信号分析与处理复习整理

合集下载

信号分析知识点总结

信号分析知识点总结

信号分析知识点总结信号分析是一门涉及信号处理、通信系统、控制系统等多个领域知识的学科,它主要研究如何对各种类型的信号进行分析、处理和识别等方面的问题。

在工程技术领域中,信号分析具有非常重要的应用价值,可以帮助我们更好地理解和利用各种信号,促进技术的发展和应用。

下面我们将对信号分析的一些核心知识点进行总结和介绍。

一、信号的基本概念1. 信号的定义和分类信号是指随着时间、空间或其他独立变量的变化而变化的物理量,根据不同的特性和用途,信号可以分为连续信号和离散信号,模拟信号和数字信号等。

2. 信号的表示与描述通常情况下,我们可以使用数学函数、图形、波形等方式来表示和描述信号,在信号分析中,常用的表示方法包括时域表示、频域表示、复域表示等。

3. 基本信号的特性和分析在信号处理和分析中,一些基本的信号,如单位冲激信号、单位阶跃信号、正弦信号、方波信号等具有重要的作用,了解这些基本信号的特性和分析方法,对于我们理解其他复杂信号具有重要的指导作用。

二、信号的采样和量化1. 信号采样基本原理信号采样是指将连续信号转换为离散信号的过程,它是数字信号处理中非常基础的一环,信号采样的基本原理是根据奈奎斯特采样定理进行采样,以确保能够完整地保留原信号的信息。

2. 信号量化基本原理信号量化是指将连续信号的幅度值转换为有限个离散值的过程,信号量化技术决定了数字信号处理的精度和性能,因此对于信号量化的原理和方法有一定的了解是十分重要的。

三、频域分析1. 傅里叶级数与变换傅里叶级数和傅里叶变换是信号频域分析的基础,它们可以将信号从时域转换到频域,从而揭示信号的频率成分和能量分布等特性。

2. 信号能量与功率谱密度信号的能量和功率谱密度是对信号频域特性的重要描述,了解这些概念可以帮助我们更好地理解信号的功率分布和频率特性。

3. 滤波与频域分析滤波是信号处理中的一个重要环节,它可以通过在频域对信号进行处理来实现信号的去噪、增强和分析等功能,因此对于滤波原理和方法的了解是十分重要的。

《信号分析与处理》知识点及重点、难点

《信号分析与处理》知识点及重点、难点

1.信号分析与处理基础知识(3学时)包括信号的定义与分类、信号分析与处理、信号分析与自动控制系统等内容。

2.连续信号的时域描述和分析(7学时)包括连续信号的时域描述和运算、信号的分解、周期信号的频谱分析、非周期信号频谱分析、傅立叶变换的性质等内容。

3.离散信号的分析(18学时)包括连续信号的离散化和采样定理、离散信号的时域分析、离散信号的频域分析(DFS,DTFT,DFT)、快速傅立叶变换(FFT)、离散信号的Z变换分析等内容,共14学时。

包括信号的采样与恢复、DFT和FFT等实验,共4学时。

4.信号处理基础(6学时)包括系统及其性质、信号的线性系统处理(时域分析法、频域分析法、复频域分析法)等内容,共4学时。

包括离散信号与系统分析等实验,共2学时。

5.滤波器(22学时)包括滤波器的基本概念及分类、模拟滤波器设计、数字滤波器设计等内容,共12学时。

包括滤波器设计、语音信号的频谱分析、步进伺服马达控制系统的DSP实现等实验,共10学时。

重点:信号的频域描述和分析;连续信号的离散化和采样定理;信号的FS、FT、DFS、DTFT分析以及DFT、FFT之间的关系;信号的复频域分析方法;滤波器的设计。

难点及解决办法:难点1:信号的频域法描述和分析。

用时域法分析信号与系统,概念上比较直观,学生容易接受,因为其变量是时间的函数。

而用频域法描述和分析信号时,其变量为频率ω/Ω,当ω/Ω变化时,其频率指标为何能反映出信号与系统的性能指标,这是学生难以理解和接受的。

解决办法:首先说明信号的时域描述和分析方法,介绍u(t)、δ(t)等时域描述信号,然后给出信号的频域描述和分析方法。

其次由函数的完备正交性及傅立叶级数,引出傅立叶变换,通过求解常见信号如正弦信号、指数信号、冲激信号、阶跃信号等的傅立叶变换,以及傅立叶变换的帕斯瓦尔定理,以信号时域、频域描述的能量守恒性,说明信号频域描述的可行性。

