高等数学第二章课后习题答案
高等数学Ⅱ第二章习题课习题及其解答
高等数学Ⅱ第二章习题课习题1(导数的定义)(1)设函数()y f x =在1x =处可导,且0(13)(1)1lim 3x f x f x ∆→+∆-=∆,求(1)f '。
(2)设函数()y f x =在0x =处连续,且0()lim x f x x →存在,求0(2)lim x f x x→。
【解】:(1)00(13)(1)(13)(1)1lim3lim 3(1)33x x f x f f x f f x x ∆→∆→+∆-+∆-'===∆∆, 所以 1(1)9f '=(2)因为0()lim x f x x→存在,故0lim ()0x f x →=,又函数()y f x =在0x =处连续,从而0(0)lim ()0x f f x →==,所以00(2)(2)(0)()(0)lim2lim 2lim 2(0)200x x t f x f x f f t f f x x t →→→--'===--2(求导法则)(1)设函数21()(1)(1)f x x x=+-,求()f x '; (2)设函数3()(1)cot f x x arc x =+,求(0)f '; (3)设3ln 1x xy x=+,求y '. 【解】:(1)21()1f x x x x =-++-, 21()21f x x x'=-+-(2)33()(1)cot (1)(cot )f x x arc x x arc x '''=+++32213cot 1x x arc x x +=-+所以 (0)1f '=-(3)33323232(ln )(1)(ln )(1)(1ln )(1)(ln )(3)(1)(1)x x x x x x x x x x x y x x ''+-+++-'==++ 33321ln (12)(1)x x x x ++-=+3(一元复合函数求导)(1)设函数()lnsin f x x =,求()f x ';(2)设函数ln y =y '; (3)设(4)ln f x x =,求()f x ';(4)设cos2f x =,求()f x '. 【解】:(1)2cos ()sin xf x x'=+(2)y '==(3)在(4)ln f x x =两边同时对x 求导,得 14(4)f x x '=,从而1(4)4f x x'= 所以 1()f x x'=(4)在cos2f x =两边同时对x 求导,得 2sin 2f x '=-,从而2f x '⋅=-所以 2()4sin 2f x x x '=-4(分段函数求导)(1)设函数212()2ax x f x x b x +≤⎧=⎨+>⎩在2x =处可导,求,a b ;(2)设函数20()20x ae x f x bx x ⎧<=⎨-≥⎩处处可导,求,a b 及()f x ';【解】:(1)函数在2x =处可导,在2x =处必连续。
高等数学课后习题答案2 上海交大版
第二章 极限与连续1.用“N ε-”定义 来验证下列极限: (1)limn →∞=; (2)323lim212n n n →∞-=+;(3)lim 0n →∞=; (4)lim1n n→∞=;(5)lim 1(0)n a →∞=>; (6)lim 1n →∞=.解答:(1)对任意0ε>(无论它多么小,下同),要使0ε-<,只要24n ε>,故可取24[1]N ε=+。
则对任意0ε>,存在24[1]N ε=+,当n N >时,0ε-<,故由极限定义limn →∞=。
(2)对任意0ε>,要使323212n n ε--<+,只要7142n ε>-,故可取71m ax(,1)42N ε=-。
则对任意0ε>,存在71m ax(,1)42N ε=-,当n N >时,323721242n n n ε--=<++,故由极限定义323lim212n n n →∞-=+。
(3)对任意0ε>ε<=<21n ε>,故可取21[1]N ε=+。
则对任意0ε>,存在21[1]N ε=+,当n N >时,ε-=<<,故由极限定义lim 0n →∞=。
(4)对任意0ε>1ε-<11n-=<,只要1n ε>,故可取1[1]N ε=+。
则对任意0ε>,存在1[1]N ε=+,当n N>时,1111nNε=<<<,故由极限定义lim1n n→∞=。
(5)1a =时显然;1a >时,记1n r =,则(1)nn n a r nr =+>,对任意0ε>,1ε-<,只要1n a r n=-<,即an ε>,故可取[1]aN ε=+,当n N >时,1ε-<,由极限定义lim1,(1)n a →=>;01a <<时,类似证明。
高等数学课后习题答案第二章
=
1 4
1 tan
x 2
sec 2
x 2
5、设、 y =
1 2π D 1 2π D
e
−
( x−a)2 2D
,其中 a, D 是常数,求出使导数 y ′( x ) = 0 的 x 值
( x −a ) 2 2D
解: y ′ =
e
−
( x − a )2 2D
3、证明: (1) 、可导的偶(奇)函数的导数是奇函数(偶) (2) 、可导的周期函数的导数是具有相同周期的函数 证明:设 f ( x ) 是偶函数,且可导 则
f ( x) = f ( − x ) f (− x + ∆x ) − f (− x ) f ( x − ∆x ) − f ( x ) = lim = − f ′( x ) ∆x → 0 ∆x ∆x
[1 − ( x + ∆x ) 2 ] − (1 − x 2 ) − 2 x∆x − (∆x) 2 = lim = −2 x ∆x → 0 ∆x → 0 ∆x ∆x −b ) 2a
:
3、 设函数 f ( x) = ax 2 + bx + c , 其中 a, b, c 是常数, 求 f ′( x) , f ′(0) , f ′( −1) , f ′( 解
f ′(− x ) = lim
∆x →0
表明 f ′( x) 是奇函数。 设 f ( x) = f ( x + T )
f ′( x + T ) = lim
∆x →0
f ( x + T + ∆x ) − f ( x + T ) f ( x + ∆x ) − f ( x ) = lim = f ′( x) ∆ x → 0 ∆x ∆x
高数(高等教育出版社)第一版,第二章习题详解参考
第二章习题解答参考习题2-11.设f (x )=8 x,试按定义求 f (1) .解2.设f1xf 1lim8 1x 8.f (1)= lim8x 0x x0x2bx c ,其中 a, b, c 为常数.按定义求 f (x ) .f (x )= ax解f xf x x f x= limxx022a x xb x xc ax cbx limxx02 ax x a x2 b x2 ax b .limxx03.证明(sin x ) = cos x .证设 f x sin x ,则 f x x f x sin x x sin x 2 cosx x x sin222 cos xsinxf x x f x x2f x lim 2limx x x0x0sin xx2lim cos x cos x,2x2x0所以(sin x ) = cos x .4.下列说法可否作为 f ( x )在 x 0可导的定义?f (x0 h ) f ( x 0h )( 1)limh 存在;h 0解不能.因为从极限式中不能判断 f x0存在,也不能判断lim f ( xh ) f (x)存在.h0h例如 f x x 在x0 点不可导,但lim f (0h ) f (0 h)h hlim0h 0h h0h却存在.( 2)lim f (x 0h)f (x)和lim f (x0h )f(x)存在且相等;h0h h 0h解可以.因为 lim f (x0h ) f ( x0 )f x0,hh0lim f ( x0h ) f ( x0 ) f ( x0h ) f ( x0)f x0,根据导数存在的充要h lim hh 0h0条件,可知 f x存在.5.求下列函数的导数:( 1)y x 5;(2)y1;(3)x232( 4)y log1x;(5)y x x;(6)3x 5解(1)y 5 x 5 1 5 x 4;y x37x ;y lg x .(2)(3)(4)1131y x 22;x2 2 x x221522 x2 7x;y x 722x 777y11;1x ln 3x ln3(5)(6)2511512y x 32x66x 66;56x 1y.x ln 106.已知物体的运动规律为s t 3(米),求这物体在 t2 (秒)时的速度.解因为 s t3, v ds3t 2,所以 t 2 时,v 2 3 2212 .dt7.如果 f ( x )为偶函数,且 f (0)存在,证明 f (0)=0.证因为 f(0)=lim f x f 0,而 f ( x ) 为偶函数,故 f (x ) f ( x) ,x0x所以 f (0)limf x f0f xf 0,0lim f (0)x x x 0x所以 f (0)=0.8.抛物线y x 2在哪一点的切线平行于直线y 4 x 5 ?在哪一点的切线垂直于直线 2 x 6 y50 ?解由 y x2,可得 y 2 x ,若切点为x0 , x 02,则依题设 2 x 0 4 ,即 x0 2时,切线平行于直线11 ,即 x03y 4 x 5 ; 2 x0时,切线垂直于直线322 x 6 y 50;所以抛物线切线垂直于直线y x2 在点 2 , 4 的切线平行于直线y 4 x 5 ?在点3,9的242 x 6 y 50 .9.在抛物线y x 2上取横坐标为x1 1 及 x2 3 的两点,作过这两点的割线,问该抛物线上哪一点的切线平行于这条割线?解由题设可知 y 2 x,所取的两点为 1,1, 3, 9 ,连接两点的直线斜率为 k 4 ,依题设,应有 2 x 4 ,即 x 2 ,所以所求点为2, 4.10. 如果y f x在点4, 3处的切线过点0, 2 ,求 f4.解依题设,曲线在点4, 3处的切线为 y3f4x 4 ,满足 2 3 f404,从而f 41.411.讨论下列函数在x0 处的连续性与可导性:x21x0,(1)y3 x ;(2)ysin,x0 ,x0.解( 1)因为lim 3 x0y0 ,所以 y 3 x在 x0 点连续,x03x1,所以 y3 x 在 x0 点不可导;而 limx lim2x 0xx 321(2)因为 limx 2 s in 1y 0 ,所以 yx sin x,x0, 在 x0 点连续,xx0 ,x0.211x sin12,x 0,又 limx0 ,所以 yx sinx 在 x0 点可导.lim x sinx 0 xxx0 ,x 0.12.设 f (x )=sin x , x 0在 x0 处可导,求 a, b 的值.axb , x 0解因为 f (x )=sin x , x0 处可导, axb , x在 x所以 lim f ( x)f0 ,且 ff,x 0又 limf ( x )0 , limf ( x )b , fb ,故 b0 , f0 ,x 0x从而 f 0lim fxf 0 lim sin x1 ,xxxx 0flimf xf 0limaxa ,所以 a1 .xxx 0x 0213.已知 f ( x)x , x 0,求 f (0), f(0) 和 f (0).x, x2f ( x)f 0x 2解因为 f ( x) x , x ,所以 f (0)limlim0 ,x, xxxx 0x 0f (0)f ( x)f 0 limx 1 ,所以 f(0) 不存在.limxxxx14.设函数 f ( x)=x 3 ,x 0 ,求 f (x ) .3xx ,解 当 x 0 时, f ( x )3 x 2 ,当 x 0 时, f ( x)3 x 2 ,当 x0 时, f (0)limf xf 0limx 3 0 ,xxxx 0f (0)lim f xf 0limx 3 0 ,所以 f(0)0 ,xxxx 02 所以 f(x )=3 x , x 0 .3 x 2 , x 015.设所给的函数可导,证明:(1)奇函数的导函数是偶函数;偶函数的导函数是奇函数;(2)周期函数的导函数仍是周期函数.证 (1)设 f x 为奇函数,则 fxfx ,而 ff xh f x,xlimhh 0fxlim fx hfxf x hf xhlimhhhf xhf xf x hfxx,limhlimhfhh 0所以 fx为偶函数;相似地,若 f x 为偶函数,则 fx f x,于是f xlimfxh fxfxhf xhlimhhh0lim f xhf xfx,所以 fx为奇函数.hh0(2)设 fx为周期函数,则存在 T ,使 f x Tf x,则fx Tf x Thf x Tf x hf xfx ,limhlimhhh所以 fx也是以 T 为周期的周期函数.16.设有一根细棒,取棒的一端作为原点,棒上任意点的坐标为x .于是分布在区间 [0, x ] 上细棒的质量 m 是 x 的函数 mm ( x ) .应怎样确定细棒在点 x 0 处的线密度(对于均匀细棒来说,单位长度细棒的质量叫这细棒的线密度)?解 设在 x 0 处的线密度为 x 0,给 x 0 以 x 的增量,则在区间 [ x 0 , x 0x ] 上细棒的平均线密度为m x 0x m x 0,x故x 0m x 0x m x 0mx 0 .limxx 017.证明: 双曲线 xy a 2 上任一点处的切线与两坐标轴构成的三角形的面积都等于 2 a 2 .222证由 xya 2可得 y a , x 0 ,于是 ya2 , x 0 ,若切点为x 0 ,a ,x 0xx则该点处的切线为ya 2a 2 xx 0 ,它与两坐标轴的交点分别为2 x 0 , 0,x 0x 02220, 2 a,所以所求三角形的面积为 S 12 x 02a2 a 2 .x 02x 018.设函数 f (x ) 在 x 0 处可导,试讨论函数 | f (x ) | 在 x 0 处的可导性.解因为函数 f(x ) 在 x0 处可导,所以 limf ( x)f 0f0 存在,xx而 fx 0 limf ( x)fxx,故x(1)若f ( 0 )f ( x)f 0f0 可知:f ( x ) f,其中xxxl i mx f,x,从而 f ( x )此时 fxlim x flimx f,x 0xxxx 0因此 | f ( x) | 在 x 0 点的左导数为f 0,右导数为 f,所以 |f ( x) | 在 x0 处可导的充要条件是 f 00 ;( 2)若 f (0)0 ,设 f (0)0 ,则 lim f ( x)f 00 ,由保号性定理,0 ,x当 x U 0,时, f x0 ,此时有 ff ( x)f 0f ( x )f 0x x 0limxlimxf,相似地,x 0x若 f (0)0 ,则 limf ( x)f 00 ,由保号性定理,0 ,当 xU 0,时,xf ( x)f 0f ( x )f 0f x0 ,此时有 fxx 0limxlimxf;xx 0总之,若 f ( x) 在 x 0处可导,则当 f (0)0 时, | f (x ) | 在 x 0 处可导;当f (0) 0时,| f (x ) | 在 x 0处可导的充要条件是 f 00 .习题2-21.求下列函数的导数:(1) (3) (5)(7)y 3cos2 x ;( 2) y 3 x4cos2 x ; (4) 2e y 3e4 x1 ;( 6) y1;( 8)xln xy4sin(3 t1) ;y( x 1) 5 ;yx;21x y(x 2x1)( x 1) 3 ;2ln x x 3(9) yx 3 e x sin x ;( 10) y 2 .3ln x x解( 1) y3 sin 2 x 2 x3 sin2 x 2 6 sin2 x;( 2) y 4 cos(3 t1) 3t 1 12 cos(3 t1) ;( 3)( 4)y 2e 3 x 3 x4 sin 2 x 2 x 6e 3 x 8 sin 2 x ;y5( x 1) 4 x1 5( x1)4 ;( 5) ( 6)( 7)y3e 4 x 4 x12e 4 x ;1 2x2 xxx 21y2 1;221 x1 21 xxln x1xln xxlnx 1yx;222xln xxln xxln x( 8) y32x 1) 3( x 2222 x 2;2 x 1 ( x 1)( x1)( x 1) 5 x( 9) y2x3 x3x 2xx sin xx cos x;3 x e sin x x e sin xx e cos x x e3sin x2 23ln x233 2 xx 3 xx2ln x xx x 9 x 4 ln x x42 ( 10)y3 x2 xx 2 223ln x3ln xx 22.证明:( 1) (cot x)csc 2 x;( ) (csc x )csc xcot x.2证(1)(cot x )cos x sin x sin x2cos x cos x csc2x ;sin x sin x(2)(csc x)1cos x1cos xcsc x cot x .2sin x sin xsin x sin x3.证明:( 1)(arccos x )1;(2)(arccot x)1.221x1 x证(1)设y arccos x ,则其反函数为 x cos y , y2,2,由于 x sin y ,由反函数求导法则,arccos x111;sin y12y12cos x(2)设y arc cot x ,则其反函数为 x cot y , y0,,由于 x csc 2y ,由反函数求导法则,arccos x111.csc212y12y cot x4.求下列函数在给定点处的导数:2(1)y 2 cos x 3 sin x ,求y xπ ;(2)y32x,求 f (2) .4x3解(1)因为y 2 sin x 3 cos x ,所以y xπ4ππ522 sin3 cos;442212 x22 x,所以 y2 2 210 .(2)因为y232x 223x3x33233 5.写出曲线y 2 x1与 x 轴交点处的切线方程.2 x解令 y0 ,得曲线 y 2 x1与 x 轴交点为1, 0和1, 0,2 x22而 y21,所以 y1 4 ,222 x所以所求切线有两条,方程分别为y 4 x 2 , y 4 x2.6.求下列函数的导数:( 1)y(2 x 23) 5;(2)y sin (5 2 x 2 ) ;( 3) ( 5) ( 7)( 9)y e 3 x 22 x 1 ;(4) y sin ( x 2 ) ;y cos 2 x ; (6) y a 2x 2 ;y arctane x ;(8) y ( arccos x ) 2 ; yln sin x ;(10) ylog a (x 31) .解 (1) y5 (2 x 23) 4 (2 x 2 3)20 x (2 x 2 3)4;( 2) ycos(5 2 x 2 ) (52 x 2 )4 x cos(5 2 x 2 ) ;( 3) y e 3 x 23 x 26 x 2 e 3 x22 x 12 x 12 x 1;( 4) y cos( x 2 ) ( x 2 ) 2 x cos( x2) ;( 5) y 2 cos x cos x2 cos x sin xsin 2 x;( 6) y1222 xx;2 a 2x 2a x2 a 2 x 2a 2x 21x( 7) y2exe2 x;e x11 e( 8)( 9)y2(arccos x)(arccos x)2(arccos x)12 arccos x ;122x1 xy1 cos x cot x ;sin xxsin xsin12( 10) y33 x.3 1) ln a ( x 1)( x 31) ln a ( x7.求下列函数的导数:(1)(3)(5)(7)(9)yarccos (1 2 x) ; ( 2) y y1ln x ; (4) y1ln xysin n x cos nx ; ( 6) yy e arctan x;(8) yy1 x 1 x ; (10)1 x1 xarcsin 1 ;x ln (xx 2a 2 ) ;1 sin2 x ; 1 sin 2 xln ln ( ln x) ;y arccot1 tan x .2 2解( 1) y121;(1 2 x )221 (12 x)x 1 x1 (12 x )( 2)( 3)y1 1 x 1x ;1x2x 222111xxx2x1 1ln x 1 lnx1x x2y22;1 ln xx 1 ln x12 x122122( 4) yx2 x a ;2 2xa2xx22 2xaxaxa( 5) yn sin n1xsin xcos nxsin n xsin nx nxn1cos x cos nxsin x sin nxn sin n 1 x cos n 1x;n sin x( 6) y11 sin2 x1sin 2 x1 sin2 x2sin 2 x112 cos 2 x 1sin 2 x1 sin2 x 2 cos 2 x1 sin2 x1sin 2 x 22sin 2 x112 cos 2 x2 cos 2 x; 1 sin 2 x 1sin 2 x 1 sin 2 xcos 2 x 1sin 2 x( 7) ( 8)( 9)arctan xarctan xarctanx1 y ee1 xx1 ln ( ln x)1 1y x ) ln ( ln x) ln xln ( lnln xarctanxe;2 1 xx1;x ln x ln ( ln x)111 x1x1x112 1 x 2 1 x1 x2 1 x 2 1 xy21 x1x1 x 1 x21 x1 x 121x2;221 x 1 x1 x 1 x1 x 1 x( 10)y11x41 2 x x1x2tan22sec2 122x2 tan24tan222xsec21.2x4tanx1223 cos28.设f ( x )1cos x ,x0,求 f x.ln (1 x )x cos x ,x0sin x,x0解当 x0 时, f (x )1cos x x sin x ,x0,1x2x x当 x 0 时,f(0)1cos x0lim 2 sin2lim sin x sin20 ,lim x x2xx0x0x02ln1x x cos x01f (0)lim ln1x cos x ln e 10 ,lim x xx0x0sin x ,x0所以 f00,从而 f(x )1cos x x sin x, x .1x0 9.求函数y( sin x ) cos x 的导函数.解法 1因为y( sin x ) cos x e cos x ln sin x ,所以 y e cos x lnsin x cos x ln sin x sin xcos xsin x ln sin x cos xcosxsin xsin x sin x ln sin x2x .cos xcossin x解法 2对数求导法,由 y( sin x) cos x,得 ln y cos x ln ( sin x ) ,两边同时对 x 求导,得ysin x ln sin x cos xcos x,y sin x所以 y sin x sin x ln sin x cos2x.cos xsin x10.设f(x )sin x , (x )x3,求 f [(x )] , f[(x )] , { f [(x )]}.解 因为 f (x )sin x , ( x) x 3 ,所以 f ( x)cos x ,(x ) 3 x2,所以 f [( x)] f 3 x 2 sin 3 x 2 ,f [( x )]cos( x )cos x 3,{ f [ ( x)]} sin x 3 cos x 3 x 3 3 x 2 cos x 3 .11.设 f ( x) 存在,求下列函数的导数:( 1) f n (cos x ) ; ( 2) cos n [ f ( x)] .解(1) nn 1(cos x)f (cos x )n 1f (cos x)nf nf(cos x ) f (cos x) cos xn sin xfn 1(cos x ) f (cos x ) ;(2) cos n [ f (x)]n cos n 1 [ f ( x)] cos [ f (x )]n cos n 1 [ f (x)] sin [ f ( x)] f xn 1[ f (x )] fx .n sin [ f ( x)] cos12. 求曲线 f x 2 sin x sin2所有具有水平切线的点.x解 因为 fx2 cos x 2 sin x cos x ,令 fx0 ,得 cos x 1sin x0 ,于是 cos x 0 ,或 sin x1 ,推得 x k, k Z ,或 x 2k3Z ,2, k2所以所求的点为2 k, 3 ,2k3 1 ,其中 k Z .,22习题2-31.求下列函数的二阶导数:(1)(3)ye3 x 5;(2) y 2x ln x ;(4) sinye t sin t;y tan x ;(5) yln( x4 x 2 ) ;( ) y (1 x 2 ) arctan x.6解 ( 1) y 3e 3 x 5 , y9e 3 x 5 ;(2) yetsin t e t cos t e t cos t sin t,yetsin te tsin t cos t2etcos tcos t ;2(3) y2 sin x cos x ln xsin 2 x 1ln xsin 2 xsin x ,xxsin 2 x2sin x cos xx sin2y ln x 2 cos 2 x xxx22 sin 2 x22 x ln xsin x ;x 2 cosx 2(4)(5)22 sec x sec x tan x2ysec x , y2 sec x tan x ;112 x1y,x4 22 4x 24 2xx13xy4x 222 x;2423x(6) y2 x arctan x1 , y2 arctan xx.21x2. y x 3 e x,求 y ( 5 )(0).解设 u x 3 , v e x,则 u3 x 2 , u 6 x , u6 , u n 0, n 4 ; v ne x , n N ,代入莱布尼兹公式,得y ( 5 )u 5 v5 u 4 v 10 u v10 u v5u v 4uv 510 6e x10 6 xe x5 3 x 2e xx 3 e x ,所以(5 )60.y (0)3. yx 2 e 2 x ,求 y ( 20 ) .解 设 ux 2 , v e 2 x , 则 u2 x , u2 , u n0,n 3 ; v n2 n e 2 x , n N,20181920代入莱布尼兹公式,得y ( 20 )C 20k u nkv kC 202C 201 C 200 u vu vuvk 0190 2 218 e 2 x C 201 2 x 219 e 2 x C 200 x 2 2 20 e 2 x2 20 e 2 x95 20 xx 2 .4.试从dx1导出:( 1)d 2 xy3;(2)d 3 x3( y ) 2y y.2( y ) d y 35dy yd y( y )解因为d x1,所以 d 2 x d 1 d 1 dx y 1y 3,d yy2dy ydx ydyy2yd yy3dydy dxd x3dyy 3dx3dydyy322yy y 3 yy13 yy y.6y5yy5.证明:函数 y C 1e xC 2 ex( ,C 1 , C 2 是常数)满足关系式 y2y 0 .解 因为 y C 1 e xC 2 ex,所以所以xxxx2x2xyC 1 eC 2eC 1eC 2 e, yC 1 e C 2 e,y2y2C 1e x 2C 2 ex2C 1 e x C 2 ex0 .6. 求常数 的值,使得函数 ye x 满足方程 y5 y6 y.解 因为 ye x ,所以 y ex, y2ex,代入方程 y5 y6 y 0 , 得256 e x0 ,因为 e x0,xR ,所以256,解得 1 6 , 21 .7. 设 fxsin xa , g xb sin xc cos x ,求常数 b, c 的值,使得f 0g 0,且 f 0g0 .解 因为 fxsin x a, g xb sin xc cos x ,所以 f x cos x a, g xb cos xc sin x ,所以由 f 0g 0, f 0g 0,可得 c sin a ,且 bcos a .8.求下列函数的 n 阶导数.(1) y x na 1 x n 1 a 2 x n 2a n 1 x a n ( a 1 , a 2 , a n 是常数);(2) y xe x ;(3) ysin 2 x ; (4) yx 2 16.5 x解(1) yn 1n 1 a 1 xn 2n 3a n 1 ,nxn 2 a 2 xn 2n 3n 4a ,根据幂函数的导数公式特点:每求导一次,幂函数降一次幂,故y n n ! .(2)y e x xe x e x x 1 , y e x x 1 e x e x x 2,yxx2x xx 3 ,由此可见,每求一次导数,增加一个e x,e e e所以n xx n, n N;y e(3)y sin 2 x1cos 2 x11cos 2 x,222y 2 sin x cos x sin 2 x cos 2 x2,y 2 cos 2 x 2 cos 2 x22,y 2 2sin 2 x 2 2cos 2 x32,42 3cos 2 x23 cos 2 x4,y2所以n2n1 cos 2 x n, n N .y2(4)因为y111,x 2 5 x6x3x2而1x32112x3,x3,x331123x34x3,1n可见,123n x n 11nx3n1x33n !,1n同理,123n x n11nx2n1x22n !,所以n n n1n1n 11.y 1 n ! x 3x 2 1 n !x3n 1xn 12习题2-41.求由下列方程所确定的隐函数的导数d y :d x(1) x y e xy0 ; (2) 2 x 2 y xy 2 y 30 ;(3) e xyy ln xsin 2 x ;( ) xya( a 0 的常数).4解( 1)将方程两边同时对 x 求导,得dydydy ye xyxy,变形得:1;1ey x0 dx1xydx dxxe(2)将方程两边同时对 x 求导,得2dyy2dy2dy 0,2 2 xy xx 2 y3 ydxdx dx变形整理得:dy224 xy y 2;dx2 x 2 xy3 y(3)将方程两边同时对 x 求导,得e xyy xdydyln xy 2 cos 2 x ,dxdxx变形整理得:dy2 x cos 2 xyxy exy;dxx ln x 2xyx e(4)将方程两边同时对 x 求导,得11dy ,2 x2y dx变形整理得:dyy, x.dxx2.求曲线 x 2 y 52 xy0 在点 (1,1) 处的切线方程.解将方程两边同时对 x 求导,得: 2 x5 y 4 dy2 yx dy0 ,dx dx将 x1 , y 1 代入,解得:dy1,10 ,dx所以曲线在点 (1,1) 处的切线方程为: y1 .3.已知 y sinx cos( xy )0 ,求隐函数 yy x 在点 0, π的导数值.2解将方程两边同时对 x 求导,得:dyy cos xsin( x y ) dy ,sin x1dxdx将 x0 , y2 代入,解得: dy1.dx0,222 4.