精品 高中三角函数知识点复习总结

合集下载

高中数学三角函数知识点总结(珍藏版)

高中数学三角函数知识点总结(珍藏版)

高中数学三角函数知识点总结1.特殊角的三角函数值:2.角度制与弧度制的互化:,23600π= ,1800π=1rad =π180°≈57.30°=57°18ˊ1°=180π≈0.01745〔rad 〕3.弧长及扇形面积公式(1)弧长公式:r l .α= α----是圆心角且为弧度制(2)扇形面积公式:S=r l .21r-----是扇形半径4.任意角的三角函数设α是一个任意角,它的终边上一点p 〔x,y 〕, r=22y x +(1)正弦sin α=r y 余弦cos α=r x 正切tan α=xy(2)各象限的符号:记忆口诀:一全正,二正弦,三两切,四余弦sin α cos α tan α 5.同角三角函数的根本关系: 〔1〕平方关系:s in 2α+ cos 2α=1 〔2〕商数关系:ααcos sin =tan α〔z k k ∈+≠,2ππα〕 6.诱导公式:记忆口诀:把2k πα±的三角函数化为α的三角函数,概括为:奇变偶不变,符号看象限。

()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭.()6sin cos 2παα⎛⎫+=⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭. 口诀:正弦与余弦互换,符号看象限.xy+O— —+x yO — ++— +y O— + + —7正弦函数、余弦函数和正切函数的图象与性质8、三角函数公式:(3) 降幂公式: 升幂公式 : 1+cos α=2cos 22α cos 2α22cos 1α+=1-cos α=2sin 22αsin 2α22cos 1α-=9、正弦定理 :2sin sin sin a b cR A B C===.余弦定理:2222cos a b c bc A =+-;2222cos b c a ca B =+-; 2222cos c a b ab C =+-.三角形面积定理:111sin sin sin 222S ab C bc A ca B ===.。

高中三角函数知识点总结《精华版》

高中三角函数知识点总结《精华版》

高中三角函数知识点总结《精华版》一、三角函数的定义:1. 正弦函数(sin):在单位圆上,其中一角的正弦值等于该角顶点的对边与斜边的比值。

2. 余弦函数(cos):在单位圆上,其中一角的余弦值等于该角顶点的邻边与斜边的比值。

3. 正切函数(tan):在单位圆上,其中一角的正切值等于该角顶点的对边与邻边的比值。

二、基本性质:1.三角函数的值域:正弦和余弦的值域为[-1,1],正切的值域为实数集。

2. 正弦函数和余弦函数的关系:sin²θ + cos²θ = 13.三角函数的周期性:正弦和余弦函数的周期为2π,正切函数的周期为π。

三、三角函数与四象限:1. 在第一象限,sinθ和cosθ均为正数。

2. 在第二象限,sinθ为正,cosθ为负。

3. 在第三象限,sinθ和cosθ均为负数。

4. 在第四象限,sinθ为负,cosθ为正。

四、三角函数的图像及性质:1.正弦函数的图像:从原点出发向右为起始点,振动幅度为1,曲线在零点上下交替。

2.余弦函数的图像:从峰值(1或-1)出发向右为起始点,振动幅度为1,曲线在零点上下交替。

3.正切函数的图像:振动幅度无限增加,从0开始。

五、常见角的正弦、余弦和正切值的计算:1. 0度:sin0 = 0,cos0 = 1,tan0 = 0。

2. 30度:sin30° = 1/2,cos30° = √3/2,tan30° = 1/√33. 45度:sin45° = √2/2,cos45° = √2/2,tan45° = 14. 60度:sin60° = √3/2,cos60° = 1/2,tan60° = √35. 90度:sin90° = 1,cos90° = 0,tan90° = 无穷大。