难点2:信号的模拟频率与数字频率之间的关系。

信号分析与处理课程总结

信号分析与处理课程总结

线性性是指如果两个 信号分别通过傅里叶 变换得到F1(ω)和 F2(ω),那么它们的 和或差通过傅里叶变 换后仍然保持原来的 和或差的关系。
时移性是指如果一个 信号在时间上移动了 t0,那么它通过傅里 叶变换后在频率上也 会有一个相应的移动。
频移性是指如果一个 信号在频率上移动了 Δω,那么它通过傅里 叶变换后在时间上也 会有一个相应的移动。
信号处理能力。
实践项目与竞赛
参与信号处理相关的实践项目和竞赛, 提高实际应用能力,将所学知识应用
于实际问题中。
学习数字信号处理
了解数字信号处理的基本概念和方法, 与模拟信号处理进行比较,加深对信 号处理的理解。
关注前沿技术展
关注信号处理领域的前沿技术和最新 研究动态,不断更新自己的知识和技 能。
THANKS FOR WATCHING
随着数字化和智能化技术的不断发展,信号处理的应用范围越来越广泛,其在通信、电子、计算机等领 域的作用也越来越重要。
02 信号的时域分析
信号的时域表示
01
信号的时域表示是信号在时间轴上的变化情况,包括
信号的幅度、频率和相位等信息。
02
时域表示方法主要有波形图、时频图和离散时间信号
等。
03
时域分析是信号处理中最基础的方法之一,对于理解
了解信号处理的应用
了解信号处理在通信、图像处理、声音处理等领域的应用,为后续学 习和实践提供了基础。
掌握MATLAB等工具的使用
通过实践操作,掌握了使用MATLAB等工具进行信号处理和分析的方 法。
对未来学习的建议与展望
深入学习信号处理算法
进一步学习各种信号处理算法,如滤波 器设计、频谱分析、信号压缩等,提高

信号分析与处理复习

信号分析与处理复习

09电气、10自动化、09测控信号分析与处理复习题一、选择题1. 已知序列 x(n)=u(n)+3u(n-1)-4u(n-3), 则它可以用下面的单位脉冲序列的加权和表示为 ( )A. )2()1(4)()(-+-+=n n n n x δδδB. )2(4)1(4)()(-+-+=n n n n x δδδC. )2(4)1(3)()(-+-+=n n n n x δδδD. )1(4)()(-+=n n n x δδ 2. x((-5))8 =( )A. x(3)B. x(4)C. x(5)D. x(6) 3. 关于信号翻转运算,正确的操作是( ) A. 将原信号的波形按横轴进行对称翻转; B. 将原信号的波形向左平移一个单位; C. 将原信号的波形按纵轴进行对称翻转; D. 将原信号的波形向右平移一个单位;4. 已知信号n j e n x 2)(-=,则其实部分量为 ( ) . A. sin2n B. jsin2n C. cos2n D. –cos2n5. 下面关于时移特性,说法正确的是( ). A. 若)]([)(n x FT e X j =ω,则 )()]([00ωωj n j e X e n n x FT =-; B. 若)]([)(n x FT e X j =ω,则 )()]([00ωωj n j eX en n x FT -=-;C. 若)]([)(n x FT eX j =ω,则 )()]([00ωω-=-j eX n n x FT ;D.信号的时移不会影响信号的幅度谱和相位谱 ;6. 若一个模拟信号x a (t)所包含的最高频率为f max ,对该模拟信号以采样频率f s 进行采样 ,则当满足条件( ) 时,可以避免发生混叠失真。

A. f s >f max B. f s <f max C. f s <2f max D. f s >2f max7.DIT-FFT 中,一个蝶形所包含的计算有( )A. 2次复数加法,2次复数乘法;B. 1次复数加法,2次复数乘法C. 2次复数加法,1次复数乘法D. 1次复数加法,1次复数乘法 8. 下列关于DFT 与DTFT 的关系,说法正确的是( ) A. DFT 是DTFT 的均匀抽样 B. 没有关系C. 没有区别D. DTFT 是DFT 的均匀抽样9. 下面给出了一些DFT 旋转因子W N 的性质表述,其中不正确的是( )。

【复习笔记】信号分析基础

【复习笔记】信号分析基础

第二章 信号分析基础1、信号分析中常用函数包括:δ函数、sinc(t)函数、复指数函数e st① δ函数具有“抽样(乘积)、筛选(积分)、卷积”特性,其拉氏变换和傅氏变换的值均为1。

② 卷积特性的表达式为)()()()()(t f d t f t t f =-=*⎰+∞∞-ττδτδ,τ为两信号之间的时差。

③ sinc(t)函数又称为闸门函数、滤波函数或内插函数,分别对应其用处:闸门(或抽样)、低通滤波、采样信号复原时sinc(t)函数叠加构成非采样点波形。

④ 复指数函数e st 中出现的“负频率”是与负指数相关联的,是数学运算的结果,并无确切的物理含义。

2、一个信号不能够在时域或频域都是有限的。

3、信号的时域统计分析:均值x μ、均方值ψ2x 、方差σ2x 。

三者具有如下关系:2x2x 2x μσψ+= 式中,ψ2x (又称平均功率,平均能量的一种表达)表达了信号的强度; σ2x 描述了信号的波动量; μ2x 描述了信号的静态量。

