2.2.2事件的相互独立性ppt课件
§2.2.2事件的独立性
学案48 §2.2.2事件的独立性一、基础知识1、相互独立的概念设A 、B 是两个事件,如果=)|(A B P _______,则称事件A 与事件B 相互独立。
把这两个事件叫做相互独立事件 2、相互独立的性质(1)若事件A 与事件B 独立,那么=)|(A B P ____________,=)|(B A P __________,=⋂)(B A P ___________。
(2)如果事件A 与事件B 相互独立,那么_________与__________,_________与__________,_________与__________也都相互独立。
3、相互独立事件与互斥事件的区别二、例题分析例1 在大小均匀的5个鸡蛋中有3个红皮蛋,2个白皮蛋,每次取一个,有放回地取两次,求在已知第一次取到红皮蛋的条件下,第二次取到红皮蛋的概率。
例2 甲、乙两名篮球运动员分别进行一次投篮,如果两人投中的概率都是0.6,计算: (1) 两人都投中的概率;(2) 其中恰有一人投中的概率; (3) 至少有一人投中的概率。
例3在一段线路中并联着三个独立自动控制的常开开关,只要其中有一个开关能够闭合,线路就能正常工作。
假定在某段时间内每个开关能够闭合的概率都是0.7,计算在这段时间内线路正常工作的概率。
三、巩固练习1、袋内有3个白球和2个黑球,从中不放回的摸球,用A 表示“第一次摸得白球”,用B 表示“第二次摸得白球”,则A 与B 是 ( )A 、互斥事件B 、相互独立事件C 、对立事件D 、不相互独立事件2、两人打靶,甲击中的概率是0.8,乙击中的概率是为0.7,若两人同时射击同一目标,则他们都中靶的概率是 ( )A 、0.56B 、0.48C 、0.75D 、0.63、某射手射击一次,击中目标的概率是0.8,他重复射击三次,且各次射击是否击中相互之间没有影响,那么他第一、二次未击中,第三次击中的概率___________。
2014-2015学年高中数学(人教版选修2-3)配套课件第二章 2.2.2 事件的相互独立性
由等可能性知这8个基本事件的概率均为,这时A
中含有6个基本事件,B中含有4个基本事件,AB中含 有3个基本事件.
栏 目 链 接
6 3 4 1 3 于是 P(A)= = ,P(B)= = ,P(AB)= , 8 4 8 2 8 3 显然有 P(AB)= =P(A)P(B)成立. 8 从而事件 A 与 B 是相互独立的.
这时 A={(男,女),(女,男)},B={(男,男),(男,女),(女, 男)},AB={(男,女),(女,男)}. 1 3 1 于是 P(A)= ,P(B)= ,P(AB)= . 2 4 2 由此可知 P(AB)≠P(A)P(B). 所以事件 A,B 不相互独立. (2)有三个小孩的家庭,小孩为男孩、女孩的所有可能情形为 Ω ={(男,男,男),(男,男,女),(男,女,男),(男,女,女),(女, 男,男),(女,男,女),(女,女,男),(女,女,女)}.
栏 目 链 接
相互独立事件. 事件; A 与 B 是相互独立 ________事件,A 与 B 是________
基 础 梳 理 3.两个相互独立事件同时发生的概率,等于每个事件 P(A)P(B) 发生的概率的积,即P(AB)=____________. 例如:甲坛子里有3个白球,2个黑球;乙坛子里有2个
2 1 1 - 解析:因为 P( A )= ,所以 P(A)= ,又 P(B)= , 3 3 3 1 P(AB)= ,所以有 P(AB)=P(A)P(B),所以事件 A 与 B 9 独立但不一定互斥. 故选 C. 答案:C
自 测 自 评
3.甲、乙两人独立地解同一问题,甲解决这个 问题的概率是 p1, 乙解决这个问题的概率是 p2, 那么 其中至少有一人解决这个问题的概率是( A.p1+p2 B.p1· p2 C.1-p1p2 D.1-(1-p1)(1-p2) )
下学期高二数学人教A版选修2-3第二章2.2.2事件的相互独立性课件
│学习目标│➯│新课引入│➯│课本预习│➯│预习评价│➯│知识导出│➯│课堂互动│➯│课堂小结│
│课堂互动│
2.2.2 事件的相互独立性
【训练 2】 本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车 点的收费标准是每车每次租车时间不超过两小时免费,超过两小时的部分每小时收
【迁移2】 (变换所求)例1条件不变,求2人至多有1人射中目标的概率.
