概率论与数理统计讲义 曹显兵()
曹显兵《概率论与数理统计辅导讲义》练习题三详解
同理可得,当
1 1 3 z 0 时, FZ ( z ) z , 3 2 4 1 1 FZ ( z ) 当 z 时, . 3 12 z
1 1 , | z | , 2 3 12 z fZ ( z )= FZ ( z )= 1 3, | z | . 3 4
1 1
3. 【详解】 (1) 由题知, 因此
f ( x, y)dxdy c x 2dx 2 ydy
1 x
c 1 2 4c ( x x 6 )dx =1, 2 1 21
c
21 . 4
fX (x)= 0,
(2)当 x <1, 或 x>1 时, 当1x1 时,
4
2
4
= k (10 y y | 2 ) = 8.
2 4
3
因此 (2)
1 k . 8
P{X2,Y3}
2 1 3 dy (6 x y )dx 0 8 2 1 3 1 5 (10 2 y )dy (10 y y 2 | 3 . 2) 2 8 8 8
练习题三
一、填空题 1. 【详解】
1 e y | 0 f ( x, y)dxdy A e2 x dx e y dy A e 2 x | 0 0 0 2 A 1 2
得常数 A=2 .
2 4 P{ X 2, Y 1} 2 e 2 x dx e y dy e2 x | 0 )(1e1 ). e y |1 0 = (1e
a 1 a 1 a 1 a 1 a 1 a 1 7 1 (1 ) 1 (1 ) , 2 2 2 2 2 2 9
《概率论与数理统计》第八章 讲义
在统计学中把平方和中独立偏差个数称为该平方 和的自由度,常记为f,如Q的自由度为fQ=k1。 自由度是偏差平方和的一个重要参数。
Page 19
Chapter 8 方差分析与回归分析
四、总平方和分解公式
各yij间总的差异大小可用总偏差平方和 r m
ST ( yij y )2
Page 11
Chapter 8 方差分析与回归分析
单因子方差分析的统计模型:
yij i ij , i 1, 2,..., r , j 1, 2,..., m (8.1.3) 2 诸 相互独立,且都服从 N (0, ) ij
总均值与效应:
称诸
1 1 r i i 的平均 r (1 ... r ) r i 1
(8.1.19)
一般可将计算过程列表进行。
Page 27
Chapter 8 方差分析与回归分析
例8.1.2 采用例8.1.1的数据,将原始数据减去1000, 列表给出计算过程: 表8.1.4 例8.1.2的计算表
水 平 A1 A2 A3 73 107 93 数据(原始数据-1000) 9 92 29 60 1 2 90 22 12 74 32 9 122 29 28 1 48 Ti 194 585 354 1133 Ti
Page 6
Chapter 8 方差分析与回归分析
8.1.2 单因子方差分析的统计模型
在例8.1.1中我们只考察了一个因子,称其为 单因子试验。
通常,在单因子试验中,记因子为 A, 设其 有r个水平,记为A1, A2,…, Ar,在每一水平下 考察的指标可以看成一个总体 ,现有 r 个水 平,故有 r 个总体, 假定:
概率论与数理统计课件(共199张PPT)
33
例3. r只红球○ t只白球○
每次任取一只球观 察颜色后, 放回, 再 放回a只同色球
在袋中连续取球4次, 试求第一、二次取到红球且 第三、四次取到白球的概率.
34
(三) 全概率公式和贝叶斯公式:
1. 样本空间的划分
定:义 若 B 1,B 2, ,B n一组事 : 件
计算条件概率有两种方法:
1. 公式法:
先计P算(A)P, (AB然 ), 后按公式计算
P(B| A) P(AB.) P(A)
31
2. 缩减样本空间法:
在A发生的前提下, 确定B的缩减样本空间, 并在其 中计算B发生的概率, 从而得到P(B|A). 例2. 在1, 2, 3, 4, 5这5个数码中, 每次取一个数码, 取 后不放回, 连取两次, 求在第1次取到偶数的条件下, 第2
B
A S
(1) AB
8
2.和事件:
AB{x|xA或xB}称 为 A与B的 和 事 . 件
即AB,中 至 少 有 一 ,称个 为 A与 发 B的生,和 记AB.
可 列 个A1事 , A2,件 的 和 事 件 记 Ak. 为
k1
3.积事件: 事件A B={x|x A 且 x B}称A与B的积,
即事件A与B同时发A生. A B 可简记为AB.
i1
1i jn
P(A i A j Ak )
1i jkn
(1)n1 P(A1 A 2 A n ).
27
例4. 设P(A)=p, P(B)=q, P(AB)=r, 用p, q, r表示下列事 件的概率:
( 1 ) P ( A B ) (; P ( 2 A B ) ( ) ; P ( 3 A B ) ) (; ( 4 A B )
概率论与数理统计讲义
概率论与数理统计讲义一、概率论1.1 引言概率论是研究随机现象的理论,广泛应用于自然科学、社会科学以及工程技术等领域。
它通过量化随机事件发生的可能性,帮助我们理解事件之间的关系和规律。
1.2 随机变量与概率分布随机变量是描述随机事件的事物,可以分为离散型随机变量和连续型随机变量。
概率分布则是描述随机变量取值的概率情况,包括离散型随机变量的概率质量函数和连续型随机变量的概率密度函数。
1.3 期望与方差期望是随机变量取值的平均值,用来描述随机变量的集中程度。
方差则是随机变量与其期望之间的差异程度,用来描述随机变量的离散程度。
1.4 概率分布函数的性质概率分布函数有许多重要的性质,包括非负性、归一性、单调性、可加性等。
这些性质能够帮助我们更好地理解随机事件的规律和特征。
二、数理统计2.1 统计学概述统计学是研究数据收集、分析和解释的学科,通过对样本数据的研究,推断出总体的一些特征和规律。
统计学广泛应用于社会调查、市场研究以及科学实验等领域。
2.2 描述统计学描述统计学是对数据进行总结和描述的统计学方法。
它包括数据的集中趋势度量、离散程度度量以及数据分布特征等内容。
2.3 参数估计参数估计是根据样本数据推断总体参数的一种统计学方法。
点估计通过寻找最优参数估计量来描述总体参数的真实值,区间估计则给出了参数估计的置信区间。
2.4 假设检验假设检验是用来判断总体参数是否满足某种假设的统计学方法。
它将原假设和备择假设相比较,通过计算统计量的值来判断是否拒绝原假设。
2.5 方差分析与回归分析方差分析和回归分析是用来研究多个变量之间关系的统计学方法。
方差分析用于比较多个总体均值是否相等,而回归分析则用于建立变量之间的数学模型。
三、应用案例3.1 金融风险管理概率论与数理统计在金融风险管理中发挥着重要作用。
通过对金融市场的随机波动性进行建模和分析,可以帮助投资者制定更合理的投资策略,降低风险。
3.2 医学研究数理统计在医学研究中具有广泛的应用。
2012考研最全的电子书下载
2012考研词汇速记指南(刘一男)-.pdf/file/clse0x9z#2012考研英语长难句与词汇突破(李玉枝).pdf/file/e659i5a7#2012考研英语阅读120篇(马德高).pdf/file/dn1twcgf#2012考研英语新大纲标准词汇掌上宝(周洁).pdf/file/e659iwto#2012考研英语五大题源报刊阅读150篇(刘雪明).pdf/file/dn1tpra9#2012考研英语核心词汇说文解词(词根乱序版)(曾鸣).pdf /file/dn1tn2ki#2012报考知识全集及政治理论基干知识全集-徐之明.pdf /file/clseyob1#2012考研政治核心点表解与真题解析(考研命题研究组).pdf /file/bhiojyn8#2012数学历年试题解析(数学三)(李永乐).pdf/file/dn1tvowk#2012数学历年试题解析(数学二)(李永乐).pdf/file/e6598v8j#2012数学基础过关660题(数学一)(李永乐).pdf/file/aqkl001a#2012数学基础过关660题(数学三)(李永乐).pdf/file/dn1tvlup#2012数学基础过关660题(数学二)(李永乐).pdf/file/bhio9evw#2012考研英语核心词汇30天突破(马德高).pdf/file/e6593rlj#2012考研英语高分写作(英语一、二)(王江涛).pdf/file/bhioxiee#2012考研英语分类阅读高分进阶(120篇).pdf/file/aqkldsgj#2012考研数学接力题典1800通关高分夺冠必备(汤家凤)-.pdf /file/bhio2nk1#2012考研数学基础题集(数一)(武忠祥).pdf/file/e659qeby#2012考研数学基础题集(数三)(武忠祥).pdf/file/aqklsaxn#2012考研数学基础题集(数二)(武忠祥).pdf/file/dn1tqhgf#2012考研数学基础轻松过500题(理工类)(潘正义).pdf/file/bhiopd4m#2012考研数学基础轻松过500题(经济类)(潘正义).pdf/file/bhiopn58#2012考研数学基础过关精选200题(恩波教育).pdf/file/bhiop4kw#2012考研数学基础核心讲义(理工类)(修订版)(陈文灯)-.pdf /file/dn1tqbfa#2012考研数学基础核心讲义(经济类)(修订版)(陈文灯)-.pdf /file/cls59uw1#2012考研数学复习指南(理工类)(修订版)(陈文灯)-.pdf /file/aqklshnp#2012考研数学复习指南(经济类)(修订版)(陈文灯)-.pdf /file/aqklj7gj#2012考研数学10年真题点评(数学一)(陈文灯).pdf/file/bhimghbk#2012考研数学10年真题点评(数学三)(陈文灯).pdf/file/e65jthcr#2012考研数学10年真题点评(数学二)(陈文灯).pdf/file/e65jpdez#2012考研数学复习大全(理工类)(蔡子华)-.pdf/file/aqkl4tvz#2012考研数学复习大全(经济类)(蔡子华)-.pdf/file/cls5dhl1#2012考研数学第一视频(理工类)(潘正义).pdf/file/e659zw2s#2012考研数学第一视频(经济类)(潘正义).pdf/file/clse3sug#2012考研高等数学辅导教材(黄庆怀).pdf/file/e65jp8tz#2012概率论与数理统计辅导讲义(曹显兵).pdf/file/e65jgear#2012考研英语核心词汇笔记(胡敏).pdf/file/t2d2ccbf68#2012考研英语拆分与组合翻译法(唐静).pdf/file/t2c18588e7#2012考研英语词汇速记宝典(徐绽).pdf/file/t2efa1e9e1#2012海天政治马克思主义基本原理核心教程(阮晔).pdf /file/t227f57dce#2012考研数学单选题解题方法与技巧(陈文灯).pdf /file/t246862c87#2012海天英语基础阅读突破(宫东风).pdf/file/f21e0b46132012考研数学必做客观题1500题精析(蔡子华).pdf /file/t247c6d9bb#2012考研数学必做主观题500题精析(蔡子华).pdf /file/t247592051#2012考研英语读真题记单词(胡敏)-.pdf/file/t2642ba076#2012考研英语复习指导(朱泰祺)-.pdf/file/t2716484d1#2012考研英语语法突破(胡敏).pdf/file/t25d423062#2012考研英语阅读理解精读100篇(印建坤).pdf/file/t2d7fcbdf4#2012考研英语阅读专项训练(王若平).pdf/file/t2e0b66e85#2012考研英语写作高分突破(热点话题100篇)(曾鸣).pdf /file/t24e31b215#2012考研英语英译汉四步定位翻译法(胡敏).pdf/file/t291789592#2012考研英语阅读理解110篇(肖克).pdf/file/t23b17841#2012考研英语阅读理解精读200篇(胡敏).pdf/file/t2e86beb60#2012考研政治早知道核心知识精粹及典型真题(李海洋).pdf /file/t27844941e#2012考研英语大纲词汇考点、用法及辨析(李玉枝).pdf /file/t2106e45b8#2012考研英语大纲核心词汇必备(王建华).pdf/file/t2272b3d02#2012考研英语命题人选题源阅读(王长喜).pdf/file/t22640c69#2012考研英语阅读题源大全(郭崇兴).pdf/file/t2bdc4caae#2012英语阅读精析100篇(赵敏).pdf/file/t233f00e7c#2012考研英语必记词组(郭崇兴).pdf/file/t2aab22d7f#2012考研英语词汇宝典(肖克).pdf/file/t28d6ba1b6#2012考研英语词汇词根+联想+图解记忆法(马德高).pdf/file/t26280c9f8#2012考研英语词汇词根+联想+语境记忆法(阅读版)(王长喜).pdf/file/t2758393a#2012考研英语词汇词根+联想记忆法(乱序版)(俞洪敏).pdf/file/t26c72375#2012考研英语词汇词根+联想记忆法(俞洪敏).pdf/file/t2292540b1#2012考研英语词汇活学活用巧链记(白洁).pdf/file/t24a7f0481#2012考研英语考前热点范文80篇(许小波).pdf/file/t2a5b66456#2012考研英语逻辑辨证记忆30天(3000核心词汇+500词组)(张纪元).pdf /file/t2426ad08f#2012思想政治理论历年试题解析(米鹏).pdf/file/t2458878c7#2012淘金式巧攻考研英语词汇(伍乐其)-.pdf/file/t29d9db9f5#数据结构考研指导/thread-1437578-1-1.html操作系统考研指导/thread-1437489-1-1.html计算机组成原理考研指导/thread-1437549-1-1.html完整版《数据结构1800题+答案》/thread-1432160-1-1.html计算机组成原理-研究生入学经典试卷(完全版)/thread-2335306-1-1.html计算机组成原理-研究生入学经典试卷答案/thread-2327332-1-1.html计算机网络重点知识完美总结整理/thread-2318065-1-1.html计算机操作系统常见题型解析及模拟题pdf格式/thread-2335264-1-1.html唐朔飞《计算机组成原理》课件/thread-2333458-1-1.html计算机组成原理PPT课件王爱英(清华)/thread-2315040-1-1.html操作系统学习资料汇总/thread-2317868-1-1.html05年清华计算机本科上课课件<数据结构>/thread-1469848-1-1.html白中英《计算机组成原理》第四版(立体化教材)课件2008.5制作/thread-2340302-1-1.html白中英《计算机组成原理》第四版(立体化教材)课后习题答案与自测题库2008.5作者更新/thread-2340326-1-1.html数据结构复习重点归纳/thread-1743383-1-1.html北京航空航天大学数据结构与程序设计02——07(无03)/thread-2350974-1-1.html北京航空航天大学2004——2008 (无2006)计算机专业技术基础/thread-2350970-1-1.html操作系统考试要点与真题精解/thread-2350951-1-1.html计算机操作系统学习指导与习题解析(PDF书籍下载)/thread-2350438-1-1.html《操作系统考研辅导教程》,计算机专业研究生入学考试全真题解(2)/thread-2350434-1-1.html操作系统学习指导与习题解答(PDF)/thread-2350431-1-1.html计算机操作系统课程及考研辅导/thread-1437564-1-1.html计算机操作系统学习指导与习题解答/thread-2350430-1-1.html研究生入学考试要点、真题解析与模拟试卷:数据结构/thread-2350429-1-1.html操作系统典型题解析与实战模拟/thread-2350427-1-1.html《计算机操作系统》试卷适用汤子瀛《操作系统》第二版/thread-2335255-1-1.html18所大学计算机专业(组成原理).chm/thread-2360106-1-1.html南京邮电大学2001___2006年数据结构考研试卷/thread-2351917-1-1.html理工科研究生入学考试试题精选(2)/thread-1435632-1-1.html计算机组成原理、计算机系统结构与数字逻辑试题精选/thread-2350442-1-1.html湖南大学2000-2006数据结构试题/thread-2351922-1-1.html北京交通大学02 05 07年数据结构真题/thread-2351974-1-1.html苏州大学99___06计算机综合题/thread-2351960-1-1.html[下载]: 操作系统学习辅导/thread-2304561-1-1.htmlC程序设计考研指导/thread-1437476-1-1.html【全美经典】离散数学/thread-2338065-1-1.html微机原理与接口技术习题与解析/thread-2304849-1-1.html微机原理与接口技术考研指导/thread-1437611-1-1.html离散数学考研指导/thread-1437514-1-1.html《计算机网络知识要点与习题解析》(谢希仁教材配套)/thread-2395268-1-1.html。
《概率论与数理统计》第六章 讲义
最大似然估计提供了一种给定观察数据来评估模 型参数的方法,即:“模型已定,参数未知”。 简单而言,假设我们要统计全国人口的身高,首 先假设这个身高服从服从正态分布,但是该分布 的均值与方差未知。我们没有人力与物力去统计 全国每个人的身高,但是可以通过采样,获取部 分人的身高,然后通过最大似然估计来获取上述 假设中的正态分布的均值与方差。
Page 9
Chapter 6 参数估计
ˆ ˆ ( x ,, x ) 定义6.2.1 设 ∈Θ为未知参数, n n 1 n 是 的一个估计量,n 是样本容量,若对任何 一个ε>0,有
ˆ | ) 0 limn P(| n
ˆ 为 参数的相合估计。 则称
n
(6.2.1)
2
ˆ 1/ s 1
s 为样本标准差。这说明矩估计可能是不唯一的, 这是矩法估计的一个缺点,此时通常应该尽量采用 低阶矩给出未知参数的估计。
Page 7
Chapter 6 参数估计
例 6.1.3 x 1 , x 2 , … , x n 是来自 ( a,b ) 上的均匀分布 U(a,b)的样本,a与b均是未知参数,这里k=2, 由于 2
ˆ1 ) 2 , Var( ˆ2 ) 2 / n Var(
ˆ2 比 ˆ1 有效。这表明用全部数据的 显然,只要 n>1, 平均估计总体均值要比只使用部分数据更有效。
Page 20
Chapter 6 参数估计
例6.2.7 均匀总体U(0, )中 的极大似然估计是x(n) n Ex ,由于 x(n)不是 的无偏估计,而是 (n) n ,所以 1 的渐近无偏估计。经过修偏后可以得到 的一个 ˆ n 1 x 。且 无偏估计: 1 (n )
概率论与数理统计教案第一章第1节[推荐]
概率论与数理统计教案第一章第1节[推荐]第一篇:概率论与数理统计教案第一章第1节[推荐]第一章随机事件及其概率概率论与数理统计是从数量化的角度来研究现实世界中一类不确定现象(随机现象)规律性的一门应用数学学科,20世纪以来,广泛应用于工业、国防、国民经济及工程技术等各个领域.本章介绍的随机事件与概率是概率论中最基本、最重要的概念之一.第一节随机事件内容分布图示★ 随机现象★ 样本空间★ 随机现象的统计规律性★ 随机事件★ 事件的集合表示★ 事件的关系与运算★ 事件的运算规律★ 例1 ★ 例4 ★ 内容小结★ 习题1-1★ 例2 ★ 例5 ★ 课堂练习★ 例3 内容要点:一.随机现象从亚里士多德时代开始,哲学家们就已经认识到随机性在生活中的作用, 但直到20世纪初, 人们才认识到随机现象亦可以通过数量化方法来进行研究.概率论就是以数量化方法来研究随机现象及其规律性的一门数学学科.而我们已学过的微积分等课程则是研究确定性现象的数学学科.二.随机现象的统计规律性由于随机现象的结果事先不能预知, 初看似乎毫无规律.然而人们发现同一随机现象大量重复出现时, 其每种可能的结果出现的频率具有稳定性, 从而表明随机现象也有其固有的规律性.人们把随机现象在大量重复出现时所表现出的量的规律性称为随机现象的统计规律性.概率论与数理统计是研究随机现象统计规律性的一门学科.为了对随机现象的统计规律性进行研究,就需要对随机现象进行重复观察, 我们把对随机现象的观察称为随机试验, 并简称为试验,记为E.例如, 观察某射手对固定目标进行射击;抛一枚硬币三次,观察出现正面的次数;记录某市120急救电话一昼夜接到的呼叫次数等均为随机试验.随机试验具有下列特点: 1.可重复性: 试验可以在相同的条件下重复进行;2.可观察性: 试验结果可观察,所有可能的结果是明确的;3.不确定性: 每次试验出现的结果事先不能准确预知.三.样本空间尽管一个随机试验将要出现的结果是不确定的, 但其所有可能结果是明确的, 我们把随机试验的每一种可能的结果称为一个样本点, 记为e(或ω);它们的全体称为样本空间, 记为S(或Ω).基本事件的称谓是相对观察目的而言它们是不可再分解的、最基本的事件,其它事件均可由它们复合而成,一般地,我们称由基本事件复合而成的事件为复合事件.四.事件的集合表示按定义, 样本空间S是随机试验的所有可能结果(样本点)的全体, 故样本空间就是所有样本点构成的集合, 每一个样本点是该集合的元素.一个事件是由具有该事件所要求的特征的那些可能结果所构成的, 所以一个事件对应于S中具有相应特征的样本点(元素)构成的集合, 它是S的一个子集.于是, 任何一个事件都可以用S的某一子集来表示,常用字母A,B,Λ等表示.五.事件的关系与运算因为事件是样本空间的一个集合, 故事件之间的关系与运算可按集合之间的关系和运算来处理.六.