结构力学第五版李廉锟第三章.
结构力学(李廉锟第五版)(课堂PPT)
内部可 F
变性
结构力学 D
A
中南大学
找刚片
E
.
退出
返回
B 41 03:16
§2-5 机动分析示例
A
C
结构力学 E
DD E
如何才能不变? 可变吗? 有多余吗?
B
中南大学
.
退出
返回
42
03:16
§2-5 机动分析示例
结构力学
中南大学
加减二元体
.
退出
返回
43
03:16
§2-6 三刚片虚铰在无穷远处的讨论 (a) 一铰无穷远情况
几何可变体系: 瞬变 , 常变
• 例:(图2-17) 二刚片三链杆相联情况
• (a)三链杆交于一点;
• (b)三链杆完全平行(不等长);
• (c)三链杆完全平行(在刚片异侧) ;
• (d)三链杆完全平行(等长)
中南大学
.
退出
返回
32
03:15
§2-5 机动分析示例
结构力学
例2-1 对图示体系作几何组成分析。
6. 运用三刚片规则时,如何选择三个刚片是关键,刚 片选择的原则是使得三者之间彼此的连接方式是铰结。
7. 各杆件要么作为链杆,要么作为刚片,必须全部 使用,且不可重复使用。
中南大学
.
退出
返回
39
03:16
§2-5 机动分析示例
结构力学
中南大学
F
G
D
E
如何变静定? 唯一吗?
.
退出
返回
40
03:16
§2-5 机动分析示例
铰
中南大学
Ⅱ
.
李廉锟《结构力学》笔记和课后习题(含考研真题)详解-第3章 静定梁与静定刚架【圣才出品】
第3章 静定梁与静定刚架
3.1 复习笔记【知识框架】
【重点难点归纳】
一、单跨静定梁 ★★★★
1.内力
表3-1-1 内力的基本概念
图3-1-1
图3-1-22.内力与外力间的微分关系及积分关系(1)由平衡条件导出的微分关系式
计算简图如图3-1-3所示,微分关系式为
(Ⅰ)
d d d d d d s
s N
F q x
x M F
x F p x
x ⎧=⎪⎪⎪=
⎨⎪⎪=-⎪⎩-()()
图3-1-3
(2)荷载与内力之间的积分关系
如图3-1-4
所示,结合式(Ⅰ)可得梁的内力积分公式,积分公式及其几何意义见表3-1-2。
图3-1-4
表3-1-2 内力的积分公式及几何意义
3.叠加法作弯矩图
表3-1-3 常用叠加法及其作图步骤
图3-1-5
图3-1-6
二、多跨静定梁 ★★★★
多跨静定梁是由构造单元(如简支梁、悬臂梁)多次搭接而成的几何不变体系,其计算简图见图3-1-7,几何构造、计算原则、传力关系见表3-1-4。
结构力学第五版 李廉锟 第三章讲诉
dx
(3)角以由x轴的正方向逆时针转到切线方向时为正,反时针方向为负。
B
mB 0; FA 6 m1 4q 2 0
4m
FB
FA 6kN
Fy 0; FA FB 4q 0
FB 18kN
第三章 静定梁与静定刚架
m=12kN.m q=6kN/m
1 A1
23 5 23 5
4 4B
AC:
A
MC
左
Fs2 6kN
2m C
FA=6kN 6kN
Fs图 ⊕
4m
FB=18kN FA
K
n
(a)
F2 B FB
内力符号规定 :
F1
FAX A
FAY
M
K
FN
FS
(b)
第三章 静定梁与静定刚架
(2)M、FS、FN图正负号规定 ①弯矩M:对梁而言,使杆件上凹者为正(也即下侧纤
维受拉为正),反之为负。一般情况下作内力图时,规定弯 矩图纵标画在受拉一侧,不标注正负号。
②剪力FS:使截开后保留部分产生顺时针旋转者为正, 反之为负。
单跨静定梁
从支承情况不同又分为:
简支梁
伸臂梁
悬臂梁
第三章 静定梁与静定刚架
1. 反力 以整体为研究对象,利用静力平衡条件求支座反力(简支 梁、外伸梁) 三个支座反力 整体隔离体——平衡方程求解
第三章 静定梁与静定刚架
2. 内力 (1)截面法,取隔离体利用静力平衡条件求截面内力
F1
FAX
A
FAY
m
第三章 静定梁与静定刚架
例 用叠加法画图示梁的弯矩图。
P=4kN 8kN.m q=2kN/m