4、各态历经过程:此过程中的任一个样本函数x(t)都经历了过程的各种状态,从它的一个样本函数x(t)中可以提取到整个过程统计特征的信息。

5、相关函数的性质:① 自相关函数R x (τ)是τ的偶函数,满足:)()(ττ-=x x R R 。

② 互相关函数R xy (τ)是τ的非奇非偶函数,满足:)()(ττ-=yx xy R R 。

③ 当τ=0时,自相关函数具有最大值。

对于功率信号,若均值μx =0,则在τ=0点处,有ψ2x =σ2x =R x (τ)。

④ 周期信号的R x (τ)仍然是与原信号同频率的周期信号,但不具有原信号的相位信息。

⑤ 两周期信号(同频)的R xy (τ)仍然是与原信号同频率的周期信号,但保留了原信号的相位信息。

⑥ 两个不同频的周期信号互不相关,其互相关函数R xy (τ)=0。

⑦ 随机信号的R x (τ)将随|τ|值增大而很快趋于0。

有限带宽白噪声信号的R x (τ)是一个sinc(τ)型函数,即可说明。

信号分析与处理复习提纲

信号分析与处理复习提纲
第五节关于信号分析的小结
了解、熟悉
习题
P155习题1 6 10
第四章信号处理基础
系统分析方法分类、线性无失真传输条件、理想滤波器
简单了解
第五章滤波器
经典滤波器的分类模拟滤波器原理(传递函数、幅度平方函数、不考虑线性相位)
简单了解
三、信号的分解
理解信号分解成冲激函数之和
习题类型
3、4、5
第二节连续信号的频域分析
一、周期信号的频谱分析
例2-3~2-6
二、非周期信号的频谱分析
三、傅里叶变换的性质
例2-8 2-10例2-11例2-12例2-13例2-16例2-17
习题类型
P63 12 13
第三节连续信号的复频域分析
一、信号的拉普拉斯变换
信号分析与处理复习提纲
各章内容
复习ห้องสมุดไป่ตู้
第一章绪论
第一节信号及其分类
一、信号的概念
了解
二、信号的分类
第二节信号的分析与处理概述
第三节自动控制系统中的信号分析与处理习题
第二章连续信号的分析
第一节连续信号的时域描述和分析
一、连续信号的时域描述
了解,重点掌握单位冲激信号定义及性质
二、连续信号的时域运算
掌握基本运算和卷积运算图解方法、p17例题
二、非周期信号的频域分析
三、离散傅里叶变换(DFT)
用定义求DFT,求圆周卷积例3-16
第三节快速傅里叶变换(FFT)
一、快速傅里叶变换(减少DFT运算量)的基本思路
了解
二、基2 FFT算法
三、FFT的应用
了解快速卷积
第四节离散信号的Z域分析
一、离散信号的Z变换
了解Z变换和傅氏变换的关系

信号分析与处理课程总结

信号分析与处理课程总结
第1章 绪论
• 1 信号与信息的关系 • 2 信号的描述方式(三种) • 3 信号的分类
– 模拟信号与连续信号及其关系; – 离散信号与数字信号及其关系; – 模拟、连续、离散、数字信号的判定; – 周期信号的判定<连续、离散>方法; – 能量信号与功率信号的意义与判定方法; – 周期信号是功率信号、非周期信号是能量信号。
• 随机信号的描述
– 随机信号分类及其特点 – 概率密度函数
• 随机信号的数字特征
– 均值、方差、均方值;功率谱密度函数
• 随机信号数字特征的估计
– 估计质量的评价指标 – 数字特征估计
20122012-4-29 18
20122012-4-29
13
第5章 离散信号分析
• 3 离散信号的时域运算
• 平移、翻转、+、×、累加 • 差分运算、尺度变换 • 离散卷积和相关运算
• 4 周期信号的频域分析
– 离散傅里叶级数的计算 – DFS的主要性质 – 离散周期信号频谱的特点 – 混叠与泄漏
20122012-4-29 14
• 3.3 周期信号的傅里叶变换
– 复指数信号的傅里叶变换 – 正弦、余弦信号的傅里叶变换 – 一般周期信号的傅里叶变换 – 单脉冲傅里叶变换、周期脉冲傅里叶级数以及 周期脉冲傅里叶变换的关系
20122012-4-29
8
第3章 连续信号的频域分析
类 型 特点
单脉冲 周期信号 周期信号 傅里叶变换 傅里叶级数 傅里叶变换 连续谱 全频谱连续 X(ω) X(ω) 频谱密度 离散谱 离散谱
20122012-4-29 16
第六章 滤波器
• 6.1 滤波器概述
– 滤波器的基本原理 – 滤波器的分类 – 滤波器的技术要求

信号分析与处理重要知识点汇总课件

信号分析与处理重要知识点汇总课件
则合成的信号是周期信号,周期为两周期的最小公倍数
连续信号的时域分析
冲激信号的描述
(t) 0
t0
(t)



(t)dt

1
性质一:筛选


x(t) (t
t0 )

x(t0 ) (t
t0 )
x(t0 )
性质二:尺度变换 (at b) 1 (t b )
• 将 x2 ( ) 平移t,得到 x2 (t ) 。 • 将x1( ) 和x2 (t ) 相乘,得到被积函数。 • 将被积函数进行积分,即为所求的卷积积分,它是t的函数。
连续信号的时域分析
例1
0 x1 (t) 2
0
t 2 2t 2
t2
求两信号的卷积。
连续信号的时域分析
翻转
将信号以纵坐标轴为中心进行对称映射,即用变量- t 代替原自变量 t 而得到的信号 x(-t)。
连续信号的时域分析
平移
将原信号沿时间轴平移,信号的幅值不发生改变。 若t0为大于零的常数,则
沿坐标轴正方向平移(右移)t0表示信号的延时 沿坐标轴反方)
例 5 将 x(t) 以1为周期进行延拓得到周期
A
信号,求其傅里叶变换。
x(t )
CFT
ASa


2

e
j /2

Ae
j
j
记 x(t) CFT f ()
1
t

X (k0 )
f
(k0 )