六、三角函数的基本性质:1.奇偶性:正弦函数是奇函数,余弦函数是偶函数,正切函数是奇函数。

高考三角函数知识点总结

高考三角函数知识点总结

高考三角函数知识点总结一、基本概念和性质1.弧度制:单位圆上的弧所对应的圆心角的大小定义为该弧的弧度。

1弧度等于圆周的1/2π。

2. 三角函数:正弦函数sin(x)、余弦函数cos(x)、正切函数tan(x)、余切函数cot(x)、正割函数sec(x)和余割函数csc(x)。

3.三角恒等式:包括同角三角恒等式、余角三角恒等式、反三角函数同角恒等式等。

4.周期性:正弦函数、余弦函数、正割函数和余割函数的周期都是2π;正切函数和余切函数的周期是π。

二、基本关系式1.正弦函数:在直角三角形中,正弦函数是指对于一个锐角三角形,三角形的对边和斜边的比值。

- sin(x) = a / c,其中a是对边,c是斜边。

- sin(x) = y / r,其中y是斜边在y轴上的投影,r是半径。

2.余弦函数:在直角三角形中,余弦函数是指对于一个锐角三角形,三角形的邻边和斜边的比值。

- cos(x) = b / c,其中b是邻边,c是斜边。

- cos(x) = x / r,其中x是斜边在x轴上的投影,r是半径。

3.正切函数:在直角三角形中,正切函数是指对于一个锐角三角形,三角形的对边和邻边的比值。

- tan(x) = a / b,其中a是对边,b是邻边。

- tan(x) = y / x,其中y是斜边在y轴上的投影,x是斜边在x轴上的投影。

4.余切函数:余切函数是正切函数的倒数。

- cot(x) = 1 / tan(x)。

5.正割函数:在直角三角形中,正割函数是指对于一个锐角三角形,三角形的斜边和邻边的比值的倒数。

- sec(x) = 1 / cos(x)。

6.余割函数:在直角三角形中,余割函数是指对于一个锐角三角形,三角形的斜边和对边的比值的倒数。

- csc(x) = 1 / sin(x)。

三、平面内角与弧度制之间的关系1.弧度制与度数之间的转换:-弧度=度数×π/180-度数=弧度×180/π2.弧度制下的角的性质:-一个圆上的圆心角的弧度数等于该弧所对应的弧的弧度数。

高中重点数学知识:三角函数

高中重点数学知识:三角函数

高中重点数学知识:三角函数
高中重点数学知识:三角函数
高中最重要的阶段,大家一定要把握好高中,多做题,多练习,为高考奋战,下面小编为大家带来了三角函数的高中重点数学知识,希望对大家有帮助。

一、三角函数
三角函数的定义域是研究其他一切性质的前提,求三角函数的定义域实际上就是解最简单的三角不等式,通常可用三角函数的图像或三角函数线来求解,注意数形结合思想的`应用,如何运用三角函数的图像解决问题能够帮助对数形结合思想的掌握。

二、三角函数诱导公式
1.公式一:设α为任意角,终边相同的角的同一三角函数的值相等运用同角三角函数的基本关系式求值
2.公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=—sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:任意角α与-α的三角函数值之间的关系:
sin(-α)=-sinα
三、锐角三角函数
在△ABC中,∠C为直角,∠A和∠B是锐角。

高中数学三角函数知识点完整总结

高中数学三角函数知识点完整总结

高中数学三角函数知识点完整总结1.弧度若一圆的半径为r,则弧长s所对应的圆心角θ为θ=sr弧度。

2.度与弧度的换算(1) 1 弧度=180π︒。

(2) 1°=180π弧度。

3.扇形的弧长与面积公式若圆半径为r,扇形COD的圆心角∠COD=θ(弧度),0 ≤ θ≤ 2π,如右图,令扇形的弧长为s,面积为A,则(1) s=rθ。

(2) A=12r2θ=12rs。

4.三角函数的定义sin θ=對邊長斜邊長,称为θ的正弦,cos θ=鄰邊長斜邊長,称为θ的余弦,tan θ=對邊長鄰邊長,称为θ的正切,cot θ=鄰邊長對邊長,称为θ的余切,sec θ=斜邊長鄰邊長,称为θ的正割,csc θ=斜邊長對邊長,称为θ的余割。

5.广义角三角函数的定义设θ是一个标准位置角,在角θ的终边上任取一点P(x,y),x,y不同时为0,且22==+OP r x y>0,如右图,则定义角θ的六个三角函数值如下:sin θ=yr,cos θ=xr,tan θ=yx,cot θ=xy,sec θ=rx,csc θ=ry。

6.倒数关系对于任意角θ,在下列各项均有意义时,有(1) sin θ‧csc θ=1。

(2) cos θ‧sec θ=1。

(3) tan θ‧cot θ=1。

7.商数关系对于任意角θ,在下列各项均有意义时,有(1) tan θ=sincosθθ。

(2) cot θ=cossinθθ。

8.平方关系对于任意角θ,在下列各项均有意义时,有(1) sin2θ+cos2θ=1。

(2) 1+tan2θ=sec2θ。

(3) 1+cot2θ=csc2θ。

9.正弦函数(y=sin x)(1) 定义域为{x|x为实数}。

(2) 值域为{y|y为实数,-1 ≤ y≤ 1}。

(3) 周期为 2π。

10. 余弦函数(y =cos x )(1) 定义域为{x|x 为实数}。

(2) 值域为{y|y 为实数,-1 ≤ y ≤ 1}。

(3) 周期为 2π。

高中三角函数知识点归纳总结(通用10篇)

高中三角函数知识点归纳总结(通用10篇)

高中三角函数知识点归纳总结(通用10篇)高中数学三角函数知识点总结:三倍角公式篇一sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · tan(π/3+a)· tan(π/3-a)高中数学三角函数知识点总结:三倍角公式推导篇二sin3a=sin(2a+a)=sin2acosa+cos2asina高中数学三角函数知识点总结:半角公式篇三tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))三角和sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)高中数学三角函数知识点总结:辅助角公式篇四Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))高中数学三角函数知识点总结:和差化积篇五sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)高中三角函数知识点归纳篇六1.做高中数学题的时候千万不能怕难题!有很多人数学分数提不动,很大一部分原因是他们的畏惧心理。