求下列方程所确定的隐函数的二阶导数 d y .dx 2(1) y tan( x y ) ; (2) y 1x e y ;(3) y lny xy ;(4) arctany ln x 2 y 2 .x解(1)将方程两边同时对 x 求导,得:dysec 2 ( xy ) 1dy,dxdx解得dycsc 2 ( xy ) ,dxd 2dy再求导,得:y2 csc( xy)csc( xy ) cot xy,21dxdx将 dy2csc 2( xy) 代入,整理得:d y2 csc 2 ( x y) cot3 xy ;dxdx 2(2)将方程两边同时对 x 求导,得:dye yx e y dy,dxdxe y dy1 xe ye ye yx e y dy解得:dyy,再求导,得: d 2 y dxdxe y 2y2,dx1xedx1xedy y22 y2 xe y2 y3 y将 e代入,整理化简得:d yeey2y 33;dx1 xedx12 yxe(3)将方程两边同时对 x 求导,得:dyln ydy 1 dy , dxdxdx1 dy解得:dy1d 2 yy dx 2 ,,再求导,得: 2dxln y dxln y将 dyd 2 y13;1代入,整理化简得:2ydx ln ydx ln ydyxy2 x 2 ydy(4)将方程两边同时对 x 求导,得:1dx1 dx,y 2222y 21xxx1dy x yx y 1dy解得:dy x y,再求导,得:d 2 ydxdx,dxx ydx 22x y222将 dyx y代入,整理化简得:dy 2 xy.3dxxydx 2xy5.用对数求导法求下列函数的导数:(1) y(sinx) cos x ;(2) y(tan 2 x ) x;x x(3) y;(4) y (2 x 1) x (3 x 1) x 1 .1 x解 ( 1)两边取自然对数,得: ln ycos x ln(sin x ) ,两边同时对 x 求导,得:1 dysin x ln sin xcos x cos x ,y dxsin x整理化简得:dy(sin x) cos xsin x ln sin xcos x cot x ;dx(2)两边取自然对数,得: ln y x ln(tan2 x ) ,两边同时对 x 求导,得:1dy ln(tan 2 x )xsec 2 2 x2tan 2 x ,y dx整理化简得:dy(tan 2 x) xln(tan 2 x)4 x ;dxsin 4 x(3)两边取自然对数,得: lny x lnx x ln xln1 x,1x两边同时对 x 求导,得:1dy ln x ln 1 xx 1 1 1 y dxxxx整理化简得:dyx ln x x1 1;dx1 x1 x(4)两边取自然对数, 得: ln yln(2 x1)1x1ln(3 x1)1 x1 ,ln 4 ln28两边同时对 x 求导,得:1 dy2 1 131)81, y dx 2 x 2 x 4(3 x x 1整理化简得:dy(2 x1) x(3 x1) x 12 1 1 31) 8 11dx2 x 2 x 4(3 x x 6.求下列参数方程所确定的函数的导数d y : d x2 atxa cos btb sin atxt21 ( a 为常数).(1)( a , b 为常数); (2)2ya sin btb cos ata (1 )ty1t2解(1)因为dxab sinbtab cosat ,dyab cosbtab sinat,dtdt所以d yab cos btab sin atcos btsin at;d xab sin btab cos atsinbtcos at2 a 1 t22 at 2t2(2)因为dx2 a 1 t,22dt1212ttdy2at 1 2a (1 2) 2 t4 atttdt221 t 21 2t所以dy1 2 t 2 t .dxt 2 t 2 17.求曲线x tet1 在 t0 处的切线方程与法线方程.t 2 )ey (2 t t解 因为 dxe tte t , dy2 2 t e t(2 t t 2 )e t ,dtdt所以dy2 t 2 , dyt 02 ,又 x t 0 1, y t 0dx1 tdx故所求切线为: y2 x 1,法线为:y1 x 1 . 28 . 已 知曲 线 x2n在 ttm t0 时过原点,且在该点处的切线与ype t2e2 x3 y5 0 平行,求常数 m , n, p .解 因为 dxm ,dyp e t ,故dyt2 tp e ,dtdtdx2t m由题设可知: x tn0 , yt 0p2e0 ,dyt 0p 2 ,dxm3所以所求常数为: n0 , p2e, m3e .注:此题的书后答案有误.29.求下列参数方程所确定的函数的二阶导数 dy :d x 2(1)x1 t 2;(2)xe t cos t ;y tt 3yte sin tx ln 12xf ( t )t;(4)( f(t ) 存在且不为零).(3)y tf ( t )f (t )yt arctan t( 1)因为dx2 t ,dy,所以dy13 t 21 3t , 解13t 2dt dtdx2 t2t221 322于是 d yd13t dt2t 21 3t;2dt2 t2dx2 t3dx4t(2)因为dxe tcos te tsin t ,dye t sin t e t cos t ,dtdt所以dye t sin te t cos tsin t cos t ,于是dxt cos t tsin tcos tsin te ed 2 yd sin tcos tdt cos tsin 2sin t2 1tcos t2dtcos tsin tdxcos tsin 2tcos ttsin tdxte e2;e tcos tsin t 311dx2tdy1dy12t1,1t(3)因为 dtt 2dt1t 2 ,所以dx2 t2 ,1 t 221221于是 d yt;22 t4 tdx1 t 2(4)因为dxf( t ) ,dyf ( t ) tf ( t )f (t ) tf (t ),所以dyt ,dtdtdx于是 d 2 y1.2f (t )dx10.将水注入深 8 米、上顶直径 8 米的正圆锥形容器中,注水速率为4 吨/分钟.当水深为 5 米时,其表面上升的速率为多少?解 如图所示,设在 t 时刻容器中水面的高度为h t(米),此时水面的半径为 rt(米),则依题意应有1 r 2t h t4 t ,而h tr t , 384所以 1h 3 t4t ,两边同时对时间 t 求导,12可得1h2t dh4 ,当 h t5 时,可求得dh16 , 4dt dt2516 所以当水深为 5 米时,其表面上升的速率为m m in .2511.汽车 A 以 50 公里 / 小时的速度向西行驶,汽车 B 以 6 0 公里 / 小时的速度向北行驶,两辆车都朝着两条路的交叉口行驶. 当汽车 A 距离交叉路口 0.3 公里,汽车 B 距离交叉路口 0.4 公里时,两辆车以什么速率接近?解 如图所示,设在 t 时刻,汽车 A 距离交叉路口x t ,汽车 B 距离交叉路口 y t ,则两车之间的直线距离为 st x 2y 2t t ,两边同时对时间 t 求导,可得x tdxy dytdxdydsdtdt60 ,,依题意可知 50 ,dt2y 2dtdtx t t故当 x t0.3 , y t0.4 时,ds 0.350 0.4 6078 ,即当汽车 A 距离交叉dt0.32 20.4路口 0.3 公里,汽车 B 距离交叉路口 0.4 公里时,两辆车以78 km / h 的速率接近.12.一个路灯安装在 1 5 英尺高的柱子上, 一个身高为6 英尺的人从柱子下以5 英尺/秒的速度沿直线走离柱子,当他距离柱子4 0 英尺时,他身影的顶端以多快的速率移动?解 如图所示,设在 t 时刻,此人离灯柱的水平距离为x t,身影的顶端离灯柱的水平距离为y t,则依题意有:dx,6y tx t5,515,可见y tx tdt y t3两边同时对时间 t 求导,得dy5dx25 ,dt3dt3所以他身影的顶端以25 feet / s 的速率移动,与他离灯柱的水平3距离无关,只与他的前进速度、身高、灯柱高有关.习题2-51.函数y x2,求当 x 1 ,而 x0.1 , 0.01 时,y 与 d y 之差是多少?解当 x 1 , x0.1 时,y20.21, d y 2 x x0.2 ,1.11所以y dy0.01;当x 1 ,x0.01时, y 1.01 210.0201, d y 2 x x0.02 ,所以y dy0.0001;2.求函数y x2x 在 x 3 处, x等于 0.1 , 0.01时的增量与微分.解因为 y x 2x ,所以dy 2 x1x ,当 x 3 , x0.1 时,2 3.1230.71, dy0.7;y 3.13当 x 3 , x0.01 时,y 3.012 3.0120.0701, dy0.07 .333.函数y x 3x ,求自变量x由 2变到 1.99时在 x 2 处的微分.解因为y3x ,所以 dy21x ,x 3 x当 x2, x0.01 时, dy3210.010.11 .24.求下列函数的微分(1)(3)(5)y x 2 x 2 1 x3x 4;( 2)3yx;( 4)1 x2y3ln cos x;( 6)y xe x2;y tan 2 (1x 2 ) ;y e ax sin bx .23解(1)dy 1 4 x x 4 x dx ;x 2x 22x 2x 2x 2 2;( 2) dy e dx xe dxe dx xe2 x dx e1 2 x dx22221 x dx xd 1 x1 x dx x2 x dx( 3) dy1 xdx ;2221 2121 2xxx( 4) dy2 tan(12) d tan(1 x22 tan(1x 222) d (12x )) sec (1x x )4 x tan(12) sec 22;x (1 x ) dx( 5) dy 3 ln cos x ln 3dln cos x3 ln cos x ln 31 d cos xcos xln cos x3ln 3 tan xdx ;( 6) dyaxax sin bxaxcos bx d bxaxa sin bxb cos bxdx .e d e e5.将适当的函数填入下列括号内,使等式成立:(1) d( ) sintd t ;( 2) d()(3) d ( )x;( 4) d ( )d x1 x2(5) d ( ) x 2( 6) d ()xe d x ;23 xd x ;secd x;x 2a 2ln xd x .x解(1)1 cost;( )1tan 3 x ;( ) 1x 2;233(4) 1arctanx ;(5) 1e x ;(6) 1l n 2 x .2aa 226.某扩音器的插头为圆柱形,其截面半径r 为 0.15 厘米,长度 L 为 4 厘米,为了提高它的导电性能,要在圆柱的侧面镀一层厚度为 0.001 厘米的铜,问每个插头约需要多少克纯铜?(铜的密度为8.9 克/ 立方厘米,3.1416 )解因为圆柱形的扩音器插头的体积为Vr2L ,侧面镀层的体积约为VdV2 rLr ,当 r 0.15 , r 0.001L4时, V32 3.1416 0.15 4 0.0013.7699210 ,,故所需铜的重量约为 m3.769921030.03355克.8.97.设有一凸透镜,镜面是半径为R 的球面,镜面的口径为 2h ,若 h 比 R 小h 2 得多,试证明透镜的厚度 D.2 R解如下图所示,镜面半径 R 、镜面口径 2h 、透镜厚度 D 之间有关系:h 222,化简得: h22RDD20 ,R DR2R4R 2 4 h 2h 得: DR R 12R2 2,若 h 比 R 小得多,则1 h 21h 2,22 R 2R222故DRR1hR R 1h h .R 22 R 22 R8.利用微分求下列函数值的近似值(1);(2);(3); ( 4) e 1.01 ;( )26 ;( ) 3 .996cos 59tan 46lg 1156解 (1) cos 59coscoscossin6013 18033180130.5151 ;2 2180( 2) tan 46 tan 0tantan245141804sec18041 21801.0349;( 3) lg 11 lg 10 1lg 10111.0434;10 ln 10( 4) e1.01e1 0.01ee 0.01 2.7455;( 5) 2625 1251 15.1 ;22512(6) 3 996310004310001000349.9867 .39.当 | x | 较小时,证明下列近似公式:( 1) sin x x ; (2) (1x )1x ; ( 3) ln(1 x ) x .解 (1)设 fx sin x ,则 fxcos x ,当 | x | 较小时, fxsin xsin 0 cos 0 xx ,所以 sin x x ;( 2)设 f x(1 x) ,则 fx1(1 x )当 | x | 较小时, f x(1 x ) f 1f 1 x1x ,所以 (1x )1x ;(3)设 f x ln(1 x) ,则 fx1,1x当 | x | 较小时, f xln(1 x ) f 1 f 1 x x ,所以 ln(1x )x .习题2-61. 一飞机在离地面 2000 米的高度,以 200 公里 / 小时的速度飞临某目标之上空,以便进行航空摄影.试求飞机飞至该目标上方时摄影机转动的速度.解 如右图示意,A 为摄影目标,B 为其正上方的点,设 t 时刻飞机离 B 点的水平距离为 x t ,摄影机镜头 C 与 A 点连线与飞机的水平飞行方向成夹角,则co tx t , xtx200000t ,两边同时对时间20003600t 求 导 , 可 得 csc 2d1 dx t1, 即dt 2000 dt36d 1,当飞机飞至该目标上方时,,dtsin2362代入解得:d1 360 5rad / s .dt36 22. 一架飞机着陆的路径如图 2-11 所示,并且满足下列条件:(ⅰ)降落点为原点, 飞机开始降落时水平距离为 l ,飞行高度为h .(ⅱ)在整个降落过程中, 飞行员必须使飞机保持恒定的水平速度 v .(ⅲ)垂直方向的加速度的绝对值不能超过常数 k (必须比重力加速度小很多) .3图 2-11( 1) 求一个三次多项式 P x2ax bxcx d ,通过在开始降落和着陆的点对P x 和 P x施加一定的条件限制,使它满足条件。
高等数学第2章课后习题及答案
-----高等数学第2章课后习题及答案习题211 设物体绕定轴旋转 在时间间隔 [0 t]内转过的角度为从而转角是 t 的函数(t) 如果旋转是匀速的 那么称为该物体旋转的角速度 如果旋转t是非匀速的 应怎样确定该物体在时刻t 0 的角速度?解 在时间间隔 [t 0 t 0t] 内的平均角速度为(t 0t ) (t 0 )tt故 t 0 时刻的角速度为l i ml i m l i m(tt) (t 0) (t )t 0t 0 tt 0t2 当物体的温度高于周围介质的温度时物体就不断冷却 若物体的温度 T与时间 t 的函数关系为 T T(t) 应怎样确定该物体在时刻t 的冷却速度?解 物体在时间间隔 [t 0 t 0t]内 温度的改变量为T T(tt) T(t)平均冷却速度为T T (t t) T(t) t t故物体在时刻 t 的冷却速度为limT lim T (t t ) T (t ) T (t) t 0t t 0 t 3 设某工厂生产 x 单位产品所花费的成本是 f(x)元 此函数 f(x)称为成本函数成本函数 f(x)的导数 f (x)在经济学中称为边际成本 试说明边际成本 f (x)的实际意义解 f(x x)f(x)表示当产量由 x 改变到 x x 时成本的改变量f (x x) f (x)表示当产量由 x 改变到 x x 时单位产量的成本xf (x)lim 0f (x x) f ( x)表示当产量为 x 时单位产量的成本x x4 设 f(x)10x 2 试按定义 求 f ( 1)解 f ( 1)limf ( 1 x) f ( 1)10( 1x)2 10( 1)2xlimxxx 010 lim0 2 xx 2 10 lim ( 2x) 20xxx 05 证明 (cos x) sin x解 (cosx) limcos(x x) cosxxx2s i nx(x) s i nxlim2 2x 0 xlim [ s i nx(x ) s i n x] s i nx 2 x 0 2x26 下列各题中均假定 f (x 0)存在 按照导数定义观察下列极限指出 A 表示什么(1) lim f ( x 0x) f ( x 0 ) A xx 解 Alim0f (x 0x) f (x 0)xxl i mf ( xx) f (x 0) f ( x 0 )x 0x(2) lim f (x)A 其中 f(0) 0 且 f (0)存在x 0 x解 Alim f ( x) lim f (0 x) f (0) f (0)x 0 x x 0x (3) lim f (x 0 h) f (x 0 h)Ah 0h解A lim f ( x 0 h 0 lim[ f (xh 0limf (xh 0h)f (x 0 h) hh) f ( x 0 )] [ f (x 0 h) f (x 0)]h h) f (x 0)limf (xh) f ( x 0 ) hh 0hf (x 0) [ f (x 0)] 2f (x 0)7 求下列函数的导数(1)y x 4(2) y 3 x 2(3) y x1 6-----(4) y1 x(5) y1x23 5 x(6) y x232(7) y x x解 (1)y (x 4) 4x 4 1 4x 322 1 2 x (2) y (3 x 2 ) ( x 3 )2x 3331 3(3)y (x 1 6) 1 6x 1 6 1 1 6x 0 61 1 x(4) y ( 1) (x 2)x21 121 x 23 2(5) y(1)( x 2 )2x 3x 23 516 16 16 116 11 (6) y (x x) (x 5)x 5 x 555(7) y ( x2 3 x21 111 x ) (x 6) 1 x 6x 5665 68 已知物体的运动规律为 s t 3(m) 求这物体在 t 2 秒 (s)时的速度解 v(s) 3t 2 v|t 2 12(米 /秒)9 如果 f(x)为偶函数且 f(0)存在 证明 f(0)证明 当 f(x)为偶函数时 f( x) f(x)所以f (0) l i mf (x)f (0) l i m f (x) f (0) l i m f ( x) f (0)x 0xx 0x 0x 0x 0从而有 2f (0) 0 即 f (0) 010 求曲线 ysin x 在具有下列横坐标的各点处切线的斜率x 解 因为 y cos x 所以斜率分别为2 1k 1 c o sk 2 cos 13 2f (0)2x311 求曲线 y cos x 上点 ( , 1) 处的切线方程和法线方程式3 2解 ysin x ysin3x3 23故在点 (, 1) 处 切线方程为 y 1 3(x)3 22 23法线方程为 y 1 2(x )23 312 求曲线 y e x在点 (0 1)处的切线方程 解 y e xy |x 0 1 故在 (0 1)处的切线方程为y 1 1 (x 0)即 y x 113 在抛物线 y x 2上取横坐标为 x 1 1 及 x 2 3 的两点 作过这两点的割线问该抛物线上哪一点的切线平行于这条割线?解 yy(3) y(1)9 1 42x 割线斜率为 k132令 2x 4 得 x 2因此抛物线 y x 2 上点 (2 4)处的切线平行于这条割线 14 讨论下列函数在 x 0 处的连续性与可导性(1)y |sin x| (2) yx 2sin 1x 0xx 0解 (1)因为y(0) 0 lim y lim |sin x | lim ( sin x) 0x 0x 0x 0 lim ylim |sin x|lim sin xx 0x 0x所以函数在 x 0 处连续又因为y (0)l i m y( x)y(0) l i m |si nx | |si n0 |l i m s i nx1x 0x 0x 0x 0x 0xy (0) lim y( x) y(0) lim |sin x | |sin0|lim s i nx 1x 0 x 0 x 0x 0 x 0 x而 y (0) y (0) 所以函数在 x 0 处不可导-----解 因为 lim y(x) lim x 2sin10 又 y(0)0 所以函数在 x 0 处连续x 0 x 0x 又因为21 0y(x) y(0)xs i n1 l i mx l i ml i mxs i n 0 x 0xx 0xx 0x所以函数在点 x 0 处可导 且 y (0) 015 设函数 f (x)x 2x 1为了使函数 f(x)在 x 1 处连续且可导a b 应取什ax b x 1么值?解 因为lim f ( x) lim x 21 limf (x) lim (ax b)a b f(1) a bx 1x 1x1x 1所以要使函数在 x1 处连续 必须 a b 1 又因为当 a b1 时f (1)x 2 12l i m1x 1 xf (1) lim ax b 1 lim a( x 1) a b 1 lim a(x 1) ax 1 x 1 x 1 x 1 x 1x 1 所以要使函数在 x 1 处可导 必须 a 2 此时 b 116已知 f (x)x 2x 0求 f (0)及 f(0) 又 f (0)是否存在?x x 0解 因为f(0) lim f (x) f (0)lim x 0x 0 x x 0x f(0) lim f (x) f (0)lim x 2 0xxx 0x 而 f (0) f (0) 所以 f (0)不存在17 已知 f(x)sin x x0 求 f (x)x x解 当 x<0 时 f(x) sin x f (x) cos x 当x>0 时 f(x) x f (x) 11因为 f (0) lim f (x) f (0) lim sin x 0 1x 0 x x 0xf (0) lim f (x)f (0) lim x 0 1所以 f (0) 1 从而x 0x x 0x f (x)cosx x1 x18 证明 双曲线 xy a 2 上任一点处的切线与两坐标轴构成的三角形的面积都等于 2a 2解 由 xy a 2得 ya 2k ya 2xx 2设 (x 0 y 0)为曲线上任一点则过该点的切线方程为y a2x 0 ) y 02 ( xx 02y x 2令 y 0并注意 x 0y 0a 解得 xx 0 2x 0为切线在 x 轴上的距 a 2令 x 0并注意 x 0y 0 a 2 解得 y a 2y 2 y0 为切线在 y 轴上的距x 0 0此切线与二坐标轴构成的三角形的面积为S1|2x 0 ||2y 0 | 2|x 0 y 0 | 2a 22习题221 推导余切函数及余割函数的导数公式(cot x)csc 2x(csc x)csc xcot x解 (cot x)(cosx )sin x sin x cosx cosxsin xsin 2 x2 21 2s i nx c o s x2 2 c s cxs i nxs i nx( c sxc) ( 1 ) c o xsc s cx c o xt s i nx 2s i n x 2 求下列函数的导数(1) y4 7 2 12x 5 x 4x-----(2) y 5x 3 2x 3e x (3) y 2tan x sec x 1 (4) y sin x cos x (5) y x 2ln x (6) y 3e x cos x(7) yln xxx(8) y e 2 ln 3x(9) y x 2ln x cos x(10) s 1 sint1 cost解 (1) y ( 4 7 2 12)(4x 5 7x 4 2x 112)x 5 x 4 x20x628x52x220282x6x5x2(2) y (5x 32x 3e x ) 15x22xln2 3ex(3) y (2tan x sec x 1)2sec x tan x sec x(2sec x tan x)2sec x (4) y (sin x cos x) (sin x) cos x sin x (cos x)cos x cos x sin x ( sin x) cos 2x(5) y (x 2ln x) 2x ln x x 21 x(2ln x 1)x(6) y (3e x cos x) 3e x cos x 3e x ( sin x) 3e x(cos x sin x)ln x1 x ln x1 ln x(7) y ( ) xx x 2 x 2(8) y ( e x ln 3) e x x 2 e x 2x e x ( x 2)x 2 x 43x(9) y221cos x x 2ln x ( sin x)(x ln x cos x) 2x ln x cos x x x2x ln x cos x x cos x x 2 ln x sin x(10) s (1sin t ) cost(1 cost) (1 sin t)( sin t)1 sin t cost1 cost(1 cost)2(1 cost)23 求下列函数在给定点处的导数(1) y sin x cos x 求 y和 yxx46(2)sin1cos 求d2d4(3) f (x)3 x 2求 f (0)和 f (2)5 x 5解 (1)ycos x sin xyc o s s i n3 1 3 1x22266 6yc o s s i n22 2x2 244 4(2)dsincos1sin1sincosd22d1s i nc o s 1 2 422(1)d4 244 4 2 22 42(3) f (x)32x f (0)3 f (2) 17(5 x)2525154 以初速 v 0 竖直上抛的物体其上升高度 s 与时间 t 的关系是 s v 0t 1gt 22求(1)该物体的速度 v(t)(2)该物体达到最高点的时刻解 (1)v(t) s (t) v 0 gt(2)令 v(t) 0 即 v 0 gt 0 得 t v 0这就是物体达到最高点的时刻g5 求曲线 y 2sin x x 2 上横坐标为 x 0 的点处的切线方程和法线方程 解 因为 y 2cos x 2x y |x 0 2又当 x 0 时 y 0 所以所求的切线方程为y 2x所求的法线方程为-----y 1x即x 2y 0 26求下列函数的导数(1)y (2x 5)4(2)y cos(4 3x)(3) y e 3x 2(4)y ln(1x2)(5)y sin2x(6) y a2x2(7)y tan(x2)(8)y arctan(e x)(9)y(arcsin x)2(10) y lncos x解 (1) y4(2x 5)4 1 (2x5) 4(2x 5)3 2 8(2x 5)3 (2)y sin(4 3x) (4 3x)sin(4 3x) ( 3) 3sin(4 3x)(3) y e 3 x2 ( 3x2 )(4)y1 (1 x2)1x2(5)y 2sin x (sin x) e 3x 2(6x)6xe 3x212x2x1 x2 1 x22sin x cos x sin 2x(6) y [( a21] 1 (a211(a2 x2 ) x2) 2x2) 221 (a2x2 )1x2 ( 2x)x2 2a2 (7) y sec2(x2) (x2)2xsec2(x2)(8) y1x2 (e x)e x2x1(e ) 1 e2 arcsin x (9) y2arcsin x (arcsin x)1x2(10) y1 (cosx)1( sin x) tan xcosx cosx 7 求下列函数的导数(1) y arcsin(1 2x)(2) y11 x 2x(3) y e 2 cos3x(4) y arccos 1x(5) y1 ln x1 ln x (6) y sin 2xx(7) y arcsin x(8) y ln(x a 2 x 2 ) (9) y ln(sec x tan x)(10) y ln(csc x cot x)解 (1) y1(1 2x)21 1 (1 2x)2x x 21 (1 2x) 2(2) y [(111 1 x 2)x 2) 2]1(1 x 2) 2(1213x(1 x 2 ) 2 ( 2x)x 22(1 x 2 ) 1xxxx) cos3xx(3) y (e 2) cos3x e 2(cos3x) e 2(e 2( sin 3x)(3x)21 e xxx2 c o 3sx 3e 2 s i n3x 1e 2( c o3sx6s i n3x)22-----(4) y1 1 (1)1 1 ( 1 )|x|1 (2 x 1 ( ) 2x2x 2x21)xx1(1 l n x) (1 ln x)12(5) yxx(1ln x) 2x(1 ln x)2(6) ycos2x 2 x sin 2x 1 2x cos2x sin2xx2x2(7) y1( x)1111 ( x)21 ( x )22 x 2 x x 2(8) y1x 2 (xa 2x 2 )1x 2 [1 1(a 2 x 2) ]xa 2x a 22 a 2 x 21[112 (2x)]1x a 2 22 a 2x a 2x 2x(9) y1(secx tan x) secxtan x(10) y1(csc x cot x)csc x cot xsecx tan x sec 2x secxsecx tan x cscx cot x csc 2 x cscxcscx cot x8 求下列函数的导数(1) y (arcsin x )22(2) y ln tan x2(3) y 1 ln 2 x(4) y e arctan x(5) y sin nxcos nx(6) y arctanx 1x 1(7) y arcsinxarccosx(8) y=ln[ln(ln x)](9) y1x 1 x 1 x1 x(10) y arcsin1 x1 x解 (1) y2(arcsin x ) (arcsin x)2 22( a r c s xi)n 1( x)2 1 ( x )2 222( a r c s xi) n1 x 12 1 ( ) 222x2a r c s i n24 x 2(2) y1x (tan x) 1 x sec 2 x( x)tan 2 tan2 22 2(3) y(4) y1 2 x 1x s e c2 c s cxt a n 22 1 ln 2 x 2 1 (1 ln 2 x)1 ln2 x1 2ln x ( l nx)12ln x12 1 ln 2x2 1 ln 2xxln xx1 ln2 xearctan x(arctan x)e arctan x1 x) 2( x)1 (-----e a r c t axn11x e a r c t axn1( x)2 2 2 x(1 x)(5) y n sin n 1x (sin x) cos nx sin n x ( sin nx) (nx)n sin n 1x cos x cos nx sin n x ( sin nx) nn sin n 1x (cos x cos nx sin x sin nx) n sin n 1xcos(n 1)x(6) y1( x 1) 1(x 1) ( x 1)11 ( x 1) 2x 11 (x 1)2(x 1)2 1 x 2x 1x 11arccosx 1 arcsin x1 x2 1 x 2(7) y(arccos x)21 a r c c oxs a r c s ixn1 x22( ar c c ox)s2 1 x 2 ( a r c cxo)2s(8) y1 ln(ln x)1ln(ln x)[ln(ln x)] 11(ln x)ln(ln x) ln x 1 1 1 ln x x xln x l n ( lxn)(1 1 )( 1 x1 x) ( 1 x1 x)(1 1)(9) y2 1 x 2 1 x2 1 x 2 1 x( 1 x1 x)211 x 21 x2(10) y1 (1 x) 1 (1 x) (1 x)1 1 x 1 x 1 1 x(1 x)21 x1 x1(1 x) 2x(1 x)9. 