结构力学李廉锟版-静定平面桁架全解
第一节 平面桁架的计算简图
二、按外型分类
1. 平行弦桁架
2. 三角形桁架
3. 抛物线桁架
第一节 平面桁架的计算简图
三、按几何组成分类
1. 简单桁架 (simple truss)
2. 联合桁架 (combined truss)
第五章
静定节 结点法
第三节 截面法
第四节 截面法与结点法的联合应用 第五节 各式桁架比较 第六节 组合结构的计算
第一节 平面桁架的计算简图
桁架是由杆件相互连接组成的格构状体系,它 的结点均为完全铰结的结点,它受力合理用料省, 在建筑工程中得到广泛的应用。 1、桁架的计算简图(truss structure)
X 0 Y 0
有 所以
FNAE cos FNAG 0
20 kN 5 kN FNAE cos 0
FNAG
FNAE 15 kN 5 33.54 kN(压) 2 FNAE cos 33.5 30 kN (拉) 5
第二节 结点法
2m 5 kN
10 kN E G
10 kN C
10 kN F 5 kN
F N ED
A 20 kN
D 2 m 4=8 m
H
B 20 kN
取E点为隔离体,由
X 0
Y 0
FNEC cos FNED cos FNEA cos 0
FNEC FNED 33.54 kN FNEC sin - FNED sin FNEA sin 10 kN 0
10 kN 5 kN 2m
结构力学(李廉锟第五版)
变形:结构在外部因素作用下发生的形状的变化。
两者之间的关系:有形变必有位移;有位移不一 定有形变。
中南大学
退出
返回
22:16
§6-1 概述
结构力学
2. 位移的分类
P
A
A
Ay
A
位移
线位移 转角位移
Ax
A A点线位移
Ax A点水平位移
Ay A点竖向位移
A截面转角
dn
1 2
Md
d ds d ds d kds
1 ds
所以
dw
1 2
FNds
1 2
FSds
1 2
Mκds
由胡克定律有:
FN , FS , 1 M
EA
GA EI
故
dw 1 FN2 ds 1 FS2 ds 1 M 2 ds
2 EA 2 GA 2 EI
实功数值上就等于微段的应变能。
中南大学
退出
返回
22:17
§6-2 变形体系的虚功原理
结构力学
例:当A支座向上移动一个
A'
已知位移c1,求点B产生的竖向
位移⊿。
c1
A
a
C
B
△
b
在拟求线位移的方向加单位力
由平衡条件 F yA b a
A F yA
1
C B
令虚设的平衡力系在实际的位移状态下做功,得虚
功方程
Δ1 c1 F yA 0
总的来讲: 单位位移法的虚功方程
平衡方程
单位荷载法的虚功方程
几何方程
中南大学
退出
返回
22:17
§6-3 位移计算的一般公式 单位荷载法 结构力学
【经典】结构力学(李廉坤第五版) 上
§2-4 瞬变体系
分析图示体系: 三根链杆平行且等长 从异侧连出时。体系 为瞬变体系。
§2-5 机动分析示例
例2-1 试分析图所示多跨静定梁的几何构 造。
解:地基与AB段梁看作一个刚片(两刚片 规上则述)刚;片与BC段梁扩大成一个刚片(两刚 片上规述则大)刚;片与CD段梁又扩大成一个刚片(两 刚DE片段规梁则同)样;分析(两刚片
需的最少联系
图示体系数计目算,自而由布度置W不=0,
当会成为几何可变但;布置不当,上部有多余 联系,
下 体部 系缺 计少 算联 自系 由,度是W≤几0何,可
变 是的 体。 系几何不变的必要条 件。
§2-3 几何不变体系的基本组成规则
三刚片规则 三个刚片用不在同一直线上的三个单
铰两两相连,组成的体系是几何不变的,且 没有多余联系。如图。
§2-3 几何不变体系的基本组成规则
两刚片规则
两个刚片用一个铰和一根不通过此铰
的链杆相连,组成的体系是几何不变的,且
没有多余联系。如图。
图示体系
也是按三刚片规则
组成的。将链杆看
作一个刚片,组成
的体系是几何不变
§2-3 几何不变体系的基本组成规则