2024届全国新高考数学精准复习三角函数知识点总结

2024届全国新高考数学精准复习三角函数知识点总结

千里之行,始于足下。

2024届全国新高考数学精准复习三角函数知识点总结2024届全国新高考数学考试中,三角函数是一个重要的知识点。

以下是三角函数的主要内容和考点总结:1. 基本概念:- 弧度与角度的转换:1弧度=180°/π,1度=π/180弧度。

- 正弦、余弦、正切、余切、正割、余割的定义与关系。

2. 三角函数的图像与性质:- 正弦函数和余弦函数的图像特点:周期为2π,在x轴上的零点为kπ,振幅为1。

- 正切函数的图像特点:周期为π,在x轴上的零点为kπ,无振幅。

- 三角函数的奇偶性:正弦函数是奇函数、余弦函数是偶函数、正切函数是奇函数。

- 三角函数的周期性:正弦、余弦函数的周期为2π,正切函数的周期为π。

3. 三角函数的性质与关系:- 三角函数的基本关系:tanx=sinx/cosx,cotx=1/tanx,secx=1/cosx,cscx=1/sinx。

- 三角函数的倒数关系:sinx=1/cscx,cosx=1/secx,tanx=1/cotx。

- 三角函数的平方关系:sin^2x+cos^2x=1,1+tan^2x=sec^2x,1+cot^2x=csc^2x。

4. 三角函数的性质与特殊值:- 正弦函数和余弦函数的取值范围:-1≤sinx≤1,-1≤cosx≤1。

第1页/共2页锲而不舍,金石可镂。

- 正切函数和余切函数的取值范围:tanx属于R,cotx属于R。

- 三角函数的特殊值:sin0=0,cos0=1,sin90°=1,cos90°=0,tan45°=1,cot45°=1。

5. 三角函数的解析式与性质:- sin(x±y)=sinxcosy±cosxsiny。

- cos(x±y)=cosxcosy∓sinxsiny。

- tan(x±y)=(tanx±tany)/(1∓tanxtany)。

高中三角函数及解三角形知识点总结(高考复习)

高中三角函数及解三角形知识点总结(高考复习)
3、三角形面积公式:
= 2 cos 2 α − 1 = 1 − 2 sin 2 α .
变形如下:
1 + cos 2α = 2 cos 2 α 升幂公式: 2 1 − cos 2α = 2sin α cos 2 α = 1 (1 + cos 2α ) 2 降幂公式: sin 2 α = 1 (1 − cos 2α ) 2
y = sin x 在 x ∈ [0, 2π ] 上的五个关键点为:
π 3π (0, 0) ( , , 1 ) ( , π, 0) ( , ,) -1( , 2π , 0) . 2 2
-1-
§1.4.3、正切函数的图象与性质 1、记住正切函数的图象:
y
2、记住余切函数的图象:
y
y=tanx
y=cotx
y = A sin ω x
横坐标变为原来的 | 平 移
ϕ ω
2− 3
§ 3.1.2 、两角和与差的正弦、余弦、正切公式
1 ω
|倍
个 单 位
1、 sin (α + β ) = sin α cos β + cos α sin β 2、 sin (α − β ) = sin α cos β − cos α sin β
r = x2 + y 2 ) sin α = x y x y , cos α = , tan α = , cot α = y r r x
π sin + α = cos α , 2 π cos + α = − sin α . 2
§1.4.1、正弦、余弦函数的图象和性质 1、记住正弦、余弦函数图象:
ymax + ymin . 2
ymax − ymin , 2