解 “2人至多有1人射中目标”包括“有1人射中”和“2人都未射中”两种情况, 故所求概率为 P=P(A- B-)+P(AB-)+P(A-B) =P(A-)·P(B-)+P(A)·P(B-)+P(A-)·P(B)=0.02+0.08+0.18=0.28.
│新课引入│
2.2.2 事件的相互独立性
引例2:分析下面的实验,它们有什么共同特征?所求随机事件的概率是多 少?
(1)将一个质地均匀的骰子投掷3次,出现3次点数6的概率是多少;
(2)某P同( A学1 A投2 A篮3 )3次 C,33每 (次16命)3 中的概率为0.6 ,求命中1次的概率;
P(
A1
P(B | A) n( AB) P( AB) n( A) P( A)
│学习目标│➯│新课引入│➯│课本预习│➯│预习评价│➯│知识导出│➯│课堂互动│➯│课堂小结│
│新课引入│
引例2:分析下面的实验,它们有什么共同特征?
2.2.2 事件的相互独立性
(1)将一个质地均匀的骰子投掷3次,出现3次点数6的概率是多少; (2)某同学投篮3次,每次命中的概率为0.6 ,求命中1次的概率;
(2)“2 人各射击 1 次,恰有 1 人射中目标”包括两种情况:
①甲射中、乙未射中(事件 A B-发生),
2.2.2事件的相互独立性【公开课教学PPT课件】
皮匠中至少有一人解出的概率与诸
葛亮解出的概率比较,谁大?
分析:1 P(ABC) 1 0.9握 不能大过诸葛亮!
这种情况下至少有 几个臭皮匠才能顶
个诸葛亮呢?
小结反思
互斥事件
相互独立事件
概
不可能同时发生的
如果事件A(或B)是否发生对事 件B(或A)发生的概率没有影响,
B发生与否不影响A发生的概率
想一想 判断下列各对事件的关系
(1)运动员甲射击一次,射中9环与射中8环;互斥
(2)甲乙两运动员各射击一次,甲射中9环与
乙射中8环;
相互独立
(3)已知P( A) 0.6, P(B) 0.6, P( AB) 0.24
则事件A与B
相互独立
(4)在一次地理会考中,“甲的成绩合
高二数学 选修2-3
2.2.2事件的相互 独立性(一)
俗话说:“三个臭皮 匠抵个诸葛亮”。
那我们从数学中 概率的角度来看,如 何理解这句话呢?
明确问题: 已知诸葛亮解出问题的概率为0.8,
臭皮匠老大解出问题的概率为0.5,老 二为0.45,老三为0.4,且每个人必须独 立解题,问三个臭皮匠能抵一个诸葛
设事件A和事件B,且P(A)>0,在已知事件A发 生的条件下事件B发生的概率,叫做条件概率。 记作P(B |A).
(5).条件概率计算公式:
P(B | A) n( AB) P( AB) n( A) P( A)
P(AB) P(A)P(B | A)
思考与探究
思考1:三张奖券有一张可以中奖。现由三
不可能同时发生的两个事件叫做互斥事件;如果两个互斥 事件有一个发生时另一个必不发生,这样的两个互斥事件 叫对立事件.
2.2.2二项分布及其应用-事件的相互独立性(高中数学人教A版选修2-3)
练习2、若甲以10发8中,乙以10发7中的命中率打靶, 两人各射击一次,则他们都中靶的概率是( D )
(A)
3 5
(B)
3 4
(C)
12 25
(D)
14 25
如P(B)>0时,有P(AB)=P(A|B)P(B), P(A)>0时,有P(AB)=P(B|A)P(A).
2.P(A|B)与P(AB)的区别
P(A|B) 是在事件 B 发生的条件下,事件 A 发生的概率, P(AB)是事件A与B同时发生的概率,无附加条件. 3.条件概率的性质 (1)0≤P(A|B)≤1.
跟踪练习 1.判断下列各题中给出的事件是否是相互独立事件: (1)甲盒中有6个白球、4个黑球,乙盒中有3个白球、5个 黑球.从甲盒中摸出一个球称为甲试验,从乙盒中摸出一个 球称为乙试验,事件A1表示“从甲盒中取出的是白球”,事 件B1表示“从乙盒中取出的是白球”. (2)盒中有4个白球、3个黑球,从盒中陆续取出两个球, 用A2表示事件“第一次取出的是白球”,把取出的球放回盒 中,事件B2表示事件“第二次取出的是白球”. (3)盒中有4个白球、3个黑球,从盒中陆续取出两个球, 用A3表示“第一次取出的是白球”,取出的球不放回,用B3 表示“第二次取出的是白球”.