如图所示,刚
片I和刚片II可以绕O点 转动;O点成为刚片I和
点O作相对转动,但发生
微小转动后,三根杆就 不再交于同一点,运动 也就不再继续发生。体
§2-4 瞬变体系
分析图示体系: 三根链杆平行不等长时, 交于无穷远处的同一点, 两刚片可相对平动,发 生微小相对移动后,三 杆分不析再图全示平体行系。:体系为 瞬三变根体链系杆。平行且等长时, 两刚片的相对平动一直 持续下去。体系为可§1-4 支座和结点的类型
支座:连接结构与基础的装置。 (1)活动铰支座
结构力学(李廉锟第五版)_图文
§4-3 三铰拱的合理拱轴线
在均匀静水压力作用下,q=常数,因而
三铰拱在均匀静水压力作用下,其合理轴线的曲 率半径为一常数, 就是一段圆弧。
因此,拱坝的水平截面常是圆弧形,高压隧洞 常采用圆形截面。
拱桥实例介绍
5)刚架拱桥
1989江苏无锡100米下甸桥
变截面,四分点附近截面高度最大,分别向拱脚、跨中减小 。取消斜撑,拱上建筑采用23m预应力混凝土简支梁以过渡 。
§4-3 三铰拱的合理拱轴线
例4-3 设三铰拱上作用有沿拱轴均匀分布的竖向 荷载(如自重),试求其合理拱轴线。
解:当拱轴线改变时,荷载也随之改变。 令p(x)为沿拱轴线每单位长的自重,荷载沿水平
方向的集度为q(x) 由 有
§4-3 三铰拱的合理拱轴线
将
代入方程(4-5),得
由于规定y 向上为正, x 向右为正,q 向下为 正,故上式右边为正号。
§4-3 三铰拱的合理拱轴线
或
积分后,得 如p(x)=常数=p ,则
即 式中A为积分常数。
§4-3 三铰拱的合理拱轴线
由于当x =0时,
,故常数A等于零,即
再积分一次,得 由于当x=0时,y=0, 故
最后得 等截面拱在自重荷载作用下,合理轴线为一悬链线。
§4-3 三铰拱的合理拱轴线
在一般荷载作用下,为了寻求相应的合理轴线,可假 定拱处于无弯矩状态并写出相应的平衡微分方程。
§4-1 概 述
拱与其同跨度同荷载的简支梁相比其弯矩要小 得多,所以拱结构适用于大跨度的建筑物。它广泛 地应用房屋桥梁和水工建筑物中。由于推力的存在 它要求拱的支座必须设计得足够的牢固,这是采用 拱的结构形式时必须注意的。
§4-2 三铰拱的数值解 一、三铰拱的反力和内力计算。
结构力学(李廉锟第五版)
世界上跨径最大的石拱桥。桥宽8m,双肋石拱桥,腹拱为9孔13m,南岸引桥3孔13m,北 岸引桥1孔15m。主拱圈由两条分离式矩形石肋和8条钢筋混凝土横系梁组成。拱轴线为悬
中南大学
退出
返回
结构力学
23:11
§4-3 三铰拱的合理拱轴线
结构力学
由于当x =0时, dy 0,故常数A等于零,即 dx
dy dx
sh
p FH
x
再积分一次,得
y FH ch p x B p FH
由于当x=0时,y=0,
故 B FH p
最后得
y
FH p
ch
p FH
x 1
等截面拱在自重荷载作用下,合理轴线为一悬链线。
物线,当坐标原点选在左支座时,它的轴线方程式
为
y
4f l2
x,l 已x知D截面的坐标为: xD=5.25m 。
q=20 kN/m
Y F = 100 kN
解:(1) 代入数据后拱
C
轴线方程为:
y 1 x(12 x) 9
FH= 82.5 kN
D y=3.983 m A
X
FVA =105 kN 3m
f=4m B
中南大学
退出
返回
23:11
§4-2 三铰拱的数值解
结构力学
一、三铰拱的反力和内力计算。
1.支座反力 计算(与三铰刚 架反力的求法类 似)。
y FHA
代梁:同跨度、同
荷载的简支梁,其反力、
(NEW)李廉锟《结构力学》(第5版)(下册)配套题库【名校考研真题+课后习题+章节题库+模拟试题】
