮助.在此表示感.也在此对我们的学校师大学以及我校资料室提供这样一个学习环境和帮助,表示感.也感那在身后的帮助.。
凸函数的性质和一些不等式的证明
凸函数的性质和一些不等式的证明高等教育自学考试毕业论文论文题目:凸函数的性质和一些不等式的证明作者姓名:XXX专业:数学教育主考学校:兰州大学数学与统计学学院__准考证号: XXXXXXXXXXXX指导教师姓名职称:XXX甘肃省高等教育自学考试办公室印制2013 年 3 月 4 日XX 专业论文标题:凸函数的性质和一些不等式的证明论文标题(Properties of convex function andinequality )论文作者(XX )论文作者(XXXXXXXXX )数学专业本科论文目录内容摘要: (4)关键词: (4)一、凸函数 (5)1.凸函数的定义 (5)2.常见的凸函数 (6)4.凸函数的定理 (6)二.凸函数在证明不等式中的简单应用 (7)1.凸函数在几何平均值中的应用 (7)2.凸函数在Young不等式中的应用 (9)3.凸函数在Jensen不等式中的应用 (9)4.凸函数在三角不等式中的应用 (10)注释: (11)参考文献: (11)凸函数的性质和一些不等式的证明——凸函数的证明XX内容摘要:我们通过学习通过我们熟知的一元二次函数:y=x2一些凸函数的定义、概念和它的性质,还有凸函数在Jensen不等式、三角不等式中的应用,让我们了解凸函数的用途。
并且用它的一些特殊的性质来解决我们实际生活中的实际问题。
关键词:凸函数、性质、Jensen不等式、三角不等式、一、凸函数1.凸函数的定义我们都学习了二元一次的函数2()f x x =的图像,它的特点是:曲线2y x =上任意两点间的弧线总在这两点连线的下方。
我们把具有这一种特性的曲线称为凸的由此,我们定义:设()f x 在[,]a b 上有定义,若曲线()y f x =上任意两点间的弧线总位于连接该两点的直线之下,则称函数()f x 是凸函数.上面的定义只是简单的描述性定义,下面我们介绍关于凸函数的精确定义,以便于我们更好的利用它的性质。
凸函数的性质及其在证明不等式中的应用
凸函数的性质及其在证明不等式中的应用本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.March凸函数的性质及其在证明不等式中的应用数学计算机科学学院摘要:凸函数是一类重要的函数.凸函数在不等式的研究中尤为重要,而不等式最终归结为研究函数的特性,这就需要来研究凸函数了.本篇文章论述了凸函数、对数凸函数的定义、引理、定理和性质及其常用的一些判别方法(根据凸函数,对数凸函数的已知的定理、定义、性质,Jensen不等式等一些方法来判断函数是否是凸函数);本文还试就凸函数的等价定义、性质和在证明不等式中的应用等问题作一初步的探讨,以便进一步了解凸函数的性质及其在证明不等式时的作用;并浅谈了一下凸函数在不等式证明中的一些应用(如上述利用凸函数以及对数凸函数的定理,定义,性质,Jensen不等式来证明一些不等式),推广并证明了一些不等式(三角不等式,Jensen不等式等),得到了新的结果.关键词:凸函数;对数凸函数;Jensen不等式;Hadamard不等式;应用Nature of Convex Function and its Application in ProvingInequalitiesChen Huifei, College of Mathematics and Computer ScienceAbstract : Convex function is a kind of important function. Convex function is particularly important in the study of the inequality, and the study of the inequality is reduced to study the characteristics of the convex function,which makes it necessary to study convex functions.We discuss definition, lemma, theorem and the nature of some commonly used discriminant methods of the convex function and the logarithmic convex function in this paper(According to known theorems, definitions, nature, Jensen inequality and other methods of convex function and the logarithmic convex function to recognize whether the function is a convex function); In this paper we also try to discuss the equivalent definition and nature of the convex function and the issue of its application in demonstration inequalities of convex function in order to have a better understanding of the nature and role of the convex function in proving inequalities; we also try to discuss some applications of convex function in proving inequalities(Convex function and the use of these convex function theorem, definition, nature, Jensen inequality to prove Inequality).We also have promoted and proved some inequality (Triangle inequality, Jensen inequality) and reached new results.Key words : Convex function;Logarithmic convex function ; Jensen inequality; Hadamard Inequality;Application1 引言在很多数学问题的分析与证明中,我们都需要用到凸函数,例如在数学分析、函数论、泛函分析、最优化理论等当中.凸函数是一类重要的函数.凸函数在不等式的研究中尤为重要,而不等式最终归结为研究函数的特性,这就需要来研究凸函数了.常用的凸函数有两种,一种叫上凸函数,即曲线位于每一点切线的下方或曲线上任意两点间的弧段总在这两点连线上方的函数;另一种叫下凸函数,即曲线位于每一点切线的上方或曲线上任意两点间的弧段总在这两点连线下方的函数.本文试就凸函数的等价定义、性质和在证明不等式中的应用等问题作一初步的探讨,以便进一步了解凸函数的性质及其作用.2 概念2.1 凸函数的定义上面对凸函数作了直观的描述,我们用分析式子给出其精确定义.定义[1]2.1设函数()f x 在区间[,]a b 上有定义,若对[,]a b 上任意两点12,x x 和正数λ∈(0,1),总有1212[(1)]()(1)()f x x f x f x λλλλ+-≤+- (A)则f 为区间[,]a b 上的凸函数.(同时也称为上凸函数,若是不等号反向则称为下凸函.)定义[1]2.2 若函数()f x 在D 上是正的,且ln ()f x 在D 上是下凸函数,则称()f x 是D 上的对数下凸函数这时, 对于任意,x y D ∈ 和(0,1)λ∈,有ln [(1)]ln ()(1)ln ()f x y f x f y λλλλ+-≤+-. 即(1)[(1)]()()f x y f x f y λλλλ-+-≤ (B)如果(2) 中的不等号反向,则称()f x 是D 上的对数上凸函数.2.2 对数凸函数的性质我们已经有了凸函数以及对数凸函数的定义,现在我们来看一下对数的一些引理,定理及其性质等.定理 2.1[2] (对数下(上) 凸函数的判定定理) 设()f x 是D 上的正值函数,且在D 上有二阶导数,则()f x 在D 上为对数下(上) 凸函数的充要条件为对于任意x ∈D ,有2()()(())0(0)f x f x f x '''-≥≤先证下引理引理 2.1[2] (1) 若()g x 是[,]a b 上的下(上) 凸函数,则()()g x f x e = 为[,]a b e e 上的对数下(上) 凸函数.(2) 若()f x 是[,]c d 上的对数下(上) 凸函数,则()ln ()g x f x =为[ln ,ln ]c d 上的下(上) 凸数.证明(1) 任取12,[,]c d x x e e ∈,由()g x 在[,]c d 上是下凸函数,对任意01λ<<有()()121212[(1)]()(1)()121()()112[(1)][][]()()g x x g x g x g x g x f x x e e e e f x f x λλλλλλλλλλ+-+---+-=≤==(2)任取12,[ln ,ln ]x x c d ∈ ,由()f x 是[,]c d 上的对数下凸函数,对任意01λ<<有11212121212[(1)]ln [(1)]ln[()][()]ln ()(1)ln ()()(1)()g x x f x x f x f x f x f x g x g x λλλλλλλλλλ-+-=+-≤=+-=+-所以()g x 为区间[ln ,ln ]c d 上的下凸函数. (用类似方法可证上凸的情形)下证定理2.1[2] “⇐” 设[,]D c d =,()ln ()g x f x =,则 ()()[ln ()]()f xg x f x f x '''==,22()()[()]()()f x f x f x g x f x '''-''= 所以()g x 是为区间[ln ,ln ]c d 上的下凸函数,根据引理1 得()ln ()()g x f x e e f x ==为[ c ,d] 上的对数下凸函数“⇒” 若()f x 为[,]c d 上的对数下凸函数,由引理1 得()ln ()g x f x =为区间[ln ,ln ]c d 上的下凸函数,从而()0g x ''≥ ,对()ln ()g x f x =求二阶导数即得2()()(())0f x f x f x '''-≥. (用类似方法可证上凸的情形) .推论2.1[2] 设12(),()f x f x 是D 上的对数下(上) 凸函数,则1212()(),()()f x f x f x f x +也是D 上的对数下(上) 凸函数证明:设1212()()(),,,(0,1)g x f x f x x x D λ=+∀∈∈121122121111112221221121122212((1))((1))((1))()()()()[()()][()()]()()g x x f x x f x x f x f x f x fx f x f x f x f x g x g x λλλλλλλλλλλλλλ----+-=+-++-≤+≤+⨯+= 其中(A) 由..H older 不等式得到根据定义 2.2 得出1121()()f x f x +是D 上的对数下凸函数.122112[()()]()()()()f x f x f x f x f x f x '''=+12211212[()()]()()2()()()()f x f x f x f x f x f x f x f x ''''''''=++2121212222221111222[()()][()()]{[()()]}(){()()[()]}(){()()[()]}0f x f x f x f x f x f x f x f x f x f x f x f x f x f x '''-=''''''-+-≥根据定理2.1 得12(),()f x f x 是D 上的对数下凸函数. (用类似方法可证上凸的情形)用数学归纳法可将推论1 推广到有限情形.推论 2.2[2] 设()f x 是定义在D 上的正值函数,1) 若()f x 是对数下凸函数,则1()f x 在区间D 上是对数上凸函数. 2) 若()f x 是对数上凸函数,则1()f x 在区间D 上是对数下凸函数. 证明 1) 设1()()x f x φ=22322224241()()()2(())()(),()[]()()()()()2(())()()()(())()()[()][][][]()()()f x f x f x f x x x f x f x f x f x f x f x f x f x f x f x x x x f x f x f x φφφφφ''''-''''==-=-'''''''--'''-=--=-显然是小于0的,所以1()()x f x φ=是对数上凸函数,同理可证2) . 定理 2.2[2] (Jensen 型不等式) 设()f x 是D 上的正值对数下凸函数, 12,01, (1)i i n x D λλλλ∈<<+++=12112212(...)()()...()n n n n f x x x f x f x f x λλλλλλ+++≤ (*)若()f x 是D 上的正值对数上凸函数,则(*) 中不等号反向.证明 (用数学归纳法) 当2n =时,由定义2.2 知不等式(*) 成立. 假设n k =时不等式(*) 成立,即121122121(...)()()...()(1,0)kkk k k i i i f x x x f x f x f x λλλλλλλλ=+++≤=>∑ ,(1,2,...,1),i x D i k ∈=+设1(1,0)ki i i λλ==>∑111211121111221111111121111211[...()()]()()...()()()()...()()()k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k x x f x x x x x f x f x f x f f x f x f x f x f x λλλλλλλλλλλλλλλλλλλλλλλλλλλ-+-+++--++++++-++-+++++++++≤+≤++ 所以当1n k =+时,不等式(*) 成立,从而对于一切自然数(2)n n ≥ 不等式(*) 成立. 用同样方法可证明上凸情形.当然这里的定理对凸函数也是成立的.在下面的运算性质中有介绍.也就是下面的Jensen 不等式 1,Jensen 不等式 2.引理 2.2[2] (凸函数的Hadamard 不等式) 设()x φ是区间D 上的下凸函数则对于任意,.a b D a b ∈≤有11()[()()]22b a a b x dx a b b aφφφφ+⎛⎫≤≤+ ⎪-⎝⎭⎰ (#) 若()x φ是区间D 上的上凸函数,则对于任意,.a b D a b ∈≤,(#)中不等号反向.定理 2.3[2] ( Hadamard 型不等式) 设():[,](0,)f x a b →+∞对数下凸函数,则11()()[()()]2ln ()ln ()b a a b f f x dx f b f a b a f a f b +≤≤---⎰ (@) 若():[,](0,)f x a b →+∞对数下凸函数,则(5) 中不等号反向. 证明 由引理2.1 和引理2.2有1ln ()ln ()11ln ()()lim lim lim n f a bbf x naan i f a nn n b a f x dx edx e n +∆→∞=+∆→∞→∞-==≥=∑⎰⎰nn 由平均值i=1(b-a )e(b-a )11(ln ())()2lim ()ln ()()()()2ni b aif a bnn b aan a blmf b a ef x dxa bb a eb a f =-+∆-→∞+∑==-+≥-=-⎰1b-a (b-a)e(其中b a ∆=-)又令()ln ()x f x φ=,根据定义2.1,对于a x b <<,有()()()()()a b x b x a x b aφφφ-+-≤-()()()()()()ln ()()()()()()()()()()()exp()|()()[]()()ln ()ln (b a x b a a b x b x a bbbbf x x b aaaaa b a a b b a a b bbb ab aa ab a f x dx edx edx edxb a b a eedx ex b a b a b a b a e e b a f b f a φφφφφφφφφφφφφφφφφ-⎡⎤⎢⎥-⎣⎦-+------==≤--⎡⎤==⎢⎥--⎣⎦--=-=--⎰⎰⎰⎰⎰[()()])f b f a - 定理得证.2.3[3] 凸函数的性质 在讨论了一些对数凸函数的定理,引理,我们来看一看凸函数的运算性质以及它们实用的定理:(1) 若()f x 与()g x 均为区间[,]a b 上的凸函数,则()f x +()g x 也是区间[,]a b 上的凸函数.(2)若()f x 与()g x 为区间[,]a b 上的凸函数,则ⅰ)0λ≥,则()f x λ是[,]a b 上的凸函数;ⅱ)0λ<,则()f x λ是[,]a b 上的凹函数.(3) 设()f x 与()g x 都是[,]a b 上的非负单调递增的凸函数,则()()()h x f x g x =也是[,]a b 上的凸函数.