高考三角函数知识点总结

高考三角函数知识点总结

高考三角函数知识点总结一、基本概念:1.弧度与角度:弧度是角度的一种衡量方式,1弧度等于所对应的圆心角的半径长所对应的线段长度。

角度是以度为单位的,一个圆等分360度.2.单位圆:半径为1的圆,圆心到任一点所对应的弧长为该点的角度。

二、常用三角函数:1. 正弦函数(sin):在单位圆上,对于一个角的弧度值对应的弧长与半径的比值。

2. 余弦函数(cos):在单位圆上,对于一个角的弧度值对应的横坐标与半径的比值。

3. 正切函数(tan):在单位圆上,对于一个角的弧度值对应的纵坐标与横坐标的比值。

4. 余切函数(cot)、正割函数(sec)、余割函数(csc)的定义与相关计算。

三、三角函数的性质:1. 基本关系式:sin^2x + cos^2x = 1,1 + tan^2x = sec^2x,1 + cot^2x = csc^2x。

2. 函数的周期性:sin(x+2π) = sinx,cos(x+2π) = cosx,tan(x+π) = tanx。

3. 函数的奇偶性:sin(-x) = -sinx,cos(-x) = cosx,tan(-x) =-tanx。

4. 函数的限制性:,sinx,≤ 1,cosx,≤ 1,tanx,< +∞。

5. 函数的单调性:在一个周期内,sinx、cosx、tanx的单调性。

四、三角函数的图像:1.正弦函数的图像特点:在0≤x≤2π内,图像从[0,1]上升至[1,-1],再回升至[-1,0]。

2.余弦函数的图像特点:在0≤x≤2π内,图像从[1,0]下降至[-1,0],再上升至[0,1]。

3.正切函数的图像特点:在0≤x≤2π内,图像在每个π的奇数倍处有垂直渐近线。

五、三角函数的运算:1. 三角函数的和差化积:sin(x±y)、cos(x±y)的展开公式。

2. 三角函数的倍角化简:sin2x=2sinxcosx,cos2x=cos^2x-sin^2x。

高中三角函数知识点总结

高中三角函数知识点总结

三角函数 知识要点1、角的表示 2. 角度与弧度 3、弧长公式:r l⋅=||α. 扇形面积公式:211||22s lr r α==⋅扇形 4、三角函数:设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y )P 与原点的距离为r ,则 ry =αsin ; rx=αcos ; x y =αtan ; yx =αcot ; x r =αsec ;. yr =αcsc .5、三角函数在各象限的符号6、三角函数线正弦线:MP; 余弦线:OM; 正切线: AT.7、三角函数的定义域:8、同角三角函数的基本关系式:9、诱导公式:“奇变偶不变,符号看象限” 10、角与角之间的互换cos()cos cos sin sin sin()sin cos cos sin tan tan tan()sin 2;cos 2;1tan tan sin ;cos ;tan 2;22tan;2αβαβαβαβαβαβαβαβαααβαααα±=±=±±±===========积化和差:()()()()()()()()11sin cos sin sin cos sin sin sin 2211cos cos cos cos sin sin cos cos 22αβαβαβαβαβαβαβαβαβαβαβαβ=++-=+--⎡⎤⎡⎤⎣⎦⎣⎦=++-=-+--⎡⎤⎡⎤⎣⎦⎣⎦和差化积:2222sin 1sin cos 1tan cot cos tan 11sec csc csc cot 1cos sin ααααααααααααα+=====-=2222sin sin 2sincossin sin 2cossin2222cos cos 2cos coscos cos 2sinsin22222tan1tan 2tan222sin cos tan 1tan 1tan 1tan 222αβαβαβαβαβαβαβαβαβαβαβαβααααααααα+-+-+=-=+-+-+=-=--===++-定义域值域 周期性奇偶性单调性○1)sin(ϕω+=x y 的对称轴方程是 ,对称中心 ;)cos(ϕω+=x y 的对称轴方程是 ,对称中心 ;)tan(ϕω+=x y 的对称中心 .○2当αtan ·,1tan =β)(2Z k k ∈+=+ππβα;αtan ·,1tan -=β)(2Z k k ∈+=-ππβα. ○3奇偶性的两个条件:一是 ,二是 奇函数特有性质:若x ∈0的定义域,则)(x f 一定有0)0(=f .(x ∉0的定义域,则无此性质)○4x y sin =不是周期函数;x y sin =为周期函数(π=T ); x y cos =是周期函数;x y cos =为周期函数(π=T ); 212cos +=x y 的周期为π。

高中数学必修三角函数知识点归纳总结经典

高中数学必修三角函数知识点归纳总结经典

高中数学必修三角函数知识点归纳总结经典一、正弦函数、余弦函数、正切函数的定义1. 正弦函数:在单位圆上,对于任意角度θ,都存在一个点P(x,y),其中x=cosθ,y=sinθ。

则y=sinθ称为角θ的正弦函数。

2. 余弦函数:在单位圆上,对于任意角度θ,都存在一个点P(x,y),其中x=cosθ,y=sinθ。

则x=cosθ称为角θ的余弦函数。

3. 正切函数:在单位圆上,对于任意角度θ,都存在一个点P(x,y),其中x=cosθ,y=sinθ。

则y/x=tanθ称为角θ的正切函数。

二、基本性质1.周期性:正弦函数、余弦函数、正切函数的周期都是2π。

2.奇偶性:正弦函数是奇函数,余弦函数是偶函数,正切函数是奇函数。

3.值域:正弦函数和余弦函数的值域为[-1,1],正切函数的值域为R。

三、基本公式1. 正弦函数的基本公式:sin(θ±α) = sinθcosα ±cosθsinα2. 余弦函数的基本公式:cos(θ±α) = cosθcosα ∓ sinθsinα3. 正切函数的基本公式:tan(θ±α) =(tanθ±tanα)/(1∓tanθtanα)四、三角函数的图像与性质1.正弦函数图像的性质:周期为2π,在(0,0)处取得最小值-1,在(π/2,1)、(3π/2,-1)处取得最大值1,是一个奇函数。