目 录第一部分 名校考研真题第12章 结构动力学第13章 结构弹性稳定第14章 结构的极限荷载第15章 悬索计算第二部分 课后习题第12章 结构动力学第13章 结构弹性稳定第14章 结构的极限荷载第15章 悬索计算第三部分 章节题库第12章 结构动力学第13章 结构弹性稳定第14章 结构的极限荷载第15章 悬索计算第四部分 模拟试题李廉锟《结构力学》(第5版)(下册)配套模拟试题及详解第一部分 名校考研真题第12章 结构动力学一、填空题1.设直杆的轴向变形不计,则图12-1所示体系的质量矩阵[M]=]______。
[西南交通大学2007研【答案】【解析】首先判断结构有两个动力自由度:最右端m1的竖向自由度和水平方向上的自由度。
竖向自由度对应的质点的质量为m1,水平自由度对应的质点的质量为2m1,故该结构的质量矩阵为。
2.如图12-2所示结构的动力自由度为______(不计杆件质量)。
[中南大学2003研]图12-2二、选择题1.如图12-3所示结构,不计阻尼与杆件质量,若要发生共振,θ应等于( )。
[天津大学2005研]A .B .3【答案】一个自由质点的动力自由度为两个(不考虑转动自由度),本题所示结构中有三个质点,第一层的两个质点只有一个水平自由度,第二层的质点有水平和竖向两个自由度,故一共有三个动力自由度。
【解析】C .D.图12-3【解析】当体系的自振频率与外部激励荷载的频率相同时,体系发生共振。
首先求该结构的自振频率,设m 处的位移为u (t ),质量m 处的惯性力向下为,质量3m 处的惯性力向下,弹性力向上为,向左端铰支座处取矩,列运动方程为:。
所以体系的自振频率为。
2.如图12-4所示体系(不计阻尼)的稳态最大动位移y max =4Pl 3/9EI ,则最大的动力弯矩为( )。
[浙江大学2007研]A .7Pl/3 B .4Pl/3C .Pl D .Pl/3B【答案】图12-4【解析】在质点m 处的静位移为:,则动力放大系数R d =;最大静力弯矩为Pl ,故最大动力弯矩为。
结构力学:第1-11章课后答案(第五版李廉锟上下册)
结构力学:第1-11章课后答案(第五版李廉锟上下册) 第一章:结构力学基本原理1.1 选择题1.(D)材料的流变效应是指在恒定的应力下长时间内所发生的持续性变形。
2.(C)结构力学是研究结构在受力作用下的平衡条件、变形特点以及保证结构安全可靠的一门学科。
3.(B)静力学是结构力学的基础和起点,为后续结构力学的学习打下了坚实的理论基础。
4.(D)载荷是指作用在结构上的外力或内力引起的结构内力。
5.(D)结构承受荷载时产生的内力只有两种,即剪力和弯矩。
1.2 计算题1.(略)1.3 解答题1.(略)第二章:静定结构的受力分析2.1 选择题1.(C)静定杆系是指感力作用下平衡的杆件系统。
2.(B)双铰支座在支座点允许的转动是绕一个垂直轴线。
3.(C)简支梁在跨中承受的弯矩最大。
4.(C)连续梁是指有多个支座并且跨度超过3倍的梁。
5.(A)当两个力的作用线相交于一点时,这两个力称为共点力。
2.2 计算题1.(略)2.3 解答题1.(略)第三章:约束结构的受力分析3.1 选择题1.(C)约束支座限制了结构的自由度。
2.(B)在平面约束条件下,三个约束就可以确定结构的静定条件。
3.(A)约束力分解是将复杂的约束力分解为多个简单的约束力。
4.(D)简支梁在跨中承受的弯矩最大。
5.(D)当两个力构成一个力偶时,它们可以合成一个力偶。
若力偶平行于结构截面,力偶不会在结构内产生剪力和弯矩。
3.2 计算题1.(略)3.3 解答题1.(略)第四章:图解法与力法4.1 选择题1.(D)作用在梁上的集中力可以用力的大小和作用点位置的乘积表示。
2.(B)变形图中每个单元代表一个约束力。
3.(C)悬臂梁上的力和矩可以通过力的图解法求解。
4.(D)力法是通过构造力平衡方程解得结构的内力。
5.(A)设计中常用的受力分析方法有解析法、图解法和力法。
4.2 计算题1.(略)4.3 解答题1.(略)第五章:静定系数法与弹性能力法5.1 选择题1.(C)在确定支座反力时,要根据结构属于静定结构、不完全静定结构还是超静定结构来决定求解的方程数。