事件的运算规律事件间的关系及运算与集合的关系及运算是一致的,为了方便,给出下列对照表:表1.1 记号Ω∅概率论样本空间,必然事件不可能事件基本事件事件A的对立事件事件A发生导致B发生事件A与事件B相等事件A与事件B至少有一个发生事件A与事件B同时发生事件A发生而事件B不发生事件A和事件B互不相容集合论全集空集元素子集A的余集A是B的子集A与B的相等A与B的和集A与B的交集A与B的差集A 与B没有相同的元素ωAAA⊂BA=BA Y BABA-BAB=∅例题选讲:例1在管理系学生中任选一名学生, 令事件A表示选出的是男生, 事件B表示选出的是三年级学生, 事件C表示该生是运动员.(1)叙述事件ABC的意义;(2)在什么条件下ABC=C成立?(3)什么条件下C⊂B?(4)什么条件下A=B成立? 解(1)ABC是指当选的学生是三年级男生, 但不是运动员.(2)只有在C⊂AB, 即C⊂A,C⊂B同时成立的条件下才有ABC=C 成立, 即只有在全部运动员都是男生, 且全部运动员都有是三年级学生的条件下才有ABC=C.(3)C⊂B表示全部运动员都是三年级学生, 也就是说, 若当选的学生是运动员, 那么一定是三年级学生, 即在除三年级学生之外其它年级没有运动员当选的条件下才有C⊂B.(4)A⊂B表示当选的女生一定是三年级学生, 且B⊂A表示当选的三年级学生一定是女生.换句话说, 若选女生, 只能在三年级学生中选举, 同时若选三年级学生只有女生中选举.在这样的条件下, A=B成立.例2 考察某一位同学在一次数学考试中的成绩, 分别用A, B, C, D, P, F表示下列各事件(括号中表示成绩所处的范围):A--优秀([90,100]), B--良好([80,90)),C--中等([70,80)),D--及格([60,70)),P--通过([60,100]),F--未通过([0,60)),则A,B,C,D,F是两两不相容事件P与F是互为对立事件,即有P=F;A,B,C,D均为P的子事件,且有P=A Y B Y C Y D.例3(讲义例1)甲,乙,丙三人各射一次靶,记A-“甲中靶” B-“乙中靶” C-“丙中靶” 则可用上述三个事件的运算来分别表示下列各事件:(1)“甲未中靶”:A;(2)“甲中靶而乙未中靶”:AB;(3)“三人中只有丙未中靶”:ABC;(4)“三人中恰好有一人中靶”:ABC Y ABC Y ABC;(5)“ 三人中至少有一人中靶”:A YB Y C;(6)“三人中至少有一人未中靶”: A Y B Y C;或ABC;(7)“三人中恰有兩人中靶”:ABC Y ABC Y ABC;(8)“三人中至少兩人中靶”:AB Y AC Y BC;(9)“三人均未中靶”:ABC;(10)“三人中至多一人中靶”:ABC Y ABC Y ABC Y ABC;(11)“三人中至多兩人中靶”:ABC或A Y B Y C.注:用其他事件的运算来表示一个事件, 方法往往不惟一,如上例中的(6)和(11)实际上是同一事件,读者应学会用不同方法表达同一事件, 特别在解决具体问题时,往往要根据需要选择一种恰当的表示方法.例4指出下列各等式命题是否成立, 并说明理由:(1)A Y B=(AB)Y B;(2)AB=A Y B;(3)A Y B I C=ABC;(4)(AB)(AB)=∅.解(1)成立.(AB)Y B=(A Y B)I(B Y B)(分配律)=(A Y B)I S=A Y B.(2)不成立.若A发生, 则必有A Y B发生, A发生, 必有A不发生, 从而AB不发生, 故AB=A Y B不成立.(3)不成立.若A Y B I C发生, 即C发生且A Y B发生, 即必然有C发生.由于C发生, 故C必然不发生, 从而ABC不发生, 故(3)不成立.(4)成立.(AB)(AB)=(AB)(BA)=A(BB)A=(A∅)A=∅A=∅.例5 化簡下列事件:(1)(A Y B)(A Y B);(2)AB Y AB Y AB.解(1)(A Y B)(A Y B)=[A(A Y B)]Y[B(A Y B)](分配律)=(AA Y AB)Y(BA Y BB)=(A Y AB)]Y(BA Y∅)(因AB⊂A)=A Y BA=A.(2)AB Y AB Y AB=AB Y AB Y AB Y AB=AB Y AB Y AB Y AB(交换律)=(AB Y AB)Y(AB Y AB)(结合律)=(A Y A)B Y A(B Y B)=B Y A=AB.(对偶律)课堂练习1.设当事件A与B同时发生时C也发生, 则().(A)A Y B是C的子事件;(B)ABC;或A Y B Y C;(C)AB是C的子事件;(D)C是AB的子事件.2.设事件A={甲种产品畅销, 乙种产品滞销}, 则A的对立事件为().(A)甲种产品滞销,乙种产品畅销;(B)甲种产品滞销;(C)甲、乙两种产品均畅销;(D)甲种产品滞销或者乙种产品畅销.第二篇:概率论与数理统计概率论与数理统计,运筹学,计算数学,统计学,还有新增的应用数学,每个学校情况不太一样,每个导师研究的方向也不太一样。
北文考研曹显兵第二讲—导数与微分
Ⅱ.考试内容
一. 导数概念
1. 定义
如果极限
lim Δy = lim f (x0 + Δx) − f (x0 ) = lim f (x) − f (x0 )
Δx Δx→0
Δx→0
其中 α (x) 是当 x → 0 时比 x 高阶的无穷小, 且 f (x) 在 x = 1 处可导, 求曲线
y = f (x) 在点 (6, f (6)) 处的切线.
三.求导(微分)
【例 5】设 y
=
⎧x = arctan t
y(x)
由
⎨ ⎩2 y
−
ty 2
+
et
确定,
=5
求 dy dx
.
四.变限积分求导
注:(1) { f [ϕ(x)]}′ = f ′(ϕ(x))ϕ′(x) .
(2) 剥皮求导法:
【例 5】 y = e2sin2 (x2 +1)
2
5. 对数求导法:
【例 6】设 y = x2x + xx2 + 2xx ,则 y′ =
dy =
.
6.隐函数求导:
7.参数方程求导
dy
⎧x
⎨ ⎩
y
= φ′(t) ,则 =ψ ′(t)
,
dy dx
= ψ ′(t)φ′′(t) −ψ ′′(t)φ′(t) ⋅ 1
φ′2 (t)
φ ′(t )
【例 11】设函数
y
=
⎧x = t − ln(1 + t)
y(x)
由方程
曹显兵 《概率论与数理统计辅导讲义》习题六详解
6
3. 【详解】 由 X1, X2, , X9 均服从 N(0,σ )分布得
9
2
Xi
(i=1,2, , 9)服从 N(0, 1)分布. 因此
3
i 1
3
X i2
2
服从 2 (3)分布, 而 义得统计量
i4
X i2
2
服从 2 (6)分布, 而且
i 1
X i2
2
与
i4
X2 Y2 X Y 与 均服从 N(0,1)分布,因此 与 均服从 2 (1)分布,于是 2 3 9 4
D(
X2 Y2 2 2 ) D( ) 2 , 即 D( X ) 32, D(Y ) 162 . 4 9 2 2 2 所以,D(X 2Y ) = D(X ) +4D(Y 2) =680. 选(D).
1i n
n) ,即 max{ X i} ,因此当 =max(X1,X2, , Xn)时,L(θ)取得最
大值. 因此 θ 的最大似然估计量为 =max(X1,X2, , Xn) .
ˆ 的无偏性: 下面讨论
ˆx ˆ 的分布函数为 F ˆ ( x ) P ( ) P (ma Xx x} i {
n
, n),
1 , 0 xk (k 1, 2, n 其他. 0,
取对数得:lnL(θ) = nlnθ 须满足 xk ( k 1, 2 , 因为
, n),
d ln L( ) n 0 ,因此 L(θ)关于 θ 单调递减. 又 θ 必 d
n n
4. 【详解】 由 X1, X2, , Xn 均服从 N(0,1)分布知,
2013考研曹显兵.概率论与数理统计讲义
1 2π
( x )2 2 2
e
, 0,
e x , x>0, (6) 指数分布 E ( ) : f ( x) 0, 其他.
>0 .
0 <p<1, k 1,2,. (7) 几何分布 G ( p) : P( X k ) (1 p) k 1 p,
1 (2)概率 P(2 X ) . 4
4 / 16
概率论(曹显兵)
二、 常见的一维分布
k 1 k (1) 0-1 分布: P ( X k ) p (1 p) , k 0, 1 .
k k p (1 p ) n k , k 0,1,, n . (2) 二项分布 B (n, p ) : P ( X k ) Cn
2. 全概率公式:
P( B) P ( B | Ai ) P( Ai ), Ai Aj , i j , Ai .
i 1 i 1
3.Bayes 公式:
P( Aj | B)
P( B | Aj ) P( Aj )
P( B | A ) P( A )
i i i 1
【例 4】 设两两相互独立的三事件 A, B, C 满足条件: 且已知 P( A B C )
9 , 16
ABC=Φ, P(A)=P(B)=P(C)< . 则 【 】
1 , 2
则 P(A)=
【例 5】 设三个事件 A、B、C 满足 P(AB)=P(ABC), 且 0<P(C)<1, (A)P(A B|C)=P(A|C)+ P(B|C). (C)P(A B| C )=P(A| C )+ P(B| C ). 【例 6】 设事件 A, B, C 满足条件:
概率论与数理统计讲义稿
概率论与数理统计讲义稿第⼀章随机事件与概率§1.1 随机事件1.1.1 随机试验与样本空间概率论约定为研究随机现象所作的随机试验应具备以下三个特征:(1)在相同条件下试验是可重复的;(2)试验的全部可能结果不只⼀个,且都是事先可以知道的;(3)每⼀次试验都会出现上述可能结果中的某⼀个结果,⾄于是哪⼀个结果则事前⽆法预知。
为简单计,今后凡是随机试验皆简称试验,并记之以英⽂字母E。
称试验的每个可能结果为样本点,并称全体样本点的集合为试验的样本空间,分别⽤希腊字母ω和Ω表⽰样本点及样本空间。
必须指出的是这个样本空间并不完全由试验所决定,它部分地取决于实验的⽬的。
假设抛掷⼀枚硬币两次,出于某些⽬的,也许只需要考虑三种可能的结果就⾜够了,两次都是正⾯,两次都是反⾯,⼀次是正⾯⼀次是反⾯。
于是这三个结果就构成了样本空间Ω。
但是,如果要知道硬币出现正反⾯的精确次序,那么样本空间Ω就必须由四个可能的结果组成,正⾯-正⾯、反⾯-反⾯、正⾯-反⾯、反⾯-正⾯。
如果还考虑硬币降落的精确位置,它们在空中旋转的次数等事项,则可以获得其它可能的样本空间。
经常使⽤⽐绝对必要的样本空间较⼤的样本空间,因为它便于使⽤。
⽐如,在前⾯的例⼦中,由四个可能结果组成的样本空间便于问题的讨论,因为对于⼀个“均匀”的硬币这四个结果是“等可能”的。
尽管这在有3种结果的样本空间内是不对的。
例 1.1.1 1E :从最简单的试验开始,这些试验只有两种结果。
在抛掷硬币这⼀试验中出现“正⾯”或“反⾯”;在检查零件质量时,可能是“合格”或“不合格”;当⽤来模拟电⼦产品旋转的⽅向时,结果是“左边”或者“右边”;在这些情况下样本空间Ω简化为:Ω={正⾯,反⾯}。
2E :更复杂⼀些,有的随机试验会产⽣多种可能的结果,⽐如掷⼀颗骰⼦,观察出现的点数。
样本空间为:{1,2,3,4,5,6}Ω=。