设函数 f(x)和 g(x)可导且 f 2(x) g 2(x) 0 试求函数 y f 2 (x) g 2 (x) 的导数解 yf 1[ f 2(x) g2 (x)]22 (x)g 2(x)1[2 f (x) f ( x) 2g(x) g ( x)] 2f 2(x)g2(x)f (x) f (x)g(x)g (x)f 2 (x)g 2 (x)10设 f(x)可导求下列函数 y 的导数dy dx(1) y f(x2)(2)y f(sin2x) f(cos2x)解 (1) y f (x2) (x2)f(x2) 2x 2x f (x2)(2)y f(sin2x) (sin2x) f (cos2x) (cos2x)f(sin2x) 2sin x cos x f (cos2x) 2cosx ( sin x)sin 2x[f (sin2x)f(cos2x)]11求下列函数的导数(1)y ch(sh x )(2)y sh x e ch x(3)y th(ln x)(4)y sh3x ch2x(5)y th(1 x2)(6)y arch(x2 1)(7)y arch(e2x)(8)y arctan(th x)(9)y ln chx12 x 2ch(10)y ch2( x 1) x 1解 (1) y sh(sh x) (sh x) sh(sh x) ch x(2) y ch x e ch x sh x e ch x sh x e ch x(ch x sh2x)(3) y1(ln x)12 (ln x)2 (ln x)ch x ch-----(4) y3sh 2x ch x 2ch x sh x sh x ch x (3sh x 2) (5) ych 21 2 (1 x 2)2 2xx 2 )(1 x )ch (1 (6) y1 1(x 2 1)2x( x 2 1)x 4 2x 2 2(7) y1(e 2x)2e2x(e 2x )21 e 4 x 1 (8) y 1(th x) 1 1 1 1 1 (thx) 2 1 th 2 x ch 2 x 1 2 2sh x ch xch 2x 1 1ch 2 x sh 2x 1 2sh 2 x(9) y1 (ch x) 1 (ch 2x)ch x2ch 4 xsh x 1 2ch x shxch x2ch 4 xsh x shx sh x ch 2x shxch xch 3x ch 3xsh x (ch 2 x 1) sh 3x th 3xch 3xch 3x(10) y2ch(x1) [ch(x1)] 2ch(x1) sh(x1) ( x 1)x 1x 1x 1 x 1 x 1sh(2x 1(x 1) (x 1)2sh(2 x 1)(x 1)2( x 1)2 )x 1x 112 求下列函数的导数(1) y e x (x 2 2x 3)(2) y sin 2x sin(x 2) (3) y (arctan x )22(4) yln xx ne t e (5) ye t ett(6) y ln cos 1x(7) y e sin 2 1x(8) y x x(9) yxarcsinx4 x 22(10) y arcsin2t1 t 2解 (1) y e x (x 2 2x 3) e x (2x 2) ex( x 2 4x 5)(2) y2 222sin x cos x sin(x ) sin x cos(x ) 2xsin2x sin(x 2) 2x sin 2x cos(x 2)(3) y 2arctanx1 1 4 arctan x2 1 x 2 2 x 2 4 241 xnln x nxn 11 n ln x(4) yxx 2nx n 1(5) y(e te t )(e t e t ) (e t e t )(e te t )4e 2t(e t e t )2(e 2t 1) 211111 1 1(6) y sec x (cos x ) sec x ( sin x ) ( x 2 ) x 2tanx(7) y esin 21 ( sin 21) e sin 21xxx( 2sin 1) cos1( 1 ) xxx2122 1s i nx 2 s i nexx(8) y1x (x x )2 1 (1 1 ) 2 xxx2 x2 x 1 4 xxx(9) y arcsinxx1 12 1 ( 2x) arcsin x21 x2 2 4 x 2 24-----(10) y1 ( 2t ) 12 (1 t 2) 2t (2t) 1 (2t)2 1 t 21 ( 2t )2 (1 t 2) 21 t21 t21 t22(1 t 2)2(1 t 2)(1 t 2)2 (1 t 2 )2 |1 t 2 |(1 t 2 )习题231 求函数的二阶导数(1) y 2x 2ln x (2) y e2x 1(3) y xcos x (4) y e t sin t (5) y a 2 x 2 (6) y ln(1 x 2)(7) y tan x1(8) yx 3 12(9) y (1 x )arctan x(10) ye xx(11) y x 2xe(12) y ln( x 1 x 2 )解 (1) y 4x1 y4 1xx2(2) y e 2x 12 2e 2x 1y 2e2x 1 2 4e 2x 1(3) y xcos x y cos x xsin xy sin x sin x xcos x2sin x xcos x(4) ye tsin t e tcos t e t(cos t sin t)ye t (cos t sin t) e t ( sin t cos t) 2e t cos t(5) y21x2(a2x2)xx2a2a2a2x2x xa2ya2x2a2 x2(a2 x2 ) a2 x2(6) y11(1x2 )12x x2x2y 2(1x2 )2x (2x)2(1 x2)(1 x2 )2(1x2 )2(7) y sec2 xy2sec x (sec x)2sec x sec x tan x2sec2x tan x(8) y(x31)3x2 (x31) 2(x31)2y 6x ( x31)23x22( x31) 3x6x(2x3 1) (x3 1)4(x31)3(9) y2xarctanx(1x2)112xarctanx1 x2y2a r c t xa n2x1 x2(10)y e x x e x 1e x( x 1)x2x2y [e x( x 1) e x] x2 e x( x 1) 2x e x(x2 2x 2)x4x3(11)y e x 2x e x2(2x)e x2(12x2 )yx22x24xx22 e2x (12x )e2xe(32x )(12)y12( x1x2 )12(12x 2 )12x 1 x x 1 x 2 1 x 1 x y1(1 x2 )12x x1 x2 1 x22 1 x2)(1 x) 2 1 x-----2 设 f(x)(x6(2)?10)f解 f(x) 6(x5f(x)43 10)30(x 10) f (x) 120(x 10)f(2)120(210)32073603若 f (x)存在求下列函数 y 的二阶导数d2ydx2(1)y f(x2)(2)y ln[ f(x)]解 (1)y f(x2) (x2) 2xf(x2)y2f(x2)2x 2xf(x2)2f(x2) 4x2f(x2)(2) y1 f (x)f (x)f(x) f (x) f ( x) f(x)f( x) f (x)[ f ( x)] 2 y[ f ( x)]2[ f ( x)]24试从dx 1导出dy y(1) d 2 x ydy 2( y ) 3(2)d 3x3( y )2y y dy3( y )5解(1) d 2x d dx d1d1dx y1ydy2dy dy dy y dx y dy( y )2y( y )3(2) d3x d y d y dxdy3dy y 3dx y 3dyy ( y )3 y 3( y )2 y13( y )2 y y(y )6y(y )55已知物体的运动规律为s Asin t(A、是常数 )求物体运动的加速度并验证d 2s2 s 0dt 2解dsA cos t dt d2 s A 2 sin t dt 22d s就是物体运动的加速度dt2d2 s 2 s A 2 s i n t2 As i n t 0dt 2C1e x C2e x(6验证函数 y C1 C2是常数 )满足关系式y2y 0解y C1 e x C2 e xy C12e x C22e xy2y (C12e x C22e x)2(C1e x C2e x)(C12e x C22e x) (C12e x C22e x) 0 7验证函数 y e x sin x 满足关系式y2y2y 0解 y e x sin x e x cos x e x(sin x cos x)y e x(sin x cos x)e x(cos x sin x) 2e x cos xyx xcos x)x2y 2y 2e cos x2e (sin x2e sin x 2e x cos x2e x sin x2e x cos x2e x sin x 08求下列函数的 n 阶导数的一般表达式(1) y x n1n 12n 2n 1n 12n 都是常数)a x a x a x a (a a a(2)y sin2x(3)y xln x(4)y xe x解 (1) y nx n 1(n1)a1x n 2 (n2)a2x n 3a n 1y n(n1)x n 21 n 32n 4n 2 (n 1)(n2)a x(n 2)(n 3)a x ay(n) n(n 1)(n 2) 2 1x0 n!(2) y 2sin x cos x sin2xy 2c o 2sx 2s i n2(x)2-----y22 c o s2x()22 s i n2x( 2)22y(4)23 c o s2x(2) 23 s i n2(x 3 )22y(n)2n 1s i n2x[ (n 1)]2(3)y ln x 1y 1 x1xy ( 1)x 2y(4) ( 1)( 2)x 3y(n)(1)( 2)( 3) ( n 2)x n 1( 1)n 2(n 2)!( 1)n (n 2)!x n 1x n 1(4) y e x xe xy e x e x xe x 2e x xe xy 2e x e x xe x 3e x xe xy(n) ne x xe x e x(n x)9求下列函数所指定的阶的导数(1)y e x cos x 求 y(4)(2)y xsh x 求 y(100)(3) y x2sin 2x求y(50) .xv cos x有解 (1)令 u eu u u u(4)e xv sin x v cos x v sin x v(4) cos x所以y(4)u(4) v4u v6u v4u v u v(4)e x[cos x4(sin x)6(cos x)4sin x cos x] 4e x cos x(2)令 u x v sh x则有u 1 u0v ch x v sh x v(99)ch x v(100) sh x所以y(100)u(100)v C1 u(99) v C2u(98) v C 98 u v(98) C99 u v(99)u v(100)100100100100100ch x xsh x(3)令 u x2 v sin 2x则有u2x u 2 u0v(48)248 sin(2x48)248 s i n2x2v(49)249cos 2x v(50)250sin 2x所以y(50)u(50)v C1501u(49) v C502u(48) v C5048u v(48) C5049u v(49) u v(50)C5048u v(48)C5049u v(49) u v(50)50 492 228 sin 2x50 2x 249 c o 2sx x2 (250 s i n2x)250x2sin 2x50xc o 2sx12252 (s i n2x)2习题231求函数的二阶导数(1)y 2x2 ln x(2)y e2x 1(3)y xcos x(4)y e t sin t(5)y a2 x2(6)y ln(1 x2)(7)y tan x1(8) yx3 1(9) y (1 x2)arctan x(10) y e xx-----(11) y xe x2(12) y ln( x1x2 )解 (1) y4x1y41x x2(2) y e2x 1 2 2e2x 1y2e2x 1 2 4e2x 1(3) y xcos x y cos x xsin xy sin x sin x xcos x2sin x xcos x(4) y e t sin t e t cos t e t (cos t sin t)y e t(cos t sin t) e t (sin t cos t)2e t cos t(5) y21x2(a2x2)xx2a2a2a2x2x xx2a2ya2a2 x2(a2 x2 ) a2 x2(6) y11(1x2 )12x x2x2y 2(1x2 )2x (2x)2(1x2)(1 x2 )2(1x2 )2(7) y sec2 xy2sec x (sec x)2sec x sec x tan x2sec2x tan x(8) y(x31)3x2 (x31) 2(x31)2y 6x ( x31)23x22( x31) 3x 6x(2x3 1) (x31)4(x31)3(9) y2xarctanx(1x2)112xarctanx1 x2y2a r c t xa n 2x21 x(10)y e x x e x1 e x( x 1)x2x2y[e x ( x 1) e x ] x 2 e x ( x 1) 2x e x (x 2 2x 2)x4x3(11) ye x 2 x e x 2 (2x) e x 2 (1 2x 2 )yx 22x (1 2x 2x22e 2x ) e4x 2xe (3 2x )(12) y1( x1x 2 ) 1 (1 2x ) 1x 1 x 2x 1 x 22 1 x 21 x 2y1(1 x 2) 12xx1 x21 x 22 1 x 2)(1 x) 21 x2 设 f(x) (x 10)6f (2) ?解 f (x) 6(x 10)5 f (x) 30(x 10)4f (x) 120(x 10)3f(2) 120(2 10)3 2073603 若 f (x)存在 求下列函数(1) y f(x 2)(2) y ln[ f(x)]解 (1)yf(x 2) (x 2) 2xf (x 2) y 2f(x 2) 2x 2xf (x 2) (2) y1 f (x)f (x)f (x) f (x) f( x) f (x) y2[ f ( x)]4 试从dx 1导出dy y(1) d 2xydy 2( y ) 3(2)d 3x 3( y )2 y ydy3( y )5解 (1) d 2xd dxd 1dy2dy dydyyd 2 yy的二阶导数d x 22f (x 2) 4x 2f (x 2)f ( x) f (x) [ f ( x)] 2[ f ( x)]2d1dx y 1y dx y dy( y )2 y( y )3(2) d3x d y d y dxdy3dy y 3dx y 3dyy ( y )3 y 3( y )2 y13( y )2 y y(y )6y(y )55已知物体的运动规律为s Asin t(A、是常数 )求物体运动的加速度并验证d 2s2s 0dt 2解dsA cos t dt d2 s A 2 sin t dt 22d s就是物体运动的加速度dt2d2 s 2 s A 2 s i n t2 As i n t 0dt 2C1e x C2e x(6验证函数 y C1 C2是常数 )满足关系式y2y 0解y C1 e x C2 e xy C12e x C22e xy212e x C22x21x2e x)y (C e ) (C e C(C12e x C22e x) (C12e x C22e x) 0 7验证函数 y e x sin x 满足关系式y2y2y 0解 y e x sin x e x cos x e x(sin x cos x)y e x(sin x cos x)e x(cos x sin x) 2e x cos xyx xcos x)x2y 2y 2e cos x2e (sin x2e sin x 2e x cos x2e x sin x2e x cos x2e x sin x 08求下列函数的 n 阶导数的一般表达式(1) y x n1n 12n 2n 1n 12n 都是常数)a x a x a x a (a a a(2) y sin2x-----(3)y xln x(4)y xe x解 (1) y n 11n 2(n2 n 3n 1nx(n 1)a x2)a x ay n(n1)x n 2 (n1)(n2)a1x n 3(n 2)(n 3)a2x n 4a n 2y(n) n(n 1)(n 2) 2 1x0 n!(2) y2sin x cos x sin2xy2c o 2sx 2s i n2(x)2y22 c o s2x() 22 s i n2x( 2)22y(4) 23 cos(2x2) 23 sin(2x 3 )22(n)n 1y 2 s i n2x[ (n 1)](3)y ln x 1y 1x 1 xy ( 1)x 2y(4) ( 1)( 2)x 3(n)( 1)( 2)( 3)( n 2)x n 1( 1)n 2 (n 2)!( 1)n (n 2)!y x n 1x n 1 (4)y e x xe xy e x e x xe x 2e x xe xy 2e x e x xe x 3e x xe xy(n) ne x xe x e x(n x)9求下列函数所指定的阶的导数(1)y e x cos x 求 y(4)(2)y xsh x 求 y(100)(3)y x2sin 2x 求 y(50) .所以所以xv cos x有解 (1)令 u eu u u u(4)e xv sin x v cos x v sin x v(4)cos xy(4)u(4) v4u v6u v4u v u v(4)e x[cos x4(sin x)6(cos x)4sin x cos x] 4e x cos x(2)令 u x v sh x则有u 1 u0v ch x v sh x(99)ch x(100)sh xv vy(100) u(100) v C1 u(99)v C2u(98)v C 98 u v(98)C99 u v(99)u v(100) 100100100100(3)令 u x2u 2xv(48)100ch x xsh xv sin 2x 则有u 2 u0248 sin(2x 48 )248 s i n2x2v(49)249cos 2x v(50)250sin 2x所以y(50)u(50)v C1501u(49) v C502u(48) v C5048u v(48) C5049u v(49) u v(50) C5048u v(48) C5049u v(49) u v(50)50 492 228 sin 2x50 2x 249 c o 2sx x2 (250 s i n2x)250x 2sin 2x50xc o 2sx1 2 2 52 (2s i n2x)习题241求由下列方程所确定的隐函数 y 的导数dydx(1)y2 2x y 9 0(2)x3 y3 3axy 0(3)xy e x y(4)y 1 xe y解 (1)方程两边求导数得-----2y y 2y 2x y 0于是(y x)y yyyy x(2)方程两边求导数得3x 2 3y 2y 2ay 3axy 0于是(y 2 ax)y ayx 2yay x 2y2ax(3)方程两边求导数得y xy e x y (1 y )于是(x e x y )y e x y ye x yyyx e x y(4)方程两边求导数得y e y xe yy于是(1 xe y )y e yyey1 xey222在点 ( 2a, 2a) 处的切线方程和法线方程2 求曲线 x3y 3a34 4解 方程两边求导数得 2 x31 13 2y 3 y 031于是yx31y3在点 (2a,2a) 处 y 144所求切线方程为y2a ( x2a) 即 x y 2 a442所求法线方程为y2a (x2a) 即 x y 04423 求由下列方程所确定的隐函数 y 的二阶导数d ydx22 2(1) x y 1(2) b 2x 2 a 2y 2 a 2b 2 (3) y tan(x y)(4) y 1 xe y解 (1)方程两边求导数得2x 2yy 0yx yy ( x)y xxy xy y y 2x 21yy 2y 2y 3 y 3(2)方程两边求导数得2b 2 x 2a 2 yy 0yb 2 xa2yy x( b 2 x)b 2 y xy b 2 a 2 y ya2y2a2y 2b 2 a 2 y 2 b 2 x 2b 4a2a 2 y3a 2 y3(3)方程两边求导数得y sec 2(x y) (1 y )2y)1y s e c( x2y) 2y) 11 s e c(xc o s( x2y)21s i n(xc o s(x y)12y)y 2s i n( xy23 y23( 112 )2(1 y 2 )y 5yyy(4)方程两边求导数得yyy e xe y-----yeyeyey1 xe y1 (y 1)2 yye y y (2 y) e y ( y ) e y (3 y) y e 2 y (3 y)(2 y)2(2 y)2(2 y)34 用对数求导法求下列函数的导数(1) y ( x )x1 x (2) y5x 525 x2(3) yx 2(3 x)4( x 1)5(4) y xsin x 1e x解 (1)两边取对数得ln y xln|x| xln|1 x|,两边求导得1 y ln x x 1 l n1( x) x 1y x 1 x 于是y ( x)x[ l nx1 ]1 x 1 x 1x(2)两边取对数得ln y1ln |x 5|1l nx(22)两边求导得5251 y1 1 12x2y5 x 525 x 2于是y 1 5x 5[11 2x ]5 5 x 2 2x 5 5 x 2 2(3)两边取对数得ln y1l nx( 2) 4 l n3( x) 5l n x( 1)2两边求导得1 y 1 3 45y 2(x 2)x x 1于是yx 2(3x)4 [ 12)4 5 ](x 1)52(x x 3 x 1(4)两边取对数得ln y1ln x1ln s i nx1l n1( e x )两边求导得22 41 y1 1 c o xte xy 2x24(1 e x )于是yxs i nx 1 e x[11c o xte x]2x 2 4(1 e x )1 x 22c o tx e x ]4 xs i nx 1 e [ x e x1 dy5求下列参数方程所确定的函数的导数dxx at 2(1)y bt2x (1 sin ) (2)ycos解 (1)dyy t 3bt 2 3b tdxx t 2at 2ady ycos sin(2) dx x 1 sincos6 已知xe tsin t, 求当 t 3 时 dy的值y e tcost. dx解dy y te t cost e t sin t costsin t dxx t e tsin t e tcost sintcostdy 1 3 1 3 当 t 时 2 2 3 2dx 1 3 1 3 32 27 写出下列曲线在所给参数值相应的点处的切线方程和法线方程(1)x sin t在 t处y cos2t4x3at (2)1 t 2在 t=2 处y 3at 21 t 2解 (1) dyy t2sin 2tdxx tcost-----dy 2sin(2)当 t时42 2 2 x02y0 0 dx4cos2242所求切线方程为y 2 2(x2) 即2 2x y 2 0 2所求法线方程为y1(x 2 )即 2x 4y1222(2) y t 6at (1t2 )3at 2 2t6at(1t 2 )2(1t 2 )2x t 3a(1t 2)3at2t3a3at 2 (1t 2 )2(1t 2)2dy y t6at2tdx x t3a3at 21t 2当 t 2 时dy 2 24x 6a ydx1223050所求切线方程为012a 5y12 a 4(x6a)即 4x 3y 12a 0535所求法线方程为y12 a3(x 6a)即 3x 4y 6a 0545d 2 y8求下列参数方程所确定的函数的二阶导数dx2 x t 2(1)2y 1 t. xacost(2)y bsin t(3)x3e t y2e t(4)x f t (t )设 f(t)存在且不为零y tf t (t) f (t)dy y t1 d 2 y(y x)t1解 (1)t 21 dx x t t dx2x t t t3(2) dy y tbcostbcot tdx x t asin t ab 2 d 2 y (y x )t a csc t b dx 2 x t asin ta 2 sin 3 tdy y t 2e t22t(3) dx x t3e t3ed 2y( y x )t2 2t3 2e4 3tdx 2x t3e te9 (4) dy y t f (t) tf (t) f (t)dx x tf (t)td 2 y ( y x )t 1dx 2x tf (t)9 求下列参数方程所确定的函数的三阶导数(1) x 1 t 2y t t3(2)x ln(1 t 2) y t arctan t解 (1)dy (t t 3)1 3t2dx (1 t 2 )2t1 3t 2d 2y ( 2t )1 ( 1 3) dx 22t4 t 3 t1 1 3d 3y 4 ( t 3t )3(1 t 2)dx 32t8t 5dy (t arctan t)11(2)1 t 21 tdx [ln(1 t 2)]2t 21 t21d 2 y ( 2t) 1 t 2 dx 22t 4t1 t 23d y-----1 t 2d 3 y ( 4t ) t 4 1dx 3 2t 8t 31t 210 落在平静水面上的石头 产生同心波纹 若最外一圈波半径的增大率总是6m/s 问在 2 秒末扰动水面面积的增大率为多少?解 设波的半径为 r 对应圆面积为 S 则 S r 2 两边同时对 t 求导得S t 2 rr当 t 2 时 r 6 2 12 r t 6故 S t t 22 126 144( 米 2 秒)| 其速率为 4m 2/min11 注水入深 8m 上顶直径 8m 的正圆锥形容器中 当水深为 5m 时 其表面上升的速度为多少?解水深为 h 时 水面半径为 r1 h 水面面积为 S 1 h 21hS 1 h 1 h 224水的体积为 Vh 33 34 12dV 12 3h 2dh dh 4 dVdt dt dt h 2 dt已知 h 5(m), dV 4 (m 3/min) 因此 dh 4 dV 4 4 16(m/min)dtdt h 2 dt252512 溶液自深 18cm 直径 12cm 的正圆锥形漏斗中漏入一直径为 10cm 的圆柱形筒中 开始时漏斗中盛满了溶液 已知当溶液在漏斗中深为 12cm 时 其表面下 降的速率为 1cm/min 问此时圆柱形筒中溶液表面上升的速率为多少?解 设在 t 时刻漏斗在的水深为 y 圆柱形筒中水深为 h 于是有1 62 18 1r 2 y 52hy 3y3由 r得 r 代入上式得 6 18 31 62 18 1 ( y ) 2 y 23 3 3 5 h即162 18 1y 3 52 h 两边对 t 3 33求导得1 y2 y 52 h32t当 y 12 时 y t1 代入上式得1 122( 1) 16h t32 52 0.64 (cm/min).25。
高等数学李伟版课后习题答案第二章