P(A1· A2……An)=P(A1)· P(A2)……P(An)
互斥事件与独立事件
互斥事件
概 念 不可能同时发生的两个 事件叫做互斥事件
相互独立事件 如果事件A(或B)是否发 生对事件B(或A)发生的 概率没有影响,这样的 两个事件叫做相互独立 事件
相互独立事件A,B同时 发生记作A·B P(A·B)=P(A)·P(B)
高中数学复习选修2-3 2.2.2 事件的相互独立性课件
(女,男)},AB={(男1,女),(女,男)},
由此可知P(AB)≠4P(A)·P(B),故事件A,B不相互独立.
PA 1 ,PB 3 ,PAB 1 ,
2
4
2
(2)家庭中有三个小孩,小孩为男孩、女孩的所有可能情形为{(男,男,男),(男,男,
女),(男,女,男),(女,男,男),(男,女,女),(女,男,女),(女,女,男),(女,女,女)},它有8个基本
事件,
由等可能性知这8个基本事件的概率均为 此时
显然P(AB)=P(A)·P(B),故事件A,B相18 .
互P独B立 . 4 1 ,PAB 3 ,
82
8
PA 6 3,
84
【想一想】1,2两题的解题思路分别是什么? 提示:(1)第1题在求解中直接利用实际背景求解,其理论依据是“事件相互独 立性的概念”. (2)第2题在求解中利用了“事件相互独立性的充要条件P(AB)=P(A)P(B)”.
3.若事件E与F相互独立,且 【解析】
P,E则 PP(EFF)的值1等于_______.
4
答案:
PEF PEPF 1 1 1 .
4 4 16
1 16
4.某射击运动员射击一次,命中目标的概率为0.9,则他连续射击两次都命中 的概率是______. 【解析】Ai表示“第i次击中目标”,i=1,2,则P(A1A2)=P(A1)P(A2)= 0.9×0.9=0.81. 答案:0.81
P(A∪B)=P(A)+P(B)
2.对事件相互独立性的理解 (1)判断事件独立性的依据:公式可以作为判断两个事件是否相互独立的理论 依据,即P(AB)=P(A)P(B)是A,B相互独立的充要条件. (2)事件独立性的推广:若n个事件相互独立,则这n个事件同时发生的概率就 等于每个事件发生的概率的积,即P(A1A2…An)=P(A1)P(A2)…P(An). (3)公式P(AB)=P(A)P(B)的适用前提:在使用概率的乘法公式时,一定要注意 公式成立的条件,即各事件必须相互独立.
2.2.2事件的相互独立性课件人教新课标B版
数学 选修2-3
第二章 随机变量及其散布
自主学习 新知突破
合作探究 课堂互动
相互独立事件同时产生的概率
甲、乙两人独立地破译密码的概率分别为13、14, 求:(1)两个人都译出密码的概率; (2)两个人都译不出密码的概率; (3)恰有一人译出密码的概率; (4)至多一人译出密码的概率; (5)至少一人译出密码的概率.
数学 选修2-3
第二章 随机变量及其散布
自主学习 新知突破
合作探究 课堂互动
合作探究 课堂互动
数学 选修2-3
第二章 随机变量及其散布
自主学习 新知突破
合作探究 课堂互动
事件独立性的判断
A={一个家庭中既有男孩又有女 孩},B={一个家庭中最多有一个女孩}.对下述两种情形,讨 论A与B的独立性:
这时 A={(男,女),(女,男)},B={(男,男),(男,女), (女,男)},AB={(男,女),(女,男)},
于是 P(A)=12,P(B)=34,P(AB)=12. 由此可知 P(AB)≠P(A)P(B),所以事件 A,B 不相互独立.
数学 选修2-3
第二章 随机变量及其散布
自主学习 新知突破
(1)家庭中有两个小孩; (2)家庭中有三个小孩. [思路点拨] 从相互独立事件的定义入手,写出家庭中 有两个或三个小孩的所有可能情形.
数学 选修2-3
第二章 随机变量及其散布
自主学习 新知突破
合作探究 课堂互动
解析: (1)有两个小孩的家庭,男孩、女孩的可能情形为 Ω={(男,男),(男,女),(女,男),(女,女)},它有 4 个基本 事件,由等可能性知概率各为14.