3E : 掷两枚硬币(或者观察两个零件或两个电⼦产品),可以得到Ω={(正⾯,正⾯)、(反⾯,反⾯)、(正⾯,反⾯)、(反⾯,正⾯) }读者可以将其推⼴到掷n 个硬币,样本空间⾥有多少样本点呢?4E :再复杂⼀些,⼀名射⼿向某⽬标射击,直⾄命中⽬标为⽌,观察其命中⽬标所进⾏的射击次数。
XXXX考研最全的电子书下载
2012考研词汇速记指南(刘一男)-.pdfﻫ#ﻫ2012考研英语长难句与词汇突破(李玉枝).pd fﻫ#2012考研英语阅读120篇(马德高).pdf#ﻫﻫ2012考研英语新大纲标准词汇掌上宝(周洁).pdfﻫ#ﻫ2012考研英语五大题源报刊阅读150篇(刘雪明).pdfﻫ#ﻫ2012考研英语核心词汇说文解词(词根乱序版)(曾鸣).pdfﻫ#2012报考知识全集及政治理论基干知识全集-徐之明.pdfﻫ#ﻫ2012考研政治核心点表解与真题解析(考研命题研究组).pdf#2012数学历年试题解析(数学三)(李永乐).pdf#ﻫ2012数学历年试题解析(数学二)(李永乐).pdfﻫ#ﻫ2012数学基础过关660题(数学一)(李永乐).pdf#ﻫﻫ2012数学基础过关660题(数学三)(李永乐).pdf#ﻫﻫ2012数学基础过关660题(数学二)(李永乐).pdfﻫ##ﻫ2012考研英语核心词汇30天突破(马德高).pdfﻫ2012考研英语高分写作(英语一、二)(王江涛).pdfﻫ#ﻫﻫ2012考研数学接力题典1800ﻫ2012考研英语分类阅读高分进阶(120篇).pdfﻫ#通关高分夺冠必备(汤家凤)-.pdf#ﻫ2012考研数学基础题集(数一)(武忠祥).pdf#ﻫﻫ2012考研数学基础题集(数三)(武忠祥).pdfﻫ#ﻫﻫ2012考研数学基础题集(数二)(武忠祥).pdfﻫ#ﻫ2012考研数学基础轻松过500题(理工类)(潘正义).pdfﻫ#ﻫ2012考研数学基础轻松过500题(经济类)(潘正义).pdf#ﻫ#ﻫ2012考研数学基础过关精选200题(恩波教育).pdfﻫﻫﻫ2012考研数学基础核2012考研数学基础核心讲义(理工类)(修订版)(陈文灯)-.pdfﻫ#心讲义(经济类)(修订版)(陈文灯)-.pdf#ﻫ2012考研数学复习指南(理工类)(修订版)(陈文灯)-.pdfﻫ#2012考研数学10年真题ﻫﻫ2012考研数学复习指南(经济类)(修订版)(陈文灯)-.pdfﻫ#点评(数学一)(陈文灯).pdfﻫ#2012考研数学10年真题点ﻫﻫﻫ2012考研数学10年真题点评(数学三)(陈文灯).pdfﻫ#评(数学二)(陈文灯).pdf#2012考研数学复习大全(理工类)(蔡子华)-.pdfﻫ#2012考研数学复习大全(经济类)(蔡子华)-.pdfﻫ#ﻫ2012考研数学第一视频(理工类)(潘正义).pdf#ﻫ2012考研数学第一视频(经济类)(潘正义).pdfﻫ#2012考研高等数学辅导教材(黄庆怀).pdfﻫ#ﻫ2012概率论与数理统计辅导讲义(曹显兵).pdfﻫ#ﻫ2012考研英语核心词汇笔记(胡敏).pdf#ﻫ2012考研英语拆分与组合翻译法(唐静).pdf#ﻫ2012考研英语词汇速记宝典(徐绽).pdf#ﻫ2012海天政治马克思主义基本原理核心教程(阮晔).pdf#ﻫ2012考研数学单选题解题方法与技巧(陈文灯).pdfﻫ#ﻫ2012海天英语基础阅读突破(宫东风).pdfﻫﻫ2012考研数学必做客观题1500题精析(蔡子华).pdf#2012考研数学必做主观题500题精析(蔡子华).pdfﻫ#ﻫ2012考研英语读真题记单词(胡敏)-.pdf#ﻫﻫ2012考研英语复习指导(朱泰祺)-.pdfﻫ#ﻫ2012考研英语语法突破(胡敏).pdfﻫ#ﻫ2012考研英语阅读理解精读100篇(印建坤).pdfﻫ# 2012考研英语阅读专项训练(王若平).pdf#ﻫ2012考研英语写作高分突破(热点话题100篇)(曾鸣).pdfﻫ#ﻫ2012考研英语英译汉四步定位翻译法(胡敏).pdfﻫ#ﻫﻫ2012考研英语阅读理解110#ﻫ#篇(肖克).pdfﻫﻫﻫ2012考研英语阅读理解精读200篇(胡敏).pdfﻫ2012考研政治早知道核心知识精粹及典型真题(李海洋).pdf#ﻫ2012考研英语大纲词汇考点、用法及辨析(李玉枝).pdf#2012考研英语大纲核心词汇必备(王建华).pdfﻫ#ﻫ2012考研英语阅读题源大全(郭崇兴).ﻫﻫ2012考研英语命题人选题源阅读(王长喜).pdfﻫ#pdfﻫ#ﻫ2012英语阅读精析100篇(赵敏).pdfﻫ#ﻫ2012考研英语必记词组(郭崇兴).pdf#ﻫ2012考研英语词汇宝典(肖克).pdfﻫ#ﻫ2012考研英语词汇词根+联想+图解记忆法(马德高).pdfﻫﻫ2012考研英#ﻫﻫ2012考研英语词汇词根+联想+语境记忆法(阅读版)(王长喜).pdfﻫ#语词汇词根+联想记忆法(乱序版)(俞洪敏).pdfﻫ#ﻫ2012考研英语词汇词根+联想记忆法(俞洪敏).pdfﻫ#ﻫ2012考研英语词汇活学活用巧链记(白洁).pdf#ﻫ2012考研英语考前热点范文80篇(许小波).pdfﻫ#ﻫ2012考研英语逻辑辨证记忆30天(3000核心词汇+500词组)(张纪元).pdf#ﻫ2012思想政治理论历年试题解析(米鹏).pdf#ﻫ2012淘金式巧攻考研英语词汇(伍乐其)-.pdfﻫ#数据结构考研指导ﻫﻫ操作系统考研指导ﻫﻫﻫ计算机组成原理考研指导ﻫﻫ完整版《数据结构1800题+答案》ﻫ计算机组成原理-研究生入学经典试卷(完全版)ﻫ计算机组成原理-研究生入学经典试卷答案ﻫﻫ计算机网络重点知识完美总结整理ﻫﻫ计算机操作系统常见题型解析及模拟题pdf格式唐朔飞《计算机组成原理》课件ﻫﻫ计算机组成原理PPT课件王爱英(清华)ﻫ操作系统学习资料汇总05年清华计算机本科上课课件<数据结构>ﻫ白中英《计算机组成原理》第四版(立体化教材)课件2008.5制作ﻫ白中英《计算机组成原理》第四版(立体化教材)课后习题答案与自测题库2008.5作者更新ﻫﻫ数据结构复习重点归纳ﻫ北京航空航天大学数据结构与程序设计02——07(无03)ﻫﻫ北京航空航天大学2004——2008(无2006)计算机专业技术基础ﻫﻫ操作系统考试要点与真题精解ﻫ计算机操作系统学习指导与习题解析(PDF书籍下载)ﻫ《操作系统考研辅导教程》,计算机专业研究生入学考试全真题解(2)ﻫﻫﻫﻫ计算机操作操作系统学习指导与习题解答(PDF)ﻫﻫﻫ计算机操作系统课程及考研辅导ﻫ系统学习指导与习题解答ﻫﻫ研究生入学考试要点、真题解析与模拟试卷:数据结构ﻫﻫ操作系统典型题解析与实战模拟ﻫﻫ18所大学计算机专业(组成原ﻫﻫ《计算机操作系统》试卷适用汤子瀛《操作系统》第二版ﻫ理).chmﻫﻫ南京邮电大学2001___2006年数据结构考研试卷ﻫﻫﻫﻫ计算机组成原理、计算机系统结构与数字逻辑试题理工科研究生入学考试试题精选(2)ﻫ精选湖南大学2000-2006数据结构试题北京交通大学02 05 07年数据结构真题ﻫﻫﻫC程序设计考研指ﻫﻫ[下载]:操作系统学习辅导ﻫﻫ苏州大学99___06计算机综合题ﻫ导ﻫ【全美经典】离散数学ﻫ微机原理与接口技术习题与解析ﻫﻫ微机原理与接口技术考研指导ﻫﻫﻫ离散数学考研指导ﻫ《计算机网络知识要点与习题解析》(谢希仁教材配套)ﻫ。
(完整版)《概率论与数理统计》讲义
第一章 随机事件和概率 第一节 基本概念1、排列组合初步(1)排列组合公式)!(!n m m P n m -= 从m 个人中挑出n 个人进行排列的可能数。
)!(!!n m n m C n m -=从m 个人中挑出n 个人进行组合的可能数。
例1.1:方程xx x C C C 76510711=-的解是 A . 4 B . 3 C . 2 D . 1例1.2:有5个队伍参加了甲A 联赛,两两之间进行循环赛两场,试问总共的场次是多少?(2)加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。
(3)乘法原理(两个步骤分别不能完成这件事):m ×n某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m ×n 种方法来完成。
例1.3:从5位男同学和4位女同学中选出4位参加一个座谈会,要求与会成员中既有男同学又有女同学,有几种不同的选法?例1.4:6张同排连号的电影票,分给3名男生和3名女生,如欲男女相间而坐,则不同的分法数为多少?例1.5:用五种不同的颜色涂在右图中四个区域里,每一区域涂上一种颜色,且相邻区域的颜色必须不同,则共有不同的涂法A.120种B.140种 C.160种D.180种(4)一些常见排列①特殊排列②相邻③彼此隔开④顺序一定和不可分辨例1.6:晚会上有5个不同的唱歌节目和3个不同的舞蹈节目,问:分别按以下要求各可排出几种不同的节目单?①3个舞蹈节目排在一起;②3个舞蹈节目彼此隔开;③3个舞蹈节目先后顺序一定。
例1.7:4幅大小不同的画,要求两幅最大的排在一起,问有多少种排法?例1.8:5辆车排成1排,1辆黄色,1辆蓝色,3辆红色,且3辆红车不可分辨,问有多少种排法?①重复排列和非重复排列(有序)例1.9:5封不同的信,有6个信箱可供投递,共有多少种投信的方法?②对立事件例1.10:七人并坐,甲不坐首位,乙不坐末位,有几种不同的坐法?例1.11:15人中取5人,有3个不能都取,有多少种取法?例1.12:有4对人,组成一个3人小组,不能从任意一对中取2个,问有多少种可能性?③ 顺序问题例1.13:3白球,2黑球,先后取2球,放回,2白的种数?(有序) 例1.14:3白球,2黑球,先后取2球,不放回,2白的种数?(有序) 例1.15:3白球,2黑球,任取2球,2白的种数?(无序)2、随机试验、随机事件及其运算(1)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。
概率论与数理统计第16讲
co v( X i , X j ),
10
②若X1,X2,,Xn两两独立, 则
D Xi i 1
n
D(X
i 1
n
i
).
③可以证明: 如果X,Y的方差存在, 则
| co v( X , Y ) | E | ( X - E ( X ))( Y - E ( Y )) | D(X ) D (Y )
4
一, 协方差的定义 定义1 设(X,Y)为二维随机向量, 若 E{[X-E(X)][Y-E(Y)]} 存在, 则称其为随机变量X和Y的协方差, 记为cov(X,Y), 即 cov(X,Y)=E{[X-E(X)][Y-E(Y)]}. (3.1)
5
cov(X,Y)=E{[X-E(X)][Y-E(Y)]} 按定义, 若(X,Y)为离散型随机变量, 其概 率分布为 P{X=xi, Y=yj}=pij (i,j=1,2,) 则
29
注: ①相关系数rXY刻画了随机变量Y与X 之间的"线性相关"程度. |rXY|的值越接近1, Y与X的线性相关程度 越高; |rXY|的值越接近0, Y与X的线性相关程度 越弱; 当|rXY|=1时, Y与X的变化可完全由X的线 性函数给出. 当rXY=0时, Y与X之间不是线性关系.
30
②当rXY=0时, 只说明Y与X没有线性关系. 并不能说明Y与X之间没有其它函数关系. 从而不能推出Y与X独立. 4. 设e=E[Y-(aX+b)]2, 称为用aX+b来近似 Y的均方误差, 则有下列结论: 设D(X)>0, D(Y)>0, 则
17
4 y , fY ( y ) 0,
3
0 y 1, 其 它.