习题2—1(A )1.下列论述是否正确,并对你的回答说明理由:(1)函数的导数是函数的平均变化率在自变量的增量趋于零时的极限; (2)求分段函数(),,()(),x x a f x x x aϕφ<⎧=⎨≥⎩在分界点x a =处的导数时,一般利用左、右导数的定义分别求该点处的左、右导数.如果二者存在且相等,则在这一点处的导数就存在,且等于左、右导数,否则函数在这点不可导;(3) )(x f y =在0x 点可导的充分必要条件是)(x f y =在0x 点的左、右导数都存在; (4)函数)(x f y =在0x 点连续是它在0x 点可导的充分必要条件. 答:(1)正确.根据导数的定义.(2)正确.一般情况下是这样,但是若已知)(x f '连续时,也可以用)()(00--'='x f x f (即导函数的左极限),)()(00++'='x f x f (即导函数的右极限)求左右导数.(3)不正确.应是左、右导数都存在且相等.(4)不正确.)(x f 在0x 点连续仅是)(x f 在0x 可导的必要条件,而不是充分条件,如x y x y ==、3都在0=x 点连续,但是它们在0=x 点都不可导.2.设函数2x x y +=,用导数定义求它在1-=x 点处的导数.解:1lim 10lim)1(121-==+-+=-'-→-→x x x x y x x .3.设函数y =10=x 点处的导数.解:2111lim11lim)1(11=+=--='→→x x x y x x .4.用定义求函数x y ln =在任意一点x (0>x )处的导数.解:xxx xxx x y x x x x x x 1e ln ])1ln[(lim ln )ln(lim110==∆+=∆-∆+='∆→∆→∆.5. 对函数x x x f 2)(2-=,分别求出满足下列条件的点0x : (1)0)(0='x f ; (2)2)(0-='x f .解:22)22(lim )2()](2)[(lim)(0220-=+-=--+-+='→→x h x hx x h x h x x f h h ,(1)由0)(0='x f ,有0220=-x ,得10=x ; (2)由2)(0-='x f ,有2220-=-x ,得00=x . 6.已知某物体的运动规律为221gt s =,求时刻t 时物体的运动速度)(t v ,及加速度)(t a .解:速度为gt h gt hgth t g t s t v h h =+=-+='=→→)2(lim 2/2/)(lim)()(022,加速度为g g hgth t g t v t a h h ==-+='=→→0lim )(lim)()(.7.求曲线x y ln =在点)01(,处的切线方程与法线方程. 解:切线斜率11)1(1=='==x xy k ,切线方程为:)1(10-⋅=-x y ,即01=--y x ; 法线方程为:)1(110--=-x y ,即01=-+y x .8.若函数)(x f 可导,求下列极限:(1)xx f x x f x ∆-∆-→∆)()(lim 000; (2)xx f x )(lim→(其中0)0(=f );(3)hh x f h x f h )()(lim000--+→; (4)xx f f x )sin 1()1(lim--→.解:(1)=∆--∆--=∆-∆-→∆→∆xx f x x f xx f x x f x x )()(lim)()(lim000000)(0x f '-.(2)=--=→→0)0()(lim )(lim0x f x f xx f x x )0(f '.(3)hh x f h x f h )()(lim000--+→='+'=---+-+=→→)()()()(lim)()(lim00000000x f x f hx f h x f hx f h x f h h )(20x f '.(4)=⨯'=⋅---=--→→1)1(sin sin )1()sin 1(lim)sin 1()1(limf xx x f x f xx f f x x )1(f '.9.讨论下列函数在指定点的连续性和可导性:(1)3x y =,在0=x 点;(2)⎪⎩⎪⎨⎧=≠=,,,,0001arctan )(2x x xx x f 在0=x 点; (3)2,1,(),1,x x f x x x ⎧≥=⎨<⎩ 在1=x 点.解:(1)3x y =是初等函数,且在0=x 的邻域内有定义,因此3x y =在0=x 点连续,因为+∞==--→→32031lim0limxx x x x (极限不存在),所以3x y =在0=x 点不可导.(2)因为21arctanlim 0)/1arctan(lim22π==--→→xx x x x x ,所以⎪⎩⎪⎨⎧=≠=,,,,0001arctan )(2x x xx x f 在0=x 点可导,且2)0(π='f ,从而也连续. (3)因为1)1(1lim )1(1lim )1(211=====+-→+→-f x f x f x x ,,,有)1()(lim 1f x f x =→,所以,2,1,(),1,x x f x x x ⎧≥=⎨<⎩ 在1=x 点连续,又2)1(lim 11lim )1(111lim)1(1211=+=--='=--='---→→+→-x x x f x x f x x x ,,由)1()1(+-'≠'f f ,所以,2,1,(),1,x x f x x x ⎧≥=⎨<⎩ 在1=x 点不可导.10.设函数⎩⎨⎧≥<=,,,,1e 1e )(x x x x f x 求(1)f '.解:因为e 1e e lim )1(e 11elim e 1ee lim)1(1111=--='=--=--='---→+-→→-x x f x x f x x x xx ,,所以=')1(f e .11.设函数⎩⎨⎧≥+<=,,,,0120cos )(x x x x x f 求()f x '.解:当0<x 时,x x x f sin )(cos )(-='=',当0>x 时,22lim )12(1)(2lim)12()(0==+-++='+='→→h h hx h x x x f ,当0=x 时,由20112lim )0(001cos lim)0(0_=--+='=--='+→+→-x x f x x f x x ,,于是函数在0=x 点不可导,所以⎩⎨⎧><-='.020sin )(x x x x f ,,,习题2—1(B )1.有一非均匀细杆A B 长为20 cm ,M 为A B 上一点,又知A M 的质量与从A 点到点M 的距离平方成正比,当A M 为2 cm 时质量为8 g ,求: (1) A M 为2 cm 时,这段杆的平均线密度; (2)全杆的平均线密度; (3)求点M 处的密度.解:设x AM = cm ,则AM 杆的质量为2)(kx x m = g ,由2=AM 时,8=m ,得2=k ,所以,22)(x x m =,x h x hxh x x m h h 4)24(lim 2)(2lim)(022=+=-+='→→ g/cm .(1)A M 为2 cm 时,这段杆的平均线密度为==282)2(m 4 g/cm .(2)全杆的平均线密度为==2080020)20(m 40 g/cm .(3)点M 处的密度为=')(x m x 4 g/cm .2.求b a ,的值,使函数⎩⎨⎧≥+<=00e )(x b ax x x f x ,,, 在0=x 点可导. 解:首先函数)(x f 要在0=x 点连续.而1e lim )0(0==-→-x x f ,b b ax f x =+=+→+)(lim )0(0,b f =)0(,由)0()0()0(f f f ==+-,得1=b ,此时1)0(=f .又11e lim)0(0=-='-→-xf xx ,a xax f x =-+='+→+11lim )0(0,由)0()0(+-'='f f 得1=a .所以,当11==b a ,时,函数⎩⎨⎧≥+<=00e )(x b ax x x f x ,,, 在0=x 点可导.3.讨论函数x y tan =在0=x 点的可导性.解:1tan lim 0tan lim)0(0-=-=-='--→→-xx xx f x x ,1tan lim 0tan lim )0(0==-='++→→+xx xx f x x因为)0()0(+-'≠'f f ,所以函数x y tan =在0=x 点不可导.4.若函数)(x f 可导,且)(x f 为偶(奇)函数,证明()f x '为奇(偶)函数. 证明:(1)若)(x f 是偶函数,有)()(x f x f =-, 因为)()()(lim)()(lim)(00x f hx f h x f hx f h x f x f h h '-=----=--+-=-'→→,所以)(x f '是奇函数.(2)若)(x f 是奇函数,有)()(x f x f -=-, 因为)()()(lim)()(lim)(00x f hx f h x f hx f h x f x f h h '=---=--+-=-'→→,所以)(x f '是偶函数.5.设非零函数)(x f 在区间)(∞+-∞,内有定义,在0=x 点可导,)0()0(≠='a a f ,且对任何实数y x ,,恒有)()()(y f x f y x f =+.证明)()(x af x f ='.证明:由)()()(y f x f y x f =+,令0==y x ,有)0()0(2f f =,而0)(≠x f ,得1)0(=f . 因为hx f h f x f hx f h x f h h )()()(lim)()(lim0-=-+→→)()0()()0()(lim)(1)(lim)(0x af f x f hf h f x f hh f x f h h ='=-=-=→→,所以函数)(x f 可导,且)()(x af x f ='. 6.求曲线xx y 1+=上的水平切线方程.解:hx x h x h x hx y h x y x y h h )/1()]/(1[lim)()(lim)(00+-+++=-+='→→211])(11[lim xh x x h -=+-+=→,由0)(='x y ,得±=x ,当1=x 时,2=y ,此时水平切线是)1(02-=-x y ,即2=y ; 当1-=x 时,2-=y ,此时水平切线是)1(02-=+x y ,即2-=y .7.在抛物线21x y -=上求与直线0=-y x 平行的切线方程. 解:对21x y -=,导函数为:x h x hx h x hx y h x y x y h h h 2)2(lim )1(])(1[lim)()(lim)(0220-=+-=--+-=-+='→→→,设切点为)1(2t t -,,则切线斜率为t t y k 2)(-='=,而直线斜率为11=k , 根据已知,有1k k =,即12=-t ,得2/1-=t ,切点为)4/32/1(,-, 切线方程为:)21(143+⋅=-x y ,即0544=+-y x .8.已知曲线2ax y =与曲线x y ln =相切,求公切线方程.解:设切点为),(00y x ,则两曲线在切点处的斜率分别为012ax k =,02/1x k =.由两曲线在0x x =时相切,有⎩⎨⎧==./12ln 00,020x ax x ax 得21ln 0=x ,即e 0=x ,此时,e21=a ,210=y ,公切线斜率为e1=k ,公切线方程为)e (e121-=-x y ,化简得021e1=+-x y .习题2—2(A )1.下列论述是否正确,并对你的回答说明理由:(1)在自变量的增量比较小时,函数的微分可以近似刻画函数的增量,但是二者是不会相等的;(2)函数)(x f y =在一点x 处的微分x x f x f ∆'=)()(d 仅与函数在这点处的导数有关; (3)函数在一点可微与在这点可导是等价的,在一点可微的函数在这点必然连续,但反过来不成立,即在一点连续的函数在这点未必可微.答:(1)前者正确,根据微分的定义y x o y y d )(d ≈∆+=∆;后者不正确,如对线性函数b ax y +=,恒有)(d x a y y ∆==∆.(2)不正确.因为x x f x f x x ∆'==)()(d 00,可见0)(d x x x f =不仅与)(0x f '有关,还与自变量x 在该点的增量x ∆有关.(3)正确.这就是本章定理2.1与定理1.2所述. 2.求下列函数在x 点处的微分y d :(1)x y ln =; (2)3x y =(0≠x ); (3)xy 1=(0≠x ); (4)22x x y +=.解:(1)因为xy 1=',所以xx y d d =.(2)因为322233203331)()(1limlim)(xxh x x h x hxh x x y h h ⋅=++++=-+='→→,所以,323d d xxy ⋅=.(3)因为xx hx x xxhx h hx x hxh x x y h h h 211lim1lim/1/1lim)(02-=++-=++-=-+='→→→,所以,xx x y 2d d -=.(4)因为)1(2)22(lim )2(])()(2[lim)(0220x h x hx x h x h x x y h h +=++=+-+++='→→,所以x x y d )1(2d +=.3.求下列函数在0x x =点处的微分0d x x y =:(1) x y cos =,20π=x ; (2)xx y 1+=,10=x .解:(1)因为x y sin -=',所以x x xyx x d d sin d 2/2/-=⋅-===ππ.(2)因为211xy -=',所以0d 0d ]11[d 121=⋅=⋅-===x x xyx x .4.设函数y =10=x ,1.0=∆x 时函数的微分y d .解:因为xxh x h xh x y h h 211limlim=++=-+='→→,所以05.02d 1.011.01=∆==∆==∆=x x x x xx y.5.用函数的局部线性化计算下列数值的近似值:(1)0330sin ' ; (2)05.1; (3)002.1ln .解:(1)取6/30360/610330sin )(0ππ==='== x x x x f ,,,x x f cos )(=', 由)())(()(000x f x x x f x f +-'≈,得5076.05000.00076.0217203213606cos0330sin =+≈+=+⋅≈'πππ.(2)取105.1)(0===x x x x f ,,,x x f 2/1)(=',由)())(()(000x f x x x f x f +-'≈,得025.1105.02105.1=+⨯≈.(3)取)1ln()(x x f +=,当1<<x 时,先证明x x ≈+)1ln(, 事实上,取00=x ,则0)0()(0==f x f 10)1ln(lim)0()(00=--+='='→x x f x f x ,由)())(()(000x f x x x f x f +-'≈,得x x x =+-⋅≈+0)0(1)1ln(, 利用x x ≈+)1ln(,得002.0)002.01ln(002.1ln ≈+=. 6.讨论下列函数在0=x 点的可微性: (1)32)(x x f =; (2)x x x f =)(; (3)⎩⎨⎧≥<=.0sin 0)(3x x x x x f ,,, 解:(1)因为∞==--→→30321limlimxx xx x ,则32)(x x f =在0=x 点不可导,所以32)(x x f =在0=x 不可微.(2)因为0lim 00lim==--→→x x x x x x ,则x x x f =)(在0=x 点可导,所以x x x f =)(在0=x 点可微.(3)因为100sin lim )0(00lim)0(03=--='=--='+-→+→-x x f x x f x x ,,)0()0(+-'≠'f f ,得⎩⎨⎧≥<=0sin 0)(3x x x x x f ,,,在0=x 点不可导,所以在0=x 点也不可微. 习题2—2(B )1.已知单摆的振动周期gl T π2=,其中980=g cm/s 2是重力加速度,l 是摆长(单位:cm ).设原摆长为20 cm ,为使周期T 增加0.05 s ,问摆长大约需要增加多少? 解:02244.020201lim220/202/2limd d 202020≈=+=--=→→=gl gl gg l lT l l l ππππ由l T T ∆'≈∆)20(,得23.202244.005.0)20(≈≈'∆≈∆T T l ,即为使周期T 增加0.05 s ,摆长大约需要加长2.23 cm .2.用卡尺测量圆钢的直径D ,如果测得03.60=D mm ,且产生的误差可能为0.05 mm ,求根据这样的结果所计算出来的圆钢截面积可能产生的误差的大小. 解:设圆钢的截面积为4/)(2D D A A π==,2)2(lim 44/]4/)([lim)(022D h D hD h D D A h h ππππ=+=-+='→→;2/)(D D D D A A ∆⋅=∆'≈∆π,当05.003.60≤∆=D D ,时,715.42/04.003.601416.3≈⨯⨯≤∆A mm 2, 所以绝对误差大约为4.715 mm 2;0017.003.6005.0224/2/2≈⨯≤∆⋅=∆⋅≈∆DD D D D AA ππ,所以相对误差大约为0.17%.3.若函数)(x f 在0=x 点连续,且1)(lim 0=→xx f x ,求0d =x y.解:由1)(lim=→xx f x ,及分母极限0lim 0=→x x ,得分子极限0)(lim 0=→x f x ;又因为函数)(x f 在0=x 点连续,所以=)0(f 0)(lim 0=→x f x ,1)(lim)0()(lim)0(0==--='→→xx f x f x f f x x ,x x f yx d d )0(d 0='==.4.设函数()f x 在点0x 可微,且2)(0='x f ,求极限yy x d lim 0∆→∆.解:由已知,有x y ∆=2d ,所以101]2)(1[lim d )(d limd lim 0=+=∆∆+=∆+=∆→∆→∆→∆xx o yx o y yy x x x .习题2—3(A )1.下列叙述是否正确?并根据你的回答说出理由:(1)求复合函数的导数时要根据复合函数的关系,由“外”到“里”分别对各层函数求导,再把它们相乘;(2)求任意函数的微分首先要求出该函数的导数,然后将该导数乘以自变量的微分. 答:(1)正确.这就是复合函数求导定理推广到多重复合的情形,通常称为复合函数的“链式求导法则”,又形象地俗称为“扒皮法”,要注意不能漏项.(2)不一定.还可以用微分法则及一阶微分形式不变性求函数的微分. 2.求下列函数的导数:(1)3232++=xx y ; (2))1(2xx x y +=;(3)32(1)x y x-=; (4)ln y x x =;(5)xx x y xsin tan 2-+=; (6)cos 1cos x y x=+.解:(1))3()1(2)(32'+'+'='xx y xx x xx x 12012-=+-=.(2)252123232323)()(---='+'='x x x x y )11(233xx -=.(3)132)33(2312-+-='-+-='--xxx xxy .(4)1ln /ln )(ln ln +=+='+'='x x x x x x x x y . (5)2sin )(sin )(tan )2(xxx x x x y x'-'-'+'=22sin cos sec2ln 2xxx x x x --+=.(6)22)cos 1(sin )cos 1()cos 1(cos )cos 1()(cos x x x x x x x y +-=+'+-+'='.3.求下列函数在指定点的导数或微分:(1)x x x f cos sin )(-=,求()3f π'与()2f π';(2)3523xxy +-=,求0d =x y与2d =x y.解:(1)x x x f sin cos )(+=',()3f π'2313sin3cos+=+=ππ, ()2f π'12sin2cos=+=ππ.(2)22223)5(2)5()1(2)3()52(x x x x xxy +-=+--⨯-='+'-=,因为938492)2(252)0(=+='='y y ,,所以==0d x yx d 252,==2d x yx d 938.4.求下列函数的导数:(1)7(2)y x =-; (2)cos(32)y x =+; (3)x y arctan e =; (4)x y -=1tan;(5)x y 2e arcsin =; (6)1arccos y x=;(7)y = (8)21sinx y +=;(9))2ln 1(cos 2x y +=; (10)ln(y x =+. 解:(1)66)2(7)2()2(7x x x y --='--='. (2))23sin(3)23)(23sin(+-='++-='x x x y .(3)2arctan arctan 1e)(arctan exx y xx+='='.(4)xxx xxx x y ---='---='--='121sec)1(121sec)1(1sec222.(5)xx xxxxx y 4242222e 1e2e 1)2(e )e (1)e (-=-'=-'='.(6)111)/1(1)/1(2222-=-⋅=-'-='x xx x x x x y .(7)xx x x x x xx y 2222sin1cos sin sin12)(sin sin 2sin 12)(sin+=+'=+'='.(8)22222221cos 11cos 12)()1(1cos xxx x xx x x y ++=++'='++='.(9))2ln 1)(2ln 1sin()2ln 1cos(2])2ln 1)[cos(2ln 1cos(2'+++-='++='x x x x x yxx xx x )2ln 22sin(]2)2(0)[2ln 22sin(+-='++-=.(10)xxx x xxx xx x x y ++=++=+'+='21)11(212)2(.5.求下列函数的微分y d :(1)3ln 33++=x x y ; (2)x x y 2sin 2=; (3)2ln (1)y x =+; (4))1(sec 2x y -=; (5)21xx y -=; (6)2tan(12)y x =+;(7)21arctanx y +=; (8)xy 2sin 2-=.解:(1)x x x x x x x y x x x ln3)d 33(d 0d 3ln 3d 3)3(ln d )3(d )(d d 223+=⋅++=++=. (2)x x x x x x x x x x x x x x x y d )2cos 2(sin 2d 2cos 2d 2sin 2)2(sin d )(d 2sin d 222+=+=+=. (3)x xx x xx x x y d 1)1ln(2)d(11)1ln(2)]1[ln(d )1ln(2d ++=+++=++=.(4))d(1)1tan()1(sec 2)1sec(d )1sec(2d 2x x x x x y ---=--=x x x d )1tan()1(sec 22---=.(5)因为2/32222)1(11)1/(11x xx x x xy -=-----⋅=',所以,2/32)1(d d x x y -=.(6)因为)21(sec 44)21(sec 2222x x x x y +=⋅+=',所以x x x y d )2(1sec 4d 22+=. (7)因为222221)2(122)1(11xx xxx x y ++=+⋅++=',所以221)2(d d xx x x y ++=.(8)因为xxx x y 22sin2sin22sin 2ln )sin(2ln 2--⋅⋅-='-⋅=',所以x x y xd 22sin 2ln d 2sin-⋅⋅-=.6.在括号内填入适当的函数,使下列等式成立:(1)d( )2=d x ; (2)d( )21x=+d x ;(3)d( )2sin 2x =d x ; (4)d( )=x ;(5)d( )nx =d x (1-≠n ); (6)d( )211x+=d x .解:(1)因为2)2(='+C x ,所以x C x d 2)2(d =+. (2)因为xC x +='++12)1ln 2(,所以d(C x ++1ln 2)21x=+d x .(3)x C x 2sin 2)sin2(2='+,所以d(C x +2sin 2)2sin 2x =d x ,或因为x C x 2sin 2)2cos (='+-,所以d(C x +-2cos )2sin 2x =d x .(4)因为xC x 21)(='+,所以d(C x +)=x .(5)因为nn x C n x='+++)1(1,所以d(C n xn +++11)nx =d x (1-≠n ). (6)因为211)(arctan xC x +='+,所以d(C x +arctan )211x+=d x .习题2—3(B )1.如图所示的,,A B C 三个圆柱型零件.当圆柱A 转过x 圈时,B 转过u 圈,从而带动C 转过y 圈.通过计算周长知道,32u y u x ==,因此3d d 21d d ==x uuy ,,求xy d d .解:23321d d d d d d =⨯==xu u y xy .2.求下列函数的导数:(1)x x y xsin e =; (2)x y ln ln ln =; (3))ln(22x a x y ++=; (4))cot ln(csc x x y -=;(5)xx y -+=11ln; (6)ax ax a x y arcsin22222+-=;(7)xx y +-=11arcsin; (8)x x x x y 12)2(+=.解:(1))cos sin (sin e )(sin e sin )e (sin e x x x x x x x x x x x y xx x x ++='+'+'='.(2)xx x xx x xx x xx y ln ln ln 1ln ln ln 1ln ln ln )(ln ln ln )ln (ln ⋅⋅=⋅⋅=⋅'='='.(3)2222222222/1)(xa xa x x a x xa x x a x y +=++++=++'++='.(4)x x x xx x xx x x y csc cot csc csc cot csc cot csc )cot (csc 2=-+-=-'-='.(5)xx x x x x x x y )1(1)1(21)1(21])1[ln(])1[ln(-=-++='--'+='.(6)2222222)/(1/1222a x aaxa xx a y -+---='2222222222222222222xa x a x a xa ax a xx a -=-+-=-+---=.(7))1(2)1(1)1()1()1(112111112x x x x x x xx xx y -+-=+--+-+-+--='.(8)因为xx x x x x x x y 2ln ln 212ee )2(+=+=,所以x xxxxx x xxxx xxx y 12222ln ln 2)2(2ln 1)2ln 2(2ln 1e)2ln 2(e-++=-++='.3.若函数)(x f 可微,求下列函数的导数:(1))(2x f y =; (2))(2x f y =; (3))]([x f f y =; (4)]e1ln[)(x f y +=.解:(1))(2))((222x f x x x f y '=''='.(2))()(2])()[(2x f x f x f x f y '='='.(3))()]([])()][([x f x f f x f x f f y ''=''='.(4))()()()()()(e1)(ee1])([ee1]e 1[x f x f x f x f x f x f x f x f y +'=+'=+'+='.4.设可导函数)(x f 满足方程xxf x f 3)1(2)(=+,求)(x f '.解:(方法1)等式两边对x 求导,有223)1)(1(2)(xxxf x f -=-'+',用x1替换上式中的x ,有223)(2)1(x x f x xf -='-',从而得212)(xx f +='.(方法2)用x1替换题中等式里的x ,有x x f xf 3)(2)1(=+,由此得xx x f 12)(-=, 所以,212)(xx f +='.5.设]1)([2x x g f y -=,其中)()(u g u f ,可微,求y d . 解:x xx g f xx g x g xx g xx g f y d ]1)([]1)()(2[]1)([d ]1)([d 2222-'+'=--'=.6.试写出垂直与直线0162=+-y x 且与曲线5323-+=x x y 相切的直线方程. 解:x x x y 63)(2+=',设切点的横坐标为t x =,则切线斜率t t t y k 63)(2+='=, 而直线0162=+-y x 的斜率3/11=k ,由已知11-=kk ,有122-=+t t ,得1-=t ,切点为)31(--,,切线斜率为3-=k , 于是,所求切线方程为)1(33+-=+x y ,即063=++y x .习题2—4(A )1.下列论述是否正确?并根据你的回答说出理由:(1)如果()y f x =的导数()f x '大于零,那么()y f x =的二阶导数也一定大于零; (2)变速直线运动的加速度大于零,该变速运动一定是加速运动. 答:(1)不正确.如x x f ln )(=(0>x ),01)(>='xx f ,但是01)(2<-=''xx f .(2)正确.由0)()(>='t a t v ,有速度的变化率是正的,即运动是加速运动. 2.求下列函数的二阶导数:(1)22ln y x x =+; (2)34x y x+=;(3)x y arctan =; (4))21sin(x y -=; (5)x x y arcsin 12-=; (6)x y xcos e =;(7)y =; (8)2ln(1)y x =+;(9))1ln(2-+=x x y ; (10)x x y sh =.解:(1)xx y 22+=',222xy -=''.(2)121242--++=x xx y ,22342----='xxx y ,328232xxx y +⋅+=''.(3)211xy +=',22)1(2x x y +-=''.(4))21cos(2x y --=',)21sin(4x y --=''.(5)1arcsin 12+--='x xx y ,22/3222222221)1(arcsin 111arcsin )1(1/1xx x x xxx x x xx xy ----=-⋅----+--=''.(6))sin (cos e x x y x -=',x x x x x y x x sin e 2)cos sin sin (cos e -=---=''. (7)32-='x x y ,2/322222)3(333/3--=----=''x x x x x y .(8)212xx y +=',222222)1()1(2)1(22)1(2x x x xx x y +-=+⋅-+=''.(9)1111/1222-=-+-+='x x x x x y ,2/32212)1(])1[(--='-=''-x x x y .(10)x x x y ch sh +=',x x x x x x x y sh ch 2sh ch ch +=++=''.3.设函数24()32f x x x x =+++,求)0(f '''及)0()4(f.解:3441)(x x x f ++=',2124)(x x f +='',x x f 24)(=''',24)()4(=x f,024)0(0=='''=x xf ;2424)0(0)4(===x f.4.计算下列各题:(1)12e)(+=x x f ,求)()5(x f;(2)(1)ln y x x =+,求33d d xy ;(3)x y sin ln =,求y '''.解:(1)12e 2)(+='x x f ,12e 4)(+=''x x f ,12e 8)(+='''x x f ,12)4(e16)(+=x x f,12)5(e32)(+=x x f. (2)xx xy 11ln d d ++=,22211d d xxxy -=,33233221d d xx xxxy -=+-=.(3)x xx y cot sin cos ==',x y 2csc-='',x x x x x y cot csc 2)cot csc (csc 22⋅=-⋅-='''.5.验证函数x x C C y λλ-+=e e 21(其中21,C C 为任何常数)满足关系式(微分方程) 20y y λ''-=.证明:因为x x C C y λλλλ--+='e )(e 21,y C C y x x 22221e )(e λλλλλ=-+=''-,所以20y y λ''-=. 6.验证函数x y x sin e =满足关系式220y y y '''-+=. 证明:因为x x y x x cos e sin e +=',x x x x x y xxxxxcos e 2sin e cos e cos e sin e =-+++='',所以0sin e 2)cos e sin e (2cos e 222=++-=+'-''x x x x y y y x x x x习题2—4(B )1.挂在弹簧上的一个重物,从静止位置往下拉长5 cm ,并松开使其上下振动.记松开时的时刻为0=t ,在时刻t 时物体的位置为t s cos 5=.求时刻t 时物体的速度和加速度. 解:物体的速度t ts t v sin 5d d )(-==;物体的加速度t tv ts t a cos 5d d d d )(22-===.2.设函数2arcsin442x xx y --=,求y ''.解:2244/14/144224xx x x x xx x y --=----=',2/32222)4(244/)2(4x x x xx xx x x xx y --=------=''.3.设函数x y arcsin =,求)0()10(y.解:由x y arcsin =是奇函数,则)(x y '是偶函数,)(x y ''是奇函数,)(x y '''是偶函数, 以此类推)()10(x y是奇函数,根据初等函数导数的性质,)()10(x y在0=x 点有定义,所以0)0()10(=y .4.求下列函数的n (3≥n )阶导数:(1)x x y e =; (2)x x y cos 2=; (3)x x y ln 2=;(4)0111a x a x a x a y n n n n ++++=-- (其中),,2,1(n i a i =为常数,0≠n a ). 解:(1)(方法1))1(e e e +=+='x x y x x x ,)2(e e )1(e +=++=''x x y x x x ,)3(e e)2(e +=++='''x x y xxx,以此类推)(e )(n x y x n +=.(方法2))(e )e ()e ()e ()()1()()()(0)(n x x n x x Cyxn x n x k n x k nk k nn +='+==--=∑.