李廉锟结构力学3
【例3-1】 1.反力 2.控制截面 C-A-(D)-EF-GL-GR-B 3.FS-连线 4.M-连线 直线 曲线
(极值)
滚小球作Q图 力推小球同向走,力尽小球平行走 集中力偶中间铰,方向不变无影响 反推小球回到零,上正下负剪力图
斜梁 基本方法 ——截面法 斜杆内力 ——FS、FN随截面方向倾斜 1.支座反力 2.内力: M FS、FN:投影方向 3.内力图 4.斜长分布→水平分布
§3—2 多跨静定梁
1. 几何组成 基本部分——独立地维持其几何不变的部分 附属部分——依靠基本部分才能维持其几何不变 的部分 层叠图——层次关系
2.受力分析——特点 基本部分——荷载作用其上,附属部分不受力 附属部分——荷载作用其上,基本部分受力 3.内力分析步骤 未知反力数 = 独立平衡方程数 计算——按几何组成的相反次序求解 (避免解联立方程) 反力、内力计算,内力图绘制——同单跨梁
【例3-5】
1.简支
-反力 2.M图 3.FS图 4.FN图 5.校核
【例3-6】 1、反力* 2、M图 3、FS图 AD、BE *DC、CE: -M→FS 4、FN图 AD、BE DC、EC (结点)
【例3-7】组成分析——基本、附属部分 按组成相反次序,分别按基本形式计算
§3-4 快速绘制 M 图
任意直杆段——适用 叠加法作M图 (1)求控制截面值 外力不连续点 (F,M作用点, q的起点,终点等) (考虑全部荷载) (2)分段画弯矩图 控制截面间无荷载 ——连直线 控制截面间有荷载(q、F) ——连虚线, ——再叠加标准M0图
5.绘制内力图的一般步骤 (1)求反力(悬臂梁可不求) (2)分段 ——外力不连续点:q端点,F、M作用点 (3)定点 ——求控制截面内力值(全部荷载) (4)连线 ——按微分关系 连直线 曲线:连虚线,叠加简支梁M0图
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
FA Fs图
FB
F 0;
FA FB F 4q 0
FA 5kN
M图
第三章 静定梁与静定刚架
q=3kN/m 4 5 1 2 3 6 B A 1 4 5 2 3 6 C D 2m 2m 2m P=6kN
FA=5kN
5kN
FB=7kN
- ○ 7kN
P
A
Fs图
M图
⊕
1kN
3 3
M3
F1 M
K
FN FS
(a)
FB
(b)
内力符号规定 :
第三章 静定梁与静定刚架
(2)M、FS、FN图正负号规定 ①弯矩M:对梁而言,使杆件上凹者为正(也即下侧纤 维受拉为正),反之为负。一般情况下作内力图时,规定弯 矩图纵标画在受拉一侧,不标注正负号。 ②剪力FS:使截开后保留部分产生顺时针旋转者为正, 反之为负。
③轴力FN :拉为正,压为负。剪力图和轴力图可绘在杆 轴的任意一侧,但必须标注正负号。
M M FS FS FS
F
S
FN
FN
M
M
F
F
第三章 静定梁与静定刚架
求所示简支梁任一截面的内力。
解 (1)求出支座反力。 由整体平衡: Fx 0
FAx 0
MA 0
20 2 15 4 6 32 FBy 12 0
第三章 静定梁与静定刚架 静定结构定义
在荷载等因素作用下,其全部支座反力和任意 一截面的内力均可由静力平衡方程唯一确定的结构。
F F
F xA F yA F yB
Fx
M
Fy
(a)静定梁
(b)静定刚架
第三章 静定梁与静定刚架 静定结构的基本特征
几何特征: 几何不变且无多余联系。 静力特征: 未知力的数目=独立平衡方程式的数目。 超静定结构是有多余约束的几何不变体系,其反力 和任意一截面的内力不能由静力平衡条件唯一确定。
(1)在无荷区段q(x)=0,剪力图为水平直线,弯矩图为斜直线。 (2)在q(x)=常量段,剪力图为斜直线,弯矩图为二次抛物线。其 凹下去的曲线象锅底一样兜住q(x)的箭头。 (3)集中力作用点两侧,剪力值有突变、弯矩图形成尖点;集中力 偶作用点两侧,弯矩值突变、剪力值无变化。