证明:对任意12,x x ∈[,]a b 且12x x <和任意λ∈(0,1),因()f x 与()g x 在[,]a b 上单调递增,故 :1212[()()][()()]0f x f x g x g x --≥即: 12211122()()()()()()()()f x g x f x g x f x g x f x g x +≤+ (1) 又因为()f x 与()g x 在[,]a b 上的凸函数,故1212[(1)]()(1)()f x x f x f x λλλλ+-≤+-,2121g(x +(1-)x )g(x )+(1-)g(x )λλλλ≤而()0,()0f x g x ≥≥,设将上面两个不等式相乘,可得2122222211211[(1)][(1)]()()(1)[()()()()](1)()()f x xg x g x f x f x g x f x g x f x g x λλλλλλλλ+-+-≤+-++-又由⑴知21212222211211[(1)][(1)]()()(1)[()()()()(1)()()]f x x g x x g x f x f x g x f x g x f x g x λλλλλλλ+-+-≤+-++-=1122(1)()()()()f x g x f x g x λλ-+由凸函数的定义知:()()()h x f x g x =是[,]a b 上的凸函数. 注:1°()f x 与()g x 非负不能少,2°(),()f x g x 单调递增不能少.(4)[4][5] 设()u ϕ是单调递增的凸函数,()u f x =是凸函数,则复合函数[()]f x ϕ也是凸函数.对于其他情况也有类似的情况的命题,如下列:我们也可以看一下单值有反函数的函数的反函数与自身的凸凹性的关系. 如下表:(5) 若()f x 为区间I 内的凸函数,且()f x 不是常数,则()f x 在I 内部不能达到最大值.2.4[3] 凸函数的等价定义和判定设函数f 在区间(,)a b 上有定义,则下列命题彼此互相等价:(1)对任意12,x x ∈(,)a b 及任意恒有1212[(1)]()(1)()f x x f x f x λλλλ+-≤+-(2)对任意i x ∈(,)a b 及任意i p >0. 1,2,...,i n =. 11ni i p -=∑ 恒有11()n ni i i i i i f p x p f x ==⎛⎫≤ ⎪⎝⎭∑∑ (3)对任意1,2,(,)x x x a b ∈, 12x x x <<,恒有12121212()()()()()()f x f x f x f x f x f x x x x x x x---≤≤---(4)在(,)a b 上曲线在其每一点处具有不垂直于x 轴的左、右切线,并且曲线在左、右切线之上.(5)若在(,)a b 内存在单调递增的函数()x ϕ.以及0x ∈(,)a b ,使得对任意(,)x a b ∈,恒有00()()()xx f x f x t dt ϕ-=⎰,(6)对任意12,x x ∈(,)a b ,12x x <,恒有21121221()()1()22x x x x f x f x f f t dt x x ++⎛⎫≤≤ ⎪-⎝⎭⎰(7)对任意12,(,)x x a b ∈,恒有1212()()22x x f x f x f ++⎛⎫≤ ⎪⎝⎭对于凸函数定义等价性的证明,可参看[4]及[5].对于等价定义(5)事实上,我们也有类似的这样一个定理:定理 2.4 设函数f 在[,]a b 上连续,在(,)a b 上可导,则f 在[,]a b 上为上(下)凸函数(严格上(下)凸函数)的一个必要充分条件f '是在(,)a b 上递增(减)(严格递增(减)).证明 先证条件是必要的.设()12,(,)x x a b ⊂.只要x x '与满足12x x x x '<<<,由于等价定义(3)可知12121212()()()()()()f x f x f x f x f x f x x x x x x x '---≤≤'---在上式中令12,x x x x +-'→→,得211221()()()()f x f x f x f x x x -''≤≤-.在是严格上凸函数的情形,我们取一点*x 满足*12x x x <<,从而得出**1212**12()()()()()()f x f x f x f x f x f x x x x x --''≤<≤--. 这样就得出了严格的不等式12()()f x f x ''<,必要性得证.再证充分性.设f '是在(,)a b 上递增.对任何()12,x x x ∈,由Lagrange 中值定理,可只存在()12,x x ξ∈与()12,x x η∈,使得11()()()f x f x f x x ξ-'=-,22()()()f x f x f x xη-'=-因为x ξη<<,所以()()f f ξη''≤.从而有1212()()()()f x f x f x f x x x x x--≤--所以,可知函数f 在[,]a b 上为上凸函数.容易看出,当f '严格递增时,()()f f ξη''<.上述不等式中成立着严格的不等号,从而函数f 在[,]a b 上是严格的上凸函数.同理可以证明下凸时的情景.当函数f 在[,]a b 内有二阶导数时,我们有下列应用起来就会更方便的定理 定理 2.5 设函数f 在[,]a b 上连续,f 在(,)a b 内有二阶导数,则f 在[,]a b 上为上凸函数(下凸函数)的充分条件0(0)f f ''''≥≤在(,)a b 内成立;而f 在[,]a b 上为严格上(下)凸函数的充分必要条件是0(0)f f ''''≥≤在(,)a b 内成立并且在(,)a b 的任何开的子区间内f ''不恒等于0.证明 第一个结论,由于0f ''≥得出f '在(,)a b 上递增再由定理4可得出.同理可证明下凸时的情景; 第二个结论,先证充分性 由于0f ''≥在(,)a b 内成立并且在(,)a b 的任何开的子区间内f ''不恒等于0.对任意12,(,)x x a b ∈,12x x <,又由于2121()()()x x f x f x f x dx ''''=+⎰,所以21()()f x f x ''>.所以函数f 在[,]a b 上为严格的凸函数.充分性得证. 再证必要性(反证法) 因为函数f 在[,]a b 上为严格凸函数,对任意12,(,)x x a b ∈,12x x <,则21()()f x f x ''>,而由于2121()()()x x f x f x f x dx ''''=+⎰,若是有一个(,)a b 的子区间恒等于0.不妨设为(,)(,)a b ξη⊂,对任意(,)x ξη∈,()0f x ''=.则由于21()()()x x f f f x dx ηξ''''=+⎰,()()f f ξη''=,这与已知条件相矛盾.所以,必要性得证.同理可证明下凸时的情景. 所以,定理得证.关于凸函数的判定有很多,应用范围最广的是Jensen 不等式.Jensen 不等式 1 设()f x 在区间I 上有定义,()f x 为凸函数,当且仅当12,,...,n x x x I∀∈1212...()()...()n n x x x f x f x f x f n n ++++++⎛⎫≤⎪⎝⎭(J1) 此外,当且仅当12...n x x x === 时,上式等号成立(证明略请参考附[1]). Jensen 不等式 2 12,,...,[,]n x x x a b ∀∈,12,,...,0n λλλ>,且11ni i λ==∑,1.则()f x 为凸函数的充要条件为:11()()n ni i i i i i f x f x λλ==≤∑∑ (J2)此外,上式当且仅当12...n x x x === 时,等号成立.(证明略请参考附[1]). 这里对任意12,,...,0n βββ>,若是令1ii nii βλβ==∑,那么就有1111()nni i i i i i n n i i i i x f x f ββββ====⎛⎫ ⎪ ⎪≤⎪ ⎪⎝⎭∑∑∑∑ (J3) 每个凸函数都有一个Jensen 不等式,Jensen 不等式的应用范围甚广,既可用于求解不等式问题,又可用于证明不等式定理,应用Jensen 不等式解题的关键有两条:一是必须先判明函数的上(下)凸性,二是直接应用Jensen 不等式有困难时,可以根据命题的特点,选择恰当的上凸函数和下凸函数,然后再进行解答.3 凸函数以及对数凸函数的应用在许多证明题中,我们常常遇到一些不等式的证明,其中有一类不等式利用凸函数的性质来证明可以非常简洁、巧妙.证明不等式是凸函数的一个重要应用领域,但关键是构造能够解决问题的凸函数.例 1[1] 利用凸函数证明调和平均值H ≤几何平均值G ≤对数平均值L ≤指数平均值E ≤算术平均值A.证明:事实上,我们可以用凸函数理论证明,对任意0(1,2,...,)ix i n 有1212...111...nnx x x n nx x x +++≤≤+++ (2)只要将不等式各部分同时取对数,这时左边的不等式可变为121111...1111ln (ln ln ...ln )n nx x x n n x x x +++-≤----.从而由函数()ln f x x =-在(0,)+∞上的(严格)凸性可得;右边的不等式可直接由()ln g x x =上的(0,)+∞(严格)下凸性可得.(具体证明可参看[2])为了证明例1 中的连不等式,我们先来看下面两个小题:(1) 设0(1,2,...,)i a i n >=且不全相等,0(1,2,...,)i p i n >=有不等式链11111ln ln exp exp n n nii i i i i i i i i nn n ii i i i n i i p a p a p a a p p p a ======⎛⎫⎛⎫ ⎪ ⎪ ⎪≤≤ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭∑∑∑∑∑∑ (3) 证:凸函数()ln f x x =-的Jensen 不等式:取0i q >,11ni i q ==∑,0(1,2,...,).i a i n >=得11ln ln n n i i i i i i q a q a ==-≤-∑∑ [4] 111ln ln nni i i i i i q q a a ==-≤-∑∑ (5)在[4]中令1iini ii ip a q p a ==∑得 1111exp ln nn niiii ni i i i iii ip p p a p a a a ====⎛⎫≤ ⎪⎝⎭∑∑∑∑ (6)又由(4),(5)可得 1111in nq i i i n i i i i ia q a q a ===≤≤∑∏∑ (7)在此令1ini i i p q p ==∑,可得111111ln exp nn ni i i i ii i i n n n ii i i i i ip p a p a p p p a ======⎛⎫ ⎪≤≤ ⎪ ⎪ ⎪⎝⎭∑∑∑∑∑∑ (8)联立(6),(8)既得证 (3).(2) 设()()f x p x 与在[,]a b 上正的连续函数且()f x ≠常数,在⑻中作代换i b a p p a i n -⎛⎫=+ ⎪⎝⎭,i b a a f a i n -⎛⎫=+ ⎪⎝⎭并在“∑”号后均乘b a n -,由0b a ->,不改变原不等号方向.令n →∞ 便得(3)的积分形式:ln ln exp exp b bb ba aa ab b bba aa ap fdx pdxp fdx pfdx f p p pdx pdxdx dx f f ⎛⎫⎛⎫ ⎪⎪ ⎪≤≤≤ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰⎰⎰⎰⎰⎰(3)'在(3)'中令()1,()p x f x x ==()11ln ln ln ln 2b ab a b a b ab a e ----+⎛⎫≤≤≤⎪-⎝⎭再联立(2),得出H G L E A ≤≤≤≤.例 2 (1)在锐角ABC ∆中,证明1cos cos cos 2A B C ++≤, (2)12,,...,n a a a 设为正数,证明恒成立12...n a a a n +++≥证明 (1)令()cos()f x x =-,(0,)x π∈.由于()cos()0f x x ''=>,(0,)2x π∈.所以()f x 在(0,)2x π∈上凸函数,所以由于(J1)()()()()33f A f B f C A B C f ++++≥,即cos()cos()cos()s()33A B C A B C co ---++≥-1()2=-即1cos cos cos 2A B C ++≤;(2) 令()ln ,(0,)g x x x =-∈+∞,所以21()0,(0,)g x x x''=>∈+∞,故()g x 是在(0,)+∞上的上凸函数.也是根据(J1)121212121212()()...()...()ln ln ...ln ...ln()ln ln ...ln ...ln()n nn nn n g a g a g a a a a g n n a a a a a a n na a a a a a n n++++++≥++++++-≥-++++++≤即即从而,有12...n a a a n+++≥下面我们再看一个用对数凸函数证明的不等式题. 例 3[2]10,0,12ni i i πλλ=<<>=∑i 设x ,则12112212sin(...)sin sin ...sin n n n n x x x x x x λλλλλλ+++≥ (&)12112212cos(...)cos cos ...cos n n n n x x x x x x λλλλλλ+++≥ (%)证明 设()sin()f x x =,由于2()()[()]10f x f x f x '''-=-<,故sin()x 是(0,)2π上的对数凸函数,同理cos()x 也是(0,)2π上对数凸函数.根据定理2即可得(&),(%).例 4 设()f x 在[,]a b 上可积,且()m f x M ≤≤,()t ϕ是在[,]m M 上的连续下凸函数,则11()(())b b a af x dx f x dx b a b a ϕϕ⎛⎫≥ ⎪--⎝⎭⎰⎰. 证明 令,()k n k f f a b a n ⎛⎫=+- ⎪⎝⎭,,1()k n x b a n ∆=-.由于()t ϕ是凸函数,故有1,2,,1,2,,...()()...()n n n n n n n n f f f f f f n n ϕϕϕϕ++++++⎛⎫≥⎪⎝⎭. 由定积分的定义,上式就相当于,,,,11()n ni n i n i n i ni i f f b a b a ϕϕ==⎛⎫∆∆ ⎪ ⎪≥-- ⎪⎪⎝⎭∑∑,,1()k n x b a n ∆=-在上式中令n →∞时, 则有11()(())b b a a f x dx f x dx b a b a ϕϕ⎛⎫≥ ⎪--⎝⎭⎰⎰. 命题得证.例 5[7]设,i i a b R +∈,111,2,...,,,n n i i i i i n a b ====∑∑则21112nni i i i i ia a ab ==≥+∑∑.证明 记1ni i s a ==∑,11ni i a s ==∑,将21112nni i i i i i a a a b ==≥+∑∑变为11121n ii i ia b s a =≥+∑,那么取11i ib a +作为函数1()1f x x=+,则由于3()2(1)0f x x -''=+>,再令i i i b x a =,ii a sλ=所以根据凸函数性质和(J3)得出11111211ni n i i i ii i a b s x a λ==≥=++∑∑结论本文主要讨论了凸函数以及对数凸函数一类重要的函数的概念,包括它们的一些定义,性质,定理,引理和它们在证明一些不等式的重要应用.本文介绍了Jensen 不等式,Hadamard 不等式,叙述了一些定理,引理,性质并给出了它们的证明,并指出它们在判断凸函数的应用.本文还试就凸函数的等价定义、性质和在证明不等式中的应用等问题作一初步的探讨,以便进一步了解凸函数的性质及其在证明不等式时的作用.最后举出了一些例题来具体的来体现凸函数以及对数凸函数在不等式证明的应用.参考文献:[1]汪文珑.数学分析选讲[M].绍兴文理学院数学系,2001[2]刘琼.对数凸函数的Jensen型和Hadamard型不等式[J].邵阳学报,邵阳,2005,3[3]查良凇.凸函数及其在不等式证明中的应用[J].浙江工贸职业技术学院学报,绍兴,2005,3[4]燕建梁,张喜善.凸函数的性质及其在不等式证明中的应用[J].太原教育学院学报,太原,2002,4[5]T.M菲赫金哥尔茨普.微积分教程[M].1965: 290-300[6]常庚哲,史济怀.数学分析教程(上册)(M).高等教育出版社,2003:167-176[7]李碧荣.凸函数及其性质在不等式证明中的应用[J].广西师范学院学报,南宁,2004,2[8]白景华.图函数的性质、等价定义及应用[J].开封大学学报,开封,2003,2[9]Satish Shirali, Harkrishan L. Vasudeva. Mathematical analysis[M]. Alpha Science International Ltd., c2006.[10]Tom M. Apostol.Mathematical analysis[M].China Machine Press, 2004.致谢这是本人的第一篇论文,所以在多方面没有指导老师张金洪老师的指导是很难进行下去的.张老师从我的选题开始便给予了很大帮助,在以后的开题,开题报告,初稿的资料搜索,初稿出来后的校正,进一步的改进都给予了极大帮助,使我在论文的完成进程中得以较为平坦地进行下去.在论文的写作的进行中,我同组等同学也给了我很多帮助.在此表示感谢.也在此对我们的学校安徽师范大学以及我校资料室提供这样一个学习环境和帮助,表示感谢.也感谢那在身后的帮助.。