(2))()(20)()(cos )(k n k nk k nn x x Cy-=∑=)2(2)1(2)(2)(c o s )(2)1()(c o s )()(c o s--''-+'+=n n n x x n n x x n x x)()(2)c o s )(1()(sin 2)2cos(n n x n n x nx n x x --+++=π)2sin(2)2cos()(22ππn x nx n x n n x ++++-=.(3)(方法1))()(2)()(ln )(k n k nk knn x x Cy-=∑=)2(2)1(2)(2)(ln )(2)1()(ln )()(ln --''-+'+=n n n x x n n x x n x x231212)!3()1)(1()!2()1(2)!1()1(--------+--+--⋅=n n n n nn xn n n xn nx xn x21)!3()1(2----=n n xn .(方法2)x x x y +='ln 2,3ln 2+=''x y ,2123)2()2()()3()1(2)3()1(2)3ln 2()(--------=--=+=''=n n n n n n n xn xn x y y.(4))(0)(1)(11)()()()()()(n n n n n n n n n a x a xa x a y++++=--!000!n a n a n n =++++= .5.若函数)(x f 满足(sin )cos 2csc f x x x '=+,求)(x f ''. 解:由xx x x x f sin 1sin21csc 2cos )(sin 2+-=+=',有xx x f 121)(2+-=',所以2214)121()(xx xx x f --='+-=''.6.若函数()y f x =存在二阶导数,分别求)(2x f y =及2()y f x =的二阶导数. 解:对)(2x f y =,)()(2x f x f y '=',=''y )()(2)]([2])()(2[2x f x f x f x f x f ''+'='';对2()y f x =,)(22x f x y '=',=''y ])(2[2''x f x )(4)(2222x f x x f ''+'=. 7.若函数)(x f 有任意阶导数,且)()(2x f x f =',证明)(!)(1)(x fn x f n n +=.证明:用数学归纳法进行证明, 当1=n 时显然成立, 设k n =时成立,即)(!)(1)(x fk x fk k +=,当1+=k n 时,等式)(!)(1)(x fk x fk k +=两边同时对x 求导,得)()!1()()()!1()()()1(!)(22)1(x fk x f x f k x f x f k k x fk k k k +++=+='+=,即对1+=k n ,式子)(!)(1)(x fn x f n n +=,所以根据数学归纳法原理,对任何正整数n 都有)(!)(1)(x fn x fn n +=.习题2—5(A )1.判断下列论述是否正确,并说明理由:(1)求由方程(,)0F x y =所确定的隐函数)(x y y =的导数时,所得到的()y x '是x 的一元函数,若再求)(x y y =的二阶导数,直接对x 的函数()y x '求导即得;(2)求由参数方程(),()x t y t ϕψ=⎧⎨=⎩所确定的函数的导数时,在()0t ϕ'≠的条件下,若再求22d d x y,只需将所求得的xy d d 对t 再继续求导数即可;(3)在知道两个变量,x y 中的一个对第三个变量t 的变化率,求另一个变量对t 的变化率时,应首先求出两个变量,x y 之间满足的解析式(假设这样的解析式存在),从而得到,x y 对变量t 的变化率之间的关系.答:(1)不正确.在)(x y '的表达式中不仅含有变量x ,还含有函数)(x y ,在用求导法则求)(''=''y y 时,凡是遇到含有y 的项,都要将其视为x 的函数,按复合函数进行求导.(2)不正确.xy d d 要先对t 求导,再乘以t 对x 的导数(或除以x 对t 的导数).这是因为)(/))()((d d d d ))()((d d ))()((d d )d d (d dd d 22t t t t x t t t t t t x xyx xy ϕϕψϕψϕψ''=⋅''='==.(3)正确.如果变量y x ,有函数关系)(x f y =,两边同时对t 求导,有tx x f ty d d )(d d '=,这就是y 对t 的变化率ty d d 与x 对t 的变化率tx d d 之间的关系.2.设函数)(x y y =由下列方程确定,求xy d d :(1)012=++xy y ; (2)3330x y xy +-=; (3)y x xy +=e ; (4)x y y e 2ln -=. 解:(1)方程012=++xy y 两边同时对x 求导,有0d d d d 2=++⋅xy xy xy y ,解得xy y xy +-=2d d .(2)方程3330x y xy +-=两边同时对x 求导,有0d d 33d d 3322=--+xy x y xy yx ,解得22d d yx x y xy ---=.(3)方程yx xy +=e 两边同时对x 求导,有)d d 1()d d 1(ed d xy xy xy xy x y yx +=+=++,解得)1()1(d d ---=y x x y xy .(4)方程xy y e 2ln -=两边同时对x 求导,有xxy xy xy y e d d ed d 1--=,解得xx y y xy e1ed d 2+-=.3.求曲线yx y e 1-=上对应于0=x 点处的切线方程.解:将0=x 代入方程y x y e 1-=,得1=y ,切点坐标为)10(,,方程y x y e 1-=两边同时对x 求导,有y x y y y '--='e e ,用0=x ,1=y 代入,得1)0(-='y ,即切线斜率为1-=k ,切线方程为)0(11--=-x y ,即01=-+y x .4.求星形线3/23/23/2a y x =+在点)42,42(a a 处的切线方程与法线方程. 解:方程3/23/23/2a y x =+两边同时对x 求导,有032323/13/1='+--y yx,用a y a x 42,42==,得1)42(-='a y ,即切线斜率1-=k ,切线方程为)42(142a x a y -⋅-=-,即022=-+a y x ;法线方程为)42(142a x a y -⋅=-,即0=-y x .5.设函数)(x y y =由下列方程确定,求22d d xy :(1)y y x 222=+; (2)y x y e 1+=. 解:(1)方程y y x 222=+两边同时对x 求导,有xy xy yx d d 2d d 22=+,得yx xy -=1d d ,所以3322222)1(1)1()1()1()(1)1(d d y y x y y y x y yx xy x -=-+-=-'---='-=.(2)方程yx y e 1+=两边同时对x 求导,有xy y xy x xy yyyd d )1(ed d eed d -+=+=,得yxy y-=2ed d ,所以32222)2()3(e)2()(e )2(e d d y y y y y y xy yyy--=-'---'=.6.用对数求导法求下列函数的导数xy d d :(1)x x y 1)1(+=; (2)xxy x-=1;(3)xxy xsin e12+=; (4)0=-xyy x .解:(1)将x x y 1)1(+=两边取对数,有xx y )1ln(ln +=,两边再同时对x 求导,有)1()1l n ()1()1l n ()1/(22x x x x x xx x x yy +++-=+-+=',所以)1()1ln()1()1()1()1ln()1(d d 212x x x x x x x x x x x y xy x +++-⋅+=+++-⋅=.(2)将xxy x-=1两边取对数,有)1ln(ln ln x x x y --=,两边再同时对x 求导,有)]ln 1)(1(1[11111ln x x xxx yy +-+-=---+=',所以)]ln 1)(1(1[)1()]ln 1)(1(1[)1(d d 2x x x xx x x y xy x+-+-=+-+-=.(3)将xxy xsin e12+=两边取对数,有x x x y sin ln )1ln(21ln 2--+=,两边再同时对x求导,有x x x yy cot 2)1(21--+=',所以=xy d d )cot 2411(sin 2e1]cot 2)1(21[2x x xx xx x x y x--++=--+.(4)将xyy x=两边取对数,有y x x y ln ln =,两边再同时对x 求微分,有yy x x y xx y y x d d ln d d ln +=+⋅,即y x x y xy x y y x xy d d ln d d ln 22+=+⋅,解得22ln ln d d xx xy y y xy xy --=,或写作)1(ln )1(ln d d 22--=y x x y xy .7.求由下列参数方程所确定的函数)(x y y =的导数xy d d :(1)⎩⎨⎧-==;,3212/t y t x (2)⎩⎨⎧--=++=;,t y t x 1111 (3)⎩⎨⎧==;t y t x tt cos e ,sin e (4)⎩⎨⎧-=+=.arctan )1ln(2t t y t x ,。
大学第四版高等数学教材答案
大学第四版高等数学教材答案【前言】在大学学习的过程中,高等数学是一门非常重要的课程。
为了更好地帮助同学们进行学习,提供一个参考,下面是大学第四版高等数学教材的答案。
【第一章微分学】1.1 导数与微分练习题答案:1. 求函数f(x) = 3x^2 - 2x的导数。
答:f'(x) = 6x - 2.2. 计算函数f(x) = x^3 - 2x^2 + 4x - 1在x = 2处的导数。
答:f'(2) = 6.1.2 函数的凹凸性和拐点练习题答案:1. 求函数f(x) = x^3 - 3x^2 + 2x的凹凸性和拐点。
答:f''(x) = 6x - 6,令f''(x) = 0,解得x = 1。
当x小于1时,f''(x)小于0,函数凹;当x大于1时,f''(x)大于0,函数凸。
所以在x = 1处有拐点。
2. 设函数f(x) = x^4 - 8x^2 + 12x,求其在[-2, 4]上的最大值和最小值。
答:首先求f'(x) = 4x^3 - 16x + 12,求解得到导数的零点x = -2, 1, 2。
然后求解f''(x) = 12x^2 - 16,代入得到f''(-2) = 20, f''(1) = -4, f''(2) = 20。
通过计算得知,在x = -2处为极小值,x = 1处为极大值。
所以最小值为f(-2) = 20,最大值为f(1) = 5。
【第二章积分学】2.1 不定积分练习题答案:1. 求函数f(x) = 3x^2 - 2x + 1的不定积分。
答:∫(3x^2 - 2x + 1)dx = x^3 - x^2 + x + C,其中C为常数。
2. 计算不定积分∫(4x^3 - 6x^2 + 2x + 5)dx。
答:∫(4x^3 - 6x^2 + 2x + 5)dx = x^4 - 2x^3 + x^2 + 5x + C,其中C为常数。
高等数学第二章答案2-4
高等数学第二章答案2-4习题241求由下列方程所确定的隐函数y的导数(1)y22某y90(2)某3y33a某y0(3)某ye某y(4)y1某ey解(1)方程两边求导数得2yy2y2某y0于是(y某)yyyyy某dyd某(2)方程两边求导数得3某23y2y2ay3a某y0于是(y2a某)yay某2ay某2y2ya某(3)方程两边求导数得y某ye某y(1y)于是(某e某y)ye某yye某yyy某e某y(4)方程两边求导数得yey某eyy于是(1某ey)yeyeyy1某ey在点(a,2a)处的切线方程和法线方程44解方程两边求导数得22某32y3y033112求曲线某32y32a3于是y1某3y3在点(a,a)处y144所求切线方程为ya(某a)即某ya442所求法线方程为ya(某a)即某y044d2y3求由下列方程所确定的隐函数y的二阶导数d某22(1)某y1(2)b2某2a2y2a2b2(3)ytan(某y)(4)y1某ey解(1)方程两边求导数得2某2yy0y某yy某某y某yyy2某2某1y(yy2y2y3y3(2)方程两边求导数得2b2某2a2yy02by2某ay2b某y某(2y2y某y2abby222ayay22a2y2b2某24bb223aa2y3ay(3)方程两边求导数得yec2(某y)(1y)e2c(某y)1y221ec(某y)co(某y)12in(某y)co2(某y)112in(某y)y22(1y2)221y3y3(12)yyyy5(4)方程两边求导数得yey某eyyyyyeeey1某ey1(y1)2yeyy(2y)ey(y)ey(3y)ye2y(3y)y223(2y)(2y)(2y) 4用对数求导法求下列函数的导数(1)y(某)某1某(2)y某5某222(3某)4(3)y(某1)(4)y某in某e某解(1)两边取对数得lny某ln|某|某ln|1某|,两边求导得11(某)某1yln某某ln1y某1某于是y(某某[l某1]1某1某1某(2)两边取对数得lny1ln|某5|1ln某(22)525两边求导得11112某yy5某525某2于是y15某5[112某]某22某55某2(3)两边取对数得lny1ln某(2)4ln3(某)5ln某(1)2两边求导得1y145y2(某2)3某某1某2(3某)4145]于是y[2(某2)某3某1(某1)(4)两边取对数得lny1ln某1lnin某1ln1(e某)224两边求导得某111etyco某y2某24(1e)某某e某[11co某te某]于是y某in2某24(1e)某1e某2某in某e[2cot某某]4某e15求下列参数方程所确定的函数的导数dyd某某at2(1)2ybt某(1in)(2)yco2dyy解(1)t3bt3btd某某t2at2adyy(2)coin1incod某某某etint,时dy的值6已知求当tt3d某yecot.dyytetcotetintcotint解d某某teintecotintcot1dy12当t时d某131227写出下列曲线在所给参数值相应的点处的切线方程和法线方程某int(1)在t处4yco2t某3at1t(2)2在t=2处3aty1t2dyy解(1)t2in2td某某tcot)2in(2dy22某y0当t时002d某4co42所求切线方程为y2(某2)即某y202所求法线方程为y1(某即某4y10226at(1t2)3at22t6at(2)yt(1t)(1t)3a(1t2)3at2t3a3at2某t(1t)(1t)dyy6at22t2d某某t3a3at1tdy224当t2时某06ay012a2d某12355所求切线方程为y12a4(某6a)即4某3y12a0535所求法线方程为y12a3(某6a)即3某4y6a0545d2y8求下列参数方程所确定的函数的二阶导数d某2某t(1)2y1t.某acot(2)ybint某3et(3)ty2e某ft(t)(4)设f(t)存在且不为零tytf(t)f(t)12dyyt1dy(y21)解(1)d某某tt某ttt3d某2dyytbcotbcott(2)d某某taintabcc2t2dy(yb)某taintd某2a2in3tdyyt2et2e2t(3)d某某t3e322e2t2dy(y)t4e3t2某t9d某3edyyf(t)tf(t)f(t)t(4)d某某tf(t)d2y(y1某)t某tf(t)d某2d3y9求下列参数方程所确定的函数的三阶导数d某某1t2(1)3ytt某ln(1t2)(2)ytarctantdy(tt3)13t2解(1)d某(1t2)2t13t2)(d2y1(13)2t4ttd某1(13)3dy35(1t2)32td某8t311dy(tarctant)1t(2)2td某[ln(21t2)]21t1t)(2dy1t24td某1t2221td3y()t41d某8t21t10落在平静水面上的石头产生同心波纹若最外一圈波半径的增大率总是6m/问在2秒末扰动水面面积的增大率为多少?解设波的半径为r对应圆面积为S则Sr2两边同时对t求导得St2rr 当t2时r6212rt6故St|t22126144(米2秒)11注水入深8m上顶直径8m的正圆锥形容器中其速率为4m2/min当水深为5m时其表面上升的速度为多少?解水深为h时水面半径为r1h水面面积为S1h224水的体积为V1hS1h1h2h333412dV3h2dhdh4dVdt12dtdthdt已知h5(m),dV4(m3/min)因此dh42dV4416(m/min)dthdt2525dt12溶液自深18cm直径12cm的正圆锥形漏斗中漏入一直径为10cm的圆柱形筒中开始时漏斗中盛满了溶液已知当溶液在漏斗中深为12cm时其表面下降的速率为1cm/min问此时圆柱形筒中溶液表面上升的速率为多少?解设在t时刻漏斗在的水深为y圆柱形筒中水深为h于是有162181r2y52h33yry由得r代入上式得618311y6218(2y52h333即162181y352h333两边对t求导得221yy5ht3当y12时yt1代入上式得1122(1)ht160.64(cm/min).255。
高等数学 线性代数 习题答案第二章
第二章习题2-11. 证明:若lim n →∞x n =a ,则对任何自然数k ,有lim n →∞x n +k =a .证:由lim n n x a →∞=,知0ε∀>,1N ∃,当1n N >时,有n x a ε-<取1N N k =-,有0ε∀>,N ∃,设n N >时(此时1n k N +>)有n k x a ε+-<由数列极限的定义得 lim n k x x a +→∞=.2. 证明:若lim n →∞x n =a ,则lim n →∞∣x n ∣=|a|.考察数列x n =(-1)n ,说明上述结论反之不成立.证:lim 0,,.使当时,有n x n x aN n N x a εε→∞=∴∀>∃>-<而 n n x a x a -≤- 于是0ε∀>,,使当时,有N n N ∃>n n x a x a ε-≤-< 即 n x a ε-<由数列极限的定义得 lim n n x a →∞=考察数列 (1)nn x =-,知lim n n x →∞不存在,而1n x =,lim 1n n x →∞=,所以前面所证结论反之不成立。
3. 证明:lim n →∞x n =0的充要条件是lim n →∞∣x n ∣=0.证:必要性由2题已证,下面证明充分性。
即证若lim 0n n x →∞=,则lim 0n n x →∞=,由lim 0n n x →∞=知,0ε∀>,N ∃,设当n N >时,有0 0n n n x x x εεε-<<-<即即由数列极限的定义可得 lim 0n n x →∞=4. 利用夹逼定理证明:(1) lim n →∞222111(1)(2)n n n ⎛⎫+++ ⎪+⎝⎭ =0; (2) lim n →∞2!n =0. 证:(1)因为222222111112(1)(2)n n n n n n n n n n++≤+++≤≤=+而且 21lim0n n →∞=,2lim 0n n→∞=, 所以由夹逼定理,得222111lim 0(1)(2)n n n n →∞⎛⎫+++= ⎪+⎝⎭ . (2)因为22222240!1231n n n n n<=<- ,而且4lim 0n n →∞=, 所以,由夹逼定理得2lim 0!nn n →∞= 5. 利用单调有界数列收敛准则证明下列数列的极限存在. (1) x 1>0,x n +1=13()2n nx x +,n =1,2,…; (2) x 1x n +1,n =1,2,…;(3) 设x n 单调递增,y n 单调递减,且lim n →∞(x n -y n )=0,证明x n 和y n 的极限均存在.证:(1)由10x >及13()2n n nx x x =+知,有0n x >(1,2,n = )即数列{}n x 有下界。
高等数学第二章答案2-4
习题2-41. 求由下列方程所确定的隐函数y 的导数dxdy : (1) y 2-2x y +9=0;(2) x 3+y 3-3axy =0;(3) xy =e x +y ;(4) y =1-xe y .解 (1)方程两边求导数得2y y '-2y -2x y ' =0 ,于是 (y -x )y '=y ,x y y y -='. (2)方程两边求导数得3x 2+3y 2y '-2ay -3axy '=0,于是 (y 2-ax )y '=ay -x 2 ,axy x ay y --='22. (3)方程两边求导数得y +xy '=e x +y (1+y '),于是 (x -e x +y )y '=e x +y -y ,yx y x e x y e y ++--='. (4)方程两边求导数得y '=-e y -xe y y ',于是 (1+xe y )y '=-e y ,yy xe e y +-='1. 2. 求曲线323232a y x =+在点)42 ,42(a a 处的切线方程和法线方程. 解 方程两边求导数得 032323131='+--y y x , 于是 3131---='y x y , 在点)42 ,42(a a 处y '=-1.所求切线方程为)42(42a x a y --=-, 即a y x 22=+. 所求法线方程为)42(42a x a y -=-, 即x -y =0. 3. 求由下列方程所确定的隐函数y 的二阶导数22dx y d : (1) x 2-y 2=1;(2) b 2x 2+a 2y 2=a 2b 2;(3) y =tan(x +y );(4) y =1+xe y .解 (1)方程两边求导数得2x -2yy '=0,y '=yx , 3322221)(y y x y y y xx y y y x y y x y -=-=-='-='=''. (2)方程两边求导数得2b 2x +2a 2yy '=0,yx a b y ⋅-='22, 22222222)(y y x a b x y a b y y x y a b y ⋅--⋅-='-⋅-='' 32432222222ya b y a x b y a a b -=+⋅-=. (3)方程两边求导数得y '=sec 2(x +y )⋅(1+y '),1)(c o s 1)(s e c 1)(s e c 222-+=+-+='y x y x y x y222211)(s i n )(c o s )(s i n y y x y x y x --=+-+++=, 52233)1(2)11(22y y y y y y y +-=--='=''. (4)方程两边求导数得y '=e y +xe y y ',ye y e xe e y y y y y -=--=-='2)1(11, 3222)2()3()2()3()2()()2(y y e y y y e y y e y y e y y y y y --=-'-=-'---'=''. 4. 用对数求导法求下列函数的导数:(1) x xx y )1(+=;(2)55225+-=x x y ; (3)54)1()3(2+-+=x x x y ; (4)x e x x y -=1sin .解 (1)两边取对数得ln y =x ln|x |-x ln|1+x |,两边求导得xx x x x x y y +⋅-+-⋅+='11)1l n (1ln 1, 于是 ]111[l n )1(xx x x x y x ++++='. (2)两边取对数得)2l n (251|5|ln 51ln 2+--=x x y , 两边求导得2225151511+⋅--⋅='x x x y y , 于是 ]225151[25512552+⋅--=+-='x x x x x y .(3)两边取对数得)1l n (5)3l n (4)2l n (21ln +--++=x x x y , 两边求导得1534)2(211+---+='x x x y y , 于是 ]1534)2(21[)1()3(254+--+++-+='x x x x x x y (4)两边取对数得)1l n (41s i n ln 21ln 21ln x e x x y -++=, 两边求导得)1(4c o t 21211x x e e x x y y --+=', 于是 ])1(4c o t 2121[1s i n x x x e ex x e x x y --+-=' ]1c o t 22[1s i n 41-++-=x x x e e x x e x x . 5. 求下列参数方程所确定的函数的导数dxdy : (1) ⎩⎨⎧==22bt y at x ; (2) ⎩⎨⎧=-=θθθθcos )sin 1(y x . 解 (1)t ab at bt x y dx dy t t 23232==''=. (2)θθθθθθθθcos sin 1sin cos ---=''=x y dx dy . 6. 已知⎩⎨⎧==.cos ,sin t e y t e x t t 求当3π=t 时dx dy 的值. 解 tt t t t e t e t e t e x y dx dy t t t t t t cos sin sin cos cos sin sin cos +-=+-=''=, 当3π=t 时, 23313123212321-=+-=+-=dx dy . 7. 写出下列曲线在所给参数值相应的点处的切线方程和法线方程:(1) ⎩⎨⎧==ty t x 2cos sin , 在4π=t 处; (2) ⎪⎩⎪⎨⎧+=+=2221313t at y t at x , 在t =2处. 解 (1)tt x y dx dy t t cos 2sin 2-=''=. 当4π=t 时, 222224cos )42sin(2-=-=⋅-=ππdx dy , 220=x , 00=y , 所求切线方程为)22(22--=x y , 即0222=-+y x ; 所求法线方程为)22(221---=x y , 即0142=--y x . (2)222222)1(6)1(23)1(6t at t t at t at y t +=+⋅-+=', 222222)1(33)1(23)1(3t at a t t at t a x t +-=+⋅-+=', 2212336ttat a atx y dx dy t t -=-=''=. 当t =2时, 3421222-=-⋅=dx dy , a x 560=, a y 5120=, 所求切线方程为)56(34512a x a y --=-, 即4x +3y -12a =0; 所求法线方程为)56(43512a x a y -=-, 即3x -4y +6a =0. 8. 求下列参数方程所确定的函数的二阶导数22dxy d : (1) ⎪⎩⎪⎨⎧-==.122t y t x ;(2) ⎩⎨⎧==t b y t a x sin cos ;(3) ⎩⎨⎧==-t t e y e x 23; (4) ⎩⎨⎧-==)()()(t f t tf y t f x t t , 设f ''(t )存在且不为零. 解 (1) t x y dx dy t t 1-=''=, 322211)(t t t x y dx y d t t x =='''=. (2) t ab t a t b x y dx dy t t cot sin cos -=-=''=, ta b t a t a b x y dx y d t t x 32222sin sin csc )(-=-='''=. (3) t t t t e e e x y dx dy 23232-=-='=, t t t t t x e ee x y dx y d 3222943232)(=-⋅-='''=-. (4) t tf t f t f t t f x y dx dy t t ='''-''+'=''=)()()()(, )(1)(22t f x y dx y d t t x ''='''=. 9. 求下列参数方程所确定的函数的三阶导数3dxy d : (1)⎩⎨⎧-=-=321t t y t x ; (2)⎩⎨⎧-=+=t t y t x arctan )1ln(2. 解(1)tt t t t dx dy 231)1()(223--='-'-=, )31(412)231(3222t t t t t dx y d +-=-'--=, )1(832)31(4125333t t t t t dx y d +-=-'+-=.(2)t tt t t t t dx dy 2112111])1[ln()arctan (222=++-='+'-=, t t t t t dxy d 4112)21(2222+=+'=, 3422338112)41(t t tt t t dx y d -=+'+=. 10. 落在平静水面上的石头, 产生同心波纹, 若最外一圈波半径的增大率总是6m/s , 问在2秒末扰动水面面积的增大率为多少?解 设波的半径为r , 对应圆面积为S , 则S =πr 2, 两边同时对t 求导得 S t '=2πrr '.当t =2时, r =6⋅2=12, r 't =6,故S t '|t =2=2⋅12⋅6π=144π (米2/秒).11. 注水入深8m 上顶直径8m 的正圆锥形容器中, 其速率为4m 2/min . 当水深为5m 时, 其表面上升的速度为多少?解 水深为h 时, 水面半径为h r 21=, 水面面积为π241h S =, 水的体积为3212413131h h h hS V ππ=⋅==, dt dh h dt dV ⋅⋅=2312π, dtdV h dt dh ⋅=4π. 已知h =5(m),4=dtdV (m 3/min), 因此 πππ2516425442=⋅=⋅=dt dV h dt dh (m/min).12. 溶液自深18cm 直径12cm 的正圆锥形漏斗中漏入一直径为10cm 的圆柱形筒中, 开始时漏斗中盛满了溶液, 已知当溶液在漏斗中深为12cm 时, 其表面下降的速率为1cm/min . 问此时圆柱形筒中溶液表面上升的速率为多少? 解 设在t 时刻漏斗在的水深为y , 圆柱形筒中水深为h . 于是有h y r 22253118631=-⋅⋅ππ. 由186y r =, 得3y r =, 代入上式得 h y y 2225)3(3118631=-⋅⋅ππ,即 h y 233253118631=-⋅⋅π. 两边对t 求导得h y y t '='-222531. 当y =12时, y 't =-1代入上式得64.025165)1(1231222≈=-⋅⋅-='t h (cm/min)..。
同济大学《高等数学》(第四版)第2章答案
习题2-1 (P105)4. 解:(1));())()((lim )()(lim0000000x f xx f x x f x x f x x f A x x ′−=∆−−∆−−=∆−∆−=→∆−→∆(2));0(0)0()(lim )(lim 00f x f x f x x f A x x ′=−−==→→(3)h x f h x f x f h x f h h x f h x f A h h )]()([)]()([lim)()(lim 00000000−−−−+=−−+=→→ ).(2)()()()(lim )()(lim 000000000x f x f x f hx f h x f h x f h x f h h ′=′+′=−−−+−+=→→12. 解:(1) ,sin x y =,0sin lim lim ,0)sin (lim lim 0000===−=+→+→−→−→x y x y x x x x Q.0,0)0(处连续此函数在又=∴=x y;1sin lim 0)0()(lim)0(00−=−=−−=′−→−→−x xx y x y f x x 又;1sin lim 0)0()(lim )0(00==−−=′+→+→+xxx y x y f x x 处不可导。