ASa

k0
2

e
jk0
/
2

信号处理知识点总结

信号处理知识点总结

信号处理知识点总结 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】第一章信号1.信息是消息的内容,消息是信息的表现形式,信号是信息的载体2.信号的特性:时间特性,频率特性3.若信号可以用确定性图形、曲线或数学表达式来准确描述,则该信号为确定性信号若信号不遵循确定性规律,具有某种不确定性,则该信号为随机信号4.信号分类:能量信号,一个信号如果能量有限;功率信号,如果一个信号功率是有限的5.周期信号、阶跃信号、随机信号、直流信号等是功率信号,它们的能量为无限6.信号的频谱有两类:幅度谱,相位谱7.信号分析的基本方法:把频率作为信号的自变量,在频域里进行信号的频谱分析第二章连续信号的频域分析1.周期信号频谱分析的常用工具:傅里叶三角级数;傅里叶复指数2.利用傅里叶三角级数可以把周期信号分解成无穷多个正、余弦信号的加权和3频谱反映信号的频率结构,幅频特性表示谐波的幅值,相频特性反映谐波的相位4.周期信号频谱的特点:离散性,谐波性,收敛性5.周期信号由无穷多个余弦分量组成周期信号幅频谱线的大小表示谐波分量的幅值相频谱线大小表示谐波分量的相位6.周期信号的功率谱等于幅值谱平方和的一半,功率谱反映周期信号各次谐波的功率分配关系,周期信号在时域的平均功率等于其各次谐波功率之和7.非周期信号可看成周期趋于无穷大的周期信号8.周期T0增大对频谱的影响:谱线变密集,谱线的幅度减少9.非周期信号频谱的特点:非周期信号也可以进行正交变换;非周期信号完备正交函数集是一个无限密集的连续函数集;非周期信号的频谱是连续的;非周期信号可以用其自身的积分表示10.常见奇异信号:单位冲激信号,单位直流信号,符号函数信号,单位阶跃信号11.周期信号的傅里叶变换:周期信号:一个周期绝对可积à傅里叶级数à离散谱非周期信号:无限区间绝对可积à傅里叶变换à连续谱12.周期信号的傅立叶变换是无穷多个冲激函数的线性组合脉冲函数的位置:ω=nω0 , n=0,±1,±2, …..脉冲函数的强度:傅里叶复指数系数的2π倍周期信号的傅立叶变换也是离散的;谱线间隔与傅里叶级数谱线间隔相同13.信号的持续时间与信号占有频带成反比14.信号在时域的翻转,对应信号在频域的翻转15.频域频移,时域只有相移,幅频不变;时域相移,只导致频域频移,相位不变第三章 连续信号分析1.正弦信号的性质:两个同频正弦信号相加,仍得同频信号,且频率不变,幅值和相位改变;频率比为有理整数的正弦信号合成为非正弦周期信号,以低频(基频f0)为基频,叠加一个高频 (频nf0)分量2.函数f(t)与冲激函数或阶跃函数的卷积: f(t)与冲激函数卷积,结果是f(t)本身; f(t)与冲激偶的卷积,d(t)称为微分器f(t)与阶跃函数的卷积, u(t)称为积分器 3. 函数正交的充要条件是它们的内积为0第二章 离散傅里叶变换及其快速算法1.时域上周期序列的离散傅里叶级数在频域上仍是一个周期序列2.周期卷积特性:同周期序列的时域卷积等于频域的乘积同周期序列的时域乘积等于频域的卷积3.周期卷积与线性卷积的区别:线性卷积在无穷区间求和;周期卷积在一个主值周期内求和4.有限长序列隐含着周期性5.有限长序列的循环移位导致频谱线性相移而对频谱幅度无影响6.FFT 的计算工作量:FFT 算法对于N 点DFT,仅需(N/2)log2N次复数乘法运算和Nlog2N 次复数加法)()()(t f t t f '='*δ⎰∞-=*td f t u t f λλ)()()(第三章随机信号分析与处理1 随机信号是随时间变化的随机变量,用概率结构来描述。

《信号分析与处理》复习课 - 浙江大学电气工程学院

《信号分析与处理》复习课 - 浙江大学电气工程学院
目录 绪论 连续信号分析 离散时间信号分析 信号处理基础 滤波器
《信号分析与处理》复习课
2014-2015 7 5 3 00-4 时间 00 II-208
项基
Department of System Science and Engineering College of Electrical Engineering, Zhejiang University Email: jxiang@ /xiang
T0 2
数 w0 = 2 频 数
1 x(t)e−jnw0 t dt T0 − T0 2 ∫ π 2 1 (cos(4t) + sin(6t))e−j2nt dt π −π
2
x(t) = 0.5e−j4t + 0.5ej4t − 0.5je6jt + 0.5je−j6t X(2w0 ) = X(−2w0 ) = 0.5, X(3w0 ) = −0.5j, X(−3w0 ) = 0.5j 信号频
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3
4 5
项基
《信号分析与处理》复习课
目录 绪论 连续信号分析 离散时间信号分析 信号处理基础 滤波器
绪论 I
1 2
信号 信号
信 分
时间 间 连续时间信号 离散时 号 连续
频域分析 IV
2 3