凸函数在证明不等式中的运用
凸函数在证明不等式中的运用摘 要:凸性是一种重要的几何性质,凸函数是一种性质特殊的函数.凸集和凸函数在泛函分析,最优化理论,数理经济学等领域都有着广泛的应用.凸函数也是高等数学中的一个基本内容,他在证明比较复杂的不等式方面有着重大作用.本文探讨了凸函数与不等式之间的密切关系,利用凸函数的凸性来研究不等式,比传统方法更简洁,还进一步探讨了不等式的一些具体应用.对凸函数在不等式中的运用进行了讨论.关键词:凸函数 不等式 证明在数学思想方法中,函数思想是很重要的一种思想方法,其精髓在于利用函数的相关性质对讨论的问题进行推理和论证,进而寻求解决问题的途径。
凸函数是一类性质特殊的函数,它在证明比较复杂的不等式方面有着重大作用,本文对凸函数的性质在比较经典的不等式证明中的简单应用进行初步讨论.1.函数的定义及其常见的凹凸函数大家都熟悉函数2()f x x =的图像,它的特点是:曲线2y x =上任意两点间的弧总在这两点连线的下方。
我们可以下这样一个定义:设()f x 在[,]a b 上有定义,若曲线()y f x =上任意两点间的弧总位于连接该两点的直线之下,则称函数()f x 是凸函数.上面的定义只是几何描述性的,为了便于凸函数的应用,用严格的式子分析定义凸函数是十分必要的.在不等式的证明中经常会应用到凸函数的两个定义:定义1[6] 设()f x 在(,)a b 内连续,如果对(,)a b 内任意两点12,x x 恒有 1212()()()22x x f x f x f ++≤ 那么称()f x 在(,)a b 内是凸函数.定义[6]2 设()f x 在(,)a b 内连续,如果对(,)a b 内任意两点12,,(0,1)x x λ∈ ,有 )()1()())1((2121x f x f x x f λλλλ-+≤-+ 则称()f x 在(,)a b 内是凸函数. 1.1常见的凸函数有1.1.1 )0()(<=k x x f k 或)0(>k ,x x x f ln )(=均为(0,)∞内的严格凸函数;1.1.2 ()ln(1),()0)x f x e f x c =+=≠均为(,)-∞+∞内的严格凸函数.1.2 凸函数的常见性质及其判定定理性质1 设()f x 为凸函数,0k >为常数,则()kf x 是凸函数:若()(1,2,...,)i f x i n =是凸函数,则1()ni i f x =∑ 仍是凸函数:若()u ϕ是增凸函数,()u f x =也是凸函数,则复合函数[()]f x ϕ也是凸函数[1].性质2 如果()f x 是(,)a b 上的凸函数,则在(,)a b 的任一闭子区间上有界. 性质3 如果()f x 是(,)a b 上的凸函数,则()f x 在(,)a b 内连续.定理1[1]()f x 是区间I 上的凸函数的充要条件是:对于满足11ni i λ==∑ 的任意12,,...,0n λλλ≥ ,有:11()()n ni i i i i i f x f x λλ==≤∑∑ 12,,...,n x x x I ∀∈ (1)1.3凸函数的不等式1.3.1 凸函数基本不等式设()f x 是(,)a b 内的严格凸函数,则对(,)a b 内的任意一组不全相同的值12,,...,n x x x ,必有不等式[2]: 1.3.2 Jensen 不等式[2]Jensen 不等式是凸函数的一个重要性质,利用其证明一些重要不等式可以更简捷,它有如下两种形式:(1) 设()f x 是(,)a b 内的凸函数,则对(,)a b 内的任意一组值12,,...,n x x x 及任意正数12,,...,n p p p 必有不等式: 112211221212...()()...()()()......n n n n n np x p x p x p f x p f x p f x f p p p p p p ++++++≤≥++++++ (2)设(),()f x p x 为[,]a b 上的可积函数,而 (),()0,()0ba m f x M p x p x dx ≤≤≥>⎰则当()()t m t M ϕ≤≤为凸函数时有()()()[()]()()()()bbaabbaap x f x dxp x f x dxp x dxp x dxϕϕ≤≥⎰⎰⎰⎰2.凸函数在证明不等式中的简单应用在初等数学中,调和平均值不大于几何平均值,几何平均值不大于算术平均值,算术平均值不大于平方平均值,而证明用到数学归纳法.其实,这些不等式可在凸函数框架下统一证明. 例1 设0,1,2,...,i a i n >= ,证明:1212...111...nna a a n na a a +++≤+++证明 设()ln ,(0,)f x x x =-∀∈∞ ,有01)(2''>=xx f ,从而,函数()ln f x x =-在(0,)∞是严格凸函数, 取121(0,),,1,2,...,,...1i i i n x a q i n q q q n=∈∞==+++=有1212ln ln ln ln(...)...n n a a a a a a n n n n n n-+++≤----或n n n n n n na a a a a a na a a ...ln )ln ...ln (ln ...ln 211121121-=+++-≤+++- 即12...na a a n+++取 1211(0,),,1,2,...,,...1i i n i x q i n q q q a n=∈∞==+++= 同样方法,有12111...nn a a a ≤+++于是,n N +∀∈ , 有1212 (111)...nna a a n na a a +++≤+++例2 证明12,,...,,1n x x x R p +∀∈≥ 有 11212......()p p p p n n x x x x x x n n ++++++≤上式称为算术平均不大于(1)p p ≥ 次平均,特别的,当2p = ,得到算术平均值不大于平方平均值。
关于凸函数的研究毕业论文
性质10:若函数 是定义在区间 上的凸函数,则有:
1) 函数 在 处处存在左、右导数 与 ,且 .
2) 与 都是 的不减函数.
性质11:设函数 为区间 上的严格下凸函数,若有 是 的极小值点,则 是 在 上唯一的极小值点.
1)由 式知:当 时 式成立.现证 时 成立.事实上, , , , ,由 式有
此即 式当 时成立.一般地,对任意正整数 ,重复上面方法,应用 式 次,可知
这表明 式对一切 皆成立.
2)(证明 式对 成立时,必对 也成立)记 ,则 ,可得 .假若 式对 成立,则有
两边同乘以 ,减去 ,最后除以 ,又 ,从而可得:
Key words:Convex function;Inequality; Application; Property
第1章 绪论1
1.1 凸函数研究的背景1
1.2 凸函数研究的意义1
第2章 凸函数的定义及判定2
2.1 凸函数几种常见定义:2
2.2 定义之间等价性的证明与探讨4
2.3 凸函数的判定定理7
凸函数的概念最早见于1905年Jenser的著作中.它在纯粹数学和应用数学的众多领域中具有广泛的应用,现已成为数学规划、对策论、数理经济学、变分学和最优控制等学科的理论基础和有力工具.在函数图形的描绘和不等式证明推导方面,凸函数也具有十分重要的作用.
1.2
凸函数的定义最早是由Jenser给出.自建立了凸函数理论以来,凸函数这一重要概念已在许多数学分支中得到了广泛应用.凸函数涉及了许多数学命题的讨论证明和应用.例如在数学分析、函数论、泛函分析、最优化理论等当中.应用研究方面,凸函数作为一类特殊函数在现代优化学、运筹学、管理学、和工程测绘学等多个学科有着重要的意义和很好的应用.由于凸函数具有较好的几何和代数性质,在数学规划中有着广泛的应用背景,一些常见的不等式都可以从函数的凸性中导出.数理经济学中,对于风险厌恶的度量,也可以表现为对效用函数凸性的选择,所以研究凸函数的性质就显得十分必要了.另外,由于凸函数理论的广泛性,因此对于其理论的研究成果还有待进一步的深入和推广.
凸函数的性质及其应用 毕业论文
凸函数的性质及其应用摘要凸函数是一类重要的函数,在数学规划中有着广泛的应用,本文给出了凸函数的三种等价定义,并讨论了凸函数的有关性质,以及它在不等式方面的相关应用。
[关键词]凸函数等价定义性质应用最优化Nature and Application of Convex FunctionAbstractConvex function is an important function and it has a wide application in mathematic programming. This essay gives three kinds of equal definitions of convex function and discusses some relative nature of it. And it also discusses some relative applications on inequality[Key wards] Convex function The definition of equivalence nature applicationOptimization目录绪论 (1)1凸函数的概念与等价定义 (1)1.1凸函数的概念 (1)1.2凸函数的等价定义 (2)2凸函数的简单性质 (3)3凸函数的判定定理 (5)4关于凸函数的几个重要不等式 (7)4.1Jensen不等式 (7)4.2Hadamard不等式 (10)5 凸函数的应用 (11)5.1 凸函数在证明不等式中的应用 (11)般凸函数和凸集 (13)广义凸函数求极小的问题 (14)5.4广义凸函数求极大的问题 (16)结束语 (19)致谢 (19)参考文献 (20)绪论凸函数是一类非常重要的函数,广泛应用于数学规划,控制论等领域,函数凸性是数学分析中的一个重要概念,它在判定函数的极值、研究函数的图象以及证明不等式诸方面都有广泛的应用.凸分析作为数学的一个比较年轻的分支,是在50年代以后随着数学规划,最优控制理论、数理经济学等应用数学学科的兴起而发展起来的。
凸函数的性质研究毕业论文完整版
凸函数性质研究摘要凸函数是分析学中一类重要的函数,最早是由Jensen提出。
它在纯粹数学与应用数学等诸多领域中应用十分广泛,现已成为对策论、数学规划、分形学、最优控制和数理经济学等学科的理论基础和有力工具。
为了理论上的突破,加强其在实践中的应用,凸函数的性质还在不断研究和完善中。
本文将散见于各文献中凸函数的概念进行了系统的归纳和总结,并给出了凸函数常见的判定定理,进而研究了凸函数的常用性质,列举了与凸函数相关的著名不等式;由于凸函数的定义是由不等式给出的,其广泛应用主要体现在不等式的证明中。
基于此,本文主要通过对凸函数的概念和性质进行系统的总结和研究,探索出凸函数在一般不等式,Jensen不等式,Holder不等式,Cauchy不等式,Young不等式,及Hadamard不等式证明中的应用,并简要阐述了凸函数在其它领域的贡献。
关键词:凸函数;不等式;导数;单调性Study on the properties of convex functionAbstractConvex function which was first proposed by Jensen is a kind of important functions in analytics. It is widely used in pure and applied mathematics ,etc. Convex function becomes the theoretical basis and the powerful tool of the game theory、mathematical programming theory、analysis、mathematical science、economics and other disciplines. In order to have a theoretical breakthrough which could strengthen the application in practice,the properties of convex function are being researched. In this article, the writer’s main work is summarizing the various concepts of convex functions which developed in different mathematical books. Furthermore, the writer also gives some definitions of common theorems and also enumerates the famous inequalities related to convex function. Because the definition of convex function is given by inequalities,its application mainly reflects in the proof of inequality. The writer mainly summarizes concepts and properties of the convex function and explores its application in the general inequality such as Jensen inequality, Holder inequality, Cauchy inequality, Young inequality and Hadamardinequality. Atlast, it discusses the contribution of convex function in other fields briefly.目录摘要 (1)第一章绪论 (2)1.1 凸函数的产生和发展 (2)1.2 凸函数研究的目的和意义 (2)第二章凸函数的定义及判定 (2)2.1 凸函数的定义及关系 (2)2.2 凸函数的判定定理 (2)第三章凸函数的性质 (2)3.1 凸函数的一般性质 (2)3.2 凸函数的运算性质 (2)3.3 凸函数的微分性质 (2)3.4 凸函数的积分性质 (2)3.5 凸函数的其他性质 (2)第四章凸函数的应用 (2)4.1 利用凸函数证明经典不等式 (2)4.2 凸函数的经典不等式在证明不等式中的应用[5] (2)4.3 利用凸函数的定义证明一般不等式[8] (2)4.4 凸函数在积分不等式中的应用 (2)4.5 凸函数在其它领域的应用简述 (2)4.5.1 凸函数在生产函数中的应用 (2)4.5.2 凸函数在消费者效用最大化问题中的应用 (2)第五章结论 (2)参考文献 (2)致 (2)第一章绪论1.1 凸函数的产生和发展函数是数学中最重要的基本概念,也是数学分析的重点研究对象,而凸函数则是其中独特的一类。
凸函数及其在不等式证明中的应用
凸函数及其在不等式证明中的应用摘要:凸函数是一类重要的函数,在数学许多问题中都有广泛的应用。
本文论述了凸函数的定义、性质及其判别方法,讨论了凸函数在不等式证明中的重要应用并对凸函数进行了推广。
关键词:凸函数; 性质; 不等式; Jensen不等式Convex Function and its Application in the proof InequalityAbstract Convex Function is a kind of important Function, it has a far-ranging application in a lot of mathematical problems .The paper related and analyzed the definition,property, and discriminant method of the convex Function .At the same time,the theme talked about the Convex Function’s important in the proof Inequality and popularized about the Convex Function.Key Words Convex Function; property; Inequality; Jensen Inequality目录题目:凸函数及其在不等式证明中的应用 (1)摘要 (1)关键词 (1)引言 (1)1凸函数的定义、性质及判定定理 (1)1.1凸函数的定义 (1)1.2凸函数的几种等价定义 (2)1.3凸函数的性质及定理 (3)2关于凸函数的四个不等式 (4)2.1 Jensen不等式1 (4)2.2 Jensen不等式2 (4)2.3 Holder不等式1 (5)2.4 Holder不等式2 (6)3凸函数在不等式证明中的应用 (7)3.1利用Jensen不等式1和凸函数性质证明不等式 (7)3.2利用Jensen不等式2和凸函数性质证明不等式 (9)3.3凸函数在积分不等式中的应用. (10)4凸函数的推广 (11)4.1凸函数的定义推广 (11)4.2凸函数的性质及定理推广 (12)4.2.1凸函数的性质推广 (12)4.2.2凸函数的定理推广 (13)结束语 (14)参考文献 (15)致谢 (16)凸函数及其在不等式证明中的应用王红娟(天水师院 数学与统计学院 甘肃 天水 741000)摘 要: 凸函数是一类重要的函数,在数学许多问题中都有广泛的应用。