数学 选修2-3
第二章 随机变量及其散布
事件的相互独立性-PPT课件
例2 甲、乙二人各进行1次射击比赛,如果2人
击中目标的概率都是0.6,计算:
(1)两人都击中目标的概率;
解(2:)(1其) 中记恰“由甲1射人击击1中次目,击标中的目概标率”为事件A.“乙射 击(31)次至,击少中有目一标人”击为中事目件标B的.且概A率与B相互独立, 又A与B各射击1次,都击中目标,就是事件A,B同
A
B
C
.在100件产品中有4件次品.
C42
①从中抽2件, 则2件都是次品概率为__C_1002
C41·C31 C1001·C991
②从中抽两次,每次1件则两次都抽出次品的概率是___
(不放回抽取)
③从中抽两次,每次1件则两次都抽出次品的概率是___
(放回抽取)
C41·C41 C1001·C102011
(A1·A2……An)=P(A1)·P(A2)……P(An) 6
试一试 判断事件A, B 是否为互斥, 互独事件?
1.篮球比赛 “罚球二次” . 事件A表示“ 第1球罚中”,
事件1罚球” . 事件A表示 “ 第1球罚中”,
事件B表示 “第2球罚中”.
P( A • B) P( A) • P(B)
96 • 97 582 100 100 625
答:抽到合格品的概率是 582
13
625
例3 在一段线路中并联着3个自动控制的常开开关,只
要其中有1个开关能够闭合,线路就能正常工作.假定在 某段时间内每个开关闭合的概率都是0.7,计算在这段时 间内线路正常工作的概率.
(1 0.7)(1 0.7)(1 0.7)
0.027
所以这段事件内线路正常工作的概率是
1 P(A • B • C) 1 0.027 0.973
课件7:2.2.2 事件的相互独立性
方法归纳 解决此类问题应注意什么? (1)恰当用事件的“并”“交”表示所求事件. (2)“串联”时系统无故障易求概率,“并联”时系统有故障 易求概率,求解时注意对立事件概率之间的转化.
学以致用 3.在一段线路中并联着 3 个自动控制的常开开关,只要 其中 1 个开关能够闭合,线路就能正常工作.假定在某 段时间内每个开关能够闭合的概率都是 0.7,计算在这段 时间内线路正常工作的概率.
() A.0.56 C.0.75
B.0.48 D.0.6
【解析】都击中目标的概率为 P=0.8×0.7=0.56. 【答案】A
3.一件产品要经过 2 道独立的加工程序,第一道工序的
次品率为 a,第二道工序的次品率为 b,则产品的正品率
为( )
A.1-a-b
B.1-ab
C.(1-a)(1-b)
D.1-(1-a)(1-b)
解:如图所示,记这段时间内开关 KA、KB、KC 能够闭合 分别为事件 A、B、C.
由题意知,这段时间内 3 个开关是否能够闭合相互之间也 没有影响,根据相互独立事件的概率公式得,这段时间内 3 个开关都不能闭合的概率是 P( A B C )=P( A )P( B )P( C ) =[1-P(A)][1-P(B)][1-P(C)] =(1-0.7)(1-0.7)(1-0.7)=0.027.
探究二 相互独立事件同时发生的概率 典例 2 甲、乙两人独立破译密码的概率分别为13、14,求: (1)两个人都译出密码的概率; (2)两个人都译不出密码的概率; (3)恰有一人译出密码的概率; (4)至多一人译出密码的概率; (5)至少一人译出密码的概率.
解:记 A 为“甲独立地译出密码”,B 为“乙独立地译出密码”. 则 A 与 B, A 与 B 均相互独立. (1)两个人都译出密码的概率为 P(AB)=P(A)P(B)=13×14=112. (2)两个人都译不出密码的概率为 P( A B )=P( A )P( B )=[1-P(A)][1-P(B)]=1-131-14=12.
数学:2.2.2《二项分布及其应用-事件的相互独立性》PPT课件(新人教A版-选修2-3)
1 P( A B C ) 1 0.5 0.55 0.6 0.835
0.8 P ( D)
所以,合三个臭皮匠之力把握就大过诸葛亮.
学习小结:
(1)列表比较 互斥事件 不可能同时发 定义 生的两个事件
相互独立事件 事件A是否发生对事件B 发生的概率没有影响
概率公式 P(A+B)=P(A)+P(B) P( A B) P( A) P( B) (2)解决概率问题的一个关键:分解复杂问题为基本 的互斥事件与相互独立事件. 选做作业: 研究性题:在力量不是十分悬殊的情况下我们解释 了“三个臭皮匠顶个诸葛亮”的说法.那么你能否用概 率的知识解释我们常说的“真理往往掌握在少数人手 里的”?