考研数学免费资料大全
考研数学高等数学复习资料汇总[考研数学][高等数学]2007年新东方考研数学基础班-高等数学-汪诚义[考研数学][高等数学]2007年新东方考研数学强化班-高等数学-汪诚义[考研数学][高等数学]陈文灯高数习题答案(新)[考研数学][高等数学]2008年考研-高数春季班讲义第一讲[考研数学][高等数学]2008年考研-高数春季班讲义第二讲[考研数学][高等数学]2008年考研-高数春季班讲义第三讲[考研数学][高等数学]考研高数数学公式_新排版[考研数学][高等数学]08考研数学全程规划(音频)-高数和微积分[考研数学][高等数学]同濟五版高数课本与答案[考研数学][高等数学]高数公式概率公式数学重点、难点归纳辅导[考研数学][高等数学]高数、线性、概率课后答案完整版[考研数学][高等数学]考研数学真题近十年考题路线分析(高数部分)[考研数学][高等数学]考研数学]2008高等数学复习--函数专题[考研数学][高等数学]清华基础班讲义(全)-高等数学部分[考研数学][高等数学]2007版--高等数学(强化)课程电子版教材1-2[考研数学][高等数学]高等数学简明公式[考研数学][高等数学]高等数学各部分常见的题型[考研数学][高等数学]高等数学知识点[考研数学][高等数学]考研数学高等数学部分公式手册[考研数学][高等数学]考研高等数学重点复习与典型题型[考研数学][高等数学]新东方在线考研数学基础班--高等数学讲义[考研数学][高等数学]2008陈文灯考研数学复习指南习题详解(理工)--高等数学[考研数学][高等数学]高等数学公式手册[考研数学][高等数学]《高等数学总复习图册》正文[考研数学][高等数学]龚冬保:高等数学典型题解法•技巧•注释(第2版)[考研数学][高等数学]高等数学试题精选与解答(蔡高厅)[考研数学][高等数学]高等数学基础知识网络图章[考研数学][高等数学]高等数学典型题解法•技巧•注释(龚冬保)[考研数学][高等数学]考研讲义-高等数学[考研数学][高等数学]李大华:高等数学、线性代数1200题[考研数学][高等数学]考研数学高等数学部分复习注意事项[考研数学][高等数学]高等数学二重积分专题[考研数学][高等数学]中值定理总结[考研数学][高等数学]实用三角函数公式总表[考研数学][高等数学]2007考研数学真题评析(水木版)-数一至数四全[考研数学][高等数学]高等数学易错、易忘、易漏问题备忘录[考研数学][高等数学]泰勒公式的应用[考研数学][高等数学]2008高等数学复习--函数专题[考研数学][高等数学]循环递推法积分计算[考研数学][高等数学]洛必达法则失效的种种情况及处理方法[考研数学][高等数学]求极限的方法和技巧[考研数学][高等数学]三角公式大全[考研数学][高等数学]三次函数图象性质的研究和应用[考研数学]考研数学线性代数复习资料汇总[考研数学][线性代数]2007年新东方考研数学强化班-线性代数-尤承业[考研数学][线性代数]2007年新东方考研数学基础班-线性代数-尤承业[考研数学][线性代数]李永乐线代辅导班冲刺笔记[考研数学][线性代数]08考研数学全程规划(音频)-线代[考研数学][线性代数]经济类数学——线代各章节复习题目及解答WORD[考研数学][线性代数]2008陈文灯考研数学复习指南习题详解(理工)--线代[考研数学][线性代数]李永乐线代辅导班冲刺笔记[考研数学][线性代数]考研数学真题近十年考题路线图(线代部分)[考研数学][线性代数]线性代数强化阶段的的复习方法[考研数学][线性代数]线性代数复习指导[考研数学][线性代数]2008考研数学-线性代数全攻略-张跃辉[考研数学][线性代数]线性代数复习指导[考研数学][线性代数]考研数学2008版--线性代数(2008强化) 课程电子版教材[考研数学][线性代数]2008考研数学线性代数辅导讲义(李永乐)[考研数学][线性代数]备考MBA联考线性代数冲关60题[考研数学][线性代数]线性代数知识网络图[考研数学][线性代数]2008年线性代数必考的知识点[考研数学][线性代数]2007版--线性代数(07强化)课程[考研数学][线性代数]2008考研数学基础班线性代数-曾祥金[考研数学][线性代数]线性代数超强总结[考研数学][线性代数]线性代数知识点[考研数学][线性代数]2008年考研-线性代数春季班讲义[考研数学][线性代数]李大华:高等数学、线性代数1200题[考研数学][线性代数]备考MBA联考线性代数冲关60题[考研数学]考研数学概率统计复习资料汇总[考研数学][概率统计]概率统计课本[浙三版][考研数学][概率统计]概率统计习题答案[浙三版][考研数学][概率统计]考研数学2008版--概率论与数理统计(2008强化)课程电子版教材[考研数学][概率统计]视频点睛习题详细解答(概率)[考研数学][概率统计]2008陈文灯考研数学复习指南习题详解(理工)--概率WORD [考研数学][概率统计]经济类数学——概率各章节复习题目及解答WORD[考研数学][概率统计]浙大概率习题全解[考研数学][概率统计]高数,线性,概率课后答案完整版[考研数学][概率统计]概率论与数理统计辅导讲义(主编:龚兆仁)[考研数学][概率统计]高数公式概率公式数学重点、难点归纳辅导[考研数学][概率统计]2007年新东方考研数学基础班-概率统计-费允杰[考研数学][概率统计]2007年新东方考研数学强化班-概率统计-费允杰[考研数学][概率统计]概率公式整理[考研数学][概率统计]概率统计知识点[考研数学][概率统计]2006年考研数学概率论基础笔记大全[考研数学][概率统计]概率与数理统计问题集[考研数学][概率统计]概率论与数理统计解题的九种思维定势[考研数学][概率统计]文都教育-2008考研数学强化班概率讲义-曹显兵pdf[考研数学][概率统计]文都教育-2008考研数学强化班概率讲义-曹显兵word[考研数学]考研数学历年真题复习资料汇总[考研数学][历年真题]2007考研数学真题评析(水木版)-数一至数四全[考研数学][历年真题]2006年硕士研究生入学统一考试数学一试题及答案[考研数学][历年真题]数一2005年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一2004年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一2003年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一2002年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一2001年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一2000年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一1999年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一1998年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一1997年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一1996年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一1995年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数二2006年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二2005年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二2004年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二2003年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二2002年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二2001年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二2000年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二1999全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二1998年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二1997年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二1996年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二1995年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数三2006年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三2005年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三2004年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三2003年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三2002年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三2001年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三2000年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三1999年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三1998年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三1997年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三1996年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三1995年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数四2007年全国硕士研究生入学考试数学四参考答案[考研数学][历年真题]数四2006年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四2005年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四2004年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四2003年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四2002年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四2001年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四2000年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四1999年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四1998年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四1997年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四1996年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四1995年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学]考研数学综合复习复习资料汇总[考研数学][综合复习]2008年考研大纲、大纲解析、考试分析电子书下载全集[英语、政治、数学][考研数学][综合复习]2008年全国硕士研究生入学统一考试-数学考试大纲[考研数学][综合复习]2008年全国硕士研究生入学统一考试-数学考试分析[考研数学][综合复习]2008年全国硕士研究生入学统一考试-数学考试大纲解析(数一和数二)[考研数学][综合复习]2008年全国硕士研究生入学统一考试-数学考试大纲解析(数三和数四)[考研数学][综合复习]2008年李永乐、李正元考研数学全真模拟经典400题(理工类数学一)[考研数学][综合复习]2008李永乐、李正元考研数学全真模拟经典400题(理工类数学二)[考研数学][综合复习]2008李永乐、李正元考研数学全真模拟经典400题(经济类数学三)[考研数学][综合复习]2008年陈文件灯、黄先开、曹显兵考研数学复习指南(经济类)[考研数学][综合复习]08年考研数学考试大纲变化解析与复习建议[考研数学][综合复习]2007年数学考试大纲(一、二、三、四)[考研数学][综合复习]陈文登考研数学辅导书(附详细答案)[考研数学][综合复习]经济数学四轮学习方略[考研数学][综合复习]文都考研数学公式手册[考研数学][综合复习]备考辅导:2008年考研数学三大纲变化对比分析[考研数学][综合复习]考研数学重点及难点归纳辅导笔记[考研数学][综合复习]2008考研数学复习指南100问专题串讲经济类.pdf[考研数学][综合复习]考研数学公式(整理版)[考研数学][综合复习]考研数学高等数学部分公式手册[考研数学][综合复习]李永乐冲刺笔记(网友整理版)[考研数学][综合复习]2007年考研数学轻巧手册(经济类)_陈文灯等[考研数学][综合复习]水木艾迪考研数学三十六计[考研数学][综合复习]陈文灯解读数学大纲:新增泰勒公式考点[考研数学][综合复习]考研数学复习过程中六大禁忌列举[考研数学][综合复习]数学复习多思考的复习事半功倍[考研数学][综合复习]陈文灯:数学复习应注意若干要点[考研数学][综合复习]数学考研讲义(完全版)[考研数学][综合复习]考研数学36技150杀伤力(考研凯旋营提供)[考研数学][综合复习]考研宝典——试题精粹之数学[考研数学][综合复习]高等数学试题精选与解答(蔡高厅)[考研数学][综合复习]数学符号和公式的英语读法[考研数学][综合复习]考研数学函数图像大全(1)[考研数学][综合复习]考研数学函数图像大全(2)[考研数学][综合复习]2008年考研公共课备考:数学首轮复习注意事项[考研数学][综合复习]2007考研数学考前必做三套题(附详细解答)[考研数学][综合复习]陈文登考研数学轻巧手册2008经济类(全)[考研数学][综合复习]陈文灯李永乐两位数学权威对08年数学大纲的分析[考研数学][综合复习]陈文灯数学提高班例题[考研数学][综合复习]清华大学谈08考研—考研数学要走对路找对点[考研数学][综合复习]08数学必过-考研数学重点及难点归纳辅导笔记下载[考研数学][综合复习]海天名师郝海龙权威解析2008年考研数学大纲[考研数学][综合复习]陈文灯考研数学笔记[考研数学][综合复习]2007年考研数学考试大纲下载[考研数学][综合复习]龚冬保教授解读近几年数学考研真题[考研数学][综合复习]理工类数学各部分复习-WORD[考研数学][综合复习]高联08 年考研基础班讲义详解[考研数学][综合复习]2007年考研数学必做客观题1500题精析[考研数学][综合复习]数学满分秘籍[考研数学][综合复习]2007年考研数学轻巧手册(经济类)[考研数学][综合复习]2008年考研数学必备知识点(最新更新)WORD打印版[考研数学][综合复习]数学近10年考题路线图[考研数学][综合复习]六个短语把握牢考研数学复习效率高。
《概率论与数理统计》课件
XXXX大学
单选题 1分
下列对古典概型说法正确的个数是 ( )。 A ①试验中可能出现的基本事件只有有限个;
②每个事件出现的可能性相等;
B ③若基本事件总数为n ,事件 A 包括 k 个基本事件,则P(A) = k n ;
④每个基本事件出现的可能性相等。 C A. 0
B. 1 C. 2 D D. 3
柯尔莫哥洛夫
概率的公理化定义
概率的性质
频率方法:
频率= nA n
概率=频率的稳定值
Ⅰ.规范性 Ⅱ.非负性 Ⅲ.可列可加
Ⅰ.P( ) = 0 ; Ⅱ.有限可加性 Ⅲ.对
立事件概率Ⅳ.减法公式; Ⅴ加法公式
概率
三种计算方法
几何方法:一维线段的长度;
二维区域的面积; 三维立体的体积.