凸函数及其在证明不等式中的应用
本科毕业论文题目凸函数及其在证明不等式中的应用系别数学与信息科学学院专业数学与应用数学指导教师吴开腾评阅教师班级2004级2班姓名冀学本学号200402410642008年5月27日目录摘要 (I)Abstract (I)1引言 (1)2凸函数的等价定义 (1)2.1凸函数三种定义的等价性的讨论 (2)2.1.1定义1⇔定义2 (2)2.1.2定义1⇔定义3 (4)2.2判定定理与JESEN不等式 (4)3.性质 (5)4凸函数在不等式证明中的应用 (7)4.1利用凸函数定义证明不等式 (7)4.2利用凸函数性质证明不等式 (8)结束语 (11)参考文献 (11)致谢 (12)摘要首先给出了凸函数的三个典型定义,分析了它们之间的关系,并证明了三种定义之间的等价性.接着给出了凸函数的一个判定定理以及Jesen不等式.然后讨论了凸函数的几条常用性质,通过例题展示了凸函数在不等式证明中的应用.凸函数具有重要的理论研究价值和实际广泛应用,利用凸函数的性质证明不等式;很容易证明不等式的正确性.因此,正确理解凸函数的定义、性质及应用,更对有关学术问题进行推广研究起着举足轻重的作用.在不等式证明中的应用并举例说明解题思路与证明方法,最后证明了几个常见的重要不等式.并得到了几种常用凸函数的形式.关键词凸函数,凸性不等式,jensen不等式Abstract First has given the convex function three model definition,has analyzed between them the relations,and has proven between three kind of definition equivalence. Then has given a convex function determination theorem as well as the Jesen inequality.Then discussed convex function several commonly used nature,has demonstrated the convex function in inequality proof application through the sample question.The convex function has the important fundamental research value and the actual widespread application,the use convex function nature proof inequality;Very easy to prove the inequality the accuracy. Therefore,the correct understanding convex function's definition,the nature and the application,carry on the promotion to the related academic question to study the pivotal function.In the inequality proved that the application and explains with examples the problem solving mentality and the certificate method,finally has proven several common important inequalities.And obtained several kind of commonly used convex function forms.Key words Convex function,convexity inequality,jensen inequality1引言凸函数是一类常见的重要函数,上世纪初建立了凸函数理论以来,凸函数这一重要概念已在许多数学分支得到广泛应用.例如在数学分析、函数论、泛函分析、最优化理论等当中.常用的凸函数有两种,一种叫上凸函数,即曲线位于每一点切线下方或曲线上任意两点间的弧段总在这两点连线上方的函数;另一种叫下凸函数,即曲线位于每一点切线的上方或曲线上任意两点间的弧段总在这两点连线下方的函数.现行高等数学教材中也都对函数的凸性作了介绍,由于各版本根据自己的需要,对凸函数这一概念作了不同形式的定义,本文介绍了凸函数的三种典型定义,讨论了它们的等价性,并给出了利用凸函数的定义证明凸函数的简单应用.凸函数在不等式的研究中尤为重要,而不等式证明最终归结为研究函数的特性,所以研究凸函数的性质就显得十分重要.凸函数的性质相当多,已有很多文献专门就函数凸性作了研究.本文就凸函数的性质介绍了几条常用的性质,并给出了证明;最后,重点介绍了凸函数的性质在不等式证明中的应用.2凸函数的等价定义定义1[1]若函数()f x 对于区间(,)a b 内的任意12,x x 以及(0,1)λ∈,恒有[]1212(1)()(1)()f x x f x f x λλλλ+-≤+-,则称()f x 为区间(,)a b 上的凸函数.其几何意义为:凸函数曲线()y f x =上任意两点1122(,()),(,())x f x x f x 间的割线总在曲线之上.定义2若函数()f x 在区间(,)a b 内连续,对于区间(,)a b 内的任意12,x x ,恒有[]12121(()()22x x f f x f x +≤+,则称()f x 为区间(,)a b 上的凸函数.其几何意义为:凸函数曲线()y f x =上任意两点1122(,()),(,())x f x x f x 间割线的中点总在曲线上相应点(具有相同横坐标)之上.定义3若函数()f x 在区间(,)a b 内可微,且对于区间(,)a b 内的任意x 及0x ,恒有000()()()()f x f x f x x x '≥+-,则称()f x 为区间(,)a b 上的凸函数.其几何意义为:凸函数曲线()y f x =上任一点处的切线,总在曲线之下.以上三种定义中,定义3要求()y f x =在(,)a b 内是可导的,定义2要求()f x 在(,)a b 上是连续的.而定义1对函数()y f x =则没有明显地要求.实际上可以证明在定义1中,函数()y f x =在(,)a b 上是连续的.而定义1和定义2两个定义是否要求函数()y f x =是可导的,则没有提出.如果加上可导的条件,则可证明三种定义是等价的.2.1凸函数三种定义的等价性的讨论2.1.1定义1⇔定义2证明定义1⇒定义3,取12λ=,由定义1推得定义2.定义2⇒定义1首先,论证()f x 对于任意的()12,,x x a b ∈及有理数()0,1λ∈,不等式()()()()121211f x x f x f x λλλλ+-≤+-⎡⎤⎣⎦,成立.事实上,对于此有理数λ总可以表示为有穷二进位小数,即12121122220.2n n n n n na a a a a a a λ---++++== ,其中0i a =或1,()1,2,,1;1n i n a =-= .由于1λ-也是有理数.所以也可以表示为有穷二进位小数,即121211222210.2n n n n n nb b b b b b b λ---++++-== ,由于()11λλ+-=,有0i b =或1,()1,2,,1;1n i n b =-= ,于是[]()()()12121,2,,1i i i i f a x b x a f x b f x i n +≤+=- .所以()121f x x λλ+-⎡⎤⎣⎦12121211211222222222n n n n n n n n n n a a a a b b b b f x x ------⎡⎤++++++++=+⎢⎥⎣⎦()22221112121122112222n n n n n n a a b b f a x b x f x x ----⎛⎫++++≤+++ ⎪⎝⎭232323123111121211222222()2n n n n n n n n n n a a a a b b b b a x b x x x f --------⎡⎤⎛⎫+++++++++++⎢⎥ ⎪⎝⎭⎢⎥=⎢⎥⎢⎥⎣⎦()()22221112121122112222n n n n n n a a b b a f x b f x f x x ----⎛⎫++++≤+++⎡⎤ ⎪⎣⎦⎝⎭()()()()()()()()()()3311122122122221112212211122112221111*2222221112221n n n n n n n n n n n n a b a f x b f x a f x b f x f x x a f x b f x a f x b f x a f x b f x a x b x f --------⎛⎫++++≤+++++⎡⎤⎡⎤ ⎪⎣⎦⎣⎦⎝⎭≤≤++++++⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦+⎛⎫+ ⎪⎝⎭()()()()()()()()111221221112211211122212n n n n n n a f x b f x a f x b f x a f x b f x a f x b f x ---≤++++++⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦++⎡⎤⎣⎦ ()()()()()12121211211212222222221n n n n n n n n n na a a ab b b b f x f x f x f x λλ------++++++++=+=+- .下面再论证()f x 对λ为无理数时定义1也成立.事实上,对任意无理数()0,1λ∈,存在有理数列{}()()0,1,n n n λλλ⊂→→∞,所以()()()121211n n x x x x n λλλλ+-→+-→∞,由于()f x 在(),a b 内连续,所以()()()()()()()()()()12121212121lim 1lim 1lim 11n n n n n n f x x f x x f x x f x f x f x f x λλλλλλλλλλ→∞→∞→∞+-⎡⎤⎣⎦⎡⎤=+-⎣⎦=+-⎡⎤⎣⎦≤+-⎡⎤⎣⎦=+-.综上即知,定义1与定义2等价.2.1.2定义1⇔定义3证明定义1⇒定义3:对(),a b 内任意的0x 及x ,若0x x <,则取0h >,使00x x h x <+<.于是,可以得到()()()()0000f x h f x f x f x h x x +--≤-,上式中令0h →,由于()f x 可微,所以有()()()000f x f x f x x x -'≤-,即()()()()000f x f x f x x x '≥+-.若0x x <,则取0h >,使0x x h x <+<,同理可证.定义3⇒定义1:对于区间(),a b 内的任意12,x x (不妨设12x x <)以及()0,1λ∈,令12x x x <<,则有()()()1122211,x x x x x x x x λλ-=---=-,由泰勒公式,得()()()()111f x f x f x x θ'=+-及()()()()222f x f x f x x θ'=+-,其中1122x x x θθ<<<<,于是()()()()()()()()12122121111f x f x f x x x x f f λλλλλλθθ''+-=+-+---⎡⎤⎡⎤⎣⎦⎣⎦再进一步由()()21f f θθ''>,所以()()()()121211f x f x f x x λλλλ+-≥+-⎡⎤⎣⎦即()()()()121211f x x f x f x λλλλ+-≤+-⎡⎤⎣⎦,最后,由等价的传递性即知定义2与定义3也是等价的.2.2判定定理与Jesen 不等式判定定理[2]设f 为区间I 上的二阶可导函数,则在I 上f 为凸函数的充要条件是()0f x ''≥,x I ∈.用定义直接来判断一个函数是不是凸函数,往往是很困难的.但用该判定定理来判断一个光滑函数是否凸,则是相当简便的.在实际应用中常常先用导数来肯定函数的凸性,再反过来引出它必定满足凸性不等式.在许多证明题中,我们常常遇到一些不等式的证明,其中有一类不等式利用凸函数的性质定理来证明可以非常简洁、巧妙.证明不等式就是凸函数的一个应用领域,但关键是构造能够解决问题的凸函数.定理(Jensen 不等式)[3]设函数:(,).f a b R →f 在(,)a b 上处处二次可微,且()0f x ''≥(对任意(,)x a b ∈,则()f x 为(,)a b 上的凸函数,即对任意m N ∈,(,)k x a b ∈及10,1mk k k λλ=≥=∑成立如下不等式11()()m m k k k k k k f x f x λλ==≤∑∑,(1)该不等式称为Jensen 不等式,该性质是凸函数的一个重要性质,也是定义的一般情况.可以说,凸函数在不等式证明中的应用很大程度上是由Jensen 不等式来体现的,因为每个凸函数都有一个Jensen 不等式,因而它在一些不等式证明中有着广泛的应用.利用它可以推出常用的一些重要公式,为证明不等式开辟了一条新路.注:由定理,经简单计算知下列函数在其定义域上都是凸函数,从而()(1,2,3)i f x i =都满足不等式(1).(a )11()0,0)f x x a a x =>≥+ (,(b )21()(0)f x x c c x =<<-,(c )3()(0)xf x x c c x =<<-.凸函数及其性质在解题中有着十分广泛的应用,下面试举数例述之.3.性质利用函数的凸性来证明不等式,是一种重要的方法,通常需要构造适当的凸函数,再运用函数的凸性的定义及几个等价论断,可将一些初等不等式,积分不等式转化为研究函数的性态,从而使不等式简化进而得到证明.函数的凸性是函数在区间上变化的整体性态,把握区间上整体性态,不仅可以更加科学、准确的描绘函数的图象,而且有助于对函数的定性分析.凸函数是一类重要的函数.凸函数在不等式的研究中尤为重要,而不等式最终归结为研究函数的特性,所以研究凸函数的性质就显得十分必要了.性质1[4]设函数()()f x x 、g 在区间I 为凸函数,则()()f x x +g 在区间I 也为凸函数.证明:()12,,0,1x x I λ∀∈∀∈因函数()()f x x 、g 在区间I 为凸函数,从而()()()()()121211f x x f x f x λλλλ+-≤+-,且()()()()()121211g x x g x g x λλλλ+-≤+-.于是有()()()()()()()()()12121122[11][]1[]f x x g x x f x g x f x g x λλλλλλ+-++-≤++-+因此()()f x +g x 在区间I 为凸函数.性质2设函数()()f x x 、g 在区间I 为凸函数,则()(){}max ,f x g x 在区间I 为凸函数.证明()12,,0,1x x I λ∀∈∀∈,因函数()()f x x 、g 在区间I 为凸函数从而有()()()()()121211f x x f x f x λλλλ+-≤+-,且()()()()()121211g x x g x g x λλλλ+-≤+-.令()()(){}max ,F x f x g x =,则()()()()()(){}1212121max 1,1F x x f x x g x x λλλλλλ+-=+-+-()()()()()(){}1212max 1,1f x f x g x g x λλλλ≤+-+-()(){}()()(){}()()()112212max ,1max ,1f x g x f x g x F x F x λλλλ≤+-=+-.因此,()()(){}max ,F x f x g x =在区间I 为凸函数.性质3[5]设函数()()f x x 、g 在区间(),a b 为递增的非负凸函数,则()()f x x g 在区间(),a b 为凸函数.证明()12,,x x a b ∀∈,设12x x <,因()()f x x 、g 为非负凸函数,由定理3知(),x a b ∀∈,()()f x x 、g 在点x 连续,且()()12120()()22f x f x x x f ++≤≤,()()12120()()22g x g x x x g ++≤≤.因此()()f x x g 在区间(),a b 连续,因()()f x x 、g 递增,从而()()()()()()()()()()()()2121112212210f x f x g x g x f x g x f x g x f x g x f x g x --=+-+≥⎡⎤⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎣⎦且()()()()21211212()()2222f x f xg x g x x x x x f g ++++≤()()()()()()()()()()()()11221221221142f x g x f x g x f x g x f x g x f x g x f x g x ++++=≤由定义知()()f x x g 在区间(),a b 为凸函数.当然凸函数的性质还远不止施工述几条,这里就不一一列举.4凸函数在不等式证明中的应用4.1利用凸函数定义证明不等式例1求证:对任意实数,a b ,有()12a ba b e e e +≤+.