分 |X(nw0 )| → 0,
离 n→∞
基波频
频 信号 ( P= A0 2 )2 +

∞ ∑ 1 2 An 2 n=1
时域
频域
2

现代信号处理复习要点总结

现代信号处理复习要点总结

《信号处理技术及应用》复习要点总结题型:10个简答题,无分析题。

前5个为必做题,后面出7个题,选做5个,每个题10分。

要点:第一章:几种变换的特点,正交分解,内积,基函数;第二章:信号采样中的窗函数与泄露,时频分辨率,相关分析及应用(能举个例子最好)第三章:傅里叶级数、傅里叶变换、离散傅里叶变换(DFT)的思想及公式,FFT校正算法、功率谱密度函数的定义,频谱细化分析,倒频谱、解调分析、时间序列的基本原理(可能考其中两个)第四章:一阶和二阶循环统计量的定义和计算过程,怎么应用?第五章:多分辨分析,正交小波基的构造,小波包的基本概念第六章:三种小波各自的优点,奇异点怎么选取第七章:二代小波提出的背景及其优点,预测器和更新器系数计算方法,二代小波的分解和重构,定量识别的步骤第八章:EMD基本概念(瞬时频率和基本模式分量)、基本原理,HHT的基本原理和算法。

看8.3小节。

信号的时域分析信号的预处理传感器获取的信号往往比较微弱,并伴随着各种噪声。

不同类型的传感器,其输出信号的形式也不尽相同。

为了抑制信号中的噪声,提高检测信号的信噪比,便于信息提取,须对传感器检测到的信号进行预处理。

所谓信号预处理,是指在对信号进行变换、提取、识别或评估之前,对检测信号进行的转换、滤波、放大等处理。

常用的信号预处理方法信号类型转换信号放大信号滤波去除均值去除趋势项理想低通滤波器具有矩形幅频特性和线性相位特性。

经典滤波器定义:当噪声和有用信号处于不同的频带时,噪声通过滤波器将被衰减或消除,而有用信号得以保留现代滤波器当噪声频带和有用信号频带相互重叠时,经典滤波器就无法实现滤波功能现代滤波器也称统计滤波器,从统计的概念出发对信号在时域进行估计,在统计指标最优的意义下,用估计值去逼近有用信号,相应的噪声也在统计最优的意义下得以减弱或消除将连续信号转换成离散的数字序列过程就是信号的采样,它包含了离散和量化两个主要步骤采样定理:为避免混叠,采样频率ωs必须不小于信号中最高频率ωmax的两倍,一般选取采样频率ωs为处理信号中最高频率的2.5~4倍量化是对信号采样点取值进行数字化转换的过程。

测试技术复习资料 第七章 测试信号的处理与分析 考试重点

测试技术复习资料 第七章 测试信号的处理与分析 考试重点

测试技术复习资料 第七章 测试信号的处理与分析 考试重点一、选择题1. 两个正弦信号间存在下列关系:( B )A. 同频相关,不同频也相关B. 同频相关,不同频不相关C. 同频不相关,不同频相关D. 同频不相关,不同频也不相关2. 自相关函数是一个( B )函数。

A. 奇B. 偶C. 非奇非偶D. 三角3. 如果一信号的自相关函数)(τx R 呈现一定周期的不衰减,则说明该信号( B )。

A. 均值不为0B. 含有周期分量C. 是各态历经的D. 不含有周期分量4. 正弦信号的自相关函数是( A ),余弦函数的自相关函数是(C )。

A. 同频余弦信号B. 脉冲信号C. 偶函数D. 正弦信号5.经测得某信号的相关函数为一余弦曲线,则其( C )是正弦信号的( D )。

A. 可能B. 不可能C. 必定D. 自相关函数6. 对连续信号进行采样时,采样频率越高,当保持信号的记录的时间不变时,则( C )。

A. 泄漏误差就越大B. 量化误差就越小C. 采样点数就越多D. 频域上的分辨率就越低7. 把连续时间信号进行离散化时产生混叠的主要原因是( B )。

A. 记录时间太长B. 采样间隔太宽C. 记录时间太短D. 采样间隔太窄8. 若有用信号的强度、信噪比越大,则噪声的强度(C )。

A. 不变B. 越大C. 越小D. 不确定9. A/D 转换器是将( B )信号转换成( D )信号的装置。

A. 随机信号B. 模拟信号C. 周期信号D. 数字信号10. 两个同频方波的互相关函数曲线是( C )。

A. 余弦波B. 方波C. 三角波D. 正弦波11. 已知x (t )和y (t )为两个周期信号,T 为共同的周期,其互相关函数的表达式为( C )。

A.dt t y t x T T )()(210⎰+τ B. dt t y t x TT )()(210⎰+τ C. dt t y t x T T )()(10⎰+τ D. dt t y t x T T )()(210⎰-τ 12. 两个不同频率的简谐信号,其互相关函数为( C )。

信号分析与处理公式 笔记

信号分析与处理公式 笔记

信号分析是认识世界的方法,信号处理是改造世界的手段用阶跃函数闭式表示分段光滑信号x (t ) = 2ε(t )- 3ε(t -1) +ε(t -2)冲激函数的性质1) 与普通函数 x(t) 的乘积——筛分性质若x (t )在 t = 0 、 t = t0处存在,则 x (t )δ(t ) = x (0)δ(t ) , x (t )δ(t –t 0) = x (a) (t –t 0) 2) 与普通函数 x(t) 的乘积再积分——抽样性质3)冲激函数与阶跃函数关系: 可见,引入冲激函数之后,间断点的导数也存在。