2.余弦函数图像的性质:周期为2π,在(0,1)处取得最大值1,在(π,-1)处取得最小值-1,是一个偶函数。

3.正切函数图像的性质:周期为π,在(0,0)处取得最小值-∞,在(π/2,∞)处取得最大值∞,是一个奇函数。

五、三角函数的性质1.三角函数的和差化积公式:sin(A±B) = sinAcosB ± cosAsinBcos(A±B) = cosAcosB ∓ sinAsinBtan(A±B) = (tanA±tanB)/(1∓tanAtanB)2.三角函数的倍角公式:sin2θ = 2sinθcosθcos2θ = cos^2θ - sin^2θtan2θ = (2tanθ)/(1-tan^2θ)3.三角函数的半角公式:sin(θ/2) = √[(1-cosθ)/2]cos(θ/2) = √[(1+cosθ)/2]tan(θ/2) = sinθ/(1+cosθ)4.三角函数的积化和差公式:sinA·sinB = (1/2)[cos(A-B)-cos(A+B)]cosA·cosB = (1/2)[cos(A-B)+cos(A+B)]sinA·cosB = (1/2)[sin(A-B)+sin(A+B)]六、三角函数的应用1.解三角形:利用正弦定理、余弦定理和正弦函数、余弦函数的性质,可以解决三角形的边长和角度。

(完整版)高中三角函数知识点总结

(完整版)高中三角函数知识点总结

(完整版)高中三角函数知识点总结高中三角函数知识点总结1. 基本三角函数概念- 三角函数是以单位圆为基础的函数,包括正弦函数、余弦函数和正切函数。

- 正弦函数(sin):在直角三角形中,对于一个锐角,其对边与斜边的比值称为正弦值。

即:sinA = 对边/斜边。

- 余弦函数(cos):在直角三角形中,对于一个锐角,其邻边与斜边的比值称为余弦值。

即:cosA = 邻边/斜边。

- 正切函数(tan):在直角三角形中,对于一个锐角,其对边与邻边的比值称为正切值。

即:tanA = 对边/邻边。

2. 基本三角函数性质和公式- 三角函数的周期性:正弦函数和余弦函数的周期都是2π;正切函数的周期是π.- 三角函数的奇偶性:正弦函数是奇函数,余弦函数是偶函数,正切函数是奇函数。

- 三角函数的同角关系:sinA/cosA = tanA。

- 三角函数的和差化积公式和积化和差公式:具体公式可根据需要进行查阅。

3. 三角函数图像和性质- 正弦函数图像:在0到2π的区间内,正弦函数的图像为一条周期性的波浪线,最高点为1,最低点为-1,对应于最大值和最小值,0点对应于零值。

- 余弦函数图像:在0到2π的区间内,余弦函数的图像为一条周期性的波浪线,最高点为1,最低点为-1,对应于最大值和最小值,0点对应于最大值。

- 正切函数图像:在0到π的区间内,正切函数的图像无法在x=π/2和3π/2时定义,其他点对应的图像为一条连续的射线。

4. 三角函数的应用- 三角函数广泛应用于科学和工程领域中的周期性现象的描述和计算,例如电流的正弦波,声波的波动等。

- 在几何学中,三角函数也应用于测量角度和距离等问题的解决。

以上为高中三角函数的基本知识点总结,更详细的内容和公式可以参考相关教材或资料。

三角函数知识点总结高三

三角函数知识点总结高三

三角函数知识点总结高三高三三角函数知识点总结三角函数是数学中重要的分支之一,与几何形状和角度有关。

在高三数学学习中,三角函数是一个重要的内容。

下面是三角函数知识点的总结,包括正弦函数、余弦函数、正切函数以及它们的性质、图像和应用。

一、正弦函数(sin函数)1. 定义:正弦函数是一个周期函数,以2π为一个周期。

在单位圆上,任意角θ的正弦值可以通过点(cosθ,sinθ)的纵坐标得到。

2. 性质:(1)定义域:实数集R;(2)值域:[-1, 1];(3)奇函数:sin(-θ) = -sinθ;(4)周期性:sin(θ+2kπ) = sinθ,k为整数;(5)对称轴:y = 0即x轴。

3. 图像:(1)在一个周期内,正弦函数的图像呈现一条锯齿状曲线;(2)幅度:正弦函数图像在y轴上的最大正值或最小负值,记为A;(3)相位:正弦函数图像在x轴上的最左端点对应的角度,记为θ0。

4. 应用:正弦函数的应用广泛,包括物理学、工程学等领域。

例如,震动学和周期性的现象研究中就会用到正弦函数。

二、余弦函数(cos函数)1. 定义:余弦函数是一个周期函数,以2π为一个周期。

在单位圆上,任意角θ的余弦值可以通过点(cosθ,sinθ)的横坐标得到。

2. 性质:(1)定义域:实数集R;(2)值域:[-1, 1];(3)偶函数:cos(-θ) = cosθ;(4)周期性:cos(θ+2kπ) = cosθ,k为整数;(5)对称轴:y = 0即x轴。