古典方法:
Ⅰ .随机试验中只有有限个可能的结果;
AB
A
B
A = (A− B) + AB 显然A− B与AB互斥
2
P(A) = P(A− B) + P(AB)
P(A− B) = P(A) − P(AB)
B 仁 A,则P(A− B) = P(A) − P(B). 显然P(A) > P(B)
1.3.2概率的公理化定义及其性质
P( ) = 0;
A1 , A2 , , An
A
B. P(AB) = 1− P(A) − P(B) + P(AB) C. P(AB) = P(A)P(B)
B
D. P(A− B) = 0
C
P(A− B) = P(A) − P(AB) ,排除选项 A。
D
1− P(A) − P(B) + P(AB)=P(A) −1+ P(B) + P(A B)
概率论与数理统计讲义第六章 样本与抽样分布
第六章样本与抽样分布§6.1 数理统计的基本概念一.数理统计研究的对象例:有一批灯泡,要从使用寿命这个数量指标来看其质量,设寿命用X表示。
(1)若规定寿命低于1000小时的产品为次品。
此问题是求P(X 1000)=F(10000),求F(x)? (2)从平均寿命、使用时数长短差异来看其质量,即求E(x)?、D(x)?。
要解决二个问题1.试验设计抽样方法。
2.数据处理或统计推断。
方法具有“从局部推断总体”的特点。
二.总体(母体)和个体1.所研究对象的全体称为总体,把组成总体的每一个对象成员(基本单元)称为个体。
说明:(1)对总体我们关心的是研究对象的某一项或某几项数量指标(或属性指标)以及他们在整体中的分布。
所以总体是个体的数量指标的全体。
(2)为研究方便将总体与一个R.V X对应(等同)。
a.总体中不同的数量指标的全体,即是R.V.X的全部取值。
b.R.V X的分布即是总体的分布情况。
例:一批产品是100个灯泡,经测试其寿命是:1000小时1100小时1200小时20个30个50个X 1000 1100 1200P 20/100 30/10050/100(设X表示灯泡的寿命)可知R.V.X的分布律,就是总体寿命的分布,反之亦然。
常称总体X,若R.VX~F(x),有时也用F(x)表示一个总体。
(3)我们对每一个研究对象可能要观测两个或多个数量指标,则可用多维随机向量(X,Y,Z, …)去描述总体。
2.总体的分类有限总体无限总体三.简单随机样本.1.定义6.1 :从总体中抽得的一部分个体组成的集合称为子样(样本),取得的个体叫样品,样本中样品的个数称为样本容量(也叫样本量)。
每个样品的测试值叫观察值。
取得子样的过程叫抽样。
样本的双重含义:(1)随机性:用(X1,X2,……X n) n维随机向量表示。
X i表示第i个被抽到的个体,是随机变量。
(i=1,2,…n)(2)确定性:(x1,x2,……x n)表示n个实数,即是每个样品Xi观测值x i(i=1,2,…n)。
概率论与数理统计PDF版课件1-1
(3) A B C A B C A B C +A B C . (4) A B C A B C A B C A B C A B C +A B C +A B C . (5) ( A B)C .
第一章 随机事件与概率 §1.1基本概念
例4 设A, B 为两个事件, 试化简下列各式:
例1 (P2 例1)写出下列随机试验的样本空间
(1) 从一批含有次品的产品中随机抽一件产品, 检查它 是否为合格品;
(2) 掷一颗骰子, 观察出现的点数; (3) 将一枚梗币抛三次, 观察出现正面, 反面的情况; (4) 将一枚硬币抛三次, 观察出现正面的次数; (5) 观察某一时间段通过一路口的车辆数; (6) 测量某物理量(长度,单位:米)的误差 .
定义4 在一定的条件下必然会发生的事件称为必然事件.
记为 S 或 .
定义5 在一定的条件下肯定不会发生的事件称为不可能事
件. 记为 .
3. 随机事件的表示 (1) 文字描述. (2) 样本点, 即集合表示. (3) 文氏图.
第一章 随机事件与概率 §1.1基本概念
例2 (P3 例2)掷一颗骰子, 观察出现的点数, 用样本点表示下列
(4) 设i 表示抛三次硬币出现 i 次正面, 则 Ω4 ={0, 1, 2, 3 }.
(5) 设i 表示某一时间段通过路口i 辆车数, 则
Ω5 ={0, 1, 2, 3, } .
(6) 6 ={ t | <t < }.
第一章 随机事件与概率 §1.1基本概念
2. 随机事件: 在随机试验中可能发生也可能不发生的事情或 结果.
第一章 随机事件与概率 §1.1基本概念
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率论曹显兵第一讲 随机事件与概率考试要求1. 了解样本空间的概念, 理解随机事件的概念, 掌握事件的关系与运算.2. 理解概率、条件概率的概念, 掌握概率的基本性质, 会计算古典型概率和几何型概率, 掌握概率的加法公式、减法公式、乘法公式、全概率公式, 以及贝叶斯公式.3. 理解事件独立性的概念, 掌握用事件独立性进行概率计算;理解独立重复试验的概率, 掌握计算有关事件概率的方法. 一、古典概型与几何概型1.试验,样本空间与事件.2.古典概型:设样本空间Ω为一个有限集,且每个样本点的出现具有等可能性,则基本事件总数中有利事件数A A P =)(3.几何概型:设Ω为欧氏空间中的一个有界区域, 样本点的出现具有等可能性,则、体积)Ω的度量(长度、面积、体积)A的度量(长度、面积=)(A P【例1】 一个盒中有4个黄球, 5个白球, 现按下列三种方式从中任取3个球, 试求取出的球中有2个黄球, 1 个白球的概率.(1) 一次取3个;(2) 一次取1 个, 取后不放回; (3) 一次取1个, 取后放回.【例2 】从 (0,1) 中随机地取两个数,试求下列概率: (1) 两数之和小于1.2; (2) 两数之和小于1且其积小于163. 一、 事件的关系与概率的性质1. 事件之间的关系与运算律(与集合对应), 其中特别重要的关系有: (1) A 与B 互斥(互不相容) ⇔ Φ=AB(2) A 与B 互逆(对立事件) ⇔ Φ=AB ,Ω=B A (3) A 与B 相互独立⇔ P (AB )=P (A )P (B ).⇔ P (B|A )=P (B ) (P (A )>0).⇔(|)(|)1P B A P B A += (0<P (A )<1).⇔P (B|A ) =P (B|A ) ( 0 < P (A ) < 1 )注: 若(0<P (B )<1),则,A B 独立⇔ P (A|B )=P (A ) (P (B )>0)⇔ 1)|()|(=+B A P B A P (0<P (B )<1). ⇔ P (A |B )=P (A |B ) (0<P (B )<1) ⇔ P (A |B )=P (A |B ) (0<P (B )<1)(4) A, B, C 两两独立 ⇔ P (AB )=P (A )P (B );P (BC )=P (B )P (C ); P (AC )=P (A )P (C ).(5) A, B, C 相互独立 ⇔ P (AB )=P (A )P (B );P (BC )=P (B )P (C ); P (AC )=P (A )P (C );P (ABC )=P (A )P (B )P (C ).2. 重要公式(1) )(1)(A P A P -=(2) )()()(AB P A P B A P -=-(3) )()()()(AB P B P A P B A P -+=)()()()()()()()(ABC P AC P BC P AB P C P B P A P C B A P +---++= (4) 若A 1, A 2,…,A n 两两互斥, 则∑===ni i ni i A P A P 11)()( .(5) 若A 21,A , …, A n 相互独立, 则)(1)(11i ni ni i A P A P ∏==-= )](1[11i ni A P ∏=--=.∏===ni i n i i A P A P 11)()( .(6) 条件概率公式: )()()|(A P AB P A B P = (P (A )>0)【例3】 已知(A +B )(B A +)+B A B A +++=C, 且P ( C )=31, 试求P (B ). 【例4】 设两两相互独立的三事件A, B, C 满足条件: ABC =Φ, P (A )=P (B )=P (C )<21,且已知9()16P A B C =, 则P (A )= . 【例5】 设三个事件A 、B 、C 满足P (AB )=P (ABC ), 且0<P (C )<1, 则 【 】(A )P (A B|C )=P (A|C )+ P (B|C ). (B )P (A B|C )=P (A B ). (C )P (A B|C )=P (A|C )+ P (B|C ). (D )P (A B|C )=P (A B ). 【例6】 设事件A, B, C 满足条件: P (AB )=P (AC )=P (BC )18=, P (ABC )=116, 则事件A, B, C 中至多一个发生的概率为 . 【例7】 设事件A, B 满足 P (B| A )=1则 【 】(A ) A 为必然事件. (B ) P (B|A )=0.(C ) A B ⊃. (D ) A B ⊂.【例8】 设A, B, C 为三个相互独立的事件, 且0<P (C )<1, 则不独立的事件为 【 】(A ) B A +与C . (B ) AC 与C(C ) B A -与C (D ) AB 与C 【例9】 设A ,B 为任意两个事件,试证P (A )P (B )-P (AB ) ≤ P (A -B ) P (B -A ) ≤ 41.三、乘法公式,全概率公式,Bayes 公式与二项概率公式 1. 乘法公式:).|()|()|()()().|()()|()()(1212131212121212121-===n n n A A A A P A A A P A A P A P A A A P A A P A P A A P A P A A P2. 全概率公式:11()(|)(),,,.i i i j i i i P B P B A P A A A i j A ∞∞====Φ≠=Ω∑ 3.Bayes 公式:11(|)()(|),,,.(|)()j j j i j i i iii P B A P A P A B A i j A P B A P A ∞∞====Φ≠=Ω∑ A 4.二项概率公式:()(1),0,1,2,,.k kn k n n P k C P P k n -=-= ,【例10】 10件产品中有4件次品, 6件正品, 现从中任取2件, 若已知其中有一件为次品,试求另一件也为次品的概率.【例11】设10件产品中有3件次品, 7件正品, 现每次从中任取一件, 取后不放回.试求下列事件的概率. (1) 第三次取得次品; (2) 第三次才取得次品;(3) 已知前两次没有取得次品, 第三次取得次品; (4) 不超过三次取到次品;【例12】 甲, 乙两人对同一目标进行射击,命中率分别为0.6和0.5, 试在下列两种情形下, 分别求事件“已知目标被命中,它是甲射中”的概率. (1)在甲, 乙两人中随机地挑选一人, 由他射击一次; ( 2)甲, 乙两人独立地各射击一次.【例13】设有来自三个地区的各10名、15名和25名考生的报名表,其中女生的报名表分别为3份,7份和5份. 随机地取一个地区的报名表,从中先后任意抽出两份.(1) 求先抽到的一份是女生表的概率p;(2) 已知后抽到的一份是男生表,求先抽到的一份是女生表的概率q . 第二讲 随机变量及其分布考试要求1. 理解随机变量及其概率分布的概念.理解分布函数(()()F x P X x =≤) 的概念及性质.会计算与随机变量有关的事件的概率.2. 理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson )分布及其应用.3. 了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4. 理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布2(,)N μσ、指数分布及其应用,其中参数为(0)λλ>的指数分布的概率密度为,0,()0,0.x e x f x x λλ-⎧>=⎨≤⎩5. 会求随机变量函数的分布.一、分布函数1.随机变量:定义在样本空间上,取值于实数的函数称为随机变量.2.分布函数:∞+-∞=<<),≤()(x x X P x F F (x )为分布函数 ⇔(1) 0≤F (x ) ≤1(2) F (x )单调不减(3) 右连续F (x+0)=F (x ) (4) 1)(,0)(=+∞=-∞F F3.离散型随机变量与连续型随机变量 (1) 离散型随机变量∑∞=====1i 10,≥,,,2,1,)(i i i i p p n i p x X P分布函数为阶梯跳跃函数.