如 x (t ) = 2ε(t +1)-2ε(t -1) x′(t ) = 2δ(t +1)-2δ(t -1)注意:图中K 为强度,要括住!冲激函数的导数δ’(t ) (也称冲激偶信号) 1) 与普通函数 x(t) 的乘积——筛分性质2) 抽样性质 例如:★周期信号都可表示为谐波关系的正弦信号的加权和 非周期信号都可用正弦信号的加权积分表示周期信号的傅里叶级数 1、傅里叶级数的三角形式)(d )()(00t x t t t t x =-⎰∞∞-δ⎰∞-=tt ττδεd )()(dt t d t )()(δδ='()()(0)()(0)()x t t x t x t δδδ'''=-00()()d ()x t t t t x t δ∞-∞''-=-⎰)42(4)(2-=t t t xδ24(2(2))t t δ=-24(2)8(2)2t t t δδ=-=-1sin()()2j t j tt e e j ωωω-=-1cos()()2j t j t t e e ωωω-=+))sin()cos(()(1110t k b t k a a t x k k k ωω++=∑∞=∑∞=++=110)cos()(k k k t k C C t x ϕω⎰∞∞--=ττδτd )()()(t x t x2、傅里叶级数的指数形式两种傅氏级数的系数间的关系:非周期信号的傅里叶变换典型非周期信号的频谱1.单边指数信号 x (t) = e –αt ε(t), α >0实数2. 矩形脉冲信号 (门函数)3. 符号函数4. 单位冲激信号5. 单位阶跃信号 ⎰-=221111d )cos()(2T T k t t k t x T a ω∑∞-∞==k tjk k X t x 1e )(ω000a c X ==)(21k k j k k jb a e X X k -==ϕ)(21k k j k k jb a e X X k+==---ϕ()()()()()()1F 1F 2j tj tX x t x t e dt x t X X e d ωωωωωωπ∞--∞∞--∞⎧==⎡⎤⎣⎦⎪⎨⎪==⎡⎤⎣⎦⎩⎰⎰⎰∞∞--∞→==t t x T X X tj k T d e )(lim )(11ωω()()()j X X e ϕωωω=⎰∞∞-=dt t x X )()0(⎰∞∞-=ωωπd )(21)0(X x ωαωαωωαωαj j t X t j t j t +=+-==∞+-∞--⎰1e 1d e e )(0)(0()()22222sin Sa 22j t j t j t E X x t e dt E e dt e j E E ττωωωττωωωτωττω∞----∞--===-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭⎰⎰()()1,0sgn 1,0t x t t t >⎧==⎨-<⎩ωωαωωααj j X t 22lim )(lim )sgn(22010=⎪⎪⎭⎫ ⎝⎛+-=←→→→0()()1j t j X t e dt e ωωωδ+∞---∞===⎰)(2)(2d e 1ωπδωπδω=-=←→⎰∞∞--t tj 111傅里叶变换的性质1. 线性(Linear Property)2. 对偶性(Symmetrical Property) 若 x (t ) ←→X (ω) 则3. 尺度变换性质(Scaling Transform Property) 若 x (t ) ←→X (ω) 则 其中 “a ” 为不等于零的实常数。