第三章 静定梁与静定刚架
• 荷载: q = 0, q = c, F作用点,集中力偶M, 铰处
FS图: (FS =0) (FS =0)
(变号)
M图:
(M极值)
第三章 静定梁与静定刚架
简易法作内力图:
利用微分关系定形,利用特殊点的内力值来定值 利用积分关系定值 基本步骤:1、确定梁上所有外力(求支座反力); 2、分段 3、利用微分规律判断梁各段内力图的形状; 4、确定控制点内力的数值大小及正负; 5、画内力图。
5kN
FB=7kN
- ○ 7kN
P
A
Fs 图
M图
⊕
1kN
4 4
M4
A
C
FSⅠ MⅠ
44 kN
15 kN/m A
取截面Ⅱ-Ⅱ以左为隔离体
20 kN C D 44 kN
FSⅡ MⅡ
取截面Ⅲ-Ⅲ以左为隔离体
20 kN A C 44 kN D
15 kN/m E
FSⅢ MⅢ
第三章 静定梁与静定刚架
3.内力与外力间的微分关系及内力图形状判断
dFs q( x ) dx dM FS dx 2 d M q ( x ) d 2x
FBy 36 kN
M B 0 FAy 12 20 10 15 4 6 32 0 FAy 44 kN
第三章 静定梁与静定刚架
(2) 分别求截面Ⅰ-Ⅰ、Ⅱ-Ⅱ、Ⅲ-Ⅲ和Ⅳ-Ⅳ的内力。 可以判定所有截面的轴力均为零, 取截面Ⅰ-Ⅰ以 左为隔离体。
20 kN
左
FA=6kN 6kN Fs图 ⊕
FB=18kN FA
3m
Fs2
Fs 2 6kN MA 0
M C左 12kN.m
MC
右
A
- ○
CB: FA
Fs4
Fs3
Fs 3 12kN Fs 4 18kN
M图
12kN.m 24kN.m 27kN.m
18kN ⊕ M5
MB
q
M C右 24kN.m M B 0
简支梁
伸臂梁
悬臂梁
第三章 静定梁与静定刚架
1. 反力
以整体为研究对象,利用静力平衡条件求支座反力(简支 梁、外伸梁) 三个支座反力 整体隔离体——平衡方程求解
第三章 静定梁与静定刚架
2. 内力 (1)截面法,取隔离体利用静力平衡条件求截面内力
F1 A FAX
FAY K
m n
F2
B FAX A
FAY
解:取整体
B
m F
B
0; FA 6 m1 4q 2 0
FA 6kN
FA
FB
y
0; FA FB 4q 0
FB 18kN
第三章 静定梁与静定刚架
m=12kN.m q=6kN/m AC: 1 2 3 4 5 A B A 1 2 3 5 4 2m C 4m MC
控制点:端点、分段点(外力变化点)和驻点(极值点)等。
第三章 静定梁与静定刚架
例 画图示梁的内力图。
qa A a FA=qa
qa C D
B a
m=3/2qa2 q E a
G
H
a
F 2a
a
q
FE=2qa
第三章 静定梁与静定刚架
画图示梁的剪力图和弯矩图。
m=12kN.m q=6kN/m A 2m C 4m
滚轴支座
Fy
F xA
A
C
D
B
计算简图
F yA F yC F yD F yB
第三章 静定梁与静定刚架 求解静定结构的方法
取隔离体、列平衡方程。
第三章 静定梁与静定刚架
§3-1 单跨静定梁
梁: 受弯构件,但在竖向荷载下不产生水平推力; 其轴线通常为直线(有时也为曲线)。
单跨静定梁
从支承情况不同又分为:
F
FA
Fs3
y
0; FA P Fs 3 0
Fs 1kN
⊕
10kN.m
m
3
0; M 3 FA 2 0
M 3 10kN.m
第三章 静定梁与静定刚架
q=3kN/m 4 5 1 2 3 6 B A 1 4 5 2 3 6 C D 2m 2m 2m P=6kN
FA=5kN
M 5 27kN.m
FB
Fs5
5 5
第三章 静定梁与静定刚架
例 画图示梁的剪力图和弯矩图。
q=3kN/m 4 5 1 2 3 6 B A 1 4 5 2 3 6 C D 2m 2m 2m F=6kN
解:取整体
m
y
A
0; FB 6 F 2 2q 5 0
FB 7kN