(2) 连续型随机变量 ⎰∞-=xt t f x F d )()( f (x )为概率密度 ⇔ (1) f (x )≥0, (2) ⎰+∞∞- f (x )1d =x ⎰=≤≤=<<ba x fb X a P b X a P )()()( 4.几点注意【 例1 】 设随机变量X 的分布函数为0,1,57(),11,16161, 1.x F x x x x <-⎧⎪⎪=+-≤<⎨⎪≥⎪⎩则2(1)P X == .【 例2 】 设随机变量X 的密度函数为 f (x ), 且 f (-x ) = f (x ), 记()X F x 和()X F x -分别是X 和X -的分布函数, 则对任意实数x 有 【 】(A )()()X X F x F x -=. (B )()()X X F x F x -=-.(C )()1()X X F x F x -=-.(D )()2()1X X F x F x -=-.【 例3 】 设 随机变量X 服从参数为0λ>的指数分布, 试求随机变量 Y= min { X,2 } 的分布函数【 例4 】设某个系统由 6 个相同的元件经两两串联再并联而成, 且各元件工作状态相互独立每个元件正常工作时间服从参数为 0λ>的指数分布, 试求系统正常工作的时间 T 的概率分布.【 例5】设随机变量X 的概率密度为 ⎩⎨⎧<-=.,0,1|||,|1)(其他x x x f 试求(1) X 的分布函数)(x F ; (2)概率)412(<<-X P . 二、 常见的一维分布(1) 0-1分布:1,0,)1()(1 =-==-k p p k X P k k .(2) 二项分布n k p p C k X P p n B k n k k n ,,1,0,)1()(:),( =-==- . (3) Poisson 分布)(λP : ,2,1,0,0>,e !)(===-k k k X P k λλλ.(4) 均匀分布⎪⎩⎪⎨⎧-=.,<<1)(:),(其他0,, b x a a b x f b a U(5) 正态分布N (μ,σ2): 0,,eπ21)(222)(+∞<<∞->=--μσσσμ x x f(6) 指数分布⎩⎨⎧=-. ,0 >0,,e )(:)(其他x x f E x λλλ >0λ.(7) 几何分布.2110,)1()(:)(1 ,,k ,<p<p p k X P p G k =-==- (8) 超几何分布H (N,M,n ): },min{,,1,0,)(M n k C C C k X P nNk n M N k M ===-- . 【例6】某人向同一目标独立重复射击,每次射击命中目标的概率为p (0<p<1), 则此人第4次射击恰好第2次命中目标的概率为【 】 (A ) 2)1(3p p -. (B ) 2)1(6p p -.(C ) 22)1(3p p -. (D ) 22)1(6p p -. 【例7】 设X ~N (μ, σ2), 则 P ( X ≤1+μ) 【 】 (A ) 随μ的增大而增大 . (B ) 随μ的增大而减小. (C ) 随σ的增大而不变 . (D ) 随σ的增大而减小. 【例8】 设X ~N (μ, σ2), ()F x 为其分布函数,0μ<,则对于任意实数a ,有 【 】(A ) ()() 1.F a F a -+> (B ) ()() 1.F a F a -+= (C ) ()() 1.F a F a -+< (D ) 1()().2F a F a μμ-++=【例9】 甲袋中有1个黑球,2个白球,乙袋中有3个白球,每次从两袋中各任取一球交换放入另一袋中,试求交换n 次后,黑球仍在甲袋中的概率.三、 随机变量函数的分布: 1. 离散的情形2. 连续的情形3. 一般的情形【例10】 设随机变量X 的概率密度为⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<<-=.,0,20,41,01,21)(其他x x x f X 令),(,2y x F X Y =为二维随机变量(X, Y )的分布函数.(Ⅰ) 求Y 的概率密度)(y f Y ; (Ⅱ) )4,21(-F .第三讲 多维随机变量及其分布考试要求1. 理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度.会求与二维随机变量相关事件的概率.2. 理解随机变量的独立性及不相关的概念,掌握随机变量相互独立的条件.3. 掌握二维均匀分布,了解二维正态分布的概率密度,理解其中参数的概率意义 .4. 会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.一、 各种分布与随机变量的独立性 1. 各种分布(1)一般二维随机变量 F (x, y )=P{ X ≤ x, Y ≤ y }, x ∈ (−∞, +∞), y ∈ (−∞, +∞)的性质F (x, y )为联合分布函数 ⇔ 1) 0 ≤F (x, y )≤1 , ∀x ∈ (−∞, +∞),, y ∈ (−∞, +∞);2) F (−∞, y )= F (x, −∞)=0, F (+∞,+∞)=1;3) F (x, y )关于x, y 均为单调不减函数; 4) F (x, y )关于x, y 均分别右连续.(2)二维离散型随机变量的联合概率分布、边缘分布、条件分布联合概率分布律 P{X = x i , Y = y j } = p i j , i, j =1, 2 ,⋅⋅⋅ , p i j 0,1=∑∑ijji p.边缘分布律 p i = P{X = x i }=∑jj i p , i =1, 2 ,⋅⋅⋅ ,pj= P{ Y = y j }=∑ij i p , j =1, 2 ,⋅⋅⋅ ,条件分布律 P{X = x i |Y = y j } =jj i p p •, P{ Y = y j | X = x i } =•i j i p p .二维连续型随机变量的联合概率密度、边缘密度和条件密度f (x, y )为联合概率密度 ⇔ 1︒ f (x, y )≥0,2︒ 1=⎰⎰∞+∞-∞+∞- ),(dxdy y x f .设( X, Y )~ f (x, y )则 分布函数: ⎰⎰∞-∞-=x ydxdy y x f y x F ),(),(;边缘概率密度: ⎰∞+∞-= ),()(dy y x f x f X , ⎰∞+∞-= ),()(dx y x f x f Y . 条件概率密度: )(),()|(|y f y x f y x f Y Y X =, )(),()|(|x f y x f x y f X X Y =.⎰⎰=∈Ddxdy y x f D Y X P ),(}),{(.),(),(yx y x F y x f ∂∂∂=22. 随机变量的独立性和相关性X 和Y 相互独立 ⇔ F (x, y )= F X (x )F Y (y );⇔ p i j = p ipj(离散型)⇔ f (x, y )= f X (x )f Y (y ) (连续型)【注】 1 X 与Y 独立, f (x ), g (x )为连续函数 f (X )与g (Y )也独立.2 若X 1, ⋅⋅⋅⋅, X m , Y 1, ⋅⋅⋅⋅, Y n 相互独立, f , g 分别为m 元与 n 元连续函数f (X 1, ⋅⋅⋅⋅, X m )与g (Y 1, ⋅⋅⋅⋅, Y n )也独立. 3 常数与任何随机变量独立. 3. 常见的二维分布(1)二维均匀分布 (X, Y )~ U (D ), D 为一平面区域. 联合概率密度为⎪⎩⎪⎨⎧∈=.,.),(,)(),(其他01D y x D S y x f (2)二维正态分布 (X, Y )~ N (μ1 , μ2, σ12 ,σ22, ), −∞ <μ1, μ2 <+∞, σ1>0, σ2 > 0, | | <1. 联合概率密度为221121ρσπσϕ-=),(y x ⎥⎥⎦⎤⎢⎢⎣⎡-+------22222121212122121σμσσμμρσμρ)())(()()(y y x x e性质:( a ) X ~ N (μ1, σ12 ), Y ~ N (μ2, σ22 ) ( b ) X 与Y 相互独立 ρX Y =0 , 即 X 与Y 不相关. ( c ) C 1X+C 2Y ~ N (C 1 μ1+ C 2 μ2, C 12 σ12 + C 22σ22 +2C 1C 2σ1 σ2 ).( d ) X 关于Y=y 的条件分布为正态分布: )](),([22122111ρσμσσρμ--+y N 【 例1 】 设A ,B 为事件,且P (A )=41, P (B|A )=21, P (A|B )=12令 X =⎩⎨⎧否则发生若,0,1A , Y =⎩⎨⎧否则发生若,0B ,1(1) 试求(X, Y )的联合分布律; (2)计算Cov ( X, Y );(3) 计算 22(2,43)Cov X Y +.【 例2 】设随机变量X 与Y 相互独立,下表列出了二维随机变量(X, Y )联合分布律及关于X 和关于Y 的边缘分布律中的部分数值, 试将其余数值填入表中的空白处.【 313221P X 记{}{}Y X V Y X U ,m in ,,m ax ==.(I )求(U, V )的概率分布;(II )求(U, V )的协方差Cov (U, V ). 【详解】(I )易知U, V 的可能取值均为: 1, 2. 且{}{}})1,m in ,1,(m ax )1,1(=====Y X Y X P V U P)1,1(===Y X P 94)1()1(====Y P X P , {}{}0})2,m in ,1,(m ax )2,1(======Y X Y X P V U P , {}{}})1,m in ,2,(m ax )1,2(=====Y X Y X P V U P)2,1()1,2(==+===Y X P Y X P )2()1()1()2(==+===Y P X P Y P X P 94=, {}{}})2,m in ,2,(m ax )2,2(=====Y X Y X P V U P)2()2()2,2(======Y P X P Y X P 91=, 故(U, V(II ) 9122941209411)(⨯⨯+⨯⨯++⨯⨯=UV E 916=, 而 914952941)(=⨯+⨯=U E , 910912981)(=⨯+⨯=V E . 故 814910914916)()()(),(=⨯-=-=V E U E UV E V U Cov . 【 例4】 设随机变量X 在区间(0, 1)上服从均匀分布, 在)10(<<=x x X 的条件下,随机变量Y 在区间),0(x 上服从均匀分布, 求(Ⅰ)随机变量X 和Y 的联合概率密度;(Ⅱ)Y 的概率密度; (Ⅲ)概率}1{>+Y X P .二、 二维(或两个)随机变量函数的分布 1.分布的可加性(1)若X~B (m, p ), Y~B (n, p ), 且X 与Y 相互独立,则 X+Y ~ B (m+n, p ). (2)若X~P (λ1), Y~P (λ2), 且X 与Y 相互独立,则 X+Y ~ P (λ1+λ2). (3)若X~N (211,μσ), Y~P (222,μσ), 且X 与Y 相互独立,则 X+Y ~ N (221212,μμσσ++). 一般地,若X i ~N (2,i i μσ), i =1, 2, …, n, 且X 1,X 2,…,X n 相互独立,则Y=C 1X 1+C 2X 2+…+C n X n +C 仍服从正态分布,且此正态分布为2211(,),n ni i i i i i N C C Cμσ==+∑∑ 其中C 1,…,C n 为不全为零的常数.2. 两个随机变量函数的分布.【例5】 设X 与Y 相互独立, 且~(1),~(2),X P Y P 则{max(,)0}______;P X Y ≠= {min(,)0}__________.P X Y ≠=【 例6】 设X 与Y 相互独立, 其密度函数分别为:1,01,()X x f x <<⎧=⎨⎩0,其他. ,0,()y Y e y f x -⎧>=⎨⎩0,其他.求Z =2X +Y 的概率密度.【 例7】设二维随机变量(X, Y )的概率密度为 2,01,01,(,)0,x y x y f x y --<<<<⎧=⎨⎩其它.(I )求{}Y X P 2>;(II )求Z =X+Y的概率密度)(z f Z . 【详解】(I ){}Y X P 2>⎰⎰>=yx dxdy y x f 2),(⎰⎰--=1221)2(ydx y x dy 247=. (II )方法一: 先求Z 的分布函数: ⎰⎰≤+=≤+=zy x Z dxdy y x f Z Y X P z F ),()()(当z<0时, 0)(=z F Z ;当10<≤z 时, ⎰⎰=1),()(D Z dxdy y x f z F ⎰⎰---=yz z dx y x dy 00)2(3231z z -=;当21<≤z 时, ⎰⎰-=2),(1)(D Z dxdy y x f z F ⎰⎰-----=111)2(1y z z dx y x dy3)2(311z --=; 当2≥z 时, 1)(=z F Z . 