此函数在0),0()0(=∴′≠′+−x f f (2),0,00,1sin 2⎪⎩⎪⎨⎧=≠=x x xx y ,01sin lim 20=→x x x Q .0,0)0(处连续此函数在又=∴=x y ,01sin lim 1sinlim 0)0()(lim)0(0200===−−=′→→→xx x x x x f x f y x x x Q .0可导故此函数在=x13. 解:由函数在,1)1(,)(lim )(lim ,1lim )(lim 11211=+=+===+→+→−→−→f b a b ax x f x x f x x x x Q .11=+=b a x 处连续得:;211lim1)1()(lim )1(211=−−=−−=′−→−→−x x x f x f f x x 又 ,1;1lim 11lim1)1()(lim)1(111处可导要使函数在==−−=−−+=−−=′+→+→+→+x a x aax x b ax x f x f f x x x .1)(1,2.2),1()1(处连续且可导在时,故当即必须+=−===′=′−x x f b a a f f 14. 解: ;100lim)0()(lim)0(00−=−−−=−−=′−→−→−x x x f x f f x x ;00lim 0)0()(lim)0(200=−=−−=′+→+→+xx x f x f f x x 不存在。
高等数学第二章课后习题答案
第二章 导数与微分1. ()().1,102-'=f x x f 试按定义求设200200(1)(1)10(1)10'(1)lim lim1020lim lim(1020)20x x x x f x f x f x xx x x x∆→∆→∆→∆→-+∆--∆---==∆∆∆-∆==∆-=-∆2. 下列各题中均假定()0x f '存在,按导数定义观察下列极限,指出此极限表示什么, 并将答案填在括号内。
⑴ ()()=∆-∆-→∆xx f x x f x 000lim(0'()f x -); ⑵ ()=→∆xx f x 0lim ('(0)f ), 其中()()存在;且0,00f f '= ⑶ ()()=--+→hh x f h x f h 000lim(02'()f x ).3. 求下列函数的导数:⑴ ='=y x y ,4则34x ⑵ ='=y x y ,32则1323x -⑶ ='=y xy ,1则3212x -- ⑷ ='=y x x y ,53则115165x 4. 求曲线. 21,3 cos 程处的切线方程和法线方上点⎪⎭⎫⎝⎛=πx y'sin ,'()32y x y π=-=-所以切线方程为1()223y x π-=--2(1)03y +-+=班级 姓名学号法线方程为1)23y x π-=-化简得3)0x π+-= 5. 讨论函数⎪⎩⎪⎨⎧=≠=0 001sin 2x x xx y 在0=x 处的连续性和可导性. 20(0)01lim sin 0(0)()x f x f x→===因为有界量乘以无穷小 所以函数在0x =处连续因为 20001s i n(0)(0)1l i m l i m l i ms i n 0x x x x f x f x x x xx∆→∆→∆→∆+∆-==∆=∆∆∆ 所以函数在0x =处可导.6. 已知()()()()是否存在?又及求 0 ,0 0 ,0 2f f f x x x x x f '''⎩⎨⎧<-≥=-+ 2'00(0)(0)(0)lim lim 0h h f h f h f hh +→+→++-==='00(0)(0)(0)limlim 1h h f h f hf hh -→-→++--===- ''(0)(0)f f +-≠ '(0)f ∴不存在7. ()(). , 0 0sin x f x x x x x f '⎩⎨⎧≥<=求已知当0x <时, '()(sin )'cos f x x x ==; 当0x >时, '()()'1f x x ==;班级 姓名学号当0x =时'00(0)(0)(0)limlim 1h h f h f hf hh +→→+-===++ '00(0)(0)sin (0)limlim 1h h f h f h f h h-→-→+-===- '(0)1f ∴=综上,cos ,0'()1,0x x f x x <⎧=⎨≥⎩8. 求下列函数的导数:(1);54323-+-=x x x y (2);1227445+-+=x xx y 2222222232242222csc cot (1)2csc 2'(1)2(1)csc cot 4csc (1)23(3)(3ln )(2ln )(2)'(3ln )(94)ln 32(3ln )x x x x xy x x x x x x x x x x x x x x x y x x x x x x x x x x -+-=+-+-=+++-++=+-+-+=+ 2'364y x x =-+652'20282y x x x ---=--+ (3);3253xx e x y +-= (4);1sec tan 2-+=x x y2'152ln 23x x y x e =-+ 2'2s e c s e c t a ny x x x =+班级 姓名学号(5);log 3lg 2ln 2x x x y +-= (6)()();7432x x y -+=123'ln10ln 2y x x x =-+ '422y x =--(7);ln x xy =(8);cos ln 2x x x y = 21ln 'x xx y x-= 221'2ln cos cos ln sin y x x x x x x x x x =+- 21ln x x-= 22l n c o s c o s l n s i n x x x x x x x x =+- (9);1csc 22xxy +=2222csc cot (1)2csc 2'(1)x x x x xy x -+-=+ 2222(1)csc cot 4csc (1)x x x x xx -+-=+ (10).ln 3ln 223x x x x y ++=2232223(3)(3ln )(2ln )(2)'(3ln )x x x x x x x x y x x ++-++=+ 4222(94)ln 32(3ln )x x x x x xx x -+-+=+ 9. 已知. ,cos 21sin 4πϕϕρϕϕϕρ=+=d d 求因为1s i n c o s s i n2d d ρϕϕϕϕϕ=+-班级 姓名学号所以4222422284d d πϕρπϕ==+-=+10. .1轴交点处的切线方程与写出曲线x xx y -= 令0y =,得11x x ==-或 因为2'1y x -=+, 所以 11'2,'2x x y y ==-==曲线在(1,0)处的切线方程为2(1)y x =-,即220x y --=; 曲线在(1,0)-处的切线方程为2(1)y x =+,即220x y -+=。
同济大学版高等数学课后习题答案第2章
同济大学版高等数学课后习题答案第2章习题2-11. 设物体绕定轴旋转, 在时间间隔[0, t]内转过的角度为θ, 从而转角θ是t 的函数: θ=θ(t). 如果旋转是匀速的, 那么称tθω=为该物体旋转的角速度, 如果旋转是非匀速的, 应怎样确定该物体在时刻t 0的角速度?解在时间间隔[t 0, t 0+?t]内的平均角速度ω为 tt t t t-?+=??=)()(00θθθω,故t 0时刻的角速度为)()()(lim lim lim 000000t tt t t tt t t θθθθωω'=?-?+=??==→?→?→?. 2. 当物体的温度高于周围介质的温度时, 物体就不断冷却, 若物体的温度T 与时间t 的函数关系为T =T(t), 应怎样确定该物体在时刻t 的冷却速度?解物体在时间间隔[t 0, t 0+?t]内, 温度的改变量为 ?T =T(t +?t)-T(t), 平均冷却速度为tt T t t T t T ?-?+=??)()(,故物体在时刻t 的冷却速度为)()()(lim lim 00t T tt T t t T t T t t '=?-?+=??→?→?. 3. 设某工厂生产x 单位产品所花费的成本是f(x)元, 此函数f(x)称为成本函数, 成本函数f(x)的导数f '(x)在经济学中称为边际成本. 试说明边际成本f '(x)的实际意义.解 f(x +?x)-f(x)表示当产量由x 改变到x +?x 时成本的改变量.xx f x x f ?-?+)()(表示当产量由x 改变到x +?x 时单位产量的成本. xx f x x f x f x ?-?+='→?)()(lim)(0表示当产量为x 时单位产量的成本.4. 设f(x)=10x 2, 试按定义, 求f '(-1). 解 xx x f x f f x x ?--?+-=?--?+-=-'→?→?2200)1(10)1(10lim )1()1(lim)1(20)2(lim 102lim 10020-=?+-=??+?-=→?→?x xx x x x . 5. 证明(cos x)'=-sin x .解 xxx x x x ?-?+='→?cos )cos(lim )(cos 0xxx x x +-=→?2sin )2sin(2limx x xx x x sin ]22sin )2sin([lim 0-=+-=→?. 6. 下列各题中均假定f '(x 0)存在, 按照导数定义观察下列极限, 指出A 表示什么:(1)A xx f x x f x =?-?-→?)()(lim 000;解xx f x x f A x ?-?-=→?)()(lim000)()()(lim 0000x f xx f x x f x '-=?--?--=→?-. (2)A xx f x =→)(lim 0, 其中f(0)=0, 且f '(0)存在; 解)0()0()0(lim )(lim00f x f x f x x f A x x '=-+==→→. (3)A h h x f h x f h =--+→)()(lim 000. 解hh x f h x f A h )()(lim000--+=→hx f h x f x f h x f h )]()([)]()([lim00000----+=→ hx f h x f hx f h x f h h )()(lim)()(lim 000000----+=→→ =f '(x 0)-[-f '(x 0)]=2f '(x 0). 7. 求下列函数的导数: (1)y =x 4; (2)32x y =; (3)y =x 1. 6; (4)xy 1=;(5)21xy =;(6)53x x y =;(7)5322x x x y =;解 (1)y '=(x 4)'=4x 4-1=4x 3 .(2)3113232323232)()(--=='='='x x x xy . (3)y '=(x 1. 6)'=1.6x 1. 6-1=1.6x 0. 6.(4)23121212121)()1(-----=-='='='x x x xy .(5)3222)()1(---='='='x x xy .(6)511151651653516516)()(x x x x xy =='='='-.(7)651616153226161)()(--=='='='x x x x x x y .8. 已知物体的运动规律为s =t 3(m). 求这物体在t =2秒(s)时的速度.解v =(s)'=3t 2, v|t =2=12(米/秒).9. 如果f(x)为偶函数, 且f(0)存在, 证明f(0)=0. 证明当f(x)为偶函数时, f(-x)=f(x), 所以)0(0)0()(lim 0)0()(lim 0)0()(lim)0(000f x f x f x f x f x f x f f x x x '-=-----=---=--='→-→→, 从而有2f '(0)=0, 即f '(0)=0.10. 求曲线y =sin x 在具有下列横坐标的各点处切线的斜率:π32=x , x =π.解因为y '=cos x , 所以斜率分别为 2132cos 1-==πk , 1cos 2-==πk .11. 求曲线y =cos x 上点)21 ,3(π处的切线方程和法线方程式.解y '=-sin x ,233sin3-=-='=ππx y ,故在点)21 ,3(π处, 切线方程为)3(2321π--=-x y ,法线方程为)3(3221π--=-x y .12. 求曲线y =e x 在点(0,1)处的切线方程. 解y '=e x , y '|x =0=1, 故在(0, 1)处的切线方程为 y -1=1?(x -0), 即y =x +1.13. 在抛物线y =x 2上取横坐标为x 1=1及x 2=3的两点, 作过这两点的割线, 问该抛物线上哪一点的切线平行于这条割线?解 y '=2x , 割线斜率为421913)1()3(=-=--=y y k .令2x =4, 得x =2.因此抛物线y =x 2上点(2, 4)处的切线平行于这条割线. 14. 讨论下列函数在x =0处的连续性与可导性: (1)y =|sin x|;(2)=≠=0001sin 2x x xx y . 解 (1)因为 y(0)=0,0)sin (lim |sin |lim lim 00=-==---→→→x x y x x x ,0sin lim |sin |lim lim 00===+++→→→x x y x x x ,所以函数在x =0处连续. 又因为 1sin lim 0|0sin ||sin |lim 0)0()(lim )0(000-=-=--=--='---→→→-x x x x x y x y y x x x ,1sin lim 0|0sin ||sin |lim 0)0()(lim )0(000==--=--='+++→→→+xx x x x y x y y x x x , 而y '-(0)≠y '+(0), 所以函数在x =0处不可导.解因为01sin lim )(lim 200==→→xx x y x x , 又y(0)=0, 所以函数在x =0处连续. 又因为01sin lim 01sin lim0)0()(lim 0200==-=--→→→xx x x x x y x y x x x , 所以函数在点x =0处可导, 且y '(0)=0.15. 设函数>+≤=1 1)(2x b ax x x x f 为了使函数f(x)在x =1处连续且可导, a , b 应取什么值?解因为1lim )(lim 211==--→→x x f x x , b a b ax x f x x +=+=++→→)(lim )(lim 11, f(1)=a +b ,所以要使函数在x =1处连续, 必须a +b =1 . 又因为当a +b =1时211lim )1(21=--='-→-x x f x ,a x x a xb a x a x b ax f x x x =--=--++-=--+='+++→→→+1)1(lim 11)1(lim 11lim )1(111, 所以要使函数在x =1处可导, 必须a =2, 此时b =-1. 16. 已知?<-≥=0 0)(2x x x x x f 求f +'(0)及f -'(0), 又f '(0)是否存在?解因为 f -'(0)=10lim )0()(lim00-=--=---→→xx x f x f x x , f +'(0)=00lim )0()(lim 200=-=-++→→xx x f x f x x , 而f -'(0)≠f +'(0), 所以f '(0)不存在.17. 已知f(x)=?≥<0 0sin x x x x , 求f '(x) .解当x<0时, f(x)=sin x , f '(x)=cos x ; 当x>0时, f(x)=x , f '(x)=1; 因为 f -'(0)=10sin lim )0()(lim00=-=---→→x x x f x f x x , f +'(0)=10lim )0()(lim 00=-=-++→→xx x f x f x x , 所以f '(0)=1, 从而f '(x)=?≥<0 10cos x x x .18. 证明: 双曲线xy =a 2上任一点处的切线与两坐标轴构成的三角形的面积都等于2a 2 .解由xy =a 2得xa y 2=, 22xa y k -='=.设(x 0, y 0)为曲线上任一点, 则过该点的切线方程为)(02020x x x a y y --=-. 令y =0, 并注意x 0y 0=a 2, 解得0022002x x ax y x =+=, 为切线在x轴上的距.令x =0, 并注意x 0y 0=a 2, 解得00022y y x a y =+=, 为切线在y 轴上的距.此切线与二坐标轴构成的三角形的面积为 200002||2|2||2|21a y x y x S ===.习题 2-21. 推导余切函数及余割函数的导数公式: (cot x)'=-csc 2x ; (csc x)'=-csc xcot x .解 xx x x x xx x 2sin cos cos sin sin )sin cos ()(cot ?-?-='=' x xx x x 22222csc sin 1sin cos sin-=-=+-=. x x xx x x cot csc sin cos )sin 1()(csc 2?-=-='='. 2. 求下列函数的导数: (1)1227445+-+=xxxy ;(2) y =5x 3-2x +3e x ;(3) y =2tan x +sec x -1; (4) y =sin x ?cos x ; (5) y =x 2ln x ; (6) y =3e x cos x ; (7)xx y ln =;(8)3ln 2+=xe y x;(9) y =x 2ln x cos x ; (10)tt s cos 1sin 1++=;解 (1))12274()12274(14545'+-+='+-+='---x x x xxxy2562562282022820xxxx x x +--=+--=---. (2) y '=(5x 3-2x +3e x )'=15x 2-2x ln2+3ex .(3) y '=(2tan x +sec x -1)'=2sec 2x +sec x ?tan x =sec x(2sec x +tan x).(4) y '=(sin x ?cos x)'=(sin x)'?cos x +sin x ?(cos x)' =cos x ?cos x +sin x ?(-sin x)=cos 2x . (5) y '=(x 2ln x)'=2x ?ln x +x 2?x 1=x(2ln x +1) . (6) y '=(3e x cos x)'=3e x ?cos x +3e x ?(-sin x)=3e x (cos x -sin x).(7)22ln1ln 1)ln (x x x xx x x x y -=-?='='.(8)3422)2(2)3ln (x x e x x e x e x e y x x x x -=?-?='+='. (9) y '=(x 2ln x cos x)'=2x ?ln x cos x +x 2?x1?cos x +x 2 lnx ?(-sin x)2x ln x cos x +x cos x -x 2 ln x sin x .(10)22)cos 1(cos sin 1)cos 1()sin )(sin 1()cos 1(cos )cos 1sin 1(t tt t t t t t tt s +++=+-+-+='++='.3. 求下列函数在给定点处的导数: (1) y =sin x -cos x , 求6π='x y 和4π='x y .(2)θθθρcos 21sin +=,求4πθθρ=dd .(3)553)(2x x x f +-=, 求f '(0)和f '(2) .解 (1)y '=cos x +sin x , 21321236sin 6cos 6+=+=+='=πππx y ,222224sin 4cos 4=+=+='=πππx y . (2)θθθθθθθθρcos sin 21sin 21cos sin +=-+=d d ,)21(4222422214cos 44sin 214πππππθρπθ+=?+?=+==d d . (3)x x x f 52)5(3)(2+-=', 253)0(='f , 1517)2(='f . 4. 以初速v 0竖直上抛的物体, 其上升高度s 与时间t 的关系是2021gt t v s -=. 求:(1)该物体的速度v(t); (2)该物体达到最高点的时刻. 解(1)v(t)=s '(t)=v 0-gt .(2)令v(t)=0, 即v 0-gt =0, 得gv t 0=, 这就是物体达到最高点的时刻.5. 求曲线y =2sin x +x 2上横坐标为x =0的点处的切线方程和法线方程.解因为y '=2cos x +2x , y '|x =0=2, 又当x =0时, y =0, 所以所求的切线方程为 y =2x , 所求的法线方程为x y 21-=, 即x +2y =0.6. 求下列函数的导数: (1) y =(2x +5)4 (2) y =cos(4-3x); (3)23x e y -=;(4) y =ln(1+x 2); (5) y =sin 2x ; (6)22x a y -=;(7) y =tan(x 2); (8) y =arctan(e x ); (9) y =(arcsin x)2; (10) y =lncos x .解 (1) y '=4(2x +5)4-1?(2x +5)'=4(2x +5)3?2=8(2x +5)3. (2) y '=-sin(4-3x)?(4-3x)'=-sin(4-3x)?(-3)=3sin(4-3x). (3)22233236)6()3(xx x xe x e x e y ----=-?='-?='.(4)222212211)1(11x x x x x x y +=?+='+?+='. (5) y '=2sin x ?(sin x)'=2sin x ?cos x =sin 2x . (6))()(21])[(22121222122'-?-='-='-x a x a x a y2122)2()(21x a x x x a --=-?-=-.(7) y '=sec 2(x 2)?(x 2)'=2xsec 2(x 2).(8)xx xx e e e e y 221)()(11+='?+='. (9) y '21arcsin2)(arcsin arcsin 2xx x x -='?=. (10)x x xx x y tan )sin (cos 1)(cos cos 1-=-='?='. 7. 求下列函数的导数: (1) y =arcsin(1-2x);(2)211x y -=;(3)x e y x 3cos 2-=;(4)xy 1arccos =;(5)x x y ln 1ln 1+-=;(6)xx y 2sin =; (7)x y arcsin =;(8))ln(22x a x y ++=;(9) y =ln(sec x +tan x); (10) y =ln(csc x -cot x). 解 (1)2 221)21(12)21()21(11x x x x x y --=---='-?--='.(2))1()1(21])1[(21212212'-?--='-='---x x x y 2321)1()2()1(21x x x x x --=-?--=-.(3))3)(3sin (3cos )2()3(cos 3cos )(2222'-+'-='+'='----x x e x x e x e x e y xx x x)3sin 63(cos 213sin 33cos 21222x x e x e x e xxx+-=--=---. (4)1||)1()1(11)1()1(1122222-=---='--='x x x x x x x y . (5)22)ln 1(2)ln 1(1)ln 1()ln 1(1x x x x x x xy +-=+--+-='.(6)222sin 2cos 212sin 22cos xx x x xx x x y -=?-??='.(7)2222121)(11)()(11x x x x x x y -=?-='?-='.(8)])(211[1)(12222222222'+++?++='++?++='x a x a x a x x a x x a x y 2222221)]2(211[1x a x x a x a x +=++?++=.(9)x x x x x x x x y sec tan sec sec tan sec )tan (sec tan sec 12 =++='+?+='. (10) x xx x x x x x x x y csc cot csc csc cot csc )cot (csc cot csc 12 =-+-='-?-='.8. 求下列函数的导数: (1)2)2(arcsin x y =;(2)2tan ln x y =;(3)x y 2ln 1+=;(4)x e y arctan =; (5)y =sin n xcos nx ; (6)11arctan -+=x x y ;(7)xx y arccos arcsin =;(8) y=ln[ln(ln x)] ; (9)xx x x y-++--+1111; (10)xx y +-=11arcsin.解 (1)'?=')2(arcsin )2(arcsin 2x x y )2()2(11)2(arcsin 22'?-?=x x x21)2(11(arcsin 22-?=x x . 242arcsin 2x x-=(2))2(2sec 2tan 1)2(tan 2tan 12'??='?='x x x x x yx x x csc 212sec 2tan 12=??=.(3))ln 1(ln 121ln 1222'+?+=+='x xx y )(ln ln 2ln 1212'??+=x x x x x x 1ln 2ln 1212??+=xx x2ln 1ln +=.(4))(arctan arctan '?='x e y x)()(112arctan'?+?=x x e x)1(221)(11arctan 2arctanx x e x x e x x+=?+?=.(5) y '=n sin n -1x ?(sin x)'?cos nx +sin n x ?(-sin nx)?(nx)' =n sin n -1x ?cos x ?cos nx +sin n x ?(-sin nx)?n =n sin n -1x ?(cosx ?cos nx -sin x ?sin nx)= n sin n -1xcos(n +1)x . (6)222 211)1()1()1()11(11)11()11(11x x x x x x x x x x y +-=-+--?-++='-+?-++= '.(7)222)(arccos arcsin 11arccos 11x x x x x y -+-='22)(arccos arcsin arccos 11x x x x +?-=22)(arccos 12x x -=π.(8))(ln ln 1)ln(ln 1])[ln(ln )ln(ln 1'??='?='x x x x x y)ln(ln ln 11ln 1)ln(ln 1x x x x x x ?=??=. (9)2)11()121121)(11()11)(121121(x x x x x x x x xx y -++--+--+--++-++=' 22111x x -+-=.(10)2)1()1()1(1111)11(1111x x x xx x x x x y +--+-?+--='+-?+--=')1(2)1(1x x x -+-=.9. 设函数f(x)和g(x)可导, 且f 2(x)+g 2(x)≠0, 试求函数)()(22x g x f y +=的导数.解])()([)()(212222'+?+='x g x f x g x f y )]()(2)()(2[)()(2122x g x g x f x f x g x f '+'?+=)()()()()()(22x g x f x g x g x f x f +'+'=.10. 设f(x)可导, 求下列函数y 的导数dxdy :(1) y =f(x 2);(2) y =f(sin 2x)+f(cos 2x).解 (1) y '=f '(x 2)?(x 2)'= f '(x 2)?2x =2x ?f '(x 2). (2) y '=f '(sin 2x)?(sin 2x)'+f '(cos 2x)?(cos 2x)'= f '(sin 2x)?2sin x ?cos x +f '(cos 2x)?2cosx ?(-sin x) =sin 2x[f '(sin 2x)- f '(cos 2x)]. 11. 求下列函数的导数: (1) y =ch(sh x ); (2) y =sh x ?e ch x ; (3) y =th(ln x); (4) y =sh 3x +ch 2x ; (5) y =th(1-x 2); (6) y =arch(x 2+1); (7) y =arch(e 2x ); (8) y =arctan(th x);(9)xx y 2ch 21ch ln +=; (10))11(ch 2+-=x x y解 (1) y '=sh(sh x)?(sh x)'=sh(sh x)?ch x . (2) y '=ch x ?e ch x +sh x ?e ch x ?sh x =e ch x (ch x +sh 2x) . (3))(ln ch 1)(ln )(ln ch 122x x x x y ?='?='.(4) y '=3sh 2x ?ch x +2ch x ?sh x =sh x ?ch x ?(3sh x +2) .(5))1(ch 2)1()1(ch 122222x x x x y --=-?-='. (6)222)1()1(112422++='+?++='x x x x x y .(7)12)(1)(142222-='?-='x xx x e e e e y . (8)xxx x x x x y 222222ch 1ch sh 11ch 1th 11)th ()th (11?+=?+='?+=' x x x 222sh 211sh ch 1+=+=. (9))ch (ch 21)ch (ch 124'?-'?='x x x x y x x xx x sh ch 2ch 21ch sh 4??-= xx x x x x x x 323ch sh ch sh ch sh ch sh -?=-=x xx x x x 33332th ch sh ch )1ch (sh ==-?=. (10)'+-?+-?+-='+-?+-=')11()11(sh )11(ch 2])11(ch [)11(ch 2x x x x x x x x x x y)112(sh )1(2)1()1()1()112(sh 22+-?+=+--+?+-?=x x x x x x x x .12. 求下列函数的导数: (1) y =e -x (x 2-2x +3); (2) y =sin 2x ?sin(x 2); (3)2)2(arctan x y =;(4)n xx y ln =;(5)t t t t ee e e y --+-=;(6)xy 1cos ln =;(7)x ey 1sin 2-=; (8)xx y +=;(9)242arcsin x x x y -+=;(10)212arcsint t y +=.解 (1) y '=-e -x (x 2-2x +3)+e -x (2x -2) =e -x (-x 2+4x -5).(2) y '=2sin x ?cos x ?sin(x 2)+sin 2x ?cos(x 2)?2x =sin2x ?sin(x 2)+2x ?sin 2x ?cos(x 2). (3)2arctan 44214112arctan 222x x x x y +=?+?='. (4)121ln 1ln 1+--=?-?='n n n n x x n x nx x x xy . (5)2222)1(4)())(())((+=+---++='-----t t t t t t t t t t t t e e e e e e e e e e e e y .。