3. 图像:(1)在一个周期内,余弦函数的图像呈现一条波浪状曲线;(2)幅度:余弦函数图像在y轴上的最大正值或最小负值,记为A;(3)相位:余弦函数图像在x轴上的最高峰对应的角度,记为θ0。

4. 应用:余弦函数的应用广泛,主要用于研究周期性的问题,如电流和电压的周期性变化等。

三、正切函数(tan函数)1. 定义:正切函数是一个周期函数,以π为一个周期。

在单位圆上,正切值可以通过点(cosθ,sinθ)的纵坐标除以横坐标得到。

三角函数高中知识点(汇集5篇)

三角函数高中知识点(汇集5篇)

三角函数高中知识点(汇集5篇)三角函数高中知识点(1)一、锐角三角函数公式sin=的对边/斜边cos=的邻边/斜边tan=的对边/的邻边cot=的邻边/的对边二、倍角公式Sin2A=2SinA?CosACos2A=CosA2-SinA2=1-2SinA2=2CosA2-1tan2A=(2tanA)/(1-tanA2)(注:SinA2是sinA的平方sin2(A))三、三倍角公式sin3=4sinsin(/3+)sin(/3-)cos3=4coscos(/3+)cos(/3-)tan3a=tanatan(/3+a)tan(/3-a)三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina辅助角公式Asin+Bcos=(A2+B2)(1/2)sin(+t),其中sint=B/(A2+B2)(1/2)cost=A/(A2+B2)(1/2)tant=B/AAsin+Bcos=(A2+B2)(1/2)cos(-t),tant=A/B四、降幂公式sin2()=(1-cos(2))/2=versin(2)/2cos2()=(1+cos(2))/2=covers(2)/2tan2()=(1-cos(2))/(1+cos(2))推导公式tan+cot=2/sin2tan-cot=-2cot21+cos2=2cos21-cos2=2sin21+sin=(sin/2+cos/2)2=2sina(1-sina)+(1-2sina)sina=3sina-4sinacos3a=cos(2a+a)=cos2acosa-sin2asina=(2cosa-1)cosa-2(1-sina)cosa=4cosa-3cosasin3a=3sina-4sina=4sina(3/4-sina)=4sina[(3/2)-sina]=4sina(sin60-sina)=4sina(sin60+sina)(sin60-sina)=4sina_2sin[(60+a)/2]cos[(60-a)/2]_2sin[(60-a)/2]cos[(60-a)/2] =4sinasin(60+a)sin(60-a)cos3a=4cosa-3cosa=4cosa(cosa-3/4)=4cosa[cosa-(3/2)]=4cosa(cosa-cos30)=4cosa(cosa+cos30)(cosa-cos30)=4cosa_2cos[(a+30)/2]cos[(a-30)/2]_{-2sin[(a+30)/2]sin[(a-30)/2]}=-4cosasin(a+30)sin(a-30)=-4cosasin[90-(60-a)]sin[-90+(60+a)]=-4cosacos(60-a)[-cos(60+a)]=4cosacos(60-a)cos(60+a)上述两式相比可得tan3a=tanatan(60-a)tan(60+a)五、半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)sin2(a/2)=(1-cos(a))/2cos2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))六、三角和sin(++)=sincoscos+cossincos+coscossin-sinsinsincos(++)=coscoscos-cossinsin-sincossin-sinsincostan(++)=(tan+tan+tan-tantantan)/(1-tantan-tantan-tantan)七、两角和差cos(+)=coscos-sinsincos(-)=coscos+sinsinsin()=sincoscossintan(+)=(tan+tan)/(1-tantan)tan(-)=(tan-tan)/(1+tantan)八、和差化积sin+sin=2sin[(+)/2]cos[(-)/2]sin-sin=2cos[(+)/2]sin[(-)/2]cos+cos=2cos[(+)/2]cos[(-)/2]cos-cos=-2sin[(+)/2]sin[(-)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)九、积化和差sinsin=[cos(-)-cos(+)]/2coscos=[cos(+)+cos(-)]/2sincos=[sin(+)+sin(-)]/2cossin=[sin(+)-sin(-)]/2十、诱导公式sin(-)=-sincos(-)=costan(—a)=-tansin(/2-)=coscos(/2-)=sinsin(/2+)=coscos(/2+)=-sinsin(-)=sincos(-)=-cossin(+)=-sincos(+)=-costanA=sinA/cosAtan(/2+)=-cottan(/2-)=cottan(-)=-tantan(+)=tan诱导公式记背诀窍:奇变偶不变,符号看象限十一、万能公式sin=2tan(/2)/[1+tan(/2)]cos=[1-tan(/2)]/1+tan(/2)]tan=2tan(/2)/[1-tan(/2)]十二、其它公式(1)(sin)2+(cos)2=1(2)1+(tan)2=(sec)2(3)1+(cot)^2=(csc)^2(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC证:A+B=-Ctan(A+B)=tan(-C)(tanA+tanB)/(1-tanAtanB)=(tan-tanC)/(1+tantanC)整理可得tanA+tanB+tanC=tanAtanBtanC得证同样可以得证,当x+y+z=n(nZ)时,该关系式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下结论(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(7)(cosA)2+(cosB)2+(cosC)2=1-2cosAcosBcosC(8)(sinA)2+(sinB)2+(sinC)2=2+2cosAcosBcosC(9)sin+sin(+2/n)+sin(+2_2/n)+sin(+2_3/n)++sin[+2_(n-1)/n]=0cos+cos(+2/n)+cos(+2_2/n)+cos(+2_3/n)++cos[+2_(n-1)/n]=0以及sin2()+sin2(-2/3)+sin2(+2/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0三角函数高中知识点(2)口诀记忆法高中数学中,有些方法如果能编成顺口溜或歌诀,可以帮助记忆。