故Z =X+Y的概率密度)(z f Z =)(z F Z '⎪⎩⎪⎨⎧<≤-<<-=.,0,21,)2(,10,222其他z z z z z方法二: ⎰∞+∞--=dx x z x f z f Z ),()(,⎩⎨⎧<-<<<---=-.,0,10,10),(2),(其他x z x x z x x z x f ⎩⎨⎧+<<<<-=.,0,1,10,2其他x z x x z 当z ≤0 或z ≥ 2时, 0)(=z f Z ; 当01z <<时, ⎰-=zZ dx z z f 0)2()()2(z z -=; 当21<≤z 时, ⎰--=11)2()(z Z dx z z f 2)2(z -=; 故Z =X+Y的概率密度)(z f Z ⎪⎩⎪⎨⎧<≤-<<-=.,0,21,)2(,10,222其他z z z z z【例8】 设随机变量X 与Y 相互独立, X 有密度函数 f (x ), Y 的分布律为()i i P Y a p ==, i =1,2. 试求Z =X +Y 的概率分布.第四讲 数字特征与极限定理考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念, 会运用数字特征的基本性质, 并掌握常用分布的数字特征.2.会根据随机变量X 的概率分布求其函数)(X g 的数学期望)(X Eg ;会根据随机变量X和Y 的联合概率分布求其函数),(Y X g 的数学期望),(Y X Eg .3.了解切比雪夫不等式. 4.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量的大数定律)5.了解棣莫弗—拉普拉斯定理(二项分布以正态分布为极限分布)和列维—林德伯格定理(独立同分布的中心极限定理);(经济类还要求)会用相关定理近似计算有关随机事件的概率一、 数学期望与方差(标准差) 1. 定义(计算公式)离散型 {}i i p x X P ==, ∑=ii i p x X E )(连续型 )(~x f X , x x xf X E d )()(⎰+∞∞-=方差:[]222)()())(()(X E X E X E X E X D -=-= 标准差:)(X D ,2. 期望的性质:1° )())((,)(X E X E E C C E == 2° )()()(2121Y E C X E C Y C X C E +=+ 3° )()()(Y E X E XY E ,Y X =则独立与若 4° [])()(≤)(222Y E X E XY E3. 方差的性质:1° 0))((,0))((,0)(===X D D X E D C D2° )()()(Y D X D Y X D Y X +=±相互独立,则与 3° )()(2121X D C C X C D =+4° 一般有 ),Cov(2)()()(Y X Y D X D Y X D ±+=±)()(2)()(Y D X D Y D X D ρ±+=5°2()()C D X E X <-, )(X E C ≠【例1】设试验成功的概率为43, 失败的概率为41, 独立重复试验直到成功两次为止. 试求试验次数的数学期望.【例2】 n 片钥匙中只有一片能打开房门, 现从中任取一片去试开房门, 直到打开为止.试在下列两种情况下分别求试开次数的数学期望与方差: (1)试开过的钥匙即被除去; (2)试开过的钥匙重新放回.【例3】 设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤≤=.,0,0,2cos 21)(其他πx x x f 对X 独立地重复观察4次, 用Y 表示观察值大于3π的次数, 求2Y 的数学期望.【例4】 设有20人在某11层楼的底层乘电梯上楼, 电梯在中途只下不上, 每个乘客在哪一层(2-11层)下是等可能的, 且乘客之间相互独立, 试求电梯须停次数的数学期望.二、随机变量函数的期望(或方差) 1、一维的情形 )(X g Y =离散型:{}i i P X x p == , ∑=iiipx g Y E )()(连续型:~()X f x x x f x g Y E d )()()(⎰+∞∞-=2、二维的情形 ),(Y X g Z =离散型{}ij i i p y Y x X P Y X ===,~),(, ∑∑=jijjiipy x g Z E ),()(连续型),(~),(y x f Y X , y x y x f y x g Z E d d ),(),()(⎰⎰+∞∞-+∞∞-=【例5】 设X 与Y 独立且均服从N (0,1),求Z =22Y X + 的数学期望与方差. 【例6】设两个随机变量X 与Y 相互独立且均服从N (0,21), 试求Z =|X -Y |的数学期望与方差. 三 、协方差,相关系数与随机变量的矩 1、重要公式与概念:协方差 []))()((()Cov(Y E Y X E X E X,Y --=相关系数 )()()Cov(Y D X D X,Y XY =ρ)(k X E k 阶原点矩[]k X E X E k ))((- 阶中心矩2、性质:1° ),(Cov ),(Cov X Y Y X = 2° ),(Cov ),(Cov Y X ab bY aX =3° ),(Cov ),(Cov ),(Cov 2121Y X Y X Y X X +=+ 4° |(,)|1X Y ρ≤5° 1)(1),(=+=⇔=b aX Y P Y X ρ )>0(a 1)(1),(=+=⇔-=b aX Y P Y X ρ )<0(a 3、下面5个条件互为充要条件:(1)0),(=Y X ρ (2)0)Cov(=X,Y (3))()()(Y E X E XY E = (4))()()(Y D X D Y X D +=+ (5))()()(Y D X D Y X D +=-【例7】设)2(,,,21>n X X X n 为独立同分布的随机变量, 且均服从)1,0(N , 记∑==ni i X n X 11, .,,2,1,n i X X Y i i =-= 求:(I ) i Y 的方差n i Y D i ,,2,1),( =; (II ) 1Y 与n Y 的协方差),(1n Y Y Cov ; (III ) }.0{1≤+n Y Y P 四、极限定理1. 切比雪夫不等式{}{}()()|()|,|()|<1-22 D X D X P X E X P X E X εεεε-≥≤-≥或2. 大数定律3. Poisson 定理4. 中心极限定理列维—林德伯格定理: 设随机变量X 1,X 2,…,X n ,…相互独立同分布, 且2(),(),i i E X D X μσ== 1,2,,,i n =, 则对任意正数x ,有2-2lim d n t i x n X n P x t μ-∞→∞⎧⎫-⎪⎪⎪≤=⎬⎪⎪⎪⎩⎭∑⎰ 棣莫弗—拉普拉斯定理: 设~(,),n B n p η(即X 1,X 2,…,X n ,…相互独立, 同服从0一1分布) 则有22lim d t x n P x t --∞→∞⎧⎫⎪≤=⎬⎪⎭⎰. 【例8】 银行为支付某日即将到期的债券须准备一笔现金,已知这批债券共发放了500张,每张须付本息1000元,设持券人(1人1券)到期到银行领取本息的概率为0.4.问银行于该日应准备多少现金才能以99.9%的把握满足客户的兑换.【分析】 若X 为该日到银行领取本息的总人数,则所需现金为1000X ,设银行该日应准备现金x 元.为使银行能以99.9%的把握满足客户的兑换,则 P (1000X ≤x )≥0.999.【详解】 设X 为该日到银行领取本息的总人数,则X~B (500,0.4)所需支付现金为1000X ,为使银行能以99.9%的把握满足客户的兑换,设银行该日应准备现金x 元,则 P (1000 X ≤x )≥0.999.由棣莫弗—拉普拉斯中心极限定理知:(1000)()1000x P X x P X ≤=≤5000.4x P ⎛⎫-⨯ ⎪=≤=≤0.999(3.1).ΦΦ≈≥=即3.1,≥得 x ≥ 233958.798.因此银行于该日应准备234000元现金才能以99.9%的把握满足客户的兑换.第五讲 数理统计考试要求1. 理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念.其中样本方差定义为.)(11212X X n S i ni --=∑=2. 了解2χ分布、t 分布和F 分布的概念及性质,了解分位数的概念并会查表计算.3. 了解正态总体的常用抽样分布.4. 理解经验分布函数的概念和性质, 会根据样本值求经验分布函数.5. 理解参数的点估计、估计量与估计值的概念.6. 掌握矩估计法(一阶、二阶矩)和最大似然的估计法.7. 了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性.8. 理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间.9. 理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的 两类错误.10. 了解单个及两个正态总体的均值和方差的假设检验 一、样本与抽样分布1. 总体、个体与简单随机样本:2. 常用统计量:1° 样本均值 i ni X nX ∑==112° 样本方差 212)(11X X n S i ni --=∑=3° 样本标准差: S =4° 样本k 阶原点矩 11,1,2,nk k i i A X k n ===∑5° 样本k 阶中心矩 11(),1,2,nk k i i B X X k n ==-=∑3.分位数4. 重要抽样分布(1)分布2χ(2) t 分布 (3) F 分布5. 正态总体的常用抽样分布:22,,,(,),n X X X N μσ1设为来自正态总体的样本 11ni i X X n ==∑,2211()1ni i S X X n ==--∑, 则 (1)2~,~(0,1).X X N N n σμ⎛⎫ ⎪⎝⎭(2) 222221(1)1()~(1).ni i n S X X n χσσ=-=--∑(3)22211()~().ni i X n μχσ=-∑(4) ~(1).X t n - (5) X 与2S 相互独立, 且 μ=)(X E , 22)(σ=S E , nX D 2)(σ=.【例1】 设总体2~(,),X N μσ设12,,,n X X X 是来自总体X 的一个样本, 且22111,()nni ni i i X X S X X n====-∑∑,求 21()nE X S . 【例2】 设总体2~(,),X N μσ 设12,,,n X X X 是取自总体X 的一个样本, 且221111,()1nni i i i X X S X X nn ====--∑∑,则 2()_________D S =.【例3】设随机变量~()(1),X t n n >, 则 21~________Y X=【例4】 设总体X 服从正态分布)2,0(2N , 而1521,,,X X X 是来自总体X 的简单随机样本, 求随机变量)(221521121021X X X X Y ++++= 的分布.【例5】 设总体2~(,),X N μσ 设121,,,,n n X X X X +是来自总体X 的一个样本, 且*221111,()()nni ii i X X S XX nn====-∑∑,试求统计量的分布. 二、参数估计1. 矩估计2. 最大似然估计3. 区间估计4. 估计量的评选标准【例6】设总体12~(,)X U θθ,n X X X ,,,21 为来自总体X 的样本,试求12,θθ的矩估计和最大似然估计.【例7】设总体X 的概率密度为⎪⎩⎪⎨⎧<≤-<<=.,0,21,1,10,),(其他x x x f θθθ其中θ是未知参数)10(<<θ, n X X X ,,2,1 为来自总体X 的简单随机样本, 记N 为样本值n x x x ,,2,1 中小于1的个数, 求:(1)θ的矩估计;(2) θ的最大似然估计.【例8】设总体X 的概率密度为36(),0,()0,xx x f x θθθ⎧-<<⎪=⎨⎪⎩其他. n X X X ,,,21 为来自X 的简单随机样本,(1) 求θ的矩估计量ˆθ;(2) 判断θ的无偏性; (3) 判断θ的一致性. 三、假设检验1. 假设检验的基本思想:对总体分布中的未知参数作出某种假设,根据样本在假设为真的前提下构造一个小概率事件,基于“小概率事件”在一次试验中几乎不可能发生而对假设作出拒绝或接受.2. 单个正态总体均值和方差的假设检验.3. 假设检验两类错误:第一类错误:原假设0H 为真,但拒绝了0H .第二类错误;原假设0H 为假,但接受到了0H .。