证明设()x f x e =,则()()0,,f x x ''≥∈-∞+∞,故()x f x e =为(),-∞+∞上的凸函数.从而对121,,2x a x b λ===,由定义有()12121111(1)(1)()2222f x x f x f x ⎡⎤+-≤+-⎢⎥⎣⎦,即()12a ba b e e e +≤+.例2设01,01x a <<<<,则有()()1111a ax x x -+-<-.证明设()()()111a a f x x x -=+-()01x <<,那么()()()()()()111111a a a a f x a x x x ax ---'=-+-++-()()()()()()()()()()11112111111111a a a a a a a a f x a a x x a a x x a a x x a a x x --------''=--+---+--+--+()()()()()()11122111111a a a a a a a x x x x x x x x -----⎡⎤=--+-++++-+⎣⎦()()()()()()1122111111a a a a a a x x a a x x -----=--+-=-+-,于是01,01x a <<<<时,()0f x ''>.由严格凸函数的定义,其中12,1,0x x x λ===得()()()()()110110f x f x x x f x f =+-<+-⎡⎤⎣⎦ ,即()()1111a ax x x -+-<-.例3[6]若()f x 为(),a b 内的凸函数,(,),1,2,,i x a b i n ∈= ,求证()111()nini i i xf f x n n ==≤∑∑.证明对12,2n x ==,不等式是显然的,设对1n -不等式成立,则因为1212111n n n x x x x x x n x -++++++-=+- ,这里1n n λ-=,()()121,,,1n n x x x a b x a b n -+++∈∈- ,由定义有()()1111111()()1n n ii ni i n ii xx n f f f x f x n n n n n-===-≤+=-∑∑∑,例4若()0,i θπ∈,1,2,,i n =则12sinn nθθθ+++≥ .证明令()ln(sin )i i f θθ=-,()0,i θπ∈,1,2,,i n = .由于()2sec 0i i f θθ''=>则()f x 为()0,π上的严格凸函数,所以由例3的不等式有1111ln(sin )ln(sin )n ni i i i n n θθ==-≤-∑∑,即12121ln(sin)ln(sin sin sin )n n n nθθθθθθ+++≥ ,由1e >得12sin n nθθθ+++≥ ,上式等号仅在12n θθθ=== 成立.4.2利用凸函数性质证明不等式例5证明不等式:122212122()n n x x x x x x n n++++++≤≤ ,其中10,1,2,,x i n >= .证明考虑对数函数()()ln 0f x x x =>,因为()210,f x x ''=-<故函数()ln f x x =是上凸函数,由上凸函数的性质,即得()12121ln ln ln ln ln n n x x x x x x n n +++≥+++= ,由对数性质,即证明了12nx x x n+++≤.(2)又考虑函数()()20g x x x =->,所以()20g x ''=-<.故()2g x x =-也是上凸函数,由上凸函数的性质,得22221212()n n x x x x x x n n+++-----≥ ,即22221212()n n x x x x x x ++++++≤ ,因此12221212()n n x x x x x x n n++++++≤ ,(3)综合(2),(3)整个命题证明结束.例6设12n ααα ,,,均为正数,且121n ααα+++= .求证:22221212111(1)()()()n n n nαααααα+++++++≥ .证明考虑函数()2,f x x =因为()20f x ''=>,所以()2f x x =是下凸函数,令1111,x a a =+1,n n nx a a =+ ,由下凸函数的性质,则有2221212111()((n na a a a a a ++++++ 12212111()n n a a a a a a n n++++++≥ (4)2121111(1)nn a a a =++++ ,由柯西不等式:22222111()()()nnniii i i i i a b a b ===≥∑∑∑得1212111111(()1n na a a a a a +++=+++ ()21212111()n na a a n a a a =++++≥ ,于是有212111()nn a a a +++≥ ,并代入(4)式即得22221212111(1)()()()n n n nαααααα+++++++≥ ,证毕.例7[7]在ABC ∆中,求证sin sin sin 2A B C ++≤.证明考虑函数()sin 0y x x π=<<,因为()sin 00y x x π''=-<<<,所以sin y x =在()0,π内是上凸函数,由上凸函数的性质有sin sin sin sin33A B C A B C++++≤,由于A B C π++=.故sin sin sin 2A B C ++≤.例8[8]设,i i a b R +∈,1,2,,i n = ,11nni i i i a b ===∑∑,则21112nni i i i i ia a ab ===+∑∑.证明记1ni i s a ==∑则11ni i a s ==∑,取()1,01f x x x=>+,易知()0f x ''>,有判定定理知()f x 为凸函数,取ii i b x a =,由于11n n i i i i a b s ====∑∑.故由性质得21111111211nn i i nni i i i i i i ii i a a s s s s ab a b s x x ss=====≥==++++∑∑∑∑.例9设,0i i a b >,1,2,,i n = ,有1111nnnqp q i i i i i i i a b a b ===⎡⎤⎡⎤≤⎢⎥⎢⎥⎣⎦⎣⎦∑∑∑,其中0,0p q >>,111p q+=.证明令(),1,0p f x x p x =>>,因为()2(1)0p f x p p x -''=->,由判定定理知(),1,0p f x x p x =>>,在()0,+∞上是严格凸函数,由Jensen 不等式得到11()nnppi i i ii i x x λλ==≤∑∑,今设12,,,n u u u 为非负实数且10ni i u =≠∑,在上述表达式中以1niii u u=∑代替i λ,得到1111()()()n n npp p i i i ii i i i u x u x u -===≤∑∑∑.由题设111p q+=知()1q pp =-令1,q q i i i i iu bx a b -==,不妨设10ni i b =≠∑,代入上式便得不等式1111nnnqp q i i i i i i i a b a b ===⎡⎤⎡⎤≤⎢⎥⎢⎥⎣⎦⎣⎦∑∑∑.特别地,取2p q ==时得就到柯西不等式1ni i i a b =≤∑.综上所述,在不等式的证明中,巧妙地应用凸函数的定义及性质,就可使一些较复杂的不等式迎刃而解.结束语通过研究凸函数的几种定义,分析它们之间的关系,证明了给出三种典型定义之间的等价性.给出了凸函数的一个判定定理以及Jesen 不等式.然后讨论了凸函数的几条常用性质,接着通过例题展示了凸函数在不等式证明中的应用.凸函数的应用领域非常广泛,主要是在不等式的证明中,运用它解题显得巧妙,简练,通过对上述问题的证明,我们认识到利用凸函数的定义、等价定义、性质及判定定理证明不等式,关键是寻找合适的函数,若不能直接找出,则可以对不等式进行适当的变形,从而达到证明不等式的目的.至于凸函数在其他领域的应用则未涉及.参考文献[1]花树忠.凸函数的三种典型定义及其间的等价关系[J].邯郸职业技术学院学报.2002(1):52-54.[2]李碧荣.及其性质在不等式证明中的应用[J].广西师范学院学报.2004,21(2).[3]林银河.凸函数的等价描述与Jensen 不等式[J].丽水师范专科学校学报.2001,23(2).[4]杜厚雄.凸函数的性质及其应用[J].现代企业教育.2007:173-174.[5]白景华.凸函数的性质、等价定义及应用[J].开封大学学报.2003,17(2):59-64.[6]曹良干.凸函数的定义及应用[J].阜阳师范学院学报.1994(2).[7]燕建梁,张喜善.凸函数的性质及其在不等式证明中的应用[J].太原教育学院学报.2002,20(4):63-65.[8]李荣春.利用凸函数证明不等式[J].宁德师专学报.1998,10(1).致谢经过半年的忙碌和工作,本次毕业论文已经接近尾声,作为一个本科生的毕业论文,由于经验的匮乏,难免有许多考虑不周全的地方,如果没有导师的督促指导,以及一起工作的同学们的支持,想要完成这个论文是难以想象的.在这里首先要感谢我的导师吴开腾老师.吴老师平日里工作繁多,但在我做毕业论文的每个阶段,从查阅资料到论文开题,中期检查,后期修稿定稿等整个过程中都给予了我悉心的指导.我的论文较为复杂烦琐,但是,吴老师仍然细心地纠正论文中的错误.除了敬佩吴老师的专业水平外,他的治学严谨和科学研究的精神也是我永远学习的榜样,并将积极影响我今后的学习和工作.然后还要感谢大学四年来所有的老师,为我打下数学与应用数学专业知识的基础;同时还要感谢所有的同学们,正是因为有了你们的支持和鼓励.此次毕业论文才会顺利完成.最后感谢数学与信息科学学院和我的母校—内江师范学院大学四年来对我的大力栽培.谨以此文献给所有关心和帮助过我的老师、亲人、同学和朋友们.我唯有在以后不断地努力进取,以学业和工作的继续求索来感谢培育我的母校和所有关心我的师长亲朋!希望我们都幸福快乐!谢意难尽,前途漫长,除了热血、辛劳、泪水和汗水之外,我别无奉献.论文落笔,如释重负,但“路漫漫其修远兮,吾将上下而求索”.。
凸函数的性质及应用 毕业论文
摘要本文首先提出了凸函数的几种等价定义并说明凸函数的几何意义,接着探讨了凸函数的几条定理及其在经济学中的应用,比如最优化应用及风险态度应用,以及函数的凸性在有关经济学问题中发挥的作用,并从数学的角度详细说明了经济学教材中一些结论的来源,如对经济曲线的分析.关键字:凸函数;曲线分析;最优化;风险态度目录1.引言 (1)2.凸函数的定义及几何意义 (1)2.1凸函数的几种定义 (1)2.2凸函数的几何意义: (3)3.凸函数的判定定理 (3)4.函数凸性在经济学中的应用 (7)4.1凸函数在经济函数曲线分析中的应用 (7)4.2凸函数在经济优化中的应用 (11)4.3凸函数在风险态度中的应用 (14)5.总结 (17)参考文献 (18)1.引言凸函数是一个十分重要的函数,它的定义最早是由Jensen 给出. 凸函数具有较好的几何和代数性质, 它在判定函数的极值、研究函数的图像以及证明不等式等方面都有广泛的应用.利用函数凸性分析经济问题是在十九世纪五十年代以后随着数学规划、最优控制论、数理经济学等应用学科的兴起而发展起来的. 经济学中所涉及的函数大多数都有一定的凸性,从而凸函数在经济学中的最优化问题的研究成为了当今的一大热点. 人们经常用它来研究系统中人、财、物的组织管理、筹划调度等问题,以发挥最大的经济效益.2.凸函数的定义及几何意义2.1凸函数的几种定义定义1:设函数()f x 在区间I 上有定义,从几何上来看,若()y f x =的图像上任意两点()()11,x f x 和()()22,x f x 之间的曲线段总位于连接这两点的线段之下(上),则称该函数是凸(凹).参见图1.[]1定义2:设函数()f x 在开区间I 上有定义,若()12,,0,1x x I λ∀∈∀∈,有()()()()121211f x x f x f x λλλλ+-≤+-⎡⎤⎣⎦则称()f x 在区间I 是下凸函数或简称函数()f x 在区间I 是凸的. 若记221x x x x λ-=-,则()121x x x λλ=+-.由f 的凸性可知: ()()()()()()121211f x f x x f x f x λλλλ=+-≤+-()()21122121x x x x f x f x x x x x --=+-- 从而有()()()()()()212112x x f x x x f x x x f x -≤-+-即()()()()()()()()212112x x f x x x f x x x f x x x f x -+-≤-+-,整理后可得()()()()1212f x f x f x f x x x x x --≤--这就是凸函数的另一种定义.定义3:()f x 在区间I 上有定义且连续,称()f x 为I 上的凸函数,如果12,x x I ∀∈,有()()121222f x f x x x f f +⎛⎫+⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭将“≤”改为“<”,函数便成为严格凸函数.定义4:()f x 在区间I 上有定义且连续,称()f x 为I 上的凸函数,如果12,,...,n x x x I ∀∈,有()()()1212......n n f x f x f x x x x f f n n +++⎛⎫+++⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭.2.2凸函数的几何意义:当()0,1λ∈时,点()()122211x x x x x x λλλλ=+-=--表示了区间()12,x x 中的某一点,即()12,x x x λ∈.在下图中弦12A A 的方程是:()()()12121f x f x y f x x x +=+- 将x x λ=代入上式得: ()()()3231BA f x f x λλ=+-但()4BA f x =因此不等式(1)在几何上表示为34BA BA ≥也就是说,曲线()y f x =在弦12A A 下方,呈现为下凸的形状,而上凸函数的图象则呈现为上凸的形状.(图1)凸函数除了上面的定义以外,还可以给出连续函数()f x 在区间I 上为凸函数的等价性定义.如下所示:3.凸函数的判定定理定理1 设函数()f x 在开区间(,)a b 上可导,函数()f x 在区间(,)a b 上是凸函数当且仅当()()()121212,,,''x x a b x x f x f x ∀∈<≤,且.证明:()⇐根据Lagrange 中值定理对一切()1212,,,x x a b x x ∈≠及01t <<必存在 x)x ()()21f x λ-图1()()1122,,t t x x x x ξξ∈∈和使得:()()()()()()()()()()()()()()()()()121211*********(1)0t t t t t f x tf x t f x t f x f x t f x f x t f x x t f x x t t f f x x ξξξξ---=-+--⎡⎤⎡⎤⎣⎦⎣⎦''=-+--⎡⎤⎡⎤⎣⎦⎣⎦''=---<⎡⎤⎣⎦又()()12f f ξξ''<()()()()121t f x tf x t f x ∴<+-由凸函数定义得()f x 在(,)a b 上是凸函数.()⇒任取()12,,x x a b ∈满足12x x <.我们来证明:()()12f x f x ''<及()f x '在区间(),a b 上严格增加,设ξη<从(),x ξη∈中存在数01t <<使得()1t x t ξη=-+,根据()f x 的严格下凸条件得:()()()()1f t f x tf ξη<-+即()()()()f f x f f x x xξηξη--<--上式表明λ的函数()()()f f x xλψλλ-=-在()12,x x 严格增加. 由此可见()()x x ψψ+<-记起()()11x f x ψ'+=并以此类推可得()()22x f x ψ'+=∴()()()12f x f x f x '''<⇒在(),a b 严格增加. .定理2 设()f x 在开区间I 上可导,则下述论断相互等价: 1)()f x 为I 上凸函数;2)()f x '为I 上的增函数;3)对I 上的任意两点12,x x ,有()()()()21121f x f x f x x x '≥+- (3)证明:若()f x 在I 是凸函数,则由定理1有()f x '在I 上单调增加12,x x I ∴∀∈()12x x <有()()()()()()2121121f x f x f x x f x x x ξ''-=-≥- ()12x x ξ<<()()()()21121f x f x f x x x '∴≥+-同理可证明当12x x >时也有()()()()21121f x f x f x x x '>+-若12,x x I ∀∈有()()()()21121f x f x f x x x '≥+-令()3121x x x λλ=+- ()01λ<< 则()()()131221211,x x x x x x x x λλ-=---=-∴对13,x x I ∈有: ()()()()13313f x f x f x x x '≥+-()()()()33121f x f x x x λ'=+--对23,x x I ∈有:()()()()()()()233233321f x f x f x x x f x f x x x λ''≥+-=+-从而:()()()()()()()()()()()()()()()()()()133122332112312111111f x f x f x x x f x f x f x x x f x f x f x f x x λλλλλλλλλλλλ≥+--'-≥-+--∴+-≥=+-即()f x 在I 是凸函数.