信号分析与处理重要知识点

信号分析与处理重要知识点

信号分析与处理重要知识点信号分析与处理是一门研究信号的产生、传输、采集、处理、分析及其应用的学科。

随着现代科学技术的快速发展,信号分析与处理在工程技术、通信技术、医学影像、机器学习等领域得到了广泛应用。

下面是信号分析与处理的重要知识点。

1.傅里叶变换傅里叶变换是信号处理中最为常用的数学工具之一、它将一个信号分解成多个基频的正弦和余弦波,便于对信号的频谱进行分析。

傅里叶变换有很多应用场景,比如音频、图像、视频信号处理等。

2.时频分析时频分析是一种将时间和频率两个维度结合的信号分析方法。

它通过对信号在时间和频率上的变化进行分析,能够得到信号的瞬时频率、能量集中区域等特征。

时频分析常见的方法有短时傅里叶变换(STFT)、连续小波变换(CWT)、希尔伯特-黄变换(HHT)等。

3.数字滤波器设计数字滤波器是指能够对数字信号进行滤波处理的系统,通常由差分方程、频率响应函数等方式描述。

数字滤波器设计是信号处理中的核心内容之一,常见的数字滤波器有低通滤波器、高通滤波器、带通滤波器等。

常用的滤波器设计方法有窗函数、零相位滤波器设计、最小相位滤波器设计等。

4.信号重构与插值信号重构与插值是对信号进行采样、压缩、恢复的过程。

在信号处理中,经常会遇到信号采样率不匹配、信号数据损失等情况,需要通过信号重构与插值的方法进行恢复。

常见的信号重构与插值方法有线性插值、多项式插值、样条插值等。

5.自适应信号处理自适应信号处理是指信号处理系统能够根据信号的特征,自动地调整处理参数,以适应信号的变化。

自适应信号处理常用的方法有LMS算法、RLS算法、神经网络等。

自适应信号处理广泛应用于通信系统、自动控制系统、智能系统等领域。

6.非平稳信号分析非平稳信号是指信号的统计特性随时间变化的信号。

非平稳信号分析是指对非平稳信号进行特性提取和分析的过程。

常见的非平稳信号分析方法有小波变换、时频分析、奇异谱分析、经验模态分解等。

7.高维信号处理高维信号是指在高维空间中描述的信号,如多维图像、多通道信号等。

《信号分析与处理》期末考试复习提纲

《信号分析与处理》期末考试复习提纲
信号的特性包括幅度、频率、相位等, 这些特性决定了信号的形状和特征。
VS
详细描述
幅度是指信号的最大值或最小值,频率是 指信号每秒钟变化的次数,相位则是指信 号在不同时间点的相对位置。这些特性决 定了信号的具体形状和特征,对于信号的 分析和处理非常重要。例如,在通信系统 中,信号的频率特性决定了信号的传输质 量和抗干扰能力。
填空题2
简述滤波器的作用。答案:滤波器的 作用是提取或抑制特定频率范围的信 号,用于信号处理和通信系统等领域 。
计算题
计算题1
给定一个信号x(t),求其傅里叶变换X(f)。答案:根据傅里叶变换的定义,利用积分计 算得到X(f)的表达式。
计算题2
给定两个信号x1(t)和x2(t),求其卷积结果。答案:根据卷积的定义,利用积分计算得 到x1(t)和x2(t)的卷积结果。
谢谢观看
选择题1
简述信号的基本特征。答案:信号的基本特征包括幅度、频率和相位。
选择题2
解释离散傅里叶变换(DFT)和快速傅里叶变换(FFT)的区别。答案:DFT计算复杂度为O(N^2),而 FFT计算复杂度为O(的频谱表示方法。答案:信 号的频谱表示方法包括频谱图和功率 谱密度函数。
若 $x(t)$ 是信号,则 $x(t-t_0)$ 的频谱是 $X(f)e^{-j2pi ft_0}$。
若 $x(t)$ 是信号,则 $x(t)e^{ j2pi ft}$ 的频 谱是 $X(f-f_0)$。
若 $x(t)$ 是信号,则 $x^*(t)$ 的频谱是 $X^*(f)$。
若 $x(t)$ 是周期信号, 其周期为 $T$,则 $X(f)$ 以 $frac{1}{T}$ 为周期。
详细描述
音频信号处理技术广泛应用于音乐制作、语音识别、音频编解码等领域。通过对 音频信号进行滤波、压缩、去噪等处理,可以提高音频质量或提取音频特征进行 进一步分析。

合工大信号分析与处理综合重难点精讲

合工大信号分析与处理综合重难点精讲

若1、2条件都满足则为线性系统,否则不是
考试点
时变系统 —系统参数随时间变化的系统,用变参数方程描述。 非时变系统 —系统参数不随时间变化的系统,用常参数方程 。 时不变特性 若: x (t ) y (t ) 系统
x(t)
则: x(t t0 ) y(t t0 ) y( t ) E y( t - t 0 ) t
0
t0
t0+1
t
考试点
2.单位阶跃信号
u(t)
0 (t 0) u (t ) 1 (t 0)
单位斜边信号的一阶导数为单位阶跃信号
1
0
t
0 u (t t0 ) 1
t t0 t t0
1
t0
考试点
u(t)的性质:单边特性,即:
0 f (t )u (t ) f (t )

f (t ) (t ) f (0) (t )




f (t ) (t t 0 ) dt f (t 0 ) (t t 0 ) dt f (t 0 )
1 a

尺度:


(at )
(t )
考试点
4.冲激偶信号 ( t )
' (t )
d dt
(t )
-1
t0 1
t
-1+t0
1 1+t0 t
-1-t0
1-t0
t
t0>0
t0>0
考试点
2). 反转(反褶)
f (t ) f ( t )
f (t )
t t
从波形上看, f (-t ) 是 f ( t ) 的波形以纵轴镜像对称

信号分析与处理复习题

信号分析与处理复习题

立的条件是(

A.系统为因果系统 B.系统为稳定系统
C.系统为线性系统 D.系统为时不变系统
11.如图所示, x(t) 为原始信号, x1(t) 为 x(t) 的变化信号,则 x1(t) 的表达式是


x(t ) 2 1
-1 0 1 2 t
x1 (t ) 2 1
-1/3 0 2/3
t
A. x(3t 1) C. x(3t 1)
,如果该系统是因果稳定的,
则(

A.|a|≥1 B. |a|>1 C. |a|≤1 D. |a|<1
19.已知系统的差分方程为: y(n) x(n) x(n 1) ,该系统是( )
A.因果稳定系统
B. 因果非稳定系统
C. 非因果稳定系统
D. 非因果非稳定系统
20. 利用 DFT 对序列 x(n) sin(0.48 n) sin(0.52 n) 进行频谱分析,为正确得到
24.关于窗函数设计法中错误的是:
5
A 窗函数的截取长度增加,则主瓣宽度减小; B 窗函数的旁瓣相对幅度取决于窗函数的形状,与窗函数的截取长度无关; C 为减小旁瓣相对幅度而改变窗函数的形状,通常主瓣的宽度会增加; D 窗函数法不能用于设计高通滤波器;
25. 利用模拟滤波器设计 IIR 数字滤波器时,为了使系统的因果稳定性不变,在
五、设有一谱分析用的信号处理器,抽样点数必须为 2 的整数幂,假定没有采用任何特殊数据处理措施,要求频率分辨力≤10Hz,如果 采用的抽样时间间隔为 0.1ms,试确定 (a)最小记录长度; (b)所允许处理的信号的最高频率; (C)在一个记录中的最少点数。
六、一个有限长序列为 x(n) 2 (n) (n 1) (n 3)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