练习5
(1 0.7) (1 0.7) (1 0.7) 0.027
2
(4)
P2=1-(1-r)2
1 1 2 2
P3=1-(1-r2)2
P4=[1-(1-r)2]2
答案
附1:用数学符号语言表示下列关系:
若A、B、C为相互独立事件,则 B· ① A、B、C同时发生; ①A· C B· ② A、B、C都不发生; ② A· C ③ A、B、C中恰有一个发生; B·+A· C+A· C ③A· C B· B· ④ A、B、C中至少有一个发生的概率; -P( A· C ) ④1 B· ⑤ A、B、C中至多有一个发生. B· ⑤A· C + A· C + A· C+ A· C B· B· B·
高中数学选修2(新课标)课件2.2.2事件的相互独立性
由等可能性知这 8 个基本事件的概率均为18,这时 A 中含有 6 个基本事件,B 中含有 4 个基本事件,AB 中含有 3 个基本事件.于
是 P(A)=68=34,P(B)=48=12,P(AB)=38,显然有 P(AB)=38=P(A)P(B) 成立.从而事件 A 与 B 是相互独立的.
【答案】 (2)见解析
状元随笔 (1)因为事件 A 和事件 B 相互独立,故 P(A B )=P(A)
-P(A)P(B)=P(A)(1-P(B))=P(A)P( B ).
由相互独立事件的定义知事件 A 与事件 B 相互独立.类似可证
明 A 与 B, A 与 B 也都相互独立. (2)两个事件的相互独立性可以推广到 n(n>2,n∈N*)个事件的
+P( A )P(B)=0.6×0.4×2=0.48.
(3)至少有 1 人击中目标,即事件 A B 或事件 A B 或事件 AB 发 生,由于两人各射击一次,事件 A B 、事件 A B、事件 AB 不可能同 时发生,为互斥事件,所以至少有 1 人击中目标的概率为 P(AB)+ P(A B )+P( A B)=0.36+0.48=0.84.
【答案】 (1)①②③
(2)一个家庭中有若干个小孩,假定生男孩和生女孩是等可能 的,令 A={一个家庭中既有男孩又有女孩},B={一个家庭中最多 有一个女孩}.对下列两种情形,讨论 A 与 B 的独立性:
人教a版数学【选修2-3】2.2.2《事件的独立性》ppt课件
第二章
随机变量及其分布
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
1
自主预习学案
2
典例探究学案
3
巩固提高学案
4
备 选 练 习
第二章
2.2
2.2.2
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
自主预习学案
第二章
第二章 2.2 2.2.2
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
3.如果A与B相互独立,那么P(B|A)=__________ ,P(A|B) P(B) P(A) . =__________ 同时发生 的两个事件,而相互独 4 .互斥事件是不可能 __________ 立事件是指一个事件是否发生对另一个事件发生的概率 没有影响 ,二者不能混淆. __________ P(A)+P(B) ; 若A、B互斥,则P(AB)=0;P(A+B)=__________ P(A)· P(B) , P(A + B) = 若 A 、 B 相 互 独 立 , 则 P(AB) = __________ 1-P(- A )· P(- B) . ________________
第二章
2.2
2.2.2
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
[解析] 设甲、乙、丙去北京旅游分别为事件 A、B、C, 1 1 1 2 3 则 P(A)=3,P(B)=4,P(C)=5,P( A )=3,P( B )=4,P( C )= 4 5,由于 A,B,C 相互独立,故 A , B , C 也相互独立,故 P( A 2 3 4 2 B C )=3×4×5=5,因此甲、乙、丙三人至少有 1 人去北京 2 3 - - - 旅游的概率 P=1-P( A B C )=1-5=5.
2.2.2 事件的相互独立性
探究一
探究二
探究三
思想方法 当堂检测
判断事件的相互独立性 例1 判断下列各对事件是否为相互独立事件: (1)甲组有3名男生,2名女生;乙组有2名男生,3名女生,现从甲、乙 两组中各选1名学生参加演讲比赛,“从甲组中选出1名男生”与“从 乙组中选出1名女生”; (2)容器内盛有5个白乒乓球和3个黄乒乓球,“从8个乒乓球中任意 取出1个,取出的是白乒乓球”与“从剩下的7个乒乓球中任意取出1 个,取出的还是白乒乓球”.
4 次射击恰有 3 次连续击中目标”为事件 C,则 C=A1A2A3������4 ∪ ������1A2A3A4,且 A1A2A3������4与������1A2A3A4 是互斥事件.