定理3 如果函数()f x 在(,)a b 上有存在二阶导函数()f x '',若对(),x a b ∀∈,有()0f x ''≥,则函数()f x 在(,)a b 上是一个凸函数. 证明:在区间(,)a b 内任取两点()1212,x x x x <,令120120202x x x x x x +=+-=即函数()f x 在0x 的泰勒公式是()()()()()()2000012f x f x f x x x f c x x '''=+-+- ()0c x x 是与之间 当1x x =时:()()()()()()21001011012f x f x f x x x f c x x '''=+-+- ()10x c x <<当2x x =时()()()()()()22002022012f x f x f x x x f c x x '''=+-+- 02x c x << ()()()()()()()()()()()()()()2212001201102202201102201222122f x f x f x f x x x x f c x x f c x x f x f c x x f c x x ⎡⎤'''''∴+=++-+-+-⎣⎦⎡⎤''''=+-+-⎣⎦(),x a b ∀∈有()0f x ''>()()120,0,f c f c ''''∴≥≥即 ()()()()221102200f c x x f c x x ''''-+-≥于是()()()122f x f x f x +≥或()()()1202f x f x f x +≤,因此()(),f x a b 在内是凸函数. 定理4 (极值的第二充分条件)设()f x 在点0x 的某邻域()0;U x δ内一阶可导,在0x x =处二阶可导,且()00f x '=,()00f x ''≠.1)若()00f x ''<,则()f x 在0x 取得极大值.2)若()00f x ''>,则()f x 在0x 取得极小值. []2证明: 1) 由于 ()()()()()0000''lim ''/f x f x f x x x >=--,故存在一个0x 的邻域()0;U x δ,在此邻域内有: ()()()()00''/0f x f x x x --< 当0x x <时,有()00x x -<,则()()0''f x f x -必须大于0,即()()0''0f x f x >=因此()f x 在0x 的左邻域内单调递增,即()()0f x f x >当0x x <时,同理可知道()f x 在0x 的右邻域内递减,有()()0f x f x >故当()00f x ''<时,有()f x 在0x 取得极大值.同理可证 2).4.函数凸性在经济学中的应用4.1凸函数在经济函数曲线分析中的应用4.1.1无差异曲线的凸性分析无差异曲线用来表示消费者偏好相同的两种商品的所有组合.如下图所示,横轴和纵轴分别表示商品1的数量x 和商品2的数量y ,曲线1L 、2L 分别表示两条不同商品组合的无差异曲线.1L 曲线是连续的,并在x 轴上的具有二阶导数,二阶导数又是大于零的,所以无差异曲线是凸函数.从上图可以明显地看出,无差异曲线的斜率为负值,而且无差异曲线斜率的绝对值是递减的.商品的边际替代率递减规律决定了无差异曲线具有这样的特征.下面介绍一下边际替代率递减规律.商品1对商品2的边际替代率的定义公式为:2121X MRS X ∆=-∆式中1X ∆和2X ∆分别表示为商品1和商品2的变化量.当商品数量的变化趋于无穷小时,则商品的边际替代率公式为:12212011lim X X dX MRS X dX ∆→∆=-=-∆从上式可以看出,无差异曲线上某一点的边际替代率就是无差异曲线在该点上的斜率的绝对值.利用上图来具体说明商品的边际替代率递减规律和无差异曲线形状之间的关系.在图中,当消费者沿着既定的无差异曲线U 由a 点运动到b 点时,商品1的增加量为10,相应的商品2的减少量为20.这两个变量的比值的绝对值为212X X ∆-=∆.在图中,由于无差异曲线是凸函数,并且斜率是负的,这就保证了当商品1的数量一单位一单位地逐步增加时,即由点a 经b 、c 、d 运动到e 的过程中,每增加一单位的商品1所需放弃的商品2的数量是递减的,也就是说两个变量的比值的绝对值是逐渐减小的.这就是在两商品的代替过程中普遍存在的边际曲线代替率递减规律.随着一种商品的消费数量的逐步增加,消费者想要获得更多的这种商品的愿望就会递减,从而他为了多获得一单位的这种商品而愿意放弃的另一种商品的数量就会越来越少. []3经济活动中,我们可以根据市场调查利用无差异曲线和预算线等的关系来得到商品的需求曲线,厂商会根据需求曲线获得最大的利润的生产组合,而消费者也可以得到最满意的商品组合.所以利用凸函数的性质描绘无差异曲线在买卖双方的交易活动中起到很大的作用.4.1.2生产函数曲线的凸性分析短期生产函数(),Q f L K =表示在资本投入量固定时,由资本投入量变化所带来的最大产量的变化.由该生产函数可以得到相应的资本总产量、平均产量和边际产量相互之间的关系,它们的定义公式分别为:()()(),,,,,K K K K K TP L K TP L K TP f L K AP MP K K ∆===∆或者()()0,,lim K K K K TP L K dTP L K MP K dK ∆→∆==∆根据三者的定义,可以绘制下图中的函数图像来表示三者的关系.图中的横轴表示可变要素劳动的投入量L ,纵轴表示产量Q ,TP 、AP 、MP 三条曲线顺次表示劳动的总产量曲线、平均产量曲线和边际产量曲线.由图可以清楚地看到,对一种可变生产要素的生产函数来说,边际产量递减规律决定了边际产量表现出先上升而最终下降的特征.根据边际产量的定义公式(),L L dTP L K MP dL =可知,过L TP 曲线任何一点的切线的斜率就是相应的L MP 值.L MP 曲线在10L -的斜率大于零. L MP 曲线的一阶导数即为L TP 曲线的二阶导数.所以L TP 曲线在10L -阶段的二阶导数大于零,即L TP 在10L -阶段为凸函数.也就是说,边际产量L MP 曲线,在10L -阶段上升,达到最大值后,然后再下降.所以相应的总产量L TP 曲线的斜率先是递增的,在1L 到达拐点,然后再递减.通过上述分析可以发现:根据在边际报酬曲线递减规律作用下的边际产量L MP 曲线先上升,最终下降的特征,可以先描绘出L MP 曲线.由总产量和边际产量之间的关系可以描绘出L TP 曲线的图象.最后由平均产量和总产量之间的关系描绘出L AP 曲线的图象.凸函数在描述三者关系中间发挥了很大的作用,利用函数凸性可以描绘出生产函数图象.估算和研究生产函数,对于经济理论实践和生产实践又是前提. 以上两种经济曲线的凸性分析,从数学的角度使我们对常见的经济现象有了更加深入的理解.经济教材中复杂的经济曲线,通常具有一定的凸性,所以掌握了这种分析方法,对以后的经济问题探索有很大的帮助. []44.2凸函数在经济优化中的应用在经济生产过程中,为了提高经济资源配置效率,使用最少的资源和能源,达到获得最大的经济效益的目的.厂商会进行预算估计,建立起利润,成本和价格之间的关系函数,然后利用凸函数求极值的方法来解决利润最大、成本最小的问题.函数的极值是根据定理4极值的充分条件求得的.由定理4可知,可导函数的二阶导数大于零即为凸函数,则在稳定点取得的函数值为极小值;可导函数的二阶导数小于零即为凹函数,则在稳定点取得的函数值为极大值.4.2.1利润最大问题利润最大化问题的求解取决于厂商的需求函数、成本函数以及生产组合情况,它们之间存在一定的函数关系.这个函数若是凸(凹)函数的话,就满足了凸(凹)函数的性质.可以用定理4中求极值的充分条件,得到生产关系中利润函数的最大值.例1 北京一家商场的某商品的需求函数为1200080Q P=-(P的单位为元);该商品的总成本函数为2500050=+;且每件商品需要纳税C Q2元,求出使销售利润最大的产品单价和最大利润额.解该商品的收入函数为()()()=--,R P P P12000802将1200080=+得出总成本函数C Q=-代入2500050Q P()()250005012000806250004000C P P P =+-=-则利润函数为()()()L P R P C P =-()()()21200080262500040008016160649000P P P P P =----=-+-由()160161600L P P '=-+=得101P =,又因为()1600L P ''=-<,则101P =时,根据定理3,()L P 为凹函数,则在101P =处取得极大值,由于是唯一的极值点,所以是最大值,当单价为101元时,销售利润取得最大,最大利润为()101167080L =元.在解决最大利润问题时,先找到利润和其它生产要素之间的函数关系式,对利润函数求一阶导数,得到利润函数的稳定点.再求利润函数的二阶导数,从而判断利润函数是否为凹函数,根据推论求得的利润函数是凹函数,则在稳定点的函数值即为极大值,即利润最大值.这样就把经济问题转化为了数学中常见的函数问题,经济中最优化问题看成简单的凸函数求极值的问题,这样可以使问题简单化,便于理解.4.2.2成本最小问题下面看一下成本最小问题.例2 要做一个容量为3500cm 的圆柱形饮料罐,当罐子的底半径为多少时,才能最省材料.解: 设饮料罐的高为h ,底半径为r ,则表面积222S r rh ππ=+, 由体积2500V r h π==得2500h r π=,带入可得 210002S r r π=+,由210004S r r π'=-得 4.3r ≈,又因为200040S rπ''=+>,可知S 为凸函数,则当 4.3r ≈时,S 取得极小值,只有一个极小值点,既是最大值.当底半径为4.3cm 时,用的材料最少.求成本最小问题时,首先建立起函数关系式,根据定理4极值的第二充分条件,判断函数关系式是凸函数,所以在稳定点求的函数值为极小值,即成本最小值.利用凸函数求极值来解决这类问题,可以在经济活动中节省资源,避免浪费.4.2.3最佳库存问题在生产与销售管理中,库存量一定要适度,库存太少,会造成供不应求,失去时机;库存太多,又会出现资金积压或货物过期等状况,生产厂家或销售公司要想维持正常的生产和销售,管理者必须确定物资的库存量,即何时补充库存,应该补充多少等.可以把库存问题转换化为函数关系表示,然后用凸函数求极值解决最佳库存问题.例3 武汉某公司的A 产品年销售量为10万件,假设这些产品分成若干批生产,每批需生产准备费100元;并假设产品的平均库存量为批量的一半,且每件产品库存一年需库存费0.05元.现想要使每年生产所需的生产准备费与库存费之和为最小,则每批的生产量是多少最合适.解: 设每年的生产准备费与库存费之和为W ,批量为x ,则()7100000101000.05240x x W x x x =+⨯=+, 由()732100W x x ⨯''=>得4210x =⨯,又因为()732100W x x⨯''=>,可知()W x 是凸函数.所以当4x=⨯时()210W x去的极小值,且是唯一的极小值,即为最小值,所以当每批生产2万件时最合适,使得每年生产所需的生产准备费与库存费之和为最小.解决经济学中的优化问题,可以归结为求某个函数的最值问题.步骤为:(1)分析经济问题,列出目标函数关系式;(2)对函数关系式求一阶导数,并令其为零,求出稳定点;(3)对函数关系式求二阶导数,判断函数是否是凸函数.若为凸函数,则在稳定点求的函数值为极小值;若为凹函数,则在稳定点求的函数值为极大值.(4)当确定该问题存在最大值或最小值时,判定所求的极值点若是唯一的,则函数在该驻点处取得最值.最终求得经济中的利润最大,成本最小问题. []54.3凸函数在风险态度中的应用期望效用函数是商家们很关心的一个指标,所谓期望效益函数就是用来刻画经济活动者在不确定环境下决策的函数,它在一般情况下是凹函数.设某经济活动者的期望效益函数为单变量函数()u x.不妨设这里自变量的含义就是收入.假设,0x y≥为两种可能的收入;得到x的概率为p,而得到y的概率为(1)p-.记这样的事件为(,,)x y p,那么由期望效用函数的定义,可得到这一事件的效用为:((,,))()(1)()u x y p pu x p u y =+-此经济活动者对(,,)x y p 这一事件中所包含的风险的态度可由((,,))u x y p 与((1))u px p y +-的比较来刻画.若((1))((,,))u px p y u x y p +-=,则称该经济活动者为风险中性者.如果((1))((,,))u px p y u x y p +->,那么称该经济活动者为风险厌恶者.如果((1))((,,))u px p y u x y p +-<,那么称该经济活动者为风险爱好者.与以上的分析相对应,消费者的风险态度也可以根据消费者的效用函数的特征来判断.一个人是风险厌恶的充要条件是他的效用函数为凹函数.因此,判断一个人是不是风险厌恶者,只需要验证其效用函数是不是凹函数.在判断一个人是不是风险爱好者,只需要验证其效用函数是不是凸函数.消费者对待风险的态度,影响着消费者在不确定情况下的行为决策.如下图所示图中效用曲线上的任意两点间的弧都高于这两点间的弦.由函数的凹凸性判断,该函数是凹函数,且斜率大于零.根据消费者的效用曲线()u x ,消费者在无风险条件下持有一笔确定的货币财富量的效用()()1u px p y +-相当于A 的高度,而拥有一张具有风险的期望效用()()()1pu x p u y +-相当于图中B 的高度.显然A 点高于B 点.所以,图中的效用函数()u x 满足风险回避者的判断条件.如果从函数的图像来看,自然是曲线向上弯得越厉害,对风险就越厌恶,曲线的弯曲程度可以用函数的二阶导数来刻画.风险爱好者和风险中立者的效用函数的分析是类似的.在实际经济生活中,大多数的消费者都是风险回避者.三者的图象如下图所示.当消费者面临一种风险时,如果对于该消费者而言,风险的期望值的效用大于、小于、等于风险的效用期望时,那么相应地,该消费者的风险态度为风险回避、风险爱好、风险中立. []6利用函数的凸性可以很简单地判断出消费者面对风险时的不同态度,也可以清晰地从图象分析不同态度的效用函数,使经济学中基本概念方便理解.让学生学习经济概念时,在易于理解的基础上,可以更加牢固地掌握住知识.5.总结本文从凸函数的几种定义出发,详细介绍了凸函数的相关性质,并介绍了凸函数在经济学中的应用,即凸函数在经济函数的曲线分析中、经济优化中以及风险态度中的应用.函数凸性分析作为一种强有力的分析工具,在经济工作中应用是很广泛的,掌握了它对指导我们当今的经济工作具有十分重要的意义.把难懂的经济问题通过函数凸性来分析解决,使得经济学中的一些概念精确化,复杂的经济函数曲线变得清晰可辨,便于我们去理解和掌握.使经济活动在遵守资源约束、生产技术约束的条件下,求得消费者效用的最大化.但还有一定的局限性,比如在凸规划问题中,单单使用函数凸性还远远不够,需要借助其它的工具协助解决.因此对凸函数在经济学中应用的研究成果还需进一步的加深和推广.参考文献[1] 华东师范大学数学系.数学分析[M].高等教育出版社.2009.[2] 熊淑艳.函数凸性判定定理的证法及应用[J].广西师范学院学报(自然科学版).2005,22(1).[3] 黑志华付云权.凸函数在微观经济学中的应用研究[J].现代商贸工业,2009.6[4]潘劲松.函数凸性在微观经济学中的应用[J].中国西部科技.2011,10(36).[5]宋蔡健.经济函数与经济优化分析[J].南京工业职业技术学院学报.2007,7(4).[6]李妍,张景,刘忻梅.效用理论在保险决策中的应用[J].北方经贸.2011(3).18。
凸函数的性质和应用论文