高中数学三角函数知识点归纳总结

高中数学三角函数知识点归纳总结

高中数学三角函数知识点归纳总

一、任意角的概念与弧度制
二、任意角的三角函数
三、三角函数的图象与性质
四、三角恒等变换
还可以再加上解三角形的知识,正弦定理,余弦公式,三角形面积公式,以及基本不等式。

三角函数这部分可以从两大方面来掌握,一个是恒等变换,另一个是图象和性质。

从解题所用到的知识点来串讲的话,重要有以下几点:
1、三角函数定义式;
2、同角关系;
3、诱导公式;
4、和差公式;
5、二倍角公式;
6、辅助角公式;
7、万能公式;
8、三角函数的图象与性质;
9、特殊角度的三角函数值;
10、正弦定理;
11、余弦公式;
12、三角形面积公式;
13、基本不等式。

如果学生能把这些基础知识点熟练写出来,三角函数和解三角形就不怕了。

接下来再掌握一些常考题型的解题方法和解题技巧、解题思想,这个大专题很轻松就能熟练掌握了。

三角函数的知识点比较多,公式也多,不去梳理和总结的话,就容易乱糟糟一团。

建立自己的知识体系很重要。

这一直都是我强调的学习方法。

高中三角函数知识点总结

高中三角函数知识点总结

高中三角函数知识点总结一、弧度制和角度制1.角度制是常用的角度单位,将一个圆分为360等分,每一份称为1度,用°表示。

2.弧度制是用弧长与半径的比值来表示角的度量,1弧度对应圆心角的弧长等于半径长度。

二、三角函数的定义三角函数是根据角度定义的函数,其中常用的三角函数有正弦函数、余弦函数和正切函数。

1. 正弦函数(sin):在直角三角形中,对于一个锐角的正弦值等于该角的对边与斜边的比值。

2. 余弦函数(cos):在直角三角形中,对于一个锐角的余弦值等于该角的邻边与斜边的比值。

3. 正切函数(tan):在直角三角形中,对于一个锐角的正切值等于该角的对边与邻边的比值。

三、三角函数的基本性质1.正弦函数和余弦函数都是周期函数,周期为2π。

2. 正弦函数的值域为[-1, 1],当θ=0时,sinθ=0;当θ=π/2时,sinθ=1;当θ=π时,sinθ=0;当θ=3π/2时,sinθ=-13. 余弦函数的值域为[-1, 1],当θ=0时,cosθ=1;当θ=π/2时,cosθ=0;当θ=π时,cosθ=-1;当θ=3π/2时,cosθ=0。

4. 正切函数是奇函数,其定义域为所有使得cosθ≠0的实数,tan(θ+π)=-tanθ。

四、三角函数的图像特点1.正弦函数的图像是一条连续的波浪线,以原点为对称轴。

2.余弦函数的图像也是一条连续的波浪线,不过相较于正弦函数向右平移π/2个单位。

3.正切函数的图像是一条连续的曲线,以原点为渐近线,相邻两个渐近线之间的长度为一个周期。

五、同角三角函数的关系1. 余弦函数和正弦函数之间存在以下关系:cosθ=sin(π/2-θ)。

2. 正弦函数和正切函数之间存在以下关系:sinθ=tanθ/cosθ。

六、三角函数的基本性质1.三角函数的图像关于y轴对称。

2. sin(π/2-θ) = cosθ,cos(π/2-θ) = sinθ,tan(π/2-θ) = 1/tanθ。

高中三角函数知识点(集合5篇)

高中三角函数知识点(集合5篇)