高等数学·(同济大学本科少学时类型)(第三版)上册·第二章·导数与微分·答案
第二章 导数与微分第一节 导数概念教材习题2--1答案(上册P91)1. 解:(1) 21110(1)(1)1022t g t g h V t t ⎛⎫⎛⎫+∆-+∆-- ⎪ ⎪∆⎝⎭⎝⎭==∆∆=1102g g t --⋅∆.(2) 10,dhgt dt=-∴'111lim(10)10,t tt t V h gt g ==→==-=-(3) 2200001110(1)(1)1022t g t t gt h V t t ⎛⎫⎛⎫+-+-- ⎪ ⎪∆⎝⎭⎝⎭==∆∆=01102gt g t --⋅∆.(4) 10,dhgt dt=-∴000lim(10)10.t t t t t t dh V gt gt dt==→==-=-2.解:2100(1)(1)10()201010lim lim x x x dy f x f x x dxx x=-∆→∆→-+∆--∆-⋅∆+-==∆∆ =0lim (1020)20.x x ∆→⋅∆-=-3.解:[]000()()lim lim lim .x x x a x x b ax b dy y a xa dx x xx ∆→∆→∆→+∆+-+∆∆====∆∆∆ 4.解:可导.令0()lim ,x f x a x →=0000()()(0)lim ()lim lim lim 00,x x x x f x f x f f x x x a x x→→→→====⋅='00()(0)()(0)limlim .0x x f x f f x f a x x→→-∴===- 5.解:(1)'34.y x =(2) '21'332.3y x x -⎛⎫== ⎪⎝⎭(3) ' 1.60.61.6.y x x ==(4) ''13'221.2y x x --⎛⎫===- ⎪⎝⎭(5) ()'''23212.y x x x --⎛⎫===- ⎪⎝⎭(6) ('1611''5516.5y x x x ⎛⎫=== ⎪⎝⎭(7) ''15'661.6y x x -⎛⎫=== ⎪⎝⎭ 6.解:物体在t 时刻的运动速度为:'()()2(/),v t h t t m s ==(2)224(/)v ms ∴=⋅= 7.证:'00()()cos()cos (cos )limlim x x f x x f x x x xx x x∆→∆→+∆-+∆-===∆∆00sin2lim sin()limsin .22x x x x x x x∆→∆→∆∆-+=-∆# 则''1()sin ,()sin,662f x x f ππ=-=-=-'()sin 33f ππ=-= 8.证:''00()(0)()(0)(0)limlim (0),00x x f x f f x f f f x x →→---==-=---- (()())f x f x -=注: ''2(0)=0(0)=0.f f ∴,即#9.解:(1)y sin ,x = ∴0lim sin sin 00,x x →==所以y sin x =在0x =处连续.'00sin 0sin y (0)limlim ,0x x x x x x→→-==- '00sin sin y (0)lim lim 1,x x x x x x +++→→∴==='00sin sin y (0)lim lim 1,x x x x x x-+-→→-===-故'sin y (0)limx xx→=不存在,即y sin x =在0x =处不可导. (2)1sin0y ,00x x xx ⎧≠⎪=⎨⎪=⎩∴01lim sin0(0),x x y x→==所以函数在0x =处连续. '001sin 01y (0)lim limsin ,0x x x x x x →→-==- 该极限不存在, ∴1sin 0y 0x x xx ⎧≠⎪=⎨⎪=⎩在0x =处不可导.(3)21sin 0y ,00x x xx ⎧≠⎪=⎨⎪=⎩∴201lim sin 0(0),x x y x →==所以函数在0x =处连续. 2'001sin 01y (0)lim lim sin 0,0x x x x x x x→→-===- 极限存在,∴1sin 0y 00x x xx ⎧≠⎪=⎨⎪=⎩在0x =处可导.10.解:()''sin cos ,y x x == ''2321cos,cos 1,32x x y y ππππ====-==-∴s i ny x =在23x π=处的切线斜率为1,2-在x π=处的切线斜率为-1. 11.解:抛物线2y x =上的两点为(1,1),(3,9),过此两点的直线的斜率为:914,31k -==- 而()''22,yxx ==令24,x =得 2.x =∴抛物线2y x =上过点(2,4)的切线平行于此割线.12.解:显然点1(,)32π在曲线cos y x =上.'33sin 2x x yxππ===-=- ∴c o sy x =在点1(,)32π处切线的斜率为 在点1(,)32π处法线的斜率为:3∴cos y x =在点1(,)32π处切线的方程为:1--223y x π=(). cos y x =在点1(,)32π处的法线方程为:1--233y x π=().13.解:设该物体在0t 时刻的角速度为0t ω.则0'0000()()lim ().t t t t t t tθθωθ∆→+∆-==∆ 14.解:该物体在t 时刻的变化速度为;'0()()()lim().t T t t T t V t T t t∆→+∆-==∆15.证:设00(,)x y 为双曲线2xy a =上任一点,则200,a y x = 过点00(,)x y 的切线斜率为:22'2(),x x a a xx ==-∴过点00(,)x y 的切线方程为: 20020(),a y y x x x -=--∴切线与两坐标轴所构成的三角形面积为:22001222.2a S x a x =⋅= 第二节 函数的和、积、商的求导法则教材习题2-2答案(上册P99) 1.解:(1)'2'2''34(3)(2)56.y x x x x-=-+=+(2)3'2'2'225()(2(22(24.2y x x x xx x =++=++=+ (3)()()'5'3357'4223(1)(1)523.2x x x x y x x x x --+-+==--(4)2'441,8 4.y x x y x =-+∴=-2.解:(1)'2'001()()().2v t h t v t gt v gt ==-=- (2)当物体达到最高点时速度为0,令()0,v t =即000.v v gt t g-=⇒=∴物体达到最高点的时刻为:.v g3.解:当0x =时,0,y =故所求的切线及法线均过原点.因为'2cos 2,y x x =+则切线斜率为'(0)2,y =法线斜率为1.2-所以切线及法线方程分别为:12,.2y x y x ==-4.解:令0y =即10x x -=得曲线1y x x =-与横轴的交点为(-1,0)和(1,0). '211,y x=+ 则点(-1,0)处切线的斜率为'(1)2,y -=点(1,0)处切线的斜率为'(1)2,y =∴过(-1,0)和(1,0)两点的切线方程分别为: 2(1),2(1).y x y x =+=- 5.解:设曲线32y x x =+-上点00(,)x y 处的切线与直线41y x =-平行. '231,y x =+ 则'200()31,y x x =+∴20031411x x +=⇒=-或,故曲线32y x x =+-上点(-1,-4)或(1,0)与直线41y x =-平行.6.证:(1) ()()()''''222cos sin sin cos cos 1cot csc sin sin sin x x x x x x x x x x -⎛⎫===-=- ⎪⎝⎭. (2) ()()'''2sin 1cos csc csc cot .sin sin sin sin x x x x x x x x x ⎛⎫==-=-=-⋅ ⎪⋅⎝⎭7.解:(1) ()''22'2cos (cos )2cos sin .y x x x x x x xx =+=-(2)'''sin ).ρϕϕϕ==(3)()()''''2tan tan 2(sec )tan sec 2sec tan .y x x x x x x x x x x =+-=+-(4)()()''22'42cos cos 12cos (sin )x x x xx y x x x x-==-+ (5)'''3(sin )13cos .u v v v =-=- (6)()''10'9(10)1010ln10.x x y x x=+=+(7)()''22'2(31)(31)(54).x x x y exx e x x e x x =+++++=++(8)()'''(cos sin )(cos sin )(cos sin cos ).x xxy ex x x e x x x e x x x x x =+++=++(9)'()()()()()().y x b x c x c x a x a x b =--+--+-- (10)'2cot )cos (1csc )cot )sin .y x x x x x x x x =-++-8.解:(1)()()()()()()()()()'''22211111112.1111x x x x x x x y x x x x -+-+-+---⎛⎫==== ⎪+⎝⎭+++,(2)()()()2'''1sin (1cos )1cos (1sin )1cos t t t t st ++-++=+ ()()22cos (1cos )sin (1sin )cos sin 1.1cos 1cos t t t t t t t t +++++==++(3)()()()()''222'2222csc (1)1csc csc cot (1)2csc 2211x x x xx x x x xy x x +-+-+-==++()2222csc cot (1)21x x x x x ⎡⎤-++⎣⎦=+.(4)()()()''22'232sin sin cos 2sin .x x x xx x xy x x --==(5)()()()()''533543'2233(2)22(5).22v v v v v v u vv----==--(6)()((()'''2cot 11cot 1x xy +-+==,()221csc cot .11x x+==-++(7)()()()'2'222221121.111x x x y x x x x x x +++⎛⎫==-=-⎪++⎝⎭++++,(8)'''y ==-,11== .(9)()''''2(tan csc )tan (csc )tan +sec csc cot .y x x x x x x x x x x x =-=-=+(10)()()'''2sin (1tan )(1tan )sin sin 1tan 1tan x x x x x x x x y x x +-+⎛⎫==- ⎪+⎝⎭+,()()22s i n c o s (1t a n )s i n s e c.1t a n x x x x x x x x ++-=+9.解:(1) ''(cos sin )cos2,y x x x == ''641cos 2,cos 20.624x x y y ππππ==∴=⋅==⋅=(2)'11(sin cos )sin cos ,22d d ρϕϕϕϕϕϕϕ=+=+41sin cos ).244442d d πϕρππππϕ=∴=+=+(3)()f t ==()()()()()'''21111()11tt t tf t t t -----∴==-- 故'41(4).18f =∴==-(4) ()()()''2'22532()3,5555x x x f x x x -⎛⎫=-+=+ ⎪--⎝⎭ ''317(0),(2).2515f f ∴== 第三节 反函数和复合函数的求导法则教材习题2-3答案(上册P107) 1.解:[][]'''''''()()(),(3)(3)(3)7(5)7.F x fg x g x F f g g f =∴===-[][]'''''''()()(),(3)(3)(3)2(5)248.G x g f x f x G gff g =∴==-=-⋅=- 2. 解: (1)()2''2'242()2(arctan ).11x xy x x x ===++(2)'''')arctan )y x x x x ==+=(3)''2arcsin (arcsin )y x x ==(4)'arcsin(ln )y x =(5) ()'2'224212.1(1)22x xy x x x -=-=+--+(6)'''1e y ex===+(7)''y ====(8) 'ar cc ar cc .y osx osx ==(9) ()''22221111.1111111x x x y x x x x x -+⎛⎫⎪--⎝⎭===-+++⎛⎫⎛⎫++ ⎪ ⎪--⎝⎭⎝⎭(10)()()'''2arcsin arccos arc s arcsin (arccos )x x co x x y x -=-=. (11) ()()'''22ln ln 2ln .y x x x x x x x =+=+(12) ()()()()()()'''221ln 1ln 1ln 1ln 2.1ln 1ln x x x x yx x x -+-+-==-++ 3.解: (1)()''445(31)3115(31).y x x x =++=+(2)''3()3.x xy e x e --=-=-(3) ''cos()()cos().s A t t A t ωϕωϕωωϕ=++=+(4) ''112()().n n b b nb by n a a a x x x x--⎛⎫=++=-+ ⎪⎝⎭(5) 22'2'()2.x x y e x xe --=-=-(6) ''cos tan .cos x y x x==- (7) ''cos(2)(2)2cos(2)ln 2.xx xxy == (8) 'sin 'sin 2ln 2(sin )2cos ln 2.x x y x x ==(9) ''22sec (sec )2sec tan .y x x x x ==(10) '2'221111sc()sc .y c c x x x x=-=(11) ''1t y +⎛⎫ ⎪== (12) 2ln(1),ln x x y a ++= 2''22(1)21.(1)ln (1)ln x x x y x x a x x a +++∴==++++4.解(1) '2'22'tan sec ()sec 1tan 22222s .tan tan 2tan 2tan 2222x x x x x y c cx x x x x ⎛⎫+ ⎪⎝⎭=====(2)''x y +===(3) 2'22'2'tan y x x ====-(4) ''y ==(5) ()'''2cos(2)cos(2)2cos(2)sin(2)(2).s a t t a t t t ωϕωϕωϕωϕωϕ=++=-+++2s i n 2(2)a t ωωϕ=-+ (6) '''(ln ln )(ln )1.ln ln ln ln ln ln ln ln x x s x x x x x x===⋅⋅⋅ (7) ()'''22sin 2sin 22cos 2sin 2.x x x x x x x y x x --==(8) ()'''sin()cos()()t ty e t et t ααωϕωϕωϕ--=++++[]i n ()c o s ()c o s ()i n ().tt tes t e t e t st ααααωϕωωϕωωϕαωϕ---=-+++=+-+(9) '22''22x x y ⎛⎫== ⎪⎝⎭(10) ''ln ln 2ln 12ln 2()2ln 2.ln ln xxxxx x y x x-==⋅⋅(11) '22'4'224sec tan (tan )tan (tan )sec (1tan tan ).y x x x x x x x x =-+=-+(12) '22''tan sec sec 2x x xx y ⎛⎫ ⎪⎫===⎪⎭ 5.解:'22'''''()()f x g x y +===6.解:(1)2'22'2()()()2().dy d f x f x x x f x dx dx ===⋅ (2)2222((sin )(cos ))(sin )(cos )dy d d d f x f x f x f x dx dx dx dx=+=+ ()()'''2'2(sin )2sin sin (cos )2cos cos f x x x f x x x =+'2'2sin 2(sin )(cos ).x f x f x ⎡⎤=-⎣⎦7.解:222''()()()2'2222()(),2x a x a x a D D D x a y x ee D ------⎛⎫⎛⎫⎛⎫-==-=⎪⎪ ⎪⎪⎪⎝⎭⎭⎭令'()0,y x=即2()200.x a D x a x a --=⇒-=⇒=8.解:011()(),kt T t T T e T -=-+ ∴物体温度的变化速度为:'01()()(),kt v T t T T e k -==--即10().kt v k T T e -=-9.解:0(),kt m t m e -= ∴函数的变化率为:0().kt dm t km e dt-=- 10.解:当0x =时,(0) 1.y = '2'22,(0)2,xy e x y =+=∴ 过(0,1)点的法线方程的斜率为12-,法线方程:11(0),2y x -=--即220.x y +-=原点到法线的距离为:d ==第四节 高阶导数教材习题2-4答案(上册P112) 1. 解:(1)'''2114,4.y x y x x=+∴=- (2)'21'21''21(21)2,4.x x x y ex e y e ---=-=∴=(3)'''cos sin ,2sin cos .y x x x y x x x =-∴=--(4)'''cos sin ,2s .t t t y e t e t y e co t ---=-∴=- (5)2'''y y =∴=(6)13521'2''32221324,44,48.24y x xx y x x x y x x ------=++∴=--=++(7)()2'''22222(1),.11x x y y x x -+=∴=--- (8)'2''2sec ,2sec tan .y x y x x =∴= (9)()()23'''233336(21),.11x x x y y xx--=∴=++(10)'''22arctan 1,2(arctan ).1xy x x y x x=+∴=++ (11)22'''cos cos 2sin 2-sin 2ln ,2cos 2ln .x x x y x x y x x x x x =+∴=--- (12)2'''23(22),.x x x xe e e x x y y x x --+=∴= (13)222'2''22,2(32).x x x y e x e y xe x =+∴=+ (14)'''y y =∴=2.解: '5''4'''3'''36(10),30(10),120(10)(2)12012.y x y x y x y =+=+=+∴=⨯3.解:'2''''''22()()()()()(),()().()()()dy f x d y d dy d f x f x f x f x f x dx f x dx dx dx dx f x f x -=∴=== 4.解:由物体运动的规律sin s A t ω=得:物体运动的速度为:cos dsv A t dtωω==和加速度222sin .d sa A t dtωω==-下验证2220.d s s dtω+=左边=22sin sin 0A t A t ωωωω-+⋅==右边.5.解:由12x x y c e c e λλ-=+得: '''221212,,x x x x y c e c e y c e c e λλλλλλλλ--=-=+所以,左边=''2y y λ-=(2212x x c e c e λλλλ-+)212()x x c e c e λλλ--+=0=右边. 6.解:(1) ()()()00(1)21!.n n n yx n n n =++⋅⋅⋅+=-⋅⋅⋅⋅=(2) ()()'''2''sin sin 2,sin 22cos 2,y x x y x x ====''''(2c o s 2)4s i n 2,y x x ==-所以,一般地得: ()12sin 2+.2n n y x π-⎡⎤=⎢⎥⎣⎦(n-1) (3) ()()''''2312222221,,,11111x y y y x x x x x +-⋅⎛⎫==-+∴==-= ⎪+++⎝⎭++ ()'''4223,1y x ⋅⋅=-+所以,一般地得: ()()()12!1.1nn n n y x +⋅=-+(4) ()()()'11112'''11111,(1)1,m m m y x x y x mm m --⎡⎤=+=+=-+⎢⎥⎣⎦ 所以,一般地得:()1()111(1)(1)1.nn m yn x m m m-=-⋅⋅⋅-++ (5)由莱布尼兹公式得:()()()()1()01'l n (l n )(l n )00n n n n n n y x x c x x c x x -==⋅+⋅++⋅⋅⋅+()()1(l n )(l n ),n n x x n x -=⋅+'''''''231112(ln ),(ln ),(ln ),x x x x x x x ⎛⎫===-= ⎪⎝⎭一般地得:()()()11!(ln )(1).n n nn x x --=-()()()()()()()()112()11!2!ln (ln )(ln )(1)(1)n n n n n n nn n n ny x x x x n x x x ------∴==⋅+=-+-()12!(1)(2).nn n n x --=-≥()()1ln 1,(1)=.2!(1)(2)n n n x n y n n x -+=⎧⎪∴⎨--≥⎪⎩第五节 隐函数的导数以及由参数方程所确定的函数的导数教材习题2-5答案(上册P122)1.解:(1)方程2290y xy -+=两边分别对x 求导得: 2220,d y d y yy x d x d x --=解得: .dy y dx y x=- (2) 方程3330x y axy +-=两边分别对x 求导得:2222333()0.dy dy dy ay x x y a y x dx dx dx y ax-+-+=⇒=-(3) 方程x y xy e +=两边分别对x 求导得:(1).x y x yx ydy dy dy e y y x e dx dx dx x e +++-+=+⇒=- (4) 方程1y y xe =-两边分别对x 求导得:.1y y y ydy dy dy e e xe dx dx dx xe=--⇒=-+ 2.解: 方程222333x y a +=两边分别对x 求导得: 1133.dyx y dx-=- ∴曲线上点44⎛⎫ ⎪ ⎪⎝⎭处的切线斜率为: 1.dydx ⎝⎭=-该点的切线方程为: 1(),44y x -=--即0.2x y +-= 该点的法线方程为: (),44y x -=-0.x y -= 3.解:(1) 方程sin()y x y =+两边分别对x 求导得:cos(),1cos()dy x y dx x y +=-+ 所以22cos()()1os()d y d x y dx dx c x y +=-+[][]2s i n ()(1)1o s ()c o s ()s i n ()(1),1c o s ()d y d yx y c x y x y x y d x d x x y -++-+-+++=-+把cos()1cos()dy x y dx x y +=-+代入即得[]232sin().os()1d y x y dx c x y +=+- (2) 方程221x y -=两边分别对x 求导得:,dy xdx y=所以222(),dyy xd y d dy d x dx dx dx dx dx y y -⎛⎫=== ⎪⎝⎭将dy x dx y=代入即得2222233()1.xy x d y y x ydx y y y---=== 4.解:(1)方程1xx y x ⎛⎫= ⎪+⎝⎭两边取以e 为底的对数得:ln ln ,1x y x x =+ 两边分别对x 求导得:'''111ln ln .11111xx x x x x y x y y x x x x x x +⎛⎫⎛⎫⎛⎫=+⇒=+ ⎪ ⎪⎪+++++⎝⎭⎝⎭⎝⎭(2)方程()cot 2tan 2xy x =两边取以e 为底的对数得:ln cotln tan 2,2xy x = 两边分别对x 求导'22cot112csc ln tan 22sec 222tan 2xx y x x y x=-+⇒cot2'2(tan 2)(csc ln tan 28cot csc 4).222x x x xy x x ⇒=-- (3)方程y =e 为底的对数得:211ln ln(5)ln(2)55y x x ⎡⎤=--+⎢⎥⎣⎦, 两边分别对x 求导整理得:2'426252531010.25(2)x x y x ++=-+(x-5(4)方程y =两边取以e 为底的对数 得:1l nl n (2)4l n (3)5l n (1)2y x x x =++--+,两边分别对x 求导整理得:4'5)145.(1)2(2)31x y x x x x ⎡⎤-=--⎢⎥++-+⎣⎦5.解:(1)由2223332,3,.22dyx at dx dy dy bt bt dt at bt dt dt dx at a y btdt⎧=⇒==⇒===⎨=⎩ (2)由(1sin )1sin cos ,cos sin cos x dx dyy d d θθθθθθθθθθθθ=-⎧⇒=--=-⎨=⎩cos sin .1sin cos dy dy d dx dx d θθθθθθθθ-⇒==--6.解:(1)由sin (sin +cos ,cos sin ,cos t t ttx e t dx dy e t t e t t dt dt y e t ⎧=⇒=+=-⇒⎨=⎩)() sin +cos cos sin dydy t tdt dx dx t t dt==-. 所以,33sin +cos 2cos sin t t dy t t dxt tππ====--7.解:(1)当 4t π=时,曲线上对应的点为2⎛⎫ ⎪ ⎪⎝⎭,2sin 24sin ,cos dydy t dt t dx dxt dt-===-44s i n 24t dy dxππ=∴=-=-⎫⎪⎪⎝⎭的切线斜率. 则切线方程为:0(),2y x -=--即20,y +-=法线方程为0(42y x -=-410.y --=(2) 当 0t =时,曲线上对应的点为()2,1,2,22t tt dydy e e dt dx dx e dt---===-12t dy dx =∴=-为过点()2,1的切线斜率. 则切线方程为: 11(2),2y x -=-- 即240,x y +-=法线方程为12(2),y x -=-即230.x y --=8.解:(1)由2,1,21t x dx dy t dt dt y t⎧=⎪⇒==-⎨⎪=-⎩1,dy dy dt dx dx t dt⇒==- 222311111()()().d y d d y d d y d t d dx dx dx dx dt dx dx dt t t t t dt⇒===-== (2)由cos sin ,cos ,sin x a t dx dya tb t y b tdt dt =⎧⇒=-=⎨=⎩cos cot ,sin dy b t b t dx a t a ⇒==-- 22231()()(cot ).sin d y d dy d dy dt d b bt dx dx dx dx dt dx dx dt a a t dt⇒===-=- 9.解:(1)由sin (sin +cos ,cos sin ,cos t t ttx e t dx dy e t t e t t dt dt y e t ⎧=⇒==-⇒⎨=⎩)() 22cos sin sin +cos dydy t t d y d dy d dy dtdt dx dx t t dx dx dx dt dx dxdt-⎛⎫⎛⎫==⇒== ⎪ ⎪⎝⎭⎝⎭cos sin 1sin +cos d dy dt d t t dxdt dx dx dt t t dt-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭ 23212,(cos sin )(sin +cos )(cos sin )t t t t e t t e t t --==++则 左边222()d y x y dx =+=2322(sin cos ),(cos sin )cos sin t t t t e e t e t e t t t t --+=++ 右边=cos sin 22()2(sin cos )sin +cos cos sin t tt dy t t e x y e t e t dx t t t t---=-=+, 左边=右边第六节 变化率问题举例及相关变化率教材习题2-6答案(上册P130)1. 解:速度函数是位置函数的导数.由于32() 1.5,s f t t t t ==+-所以速度2()33 1.dsv t t t dt==+-当()5v t =时,即233151(0).t t t t +-=⇒=> 2.解:由题意得: 3sin ,x θ=则33cos 3cos1.5(/).3dx dx m rad d d πθπθθθ==⇒==3.解:设细棒AB 上任意一点M 处的坐标为,x 质量为(),m m x =则2(0),m kx k =>为比例系数因为当2l =时8,m =即2822k k =⋅⇒=,所以22(0).m x k =>为比例系数故细棒AB 上任意一点M 处的密度为4(/).dmx g cm dx = 4.解:由21000(1)50(1)(040),4040t dV tV t dt =-⇒=--≤≤所以 5550(1)43.75(/m i n )40t dV L dt ==--=-(负号表示容器内的水在减少), 101050(1)37.5(/min)40t dV L dt ==--=-, 202050(1)25(/min)40t dV L dt ==--=- . 5.解:(1)由()2(sin cos ),sin cos sin cos W dF W F d μμθμθμθθθμθθ-=⇒=++ (2)令0,dF d θ=即 ()2(s i n c o s )0t a n t a n .s i n c o s W a r c μθμθθμθμμθθ-=⇒=⇒=+ 6.解:由2.c dv cpv c v p dp p=⇒=⇒=- 7.解:由22111.()fq dp f p f p q q f dq q f =+⇒=⇒=--- 8.解:由2150.020.040.04.t dm dmm t t dt dt==-⇒=-⇒=-9.解:(1) 由2'()420 1.50.002() 1.50.004C x x x C x x =++⇒=+得:'(100)1.90,C =(101)(100) 1.C C -≈(2) 由23'2()200030.010.0002()30.020.0006C x x x x C x x x =+++⇒=++得:'(100)11,C =(101)(100)11.07C C -≈10.解: 由3432D V π⎛⎫= ⎪⎝⎭=36D V π= (其中V 为雪球体积, D 为雪球直径),两边对间t 求导得:22dV D dDdt dtπ=,当1,10dV D dt ==时, dD dt =211.450dV dt D ππ=11.解:设飞机与雷达站的距离为S ,则经过时间t 后,S =,则6dS dt =,又两者相距4km时的时间1000t =,则t dS dt =.12.解:解:记12:00整时0.t =设经过时间t 后两船相距S ,则S =则dSdt=,经过4个小时即16:00时472013t dS dt==13.解:设圆锥形容器中溶液的深度为h ,溶液表面的半径为r ,则h ,r 都是时间t 的函数。