因为 A1,A2,A3,A4 相互独立,
所以 Ai 与������������ (i,j=1,2,3,4,且 i≠j)之间也相互独立, 由于 P(A1)=P(A2)=P(A3)=P(A4)=23,
例3小王某天乘火车从重庆到上海去办事,若当天从重庆到上海 的三列火车正点到达的概率分别为0.8,0.7,0.9,假设这三列火车之 间是否正点到达互不影响.求:
(1)这三列火车恰好有两列正点到达的概率; (2)这三列火车至少有一列正点到达的概率.
探究一
探究二
探究三
思想方法 当堂检测
解:用 A,B,C 分别表示这三列火车正点到达的事件, 则 P(A)=0.8,P(B)=0.7,P(C)=0.9, 所以 P(������)=0.2,P(������)=0.3,P(������)=0.1. (1)由题意得 A,B,C 之间互相独立, 所以恰好有两列火车正点到达的概率为
2.2.2 二项分布-事件的相互独立性
C
C 42 8.在100件产品中有4件次品. C 41· C 31 2 C100 ①从中抽2件, 则2件都是次品概率为___ C1001· C991 ②从中抽两次,每次1件则两次都抽出次品的概率是___ (不放回抽取)
③从中抽两次,每次1件则两次都抽出次品的概率是___
(放回抽取) C 4 1· C 41 C1001· C1001
事件B“最后一名同学抽到中奖奖券”,则分别计算P(B)
与P(B|A)
n( B) 3 31 1 P ( B) n( ) 3 3 3 3 n( AB) 2 3 1 1 P ( B A) n( A) 233 3
P ( AB) P ( AB) P B AP ( A) P( (AB B A) ) P P ( A ) P ( B A ) P ( A ) P ( B ) P ( A)
解法2:两人都未击中的概率是 P( A B) P( A) P( B) (1 0.6) (1 0.6) 0.16,
因此,至少有一人击中 目标的概率 P 1 P( A B) 1 0.16 0.84 答: 甲、乙二人各进行1次射击比赛,如果2人
解:记“开关J1闭合”为事件A,“开关J2闭合” 为事件B,“开关J3闭合”为事件C.
P 1 P( ABC ) 1 0.3 0.3 0.3 0.973
解题步骤:
1.用恰当的字母标记事件,如“XX”记为A, “YY”记为B. 2.理清题意, 判断各事件之间的关系(等可能;互斥; 互独; 对立). 关键词 如“至多” “至少” “同时” “恰
击中目标的概率都是0.6,计算: (4)至多有一次中靶的概率 解:两人都未击中的概率是 P( A B) P( A) P( B) (1 0.6) (1 0.6) 0.16,
人教A版数学选修2—32.2.2事件的相互独立性
(2)至多有一机构研制出该疫苗,即事件 ( A B C ∪A B C ∪ A B C ∪ A B C)发生,故所求事件的概 率为 P( A B C ∪A B C ∪ A B C ∪ A B C) =P( A B C )+P(A B C )+P( A B C )+P( A B C) = P( A )P( B )P( C ) + P(A)P( B )P( C ) + P( A )P(B) P C + P( A )P( B )P(C) =45×34×23+15×34×23+45×14×23+45×34×13=25+110+125+15=56.
什么? P(A+B)=P(A)+(B)
(3) 若A与A为对峙事件,则P(A)与P(A)关 系如何?
P(A)+P(Ā)=1
自主探究:设A,B为两个事件,若P(AB)= P(A)P(B),则称事件A与事件B相互独立.
• 自我测评: • 1.答案:(1)√ (2)√ (3)√ • 2.答案:A • 3.答案:A • 4.答案:0.56
• 重点难点
• 1.理解相互独立事件的定义及意义.
• 2.掌握综合运用互斥事件的概率加法公式及独 立事件的乘法公式解题
复习回顾
一.(1) 什么叫做互斥事件?什么叫做对峙事件? 不可能同时产生的两个事件叫做互斥事件;如果两 个互斥事件有一个产生时另一个必不产生,这样的 两个互斥事件叫对峙事件. (2) 两个互斥事件A、B有一个产生的概率公式是
课件5:2.2.2 事件的独立性
究机构在一定时期内成功研制出该疫苗,依题意可知,事件 A、B、C 相互独立,且 P(A)=15,P(B)=14,P(C)=13.