凸函数性质及其应用摘 要 本文首先给出了凸函数的几种定义,然后给出了凸函数的几种重要性质,最后举例说明了凸函数在微分学、积分学、及在证明不等式中的应用.关键词 凸函数的积分性质;凸函数的不等式Abstract In this article ,first we list several kind of definitions for convex functions ,then we give several important properties of convex functions ; finally we discuss the application of convex functions in differential calculus , integral calculus, and the proof of inequality.Keywords integral properties of convex functions ; inequality of convex functions凸函数是一类非常重要的函数,广泛应用于数学规划、控制论、黎曼几何、复分析等领域.本文先给出凸函数的几种等价定义,然后列出重要的相关性质,最后给出在微分学、积分学、以及在证明不等式中应用.1 凸函数的定义及其相互关系 定义1 设()f x 在区间I 上有定义,()f x 在区间I 称为是凸函数当且仅当:12,,(0,1)x x I λ∀∈∀∈,有1212[(1)]()(1)()f x x f x f x λλλλ+-≤+-上式中“”改成“<”则是严格凸函数的定义.定义2 设()f x 在区间I 上有定义, ()f x 在区间I 称为是凸函数当且仅当:12,,x x I ∀∈有1212()().22x x f x f x f ++⎛⎫≤ ⎪⎝⎭定义3 设()f x 在区间I 上有定义, ()f x 在区间I 称为是凸函数当且仅当:1,2,...,n x x x I ∀∈,有1212......()()......().n n x x x f x f x f x f n n +++++⎛⎫≤⎪⎝⎭定义 4 ()f x 在区间I 上有定义,当且仅当曲线()y f x =的切线恒保持在曲线以下,则成()f x 为凸函数.若除切点之外,切线严格保持在曲线下方,则称曲线()f x 为严格凸的.引理1 定义2与定义3等价.引理2 若()f x 连续,则定义1,2,3等价.2 凸函数的性质定理 1 设()f x 在区间I 上有定义,则以下条件等价(其中各不等式要求对任意,123,,,x x x I ∈123x x x << 保持成立):(i )()f x 在I 上为凸函数 (1)(ii )2121()()f x f x x x --3131()()f x f x x x -- (2)(iii)31323132()()()()f x f x f x f x x x x x --≤-- (3)(iv)2121()()f x f x x x --3232()()f x f x x x -- (4)推论1若()f x 在区间I 上为凸函数,则I 上任意三点123x x x <<,有2121()()f x f x x x -≤-3131()()f x f x x x -≤-3232()()f x f x x x --.推论2 若()f x 在区间I 上的凸函数,则0,x I ∀∈过0x 的弦的斜率()k x = 00()()f x f x x x --是x 的增函数(若f 为严格凸的,则()k x 严格增).推论3 若()f x 是区间I 上的凸函数,则I 上任意四点s<t<u<v 有()()f t f s t s --()()f v f u v u-≤-.推论4 若()f x 是区间I 上的凸函数,则对I 上的任一点x,单侧导数(),()f x f x +-''皆存在,皆为增函数,且()()f x f x -+''≤ 0()x I ∀∈这里0I 表示I 的全体点组成之集合.(若f 为严格凸的,则'f +与'f -为严格递增的).证明 因x 为点,故12,,x x I ∃∈使得12x x x <<,从而(利用推论2),1212()()()()f x f x f x f x x x x x --≤--.再由推论2所述,当1x 递增时,11()()f x f x x x--也递增.故由单调有界原理知,如下极限存在且'f -(x)= 101212()()()()limx x f x f x f x f x x x x x-→--≤--.同理,在此式中,令2x x →时,可知'()f x +存在,且''()()f x f x -+≤.最后由推论3中的不等式重新取相应的极限,可知'f +与'f -皆为增函数.推论5 若()f x 在区间I 上为凸的,则f 在任一点x ∈0I 上连续. 事实上由推论4知f +'与f -'存在,所以f 在x 处左右都连续.定理2 设函数()f x 在区间I 上有定义,则()f x 为凸函数的充要条件是:00,x I ∈α∃,使得x I ∀∈,有()f x 00()()x x f x α≥-+.证明(必要性)因()f x 为凸函数,由上面的推论4知, 0'00,()x I f x -∀∈存在且'000()()()f x f x f x x x --→-. 由此任取一'0(),f x α-≥则0x x <时有00()()()f x x x f x α≥-+.因''00()f x f x -+≤(),所以对任一α:''00()(),f x f x x Iα-+≤≤∀∈恒有()f x 00()()x x f x α≥-+.(充分性)设123x x x <<是区间I上的任意三点,由已知条件222,,()()()x f x x x f x αα∀∃≥-+()x I ∀∈,由此令1x x =和3x x =,可以得到32123212()()()()f x f x f x f x x x x x α--≥≥--,由定理1可知()f x 为凸的.定理3 设()f x 在区间I 上有导数,则()f x 在I 上为凸函数的充要条件是()()f x I '∈x 递增. 证明 (充分性)12,x x I ∀∈,不妨设12x x <及λ∈(0,1),记12(1)x x x λλ≡+-,则1212()[(1)]()(1)()f x f x x f x f x λλλλ≡+-≤+-,或12()()(1)()0f x f x f x λλ---≤ (1)由于()()(1)()f x f x f x λλ=+- (1)式等价于12[()()](1)[()()]0f x f x f x f x λλ-+--≤ (2)应用Largrange 定理,12,:,x x εηεη∃<<<使得''1212[()()](1)[()()]()()(1)()()f x f x f x f x f x x f x x λλλελη-+--=-+--,但112121[(1)](1)()x x x x x x x λλλ-=+--=--,212212[(1)]()x x x x x x x λλλ-=+--=-.故(2)式左端=12[()()](1)[()()]f x f x f x f x λλ-+--''221()(1)()(1)()()f x x f x x λελληλ=--+--21(1)()[()()]x x f f λλεη''=---按已知条件()()f x I '∈x 递增,得知()()f f εη''≤,从而上式≤0,(2)式获证.(必要性)由定理1的推论4,()f x +'在0I 为递增的,因()f x '存在,故()()f x f x +''=亦在0I 为递增的,若I 有右端点b,按照已知条件f 在b 点有左导数,0x I ∀∈易知: ''''()()()()()()f x f b f x f x f b f b x b+--=≤≤=-同理,若I 有左端点a,则()(),f a f x ''≤即()f x '在I 上为递增的.推论 若()f x 在区间I 上有二阶导数,则()f x 在I 上为凸函数的充要条件是:()0f x ''≥ 定理4 (Jensen 不等式)若()f x 为[a,b]上的凸函数,则[,]i x a b ∀∈ ,0(1,2,...,),i i n λ>=11,nii λ==∑,有11()()n ni i i i i i f x f x λλ==≤∑∑.证明 应用数学归纳法.当n=2时,由定义1命题显然成立.设n=k 时命题成立,即对任何 12,,...,[,]k x x x a b ∈与10,1,2,...,,1ni ii i k αα=>==∑都有11()()k ki i i i i i f x f x αα==≤∑∑现设121,,...,,[,]k k x x x x a b +∈及0i λ>(i=1,2,…k+1),111k ii λ+==∑.令1,1ii k λαλ+=-i=1,2,…,k,则11ki i α==∑.由数学归纳法假设可推得1111111()[(1)]1ki ik i i i k k k i k xf x f x λλλλλ+=+++=+=-+-∑∑1111(1)()kk i i k k i x f x λαλ+++=≤-+∑1111(1)()()kk i i k k i f x f x λαλ+++=≤-+∑=11111(1)()()1kik i k k i k f x f x λλλλ+++=+-+-∑=11()k iii f x λ+=∑即对任何正整数n(n 2)≥,上述不等式成立.推论 设()f x 在区间I 上是凸函数,则对于任意的12,,...,m x x x I ∈和120m βββ>,,...,都有1122111212...()...()()......m m m m m mx x x f x f x f βββββββββββ+++++≤++++++.3 凸函数的应用3.1在微分学中的应用我们讨论了凸函数的有界性,左右函数极限和Lipschitz 性质.例1 设函数()f x 在区间I 上为凸函数,试证:()f x 在I 上的任一闭子区间上有界. 证明 设[,]a b I ⊂为任一闭子区间:①(证明()f x 在[,]a b 上有上界)[,],x a b ∀∈取[0,1],x ab aλ-=∈-(1)x b a λλ=+-. 因()f x 为凸函数,所以()[(1)]()(1)()(1)f x f b a f b f a M M M λλλλλλ=+-≤+-≤+-=其中max{(),()}M f a f b =. 故在[,]a b 上有上界M ;②(证明()f x 在[,]a b 上有下界)记2a bc +=为,a b 的中点,则[,]x a b ∀∈,有关于c 的对称点x ',因()f x 为凸函数,所以()()11()()222f x f x f c f x M '+≤≤+ ,从而 ()2()f x f c M m ≥-≡ , 即m 为()f x 在[,]a b 上的下界.例2 设()f x 为区间(a,b)的凸函数,试证:()f x 在I 上的任一闭区间[,][,]a b αβ⊂上满足Lipschitz 条件.证明 要证明()f x 在区间[,]αβ上满足Lipschitz 条件,即要证明:0,L ∃>使得12,[,]x x αβ∀∈有1212()()f x f x L x x -≤- (1)因为[,][,]a b αβ⊂,故可取h>0充分小,使得[,](,)h h a b αβ-+⊂与此12,[,],x x αβ∀∈若12,x x <取32x x h =+.由凸性,32212132()()()()f x f x f x f x M mx x x x h---≤≤--(其中M,m 分别表示()f x 在[,]h h αβ-+上的上下界),从而2121()()M mf x f x x x h--≤- (2) 若21,x x < 可取32,x x h =-由()f x 的凸性,有()23122312()()()f x f x f x f x x x x x --≤--, 从而 ()21322132()()()f x f x f x f x M mx x x x h---≤≤-- 由此可得(2)式成立. 若12x x =,则(2)式明显成立.这就证明了(2)式对一切12,[,]x x αβ∈皆成立.因此(2)式当1x 与2x 互换位置也成立,故有2121()()M m f x f x x x h--≤-,令,M mL h -=则(1)式也获证. 例3 设()f x 为区间(,)a b 的凸函数,并且有界,试证极限 lim ()x af x +→与lim ()x bf x -→存在. 证明 设x ∈(a,b )时10x ≤>>f(x)M,x x 为(,)a b 任意三点,根据()f x 的凸性,当x 递增时00()()f x f x x x --也递增.又因为0010010()()()()f x f x M f x x x x x x x x --≤∀>>--, 根据单调有界原理,有极限 00()()limx b f x f x A x x →--=- ,从而 000000()()lim ()lim ()()()()x b x b f x f x f x x x f x A b x f x x x --→→⎡⎤-=-+=-+⎢⎥-⎣⎦亦存在.3.2凸函数的积分性质将凸性与函数的连续性(甚至单侧连续性)、单调性等联系起来,应用到积分学中可以得到许多好的结论,我们举例如下:例4 设()f x 为区间[,]a b 上连续的凸函数.试证:1212,[,],x x a b x x ∀∈<,有21121221()()1()()22x x x x f x f x f f t dt x x ++≤≤-⎰. 证明 令 121(),(0,1),t x x x λλ=+-∈则2111210211()[()]x x f t dt f x x x d x x λλ=+--⎰⎰, (1) 同理,令221()t x x x λ=--,亦有2111210211()[()]x x f t dt f x x x d x x λλ=+--⎰⎰ 从而21112122102111(){[()][()]}2x x f t dt f x x x f x x x d x x λλλ=+-+---⎰⎰, (2) 注意121()x x x λ+-与221()x x x λ--关于中点122x x +对称.由于()f x 是凸函数,故由(2)式得2112211()()2x x x x f t dt f x x +≥-⎰ . 另外,由(1)式,应用()f x 的凸性211210211()[(1))]x x f t dt f x x d x x λλλ=+--⎰⎰ 1210()(1)()]f x f x d λλλ≤+-⎰1122122100()()(1)()()222f x f x f x f x λλ⎡⎤⎡⎤+-=+-=⎢⎥⎢⎥⎣⎦⎣⎦.例5 设()f x 是[0,)+∞上的凸函数,求证:01()()xF x f t dt x =⎰ (1)为(0,)+∞上的凸函数.证明 ()f x 为[0,)+∞上的凸函数,因此它在(0,)+∞连续,()f x 在[0,]x 上有界.由此知积分(1)有意义. 0x ∀>,令 tu x=时 101()()()xx t tF x f t dt f x d f xu du x x x ⎛⎫=== ⎪⎝⎭⎰⎰⎰ (2) 12(0,1),,0x x λ∀∈∀>恒有112120[(1)]{[(1)]}F x x f x x u du λλλλ+-=+-⎰ [因(2)]=1120[(1)]f x u x u du λλ+-⎰112[()(1)()]f x u f x u du λλ≤+-⎰ (因f 的凸性)12()(1)()F x F x λλ=+-所以F 是(0,)+∞上的凸函数.例6 设函数()g x 在[,]a b 上递增,试证 (,),c a b ∀∈函数()()xc f x g x =⎰为凸函数.证明 因()g x 递增,积分有意义.且∀123x x x <<212122121()()1()()x x f x f x g x dx g x x x x x -=≤--⎰ 32323232()()1()x x f x f x g x dx x x x x -≤=--⎰故由定理1知()f x 为凸函数.例7 设()f x 为[,]a b 上的凸函数,证明 ,(,)c x a b ∀∈有''()()()()xxccf x f c f t dt f t dt -+-==⎰⎰ (1)证明 因()f x 为凸函数, 由定理1推论4 '()f t -,'()f t +存在且递增(当(,)t a b ∈).故(1)中的积分有意义.对[c,x]任作一分划 012...,n c x x x x x =<<<<=有11()()[()()].ni i i f x f c f x f x -=-=-∑ 参看定理2,我们有'111()()()(),i i i i i f x f x f x x x -----≥-'11()()()()i i i i i f x f x f x x x ----≤-于是由.(1)式知'111()()()()ni i i i fx x x f x f c ---=-≤-∑'11()()ni i i i fx x x --=≤-∑.将分划无限分细,令1max()0,i i x x λ-=-→取极限可知 '()()().xc f x dx f x f c -=-⎰ 同理有 '()()().xcf x dx f x f c +=-⎰3.3利用凸函数的性质证明不等式利用凸函数证明不等式已经有了许多结果,我们所做的就是由定理4证明了Holder 不等式,并且利用Jensen 不等式证明了几个复杂的不等式.例8 设352x ≤≤ 证明证明 由于函数y =在区间[0,)+∞上是凸函数,由凸函数的性质,即定理 4 有=≤=由于1,23,153x x x +--不可能同时相等,从而有<≤例 9 设函数()f x 是区间[0,)+∞上的凸函数,对于12,,...(0,),n x x x ∀∈+∞则1212()()...()(1)(0)+(...)n n f x f x f x n f f x x x +++<-+++证 明 由于120...i i n n x x x x x x <<+<+++,则由定理1中(4)式,有1212()(0)()()(...)()0...i i n i n n i i n i n nf x f f x x f x f x x x f x x x x x x x x x -+-+++-<<-+-+++-即12121()(0)[(...)()] (i)i n n n x f x f f x x x f x x x x --<++-+++令1,21i n =-,对上式两边求和,有1121[()(0)](...)()n i n n i f x f f x x x f x -=-<++-∑即1212()()...()(1)(0)(...)n n f x f x f x n f f x x x +++<-++++例 10 设111,1,1αβαβ>>+=及0,0(1,2,...,)i i a b i n >>=则有Holder 不等式成立:11111()()n nni i i ii i i a b a b αββα===≤∑∑∑ 当且仅当i a α与i b β成正比例时等号成立. 证明 取()f x =(1,0)x x αα><<+∞,(1,0)x x αα><<+∞,因为2()(1)0f x x ααα-''=->,所以()f x x α=在(0,)+∞上为凸函数,由定理4得:112211221212......