试题形式
填空题—10分/10格/5题
问答题—18分/3题
计算题—72分/6题 考试时间:17周(教秘安排)
第一章 信号分析与处理的基本概念
复习考点(题型:填空/问答)
信号的分类(P3)
信号取值是否确定:确定性信号和随机信号
信号自变量取值是否连续:连续信号和离散信号
信号在某一区间是否重复出现:周期信号和非周期信号
信号的能量或功率是否有限:能量信号和功率信号
周期信号的基本周期计算(P4,参考P5例子)
()()x t x t nT =+ (0,1,2,....n =±±
式中nT 为x(t)的周期,而满足关系式的最小T 值称为信号的基本周期。

信号处理的概念、目的(P5)
概念:要把记录在某种媒体上的信号进行处理,以便抽取有用信息的过程,它是对信号进行提取、变换、分析、综合等处理过程的统称。

目的:去伪存真,特征提取,编码和解码(调制与解调)
系统的性质/线性系统的条件(P11-14)
性质:线性(包括齐次性与叠加性),时不变性,因果性,稳定性
线性系统的条件:同时具有齐次性和叠加性的系统称为线性系统。

对于动态系统满足3个条件:可分解性、零状态线性、零输入线性
第二章 连续时间信号的分析
复习考点(题型:填空/问答/计算)
信号分析的方法 (P22)
信号分析的基本方法是信号的分解,即将任意信号分解成有限个或无限个基本信号的线性组合,通过对构成信号的基本单元的分析达到了解原信号的目的。

包括时域方法,频域方法,复频域方法。

信号的频谱分类/P47 思考题2-4 (P30-31)
信号的频谱包括幅度频谱和相位频谱
周期信号的频谱特点:离散普,其相邻谱线的间隔是w1,改变信号的周期将改变信号的频谱的疏密程度,当周期趋于无穷大时,频谱将是连续的。

分类:
带宽定义(P31)
通常把()01/02/f τωπτ≤≤≤≤这段频率范围称为周期矩形脉冲信号的频带宽度,简称带宽,记做B ,1/2/B B ωτπτ==或
计算题:以作业题为主
第三章 连续时间信号处理
复习考点(题型:填空/问答/计算)
线性时不变LTI 系统定义与描述方式(P52/P61)
LTI :linear time invariant
定义:如果系统的输入和输出满足叠加性和齐次性,而且组成系统的各个元件的参数不随时间而变化,则称该系统为线性时不变系统,简称LTI 系统 描述方式:系统微分方程,系统函数,系统冲激响应。

零输入响应/零状态响应/冲激响应的定义(P56-P57)
零输入响应:激励为零时仅由系统的初始状态()(){}0j y
-所引起的响应,用
()zi y t 表示; 零状态响应:系统的初始状态为零时仅有激励所引起的响应,用()zs y t 表示
冲激响应:系统在单位冲激信号()t δ作用下产生的零状态响应。

用()h t 表示。

信号失真概念/分类/无失真条件(P65-P66)
概念:信号在传输过程中输出的波形发生畸变,和输入的波形不相同。

分类:幅度失真和相位失真
无失真条件:系统是全通系统,即系统的幅频响应是一常数;系统是线性相位系统,即系统的相频特性是通过原点的一条直线。

计算题:以作业题为主
第四章 离散时间信号的分析
复习考点(题型:填空/问答/计算)
采样定理(P75)
定义:若要把一个信号从其采用信号中无失真的恢复出来,首先要保证被采样的信号必须是带限信号,即频谱范围为()M M ωω-+:,再就是采样频率
ws 必须大于被采样信号中最高频率w M 的两倍,即2S M ωω>,或采样周期
12S M T f ≤,这就是著名的采样定理。

实际采样与理想采样的差别(P76-77)
差别:
计算题:以作业题为主(试题若提供公式,以此为准)
第五章 离散时间信号处理基础
复习考点(题型:填空/问答/计算)
线性时不变离散系统的描述方式(P114)
描述方式:差分方程,脉冲响应,系统函数。

系统的稳定性和因果性/P120 思考题 5-12 (P115)
传递函数的所有极点都必须在单位圆内,这样的系统才能同时满足稳定性与因果性的要求。

计算题:以作业题为主
第六章 离散傅里叶变换
复习考点(题型:计算)
计算题:以作业题为主
第七章数字滤波器
复习考点(题型:填空/问答/计算)
数字滤波器的分类(P149)
按频率特性划分:低通,高通,带通,带阻数字滤波器。

按单位脉冲响应划分:无限脉冲响应滤波器和有限脉冲响应滤波器。

IIR:Infinite Impulse Response
FIR:Finite Impulse Response
FIR数字滤波器的线性相位条件(P174)
FIR滤波器加窗的目的(P178)
计算题:以作业题为主。

相关文档
最新文档