(1)他们都研制出疫苗,即事件 ABC 发生,故 P(ABC)=P(A)P(B)P(C)=15×14×13=610. (2)他们都失败即事件 A B C 同时发生. 故 P( A B C )=P( A )P( B )P( C ) =(1-P(A))(1-P(B))(1-P(C)) =(1-15)(1-14)(1-13)=45×34×23=25.
(2)设 2 个白球为 a,b,两个红球为 1,2,则从袋中取 2 个球的所有取法为{a,b},{a,1},{a,2},{b,1},{b,2},{1,2},
则 P(A)=46=23,P(B)=56,P(AB)=23, ∴P(AB)≠P(A)·P(B). ∴事件 A,B 不是相互独立事件,事件 A,B 能同时发生, ∴A,B 不是互斥事件.
解 (1)只有一个机构研制出疫苗,该事件为(A B C ∪ A B C ∪ A B C),故所求事件的概率为 P=P( A B C∪ A B C ∪A B C )
=P( A )P( B )P(C)+P( A )P(B)P( C )+P(A)P( B )P( C ) =(1-P(A))(1-P(B))P(C)+(1-P(A))·P(B)(1-P(C))+ P(A)(1-P(B))(1-P(C)) =(1-15)×(1-14)×13+(1-15)×14×(1-13)+15×(1-14)(1-13)
=45×34×23+15×34×23+45×14×23+45×34×13=25+110+125+15=56.
类型3 相互独立事件的实际应用
课件8:2.2.2 事件的相互独立性
变式 本题中车主至少购买甲、乙两种保险中的一种的概 率是多少? 解:解法一:记 E 表示事件“至少购买甲、乙两种保险中 的一种”,则事件 E 包括-A B,A-B ,AB,且它们彼此为 互斥事件. 所以 P(E)=P(-A B+A-B +AB)=P(-A B)+P(A-B )+P(AB) =0.5×0.6+0.5×0.4+0.5×0.6=0.8.
由于 P(A1)=P(A2)=P(A3)=P(A4)=23, 故 P(C)=P(A1A2A3 A4 ∪ A1 A2A3A4) =P(A1)P(A2)P(A3)P( A4 )+P( A1 )P(A2)P(A3)P(A4) =233×13+13×233=1861.
(3)记事件 Bi 表示“乙第 i 次射击击中目标”(其中 i= 1,2,3,4),并记事件 D 表示“乙在第 4 次射击后终止射击”, 则 D=B1B2 B3 B4 ∪ B1 B2 B3 B4 ,且 B1B2 B3 B4 与 B1 B2 B3 B4 是互斥事件. 由于 B1,B2,B3,B4 之间相互独立, 所以 Bi 与 Bj (i,j=1,2,3,4,且 i≠j)之间也相互独立. 由于 P(Bi)=43(i=1,2,3,4),
(4)“从 8 个球中任意取出 1 个,取出的是白球”的概率为 58,若前一事件发生了,则“从剩下的 7 个球中任意取出 1 个,取出的仍是白球”的概率为47;若前一事件没有发 生,则后一事件发生的概率为57.可见,前一事件是否发 生,对后一事件发生的概率有影响,所以二者不是相互 独立事件,也不是互斥事件.
【解析】 对同一目标射击,甲、乙两射手是否击中目 标是互不影响的,所以事件 A 与 B 相互独立;对同一目 标射击,甲、乙两射手可能同时击中目标,也就是说事 件 A 与 B 可能同时发生,所以事件 A 与 B 不是互斥事件. 【答案】 A
2013年甘肃省民勤县第五中学高二数学课件《事件的相互独立性》
P(A) P(A) 1
知识回顾
3.条件概率 一般地,设ΑΒ为两个事件,在已知事件A发生的条件
下事件B发生的概率叫条件概率 4.条件概率的计算公式
P(B / A) P( AB) P( A)
P( A)0
问题1 三张奖券只有一张能中奖,现分别由三名同学有放回地抽取,
生的概率等于每个事件发生的概率的积,即
事
件
P( A1 A2 An ) P( A1 )P( A2 )P( An )
例2:甲、乙2人各进行1次射击,如果2人击中目标的 概率都是0.6,计算:
(1)2人都击中的概率;
(2)其中恰有1人击中目标的概率; 相 互 (3)至少有1人击中目标的概率; 独 分析 记A表示“甲,乙两人各射击1次,甲击中目标”,记 立 B表示“甲,乙两人各射击1次,乙击中目标”, 事 件
互斥事件
相 (2)分别抛掷2枚质地均匀的硬币,记“第一枚为正
互 面”为A,“第二面为正面”为事件B; 相互独立事件
独 立 事
(3)甲、乙两运动员各射击一次,记A表示“甲射中 10环”与B表示“乙射中9环”; 相互独立事件
件 (4)甲、乙两运动员各射击一次,记A表示“甲、乙 都射中目标”与记B表示“甲、乙都没有射中目标”。
1:课本59页第1,2题 2:课本55页思考
独 别摸出1个球,乙坛子里摸出白球”,事件A的发生会影响事件Β发生
立 的概率吗?