高等数学教材习题答案
高等数学教材习题答案第一章:函数与极限1. 习题一答案:1)a) f(-3) = -2b) f(2) = 4c) f(0) = 12)a) g(-1) = -1b) g(0) = 0c) g(2) = 93) f(g(1)) = f(1) = 32. 习题二答案:a) 导数不存在的点:x = -1, 1, 2b) 间断点:x = 0, 1c) f(x)在(-∞, -1) ∪ (-1, 0) ∪ (0,1) ∪ (1, 2) ∪ (2, +∞)上连续3. 习题三答案:a) 极限存在,为1b) 极限存在,为2c) 极限不存在第二章:导数与微分1. 习题一答案:a) f'(x) = 3x^2 + 4x + 5b) f'(x) = 4x^3 + 2x^2 - 8xc) f'(x) = -cos(x)2. 习题二答案:a) f'(x) = -2sin(2x)b) f'(x) = -4x^-5 + 3x^-4c) f'(x) = -5e^(-5x)3. 习题三答案:a) f'(x) = 2x + 1b) f'(x) = 4x^3 + 3x^2 - 2xc) f'(x) = 2cos(x)第三章:微分中值定理与导数应用1. 习题一答案:a) -∞ < x < -1 或者 -1 < x < 1 或者 x > 1b) -∞ < x < 0 或者 x > 0c) -∞ < x < 1 或者 x > 12. 习题二答案:a) 在c = 2的时候,函数在区间[-1, 1]上满足罗尔定理的条件b) 在c = -1的时候,函数在区间[-2, 2]上满足罗尔定理的条件c) 在c = 1的时候,函数在区间[-5, 5]上满足罗尔定理的条件3. 习题三答案:a) 在x = 2附近存在驻点b) 在x = -1附近存在极小值点c) 在x = 0附近存在极大值点第四章:不定积分1. 习题一答案:a) F(x) = x^3 + 4x^2 + 3x + 1 + Cb) F(x) = 4x^3 + 3x^2 + 2x + 1 + Cc) F(x) = -3x + cos(x) + C2. 习题二答案:a) F(x) = -cos(2x) + Cb) F(x) = -6x^-4 + x^-3 + 2x + Cc) F(x) = e^(-5x) + C3. 习题三答案:a) F(x) = x^2 + x + 1 + Cb) F(x) = x^4 + x^3 - x^2 + Cc) F(x) = 2sin(x) + C注意:以上只是题目习题的答案示例,实际上数学题目答案有多种可能性,需要根据具体问题进行求解验证。
高数A(一)第二章答案
《高等数学教程》第二章 习题答案习题2-1 (A)1.63. 4. (1) ;)(0x f ' (2) ;)(0x f '- (3) ;)0(f ' (4) .)(20x f '5. (1);54x (2);3231-x (3) ;3.231.x (4) 32--x ; (5) 2527x ; (6) 1013x 103--.6. (1) 19.6 米; 19.6 米/秒 .7. 切线方程 ,0632=--+πy x法线方程 .03232=-+-πy x 8.(2,4).9. (1)在0=x 连续且可导; (2)在0=x 连续且可导. 10. ;0)0(='+f ;-1)0(='-f )(x f 在点0=x 处不可导.习题2-1 (B)4.e1. 7. 0)0(='f .习题2-2 (A)1.(1) 33464xx x --; (2) 21232121----x x ; (3) x x sin 5cos 3+;(4) x x x x x x tan sec cos sin 22++; (5) 1ln +x ; (6)x x x x x22csc sec tan 21-+; (7) 2ln log 22xx x +; (8) b a x --2; (9)2)cos 1(1sin cos x x x +++;(10)2sin cos x xx x -; (11)2ln 1xx- (12)3)2(xe x x-; (13) x x x x x x x x sin ln cos cos ln 22⋅⋅-+⋅⋅;(14) x x cos 2;2. (1) 218332ππ-; (2) )42(22π-; (3) 181-;(4) 1517)2(,253)0(='='f f . 3. 3t 2t ==或.4. 切线方程 x y 2=,法线方程 x y 21-=.5. (1) 410; (2) 0 ; (3) 410- .13.(1)4)32(10+x ; (2) )31(cos 3x --; (3)212x x+; (4) a a e xxln +; (5)22)110(ln10102e 2+⋅+-x x x x x ; (6) 4x12-x ; (7) 222sin x a x x ---; (8) )(sec 3322x x ;(9) x2x ee +1; (10) a x x x 2ln )1(12+++. 14.(1) 322)41(38-+x x ; (2) )2(cos 2ln 2x x ⋅(3) x e x e xx 3sec 33tan 21222--+-; (4) 122-x x x ;(5)x xarctan 122+; (6)xxx-33sin 3ln 3cos 3;(7)221xx -; (8)22xa +1;(9) sec x ; (10) csc x .15.(1) )(cos 22cos 22x x x-; (2) csc x ; (3)2ln 22)1(22arctanx xx x x e ++; (4))(ln ln ln 1x x x ;(5)22)arccos (12x x x-; (6) -2sec2x .16.(1) cosh(cosh x )sinh x (2))(ln cosh 12x x ; (3) (3sinh x +2)sinh x cosh x (4) ⎪⎭⎫ ⎝⎛+a x a 1x e x cosh 2sinh 22cosh ; (5) )1(cosh 222x x --; (6) 22224++x x x;(7)1242-x x e e ; (8) x 3tanh .17. (1))32(2x x +; (2) )3sin 93cos 7(x x e x --;(3) 2ln 2cos 2sin 2ln 2sin xxxx +; (4)222)arcsin (1arcsin 1x x x -x x --;(5)1ln 1+-n x x n ; (6) 3xx arctan 962+;(7) x cosh 12; (8) 222arctan2x)()4x 1()4x 1(2arctan2x )4x 1(4++-+.习题2-2 (B)1. (1)22)1(2x x-; (2) 23323)2()321()(-)2()211(x x-x-x x x x-x++;(3) )cos (cos )cos sin ()cos (sin )sin (sin αx x αx x x x x α++++-;(4) 23)cos 1(sin 2sin )cos 1(x xx x +++; (5) 22)tan (sec 2-tan 2x x x x x +;(6) )sec 2()ln 2(cos )tan (cos 1)tan ()ln 2(sinx 222x x x x x x x xx x x +-++-+--;(7) )49283(224+-x x x ; (8))ln (1x x 2-+.2.2)()(d xx g x g x dx y -'=. 3. 切线方程:022=--y x 和 022=+-y x .6. (1) 400英尺;(2) v(2) = 96英尺/秒 ; v(8) = - 96英尺/秒 ; (3) 10秒 7. (1) )()(e ()()(x x x f x f x e f x f e )e f e '+'; (2) )()]([x f x f f '';(3) x x f x x f )sin2(cos )sin2(sin 22'-'; (4) )(n n 1n b ax f x a -+'. 8. (1))()()()()()(d 22x x x x x x dx y ψϕψϕϕψ+'-'=. (2))()()()()()(d 22x x x x x x dx y ψϕψϕϕψ+'+'=. 9. x21)(='x f ; 21)21(='f .10. x xx f 121)(3---='. 12. (1) 211x +; (2)xx x xxx +++++2)21(1211; (3) 242x -;(4) xx x 2455ln 212⋅++; (5) a b a b x b b a a x a b xa b ln 11⎪⎭⎫⎝⎛+⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛+-;(6) ()2111ln ln a aa x axa xa a x a a x a a +-+-++; (7) 222-1)(1)-(12xx x +;(8) x e x x 1sin 222sin-; (9) 3/22)(1arcsin x x x -; (10) xx x x 21254e11ln55151++--. 13. )1(sin )1(sin 1cos 22x f x f x x'-. 14.)(22x xcos dx y d =; )()(22x cos x d y d =; )(32)(23x cos x x d y d =. 15. )2arcsin()]([x x f ='ϕ; 411)]([xx f -='ϕ; 412])]([[xx x f -='ϕ.16.1sin cos 222+πππe e e .17.)()1(2x 2x xe sin x xe dx yd +=. 18. 2e .习题2-3 (A)1. (1) 214x-; (2) x e 214-; (3) x x x sin cos 2-; (4) x exsin 22-; (5) 2/3222)(x a a --; (6) 232)1(/x x +-; (7) )23(222x xe x +; (8) 3)22(xx x e 2x +--; (9) x x tan sec 22; (10) 212tan 2xxx arc ++.习题2-3 (B)1. (1) n! (2) 1)1(!2)1(+--n nx n (3) )2(!)2()1(1≥---n xn n n ;(4) ]2)1(2[21π-+n x sin -n ; (5) )(n x e x +;(6) ])1(1)2(1[!)1(11++----n n n x x n ; (7) ])(1)()1([!)1(1nn n nbx a bx a b n -++---; (8) n m x n mm m m -++---1)1()11()21()11(1 ;(9) ]22[2π⋅+-n x cos n(10) 11)21(!2+--n n x n 2. (1) x cos e y x 4)4(-=; (2) x cosh xsinhx y 100)100(+=; (3) )2sin 212252cos 502sin (2250)0(x x x x x y 5++-=; 3. (1) )()(222x f 4x x f 2''+'; (2) 22x f x f x f x f )]([)]([)()('-''. 5. 21+=x y , 3x y )2(2+=''. 7. 0=+y dt yd 22.8. 0=+y dt yd 22.习题2-4 (A)1.(1) x y y -; (2) ax y x ay 22--; (3) yy xe e +-1; (4) y x y x e x y e ++-- (5) )(1)(11xy cos x yxy cos y x +-+ (6) )(1)(2222y x f 2y y x f 2x +'-+'. 3. 切线方程:022=-+a y x ; 法线方程:0=-y x .4. (1) ]1)1([)1(222x2xsinxx cos ln cosx x sinx +++⋅+; (2) ]2cot 2sec cos 22tan ln sin [)tan (2cos x x x x x x x ⋅⋅+⋅-;(3) ]163112[)1(3)1(232x xx x x x x 2++--++-+; (4)])(251121[2)1(3122x x x x x x x 35-+++-+; (5) ])1(21[121xx xe e cotx x e sinx x --+-; (6) )ln 1()ln 1lnln ()ln (21x x xx x x x -++-;(7) )1(1+++-lnx x ln x x x ππππ;(8) ⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛x a b b a ln a x x b b a ba x .5. (1)t 2a 3b dx y d =; (2) t tdx y cos 2cos2d =; (3)ϕtan d -=dxy ; (4) θθθθθθcos -sin -1sin -cos d =dx y . 6. (1) 切线方程:042=-+y x ; 法线方程:032=-+y x . (2) 切线方程:01234=-+a y x ; 法线方程:0643=+-a y x .习题2-4 (B)1. (1) )(ln )()(ln )()(ln )()(2x x x ψx x x ψx ψϕϕϕϕ'-';(2) )()()(ln )()()()()(2)(x x x x x x x x x ψϕψψϕϕψψϕ'-'.2. ye e x y d dx yx y x --=++.3. (1) θθa sec dx y d 222=; (2) )(1t f dxy d 22''=;(3) )1(2222t t 6dyx d +=; (4) )1(832533t t dx y d +-=;(5) 343381tt dx y d -=; 4.4π. 5. 2e .6. 0 .8. (1) a (1)= - 6 (m/s 2) ; a (3)= 6 (m/s 2 ). (2) |v(2)| = 3 (m/s) ;9. 144π (m 2/s)10. 20402516.π≈(m/min). 11.640225144.π=(cm/min).12. 70 英里/小时. 习题2-5 (A)2. (a ) 0dy y 0dy 0y >->>∆∆,,;(b ) 0dy y 0dy 0y <->>∆∆,,; (c ) 0dy y 0dy 0y <-<<∆∆,,; (d ) 0dy y 0dy 0y >-<<∆∆,,.3. (1) dx x x)12(3+-; (2) dx x x x )2cos 22(sin +; (3) dx e x x 2x )1(2+; (4)dx xx412+-; (5) dx x x e x )]cos(3)[sin(3----; (6) dx x x x )21(sec )21(tan 8223++;(7)dx x xx 222)]1([ln 16---; (8)dx x x x xxx +++++2)211(211.4. (1)dx xy x +--182; (2) dx y x csc )(2+-; 5. (1) C x +2; (2) C x +223; (3) C t sin +; (4) C t cos 1+-ωω;(5) C x ++)(1ln ; (6) C e x +--221; (7) C x +2; (8) C x +3tan 31.习题2-5 (B)1. h R 0π2.2. 7683,4,0010,.V l .r l r V 2='===∆π, 0037680.dV V =≈∆; 用铜约为033550.(克).3. 0021021603.π-≈-. 4. 050.T =∆(秒),设摆长约需加长 d l , d l 2292140050..≈⨯=π(厘米) .5. R 约增加了43.63 cm 2, 扇形面积约增加了 104.72 cm 2 .6. (1) 0. 87476 ; (2) - 0. 96509 .7. (1) 7430''o ; (2) 260'o .8. (3) 01309054tan .≈'; 0020)0021(ln ..≈.9. (1) 9.9867; (2) 2.0052 .总复习题二一、1. B 2. D 3. A 4. A 5. D 二、1. 充分; 必要; 充要.2. t 2e t t f =)(, t 2e 2t t f )1()(+='.3.1)1='-0(x f . 4. 1+=x y . 5. b. 6. [10, 20] .三、1. 212xx y +='.2. (1))]}([)]([)]([)({)]([)(2222222222x f sin x f x f cos x f x 4x f cos x f dx yd 2'-''+'=;(2) )(4)(2)()(2)]([2222222x f x x f x f x f x f dxyd ''+'+''+'=.3.xx ydx y d ln 2-=. 4. 32222)1ln ()1ln ()1ln (++-+=y xy x x y y dx y d . 5. 322)1(f f dx y d '-''=. 6. ⎪⎩⎪⎨⎧>-<≤<='1,110,20,3)(2x x x x x x f7. (1)⎪⎪⎩⎪⎪⎨⎧=-''≠++-'='-0,21)0(0,)1()()()(2x g x x e x x g x g x x f x;(2) )(x f ' 在 ),(∞+-∞上是连续函数。
高等数学第二章习题详细解答答案
1 ⎧ 2 1 ⎪ x sin , x ≠ 0 (2)∵ y = ⎨ ,而 lim y = lim x 2 sin = 0 = y x = 0 ,所以函数在 x = 0 处连续 x x →0 x →0 x ⎪ x=0 ⎩ 0,
1 x = 0 ,所以函数在 x = 0 点处可导. 而 lim x →0 x−0 x 2 sin
−2 sin cos (x + Δx) − cos x 3.解: ( cos x)′ = lim = lim Δx → 0 Δx →0 Δx Δx sin 2 x + Δx 2 = − sin x = - lim sin ⋅ lim Δx → 0 Δx → 0 Δx 2 2
4. 解:(1)不能,(1)与 f ( x ) 在 x0 的取值无关,当然也就与 f ( x ) 在 x0 是否连续无关, 故是 f ′( x0 ) 存在的必要条件而非充分条件. (2)可以,与导数的定义等价. (3)可以, 与导数的定义等价. 5. 解:(1) 5 x
9 −1 = 4 ,而 y′ = (x 2 )′ = 2 x ,令 2 x = 4 , 3 −1
得: x = 2 ,所以该抛物线上过点 (2, 4) 的切线平行于此割线. 10.解:(1)连续,但因为
f (0+ h )− f (0 ) = h
因而 lim
h→0
3
h −0 1 = 2/ 3 h h
f (0 + h) − f (0) 1 = lim 2 / 3 = +∞ ,即导数为无穷大。 → h 0 h h
∴ f +′(0) ≠ f −′(0) = −1 ,所以 f ′(0) 不存在.
13. 解 : 当 x > 0 时 , f ( x) = x 是 初 等 函 数 , 所 以 f ′( x) = 3 x ; 同 理 , 当 x < 0 时
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 导数与微分1. ()().1,102-'=f x x f 试按定义求设200200(1)(1)10(1)10'(1)lim lim1020lim lim (1020)20x x x x f x f x f x xx x x x∆→∆→∆→∆→-+∆--∆---==∆∆∆-∆==∆-=-∆2. 下列各题中均假定()0x f '存在,按导数定义观察下列极限,指出此极限表示什么, 并将答案填在括号内。
⑴ ()()=∆-∆-→∆xx f x x f x 000lim(0'()f x -); ⑵ ()=→∆xx f x 0lim ('(0)f ), 其中()()存在;且0,00f f '= ⑶ ()()=--+→hh x f h x f h 000lim(02'()f x ).3. 求下列函数的导数:⑴ ='=y x y ,4则34x ⑵ ='=y x y ,32则1323x -⑶ ='=y xy ,1则3212x -- ⑷ ='=y x x y ,53则115165x 4. 求曲线. 21,3 cos 程处的切线方程和法线方上点⎪⎭⎫⎝⎛=πx y'sin ,'()3y x y π=-=所以切线方程为1)23y x π-=-2(1)0y +-=法线方程为1)23y x π-=-化简得3)0x π+-= 5. 讨论函数⎪⎩⎪⎨⎧=≠=0001sin 2x x xx y 在0=x 处的连续性和可导性. 20(0)01lim sin 0(0)()x f x f x→===因为有界量乘以无穷小 所以函数在0x =处连续因为 20001sin(0)(0)1lim limlim sin 0x x x x f x f x x xx x∆→∆→∆→∆+∆-==∆=∆∆∆所以函数在0x =处可导.6. 已知()()()()是否存在?又及求 0 ,0 0 ,0 2f f f x x x x x f '''⎩⎨⎧<-≥=-+ 2'00(0)(0)(0)lim lim 0h h f h f h f h h+→+→++-==='00(0)(0)(0)limlim 1h h f h f hf h h-→-→++--===- ''(0)(0)f f +-≠Q '(0)f ∴不存在7. ()(). , 0sin x f x x x x x f '⎩⎨⎧≥<=求已知 当0x <时, '()(sin )'cos f x x x ==; 当0x >时, '()()'1f x x ==; 当0x =时'00(0)(0)(0)limlim 1h h f h f hf h h+→→+-===++ '00(0)(0)sin (0)limlim 1h h f h f h f h h-→-→+-===- '(0)1f ∴=综上,cos ,0'()1,0x x f x x <⎧=⎨≥⎩8. 求下列函数的导数:(1);54323-+-=x x x y (2);1227445+-+=x xx y 2222222232242222csc cot (1)2csc 2'(1)2(1)csc cot 4csc (1)23(3)(3ln )(2ln )(2)'(3ln )(94)ln 32(3ln )x x x x xy x x x x x x x x x x x x x x x y x x x x x x x x x x -+-=+-+-=+++-++=+-+-+=+g g 2'364y x x =-+652'20282y x x x ---=--+(3);3253xxe x y +-= (4);1sec tan 2-+=x x y2'152ln 23x x y x e =-+ 2'2sec sec tan y x x x =+(5);log 3lg 2ln 2x x x y +-= (6)()();7432x x y -+=123'ln10ln 2y x x x =-+'422y x =--(7);ln x xy =(8);cos ln 2x x x y = 21ln 'x xx y x-= 221'2ln cos cos ln sin y x x x x x x x x x =+- 21ln x x-= 22ln cos cos ln sin x x x x x x x x =+- (9);1csc 22xxy +=2222csc cot (1)2csc 2'(1)x x x x x y x -+-=+g g 2222(1)csc cot 4csc (1)x x x x x x -+-=+ (10).ln 3ln 223xx x x y ++= 2232223(3)(3ln )(2ln )(2)'(3ln )x x x x x x x x y x x ++-++=+ 4222(94)ln 32(3ln )x x x x x x x x -+-+=+9. 已知. ,cos 21sin 4πϕϕρϕϕϕρ=+=d d 求因为1sin cos sin 2d d ρϕϕϕϕϕ=+- 所以4d d πϕρϕ===10. .1轴交点处的切线方程与写出曲线x xx y -= 令0y =,得11x x ==-或 因为2'1y x -=+, 所以 11'2,'2x x y y ==-==曲线在(1,0)处的切线方程为2(1)y x =-,即220x y --=; 曲线在(1,0)-处的切线方程为2(1)y x =+,即220x y -+=。
11. 求下列函数的导数:(1)()可分解为:函数452+=x y 4,25y u u x ==+其导数='y 38(25)x +(2)函数可分解为:23x e y -= 2,3u y e u x ==- ='y 其导数236x xe--(3)可分解为:函数22x a y -= 22y u a x ==-='y 其导数(4)()可分解为:函数x e y arctan = arctan ,xy u u e ==='y 其导数21x xe e+12. 写出下列函数的导数(只需写出结果): (1)()='-=y x y , cos 343sin(43)x - (2)()='+=y x y , ln 21221xx+ (3)='=y x y , sin 22sin cos x x(4)()='=y x y , arctan 2421xx+ (5)()='=y x y , tan 2222sec ()x x(6)(),log ='++=y x x y a 12221(1)ln x x x a+++ (7)='=y x y ,cos ln tan x - (8)()='-=y x y ,arcsin 2113. 求下列函数的导数(要有解题步骤):(1);2arcsin 2⎪⎭⎫ ⎝⎛=x y (2);arctan x e y =(3)()[]; ln ln ln x y = (4).cos sin nx x y n=14. 设():dxdyy x f 的导数可导,求下列函数 (1)();2xf y = (2)()().cos sin 22x f x f y +=22'()dy xf x dx = 22'(sin )2sin cos '(cos )2cos sin dy f x x x f x x x dx=-g 22sin 2['(sin )'()]x f x f cox x =-15. 求下列函数的导数:(1)()22sin sin x x y ⋅=(2)xy 1cos ln =(3)xe y 1sin 2-=(4)x x y +=16. 求下列函数的二阶导数: (1)x x y ln 22+=1'4y x x =+21''4y x=-(2)t e y tsin -='sin cos (cos sin )ttty e t e t e t t ---=-+=-''(cos sin )(sin cos )2cos ttty e t t e t t e t ---=--+--=-(3)()1ln 2x x y ++='y ===3223221''(1)22(1)x y x x x -=-+=-+g17. 若():22dx yd x f 阶导数存在,求下列函数的二''(1)()2xf y = (2)()[]x f y ln =2222'()()''()()['()][()]dy f x dx f x d y f x f x f x dx f x =-=18. 求下列函数的n 阶导数的一般表达式:(1)x y 2sin = (2)x x y ln =19. 求下列函数所指定阶的导数: (1),cos x e y x= 求().4y (2),2sin 2x x y = 求().50y20. 求下列方程所确定的隐函数:dxdy y 的导数(1)0333=-+axy y x (2) yxe y -=1方程两边关于x 求导得: 方程两边关于x 求导得:2233330dy dy x y ay ax dx dx +--= y y dy dy e xe dx dx=-- 所以 22223333dy ay x ay x dx y ax y ax --==-- 所以 1y y dy e dx xe-=+ 222222222'()2['()2''()]2'()4''()dyxf x dxd y f x x xf x dxf x x f x ==+=+g21. .42,42323232程处的切线方程和法线方在点求曲线⎪⎪⎭⎫ ⎝⎛=+a a a yx 方程两边关于x 求导得:113322033dy x y dx--+= 所以1313dy x dx y --=-=从而切线斜率1)1dy k dx==-,法线斜率 2111k k =-=所以切线方程为()44y a x a -=--,即02x y a +-=;法线方程为44y x a -=-,即0x y -=。