()......n n n n n nt x t x t x t x t x t x t t t t t t αααα+++++≤++++++ 即1111()()()nn ni i i i i i i i t x t x t ααα-===≤∑∑∑ , 亦即11111()()nnni ii i i i i i t xt x t αααα-===≤∑∑∑令,1αβα=-则有11111ααβαα-+=+=,于是有11111()()n n ni i i i i i i i t x t x t αβα===≤∑∑∑ 令111111()(),nnni ii i i i i i i i i i i t xt x t t b x t a αββαα-===≤==∑∑∑,则有11111()()nnni i i i i i i a b a b αββα===≤∑∑∑当i a α与i b β成正比例时,即i i a kb αβ= (k 为正常数,1,21,i n n =-)111111111111()()()n n nnni i i i i i i i i i i i i a b k b k b a b a b ββαββββαβαααα+-==========∑∑∑∑∑∑当i a α与i b β不成正比例时,i t 不全相等,又因为()f x x α=在(0,)+∞为严格凸函数,故严格不等式成立.例11 设12,,,n a a a ⋅⋅⋅和12,,,n q q q ⋅⋅⋅是两组正数,11niq=∑.证明1111n q q n n n a q a q a ⋅⋅⋅≤+⋅⋅⋅+a .证明 要证原不等式即要证明 1111ln ...ln ln(...)n n n n q a q a q a q a +≤++. 令()ln f x x =(0)x >,则由于21()0f x x''=-<,所以f 为凹函数,由Jensen 不等式 111122(...)()()...()n n n n f q a q a q f a q f a q f a ++≥++ 即得所证.例12 12...0(1,2,...),1,,n i n a a a a i p A n +++>=>=设证明:1111mm pp n n n n n p A A a p -==<-∑∑. 证明 设00A =,则由于1111111[(1)]11mm mm pp pp nn n n n n n n n n n p p A A a A A nA n A p p ---====-=-----∑∑∑∑ 11111(1)11mm m ppp nn n n n n n p p A nA n A A p p --====-+---∑∑∑ (1)111111(1)(1)11p mmp ppn n n n n pn p A n A n A p p --==⎡⎤⎡⎤⎛⎫=-+--⎢⎥⎢⎥ ⎪--⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦∑∑ (用Holder 不等式)11(1)11111111(1)(1)11p ppp ppp m m m p ppn n n n n n pn p A n A n A p p ----===⎧⎫⎧⎫⎡⎤⎡⎤⎛⎫⎪⎪⎪⎪≤-+--⎢⎥⎢⎥⎨⎬⎨⎬ ⎪--⎝⎭⎢⎥⎢⎥⎪⎪⎪⎪⎣⎦⎣⎦⎩⎭⎩⎭∑∑∑ 1111111(1)(1)11mm m pp p nn n n n n pn p p A n A n A p p p p -===⎛⎫⎧⎫-≤-+-+-⎨⎬ ⎪--⎝⎭⎩⎭∑∑∑ 1111(11)11mm ppnk n k pn A n kA p p -===-+-+--∑∑111(11)11mmpp nk n k pn A n kA p p ==≤-+-+--∑∑ 1(11)011mp n n pn nA n p p ==-+-+=--∑ 所以 1111mm pp nn n n n p A A a p -==<-∑∑ 由于Holder 不等式中等号成立的条件是1(1,2,...,)n nA n m A -=均为常数,而00A =,这实际上是不可能的,所以上式中的等号不成立.例 13 证明不等式3a b ca b c a b c ++≤(abc ),其中,,a b c 均为正数.证 明 设()ln ,0f x x x x =>,由1()ln 1,()f x x f x x'''=+=可见()ln f x x x =在0x >时为严格凸函数.由Jensen 不等式有1()[()()()]33a b c f f a f b f c ++≤++, 从而1ln (ln ln ln )333a b c a b c a a b b c c ++++≤++.即3a b ca b c a b c a b c ++++≤()又因3a b c++≤, 所以3a b ca b c a b c ++≤(abc ) . 例14应用Jensen 不等式证明:设0(1,2,....)i i n >=a ,有1212111n n a a a a a a n n++≤++⋅⋅⋅+ 证明 取函数()ln f x x =,(0,)x ∈+∞ . 因为21()0,f x x ''=-<f 是区间(0,)+∞上严格凹函数,则对12,,...(0,)n a a a ∀∈+∞及1(1,2,...),i i n n N nλ+==∈ 1. 12...n a a a ===,则上式等号成立 ;2.若1,2,...,n a a a 不全相等,则由Jensen 不等式11()()n ni iiii i f a f a λλ==≥∑∑ ①即12121211ln(...)[ln ln ...ln ]ln(...)n n n a a a a a a a a a n n n n n+++≥+++= 1111n ni i i i i i f f a a λλ==⎛⎫⎛⎫≥ ⎪ ⎪⎝⎭⎝⎭∑∑ ②即121212*********ln(...)(ln ln ...ln )ln ...n n nna na na n a a a n a a a +++≥+++= 12111111ln(...)ln ln ...n n n a a a a a a n⇒++-≥- 因为f 在(0,)+∞上单调递增,综合①②结论得1212111...nn a a a a a a n n ++≤≤++,命题成立.参考文献[1]裘兆泰等.《数学分析学习指导》,科学,2004年..[2]徐利治等.《大学数学解题法诠释》第一版,教育,1999年 [3]徐利治等. 《数学分析的方法和例题选讲》,高等教育,1984年. [4]裴礼文.《数学分析中的典型问题和方法》,高等教育,1988年. [5]从军.《数学分析》,大学,2000年.[6]欧中、允龙.《数学分析概要二十讲》,复旦大学,1999年. [7]筑生.《数学分析新讲》,大学,1991年. [8] 华东师大学数学系,《数学分析》第三版,高等教育,2001年.。
凸函数的性质及其应用研究论文
凸函数的性质及其应用研究摘要凸函数是一类重要的函数,它的概念最早见于Jensen [1905]著述中。
它在纯粹数学和应用数学的众多领域中具有广泛的应用,现已成为数学规划、对策论、数理经济学、变分学和最优控制学等学科的理论基础和有力工具。
凸函数的许多重要性质在数学的许多领域中都有着广泛的应用,但是它的局限性也很明显,所以研究凸函数的一些定义和性质就显得十分必要了。
考虑到凸函数的连续性,可导性及凸函数在不等式证明方面的应用和意义,本文结合现有文献给出了凸函数12种定义,总结了凸函数常用的性质;由于凸函数的定义是由不等式给出的,基于此,凸函数广泛应用于对某些特殊不等式的证明,本文探讨了它在证明Jensen不等式、一般不等式、Cauchy不等式、Holder不等式中的重要应用,并讨论了Jensen不等式,Cauchy 不等式,Holder不等式在证明其他不等式的应用。
关键词:凸函数,定义,性质,应用,不等式Properties and Applications of Convex FunctionAbstractConvex function is a kind of important function. The concept of the earliest can be found in Jensen’s [1905] writing. Convex function has applied in pure mathematics and many applied mathematics extensive fields. Now it become the foundation and powerful tool to study mathematical programming, theory of strategy, mathematical economics, calculus of variations and such disciplines as the optimal control theory. Many important properties of convex function have been widely used in many fields of mathematics application, but its limitations are also obviously. So the study of some definitions and properties of convex function is necessary. Considering the application and significance to prove inequality and the continuity and conductivity of convex function, this paper presents 13 kind definitions and summarizes the properties of convex function which are commonly used. Convex function are widely used in some special inequality proof, because of convex function is defined by the inequality. This paper discusses the important applications of convex function in proving Jensen inequality, general inequality, Cauchy inequality, Holder Inequality. The important applications of Cauchy inequality, Holder inequality and Jensen inequality to prove other inequalities are also discussed.Key Words: Convex function, definition, properties, applications, inequality目录中文摘要 (I)英文摘要 (Ⅱ)1 引言 (1)2凸函数的定义 (1)2.1凸函数的12种定义 (1)3 凸函数的性质 (4)3.1凸函数的常用性质 (4)4 凸函数的应用 (11)4.1凸函数在微分学中的应用 (11)4.2凸函数在积分学中的应用 (13)4.3利用凸函数和Jensen不等式证明不等式 (15)4.4利用凸函数证明Cauchy不等式 (17)4.5利用凸函数证明Holder不等式 (18)4.6利用凸函数证明一般不等式 (19)参考文献 (24)致谢 (25)1 引言凸函数是一类重要的函数,它的概念最早见于Jensen [1905]著述中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在数学思想方法中,函数思想是很重要的一种思想方法,其精髓在于利用函数的相关性质对讨论的问题进行推理和论证,进而寻求解决问题的途径。凸函数是一类性质特殊的函数,广泛应用于数学规划,控制论等领域,函数凸性是数学分析中的一个重要概念,它在判定函数的极值、研究函数的图象以及证明不等式诸方面都有广泛的应用.凸分析作为数学的一个比较年轻的分支,是在50年代以后随着数学规划,最优控制理论、数理经济学等应用数学学科的兴起而发展起来的.现行高等数学教材中,也都对函数的凸性作了介绍,由于各版本根据自己的需要,对凸函数这一概念作了不同形式的定义,本文就以凸函数几种定义的等价性给以证明,并给出简单的应用,应用凸函数的概念与性质来证明几个重要且常用的不等式和凸函数在证明一般不等式中的应用,针对它在证明比较复杂的不等式方面有着重要作用,本文对凸函数的性质在比较经典的不等式证明中的简单应用进行初步讨论.
设 为任意两点,为了证明定义1对任意实数 成立,则先证明当 为有理数 ( 为自然数)时成立,事实上:
ቤተ መጻሕፍቲ ባይዱ为有理数的情况获证.
若 为无理数,则 有理数
使得 (当 时),从而由 的连续性有
对于有理数 ,上面已证明有
此式中令 取极限,联系上式,有
即定义1对任意无理数 也成立. 这就证明了定义2、3蕴涵定义1.
.
证明:1°(证明ⅰ)与ⅱ)等价).
对 中任意 ,根据凸函数定义,条件ⅱ)等价于
(A)
另一方面,将条件ⅱ)中的不等式乘以 ,移项变形,可知它等价于 (B)
可见, ,令 时,则
从而由(A)可推到(B).反之, ,若令 则 ,从而可由(B)推得(A). 故ⅰ)与ⅱ)等价.
2°类似可证ⅲ)、ⅳ)与ⅰ)等价.
3°(证明ⅱ)与ⅴ)等价)
将ⅱ)中的不等式乘以 并移项,可得
此即
.
推论[2]若 在区间 上为凸函数,则 上任意三点 有
.
定理2[1]设 为区间 上的可导函数,则下述论断互相等价:
1° 为 上的凸函数;
2° 为 上的增函数;
3°对 上的任意两点 有
.
定理3[2]设 为区间 上的二阶可导函数,则在 上 为凸函数的充要条件是 , .
下面给出几种常用的凸函数定义:
定义1[1]设 在区间 上有定义, 在 上称为是凸函数,当且仅当:
, ,有 . (Ⅰ)
若(Ⅰ)式中,“ ”改为“﹤”,则是严格凸函数的定义. 若“ ”改为“ ”或“﹥”,则分别是凹函数与严格凹函数的定义. 由于凸与凹是对偶的概念. 对一个有什么结论,对另一个亦有什么结论. 因此,下文中只对凸函数进行论述.
专业代码:070201
学号:080702010020
贵州师范大学(本科)
毕业论文
题 目:凸函数在不等式证明中的应用
学院:数学与计算机科学学院
专 业:数学与应用数学
年 级:2008级
姓名:勾文兴
指导教师:辛斌(职称)
完成时间:2012年3月12日
凸函数在不等式证明中的应用
勾文兴
摘要:凸函数是一种性质特殊的函数. 凸函数也是高等数学中的一个基本内容,它在证明比较复杂的不等式方面有着重大作用. 利用凸函数的凸性来研究不等式,比传统方法简洁,在文中还进一步探讨了在不等式证明中的一些具体应用.
定义2[2]设 在区间 上有定义, 称为 上的凸函数,当且仅当:
,有 .
定义3[2] 在区间 上有定义, 称为是凸函数,当且仅当:
,有 .
关于定义1,定义2,定义3有如下的关系:
(1) 定义1 定义2,定义1 定义3;
(2) 定义2 定义3;
(3) 当 在 上连续时,定义1、定义2、定义3等价.
证明:(2) 定义2 定义3.
这说明对一切的 皆成立.
记 ,则 ,所以
由定义3中式子对 成立,故
在不等式两边同时乘以 ,减去 ,最后除以 得到
即 时仍成立. 证毕.
证明:(3)若 在 上连续,则定义1、2、3等价.
首先定义1 定义2、3.
在定义1中令 ,则有
故定义1蕴涵定义2,而定义2、3等价,因此定义1也蕴涵定义3.
其次定义2、3 定义1.
关键词:凸函数 不等式 证明
Abstract:Convex function is a function of the special nature. Convex function is also one of the higher mathematics the basic contents, it proved more complex in the plays a major role ininequality. Use the convex function to study convex inequality than the traditional method is simple, and further discussed in this paper in some of the specific application of inequation.
注:上述证明里看到从定义1 定义2、3无需连续性,定义2、3 定义1才需要连续性. 可见定义1强于定义2、3.
1.2 凸函数的等价描述
定理1[3]如图1.2.1,设 在区间 上有定义,则以下条件等价(其中各不等式要求对任意 , 保持成立):
ⅰ) 在 上为凸函数;
ⅱ) ;
ⅲ) ;
ⅳ) ;
ⅴ)曲线 上三点 , , 所围的有向面积
(由于定义3 定义2明显,故只要证明定义2 定义3. 应用通常的数学归纳法有一定的困难,因此这里采用反向数学归纳法,其要点是:首先证明对于自然数的某个子序列成立(本证明针对于 皆成立),其次证明命题当 成立时,必然对 成立.)
当 时,显然成立.
当 时,
一般来说,对任一自然数 ,重复上面的方法 次可得
1. 凸函数定义与等价描述
1.1 凸函数的几种定义以及它们的关系
大家都熟悉函数 的图象,它的特点是:曲线 上任意两点间的弧总在这两点连线的下方. 我们可以下这样的定义:设 在 上有定义,若曲线 上任意两点间的弧总位于连接该两点的直线之下,则称函数 是凸函数.
上面的定义只是几何描述性的,为了便于凸函数的应用,用严格的式子分析定义凸函数是十分必要的.