P(B A) P(B)
事
件
上述问题1,2的共同特点是什么?
事件A是否发生对事件Β发生的概率没有影响
定义:
一、 事件的相互独立性Fra bibliotek事件A(或Β)是否发生对事件Β(或Α)发生
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7
(2)“恰有一次抽到某一指定号码”;
(2)“两次抽奖恰有一次抽到某一指定号码”
可以用 AB AB表示。由于事件 AB 与
互斥,根据概率加法公式和相互独立事件的 定义,所求的概率为:
P(AB) P(AB) P(A)P(B) P(A)P(B) 0.05(1 0.05)(1 0.05)0.05 0.095
8
(3)“至少有一次抽到某一指定号码”;
(3)“两次抽奖至少有一次抽到某一指定号码”可
以用 AB AB AB表示。由于事件 A B ,
与 AB 两两互斥,根据概率加法公式和相互独立
事件的定义,所求的概率为:
P(AB) P(AB) P(AB) 0.0025 0.095 0.0975
另解:(逆向思考)至少有一次抽中的概率为
(3)“至少有一次抽到某一指定号码”。
6
(1)“都抽到某一指定号码”; 解: 记“第一次抽奖抽到某一指定号码”为事 件A, “第二次抽奖抽到某一指定号码”为事 件B,则“两次抽奖都抽到某一指定号码”就是 事件AB。
(1)由于两次的抽奖结果是互不影响的,因此A 和B相互独立.于是由独立性可得,两次抽奖都 抽到某一指定号码的概率为
推广:如果事件A1,A2,…An相互独立, 那么这n个事件同时发生的概率
P(A1A2…An)= P(A1)P(A2)…P(An)
4
练习、判断下列各对事件的关系
(1)运动员甲射击一次,射中9环与射中8
环;
互斥
(2)甲乙两运动员各射击一次,甲射中9环
与乙射中8环;
相互独立
(3)在一次期中考试中,“甲的成绩合格”
高二数学 选修2-3
2.2.2事件的 相互独立性
1
思考:三张奖券有一张可以中奖。现由三名
同学依次有放回地抽取,问:最后一名去抽
的同学的中奖概率会受到第一位同学是否中 奖的影响吗?
设 “第一位同学没有中奖”为事件A。
“最后一位同学中奖”为事件B。
答:事件A的发生不会影响事件B发生的概率。
P(B | A) P(B)
又 P( AB) P( A)P(B | A)
P(AB) P(A)P(B)
相互独立事件的定义
设A,B为两个事件,如果 P(AB)=P(A)P(B),则称事件A 与事件B相互独立。 即事件A(或B)是否发生,对事件B(或A)发生的概率 没有影响,这样两个事件叫做相互独立事件。
3
小结
互斥事件
相互独立事件
如果事件A(或B)是否发生对事
概 不可能同时发生的 件B(或A)发生的概率没有影响,
念 两个事件叫做互斥 这样的两个事件叫做相互独立事
事件.
件
互斥事件A、B中 相互独立事件A、B同时
符
号
有一个发生, 记作:A∪B(或A+B)
发生记, 作:AB
计算 公式
P(A∪B)=P(A)+P(B)
P(AB)= P(A)P(B)
与“乙的成绩优秀”
相互独立
5
例题
例1、某商场推出两次开奖活动,凡购买一定价 值的商品可以获得一张奖券。奖券上有一个兑奖 号码,可以分别参加两次抽奖方式相同的兑奖活 动。如果两次兑奖活动的中奖概率都为0.05,求 两次抽奖中以下事件的概率:
(1)“都抽到某一指定号码”;
(2)“恰有一次抽到某一指定号码”;
9
练习:在乒乓球团体比赛项目中,A队夺冠 的概率是0.9,B队夺冠的概率是0.7,求: (1)A、B两队都夺冠的概率是多少? (2)只有A队夺冠的概率是多少? (3)恰有一队夺冠的概率是多少? (4)至少有一队夺冠的概率是多少?
10