高中三角函数知识点(集合5篇)高中三角函数知识点(1)角的概念的'推广.弧度制.任意角的三角函数.单位圆中的三角函线.同角三角函数的基本关系式.正弦、余弦的诱导公式.两角和与差的正弦、余弦、正切.二倍角的正弦、余弦、正切.正弦函数、余弦函数的图像和性质.周期函数.函数y=Asin(ωx+φ)的图像.正切函数的图像和性质.已知三角函数值求角.正弦定理.余弦定理.斜三角形解法.考试要求(1)理解任意角的概念、弧度的意义能正确地进行弧度与角度的换算.(2)掌握任意角的正弦、余弦、正切的定义;了解余切、正割、余割的定义;掌握同角三角函数的基本关系式;掌握正弦、余弦的诱导公式;了解周期函数与最小正周期的意义.(3)掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式.(4)能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明.(5)理解正弦函数、余弦函数、正切函数的图像和性质,会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解ω、φ的物理意义.(6)会由已知三角函数值求角,并会用符号arcsinxarc-cosxarctanx表示.(7)掌握正弦定理、余弦定理,并能初步运用它们解斜三角形.(8)“同角三角函数基本关系式:sin2α+cos2α=1,sinα/cosα=tanα,tan α?cotα=1”.高中三角函数知识点(2)公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα k∈zcos(2kπ+α)=cosα k∈ztan(2kπ+α)=tanα k∈zcot(2kπ+α)=cotα k∈z公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα高中数学三角函数的诱导公式学习方法二推算公式:3π/2±α与α的三角函数值之间的关系:sin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα高中三角函数知识点(3)口诀记忆法高中数学中,有些方法如果能编成顺口溜或歌诀,可以帮助记忆。

高中数学三角函数知识点(复习)

高中数学三角函数知识点(复习)

三角函数知识点复习● 任意角1、 正角:逆时针方向旋转而成的角。

负角、零角2、 象限角的集合第一象限角的集合:{}Z k k x k x ∈︒+︒⋅︒⋅,<<90360360| 3、 与角α终边相同的角的集合: {}Z k k ∈+=,2παββ.● 弧度制1、 把长度等于半径长的弧所对的圆心角叫做1弧度的角. 1rad α的弧度数的绝对值 rl =α. 2、 角度与弧度的互化: 2π rad=360°;π rad=180°3、 弧长公式:R Rn l απ==180. 扇形面积公式:lR R n S 213602==π.● 任意角的三角函数1、 设α是一个任意角,它的终边与单位圆交于点()y x P ,,那么:xyx y ===αααtan ,cos ,sin 2、 设点(),A x y为角α终边上任意一点,那么:(设22r x y =+)sin y r α=,cos x r α=,tan yx α=,cot x yα=3、三角函数值在各象限的符号(口诀:一全正,二正弦,三正切,四余弦)4、 三角函数线的画法.设任意角α的顶点在原点0,始边与x 轴非负半轴重合,终边与单位圆相交于点P (x,y ),过P 作x 轴的垂线,垂足为M ;过点A (1,0)作单位圆的切线,它与角α的终边或其反向延长线交于点T正弦线:MP 余弦线:OM 正切线:AT5、 三角函数的定义域三角函数定义域 αsinR αcosRαtan⎭⎬⎫⎩⎨⎧∈+∉∈Z k k R ,ππ2,|ααα● 同角三角函数的基本关系式TM A O Px y1、 平方关系:1cos sin 22=+αα. 2、 商数关系:αααcos sin tan =. 3、 倒数关系:tan cot 1αα=● 三角函数的诱导公式(概括为“奇变偶不变,符号看象限”Z k ∈))2(f α±πk ,“奇偶”指k 的取值。

1、 诱导公式一: 2、 诱导公式二:()()().tan 2tan ,cos 2cos ,sin 2sin απααπααπα=+=+=+k k k (其中:Z k ∈) ()()().tan tan ,cos cos ,sin sin ααπααπααπ=+-=+-=+ 3、诱导公式三: 4、诱导公式四:()()().tan tan ,cos cos ,sin sin αααααα-=-=--=- ()()().tan tan ,cos cos ,sin sin ααπααπααπ-=--=-=-5、诱导公式五:6、诱导公式六:.sin 2cos ,cos 2sin ααπααπ=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛- .sin 2cos ,cos 2sin ααπααπ-=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+● 正弦、余弦函数的图象和性质 1、记住正弦、余弦函数图象:2、记住正切函数的图象:3、记住余切函数的图像y=tanx3π2ππ2-3π2-π-π2oyxy=cotx3π2ππ22π-π-π2oyx3、会用五点法作图.sin y x =在[0,2]x π∈上的五个关键点为: ()()()02023002;0,0π,;,π;π,;,π⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛4、周期函数定义:对于函数()x f ,如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有()()x f T x f =+,那么函数()x f 就叫做周期函数,非零常数T 叫做这个函数的周期.● 三角函数的图象与性质1-1y=sinx -3π2-5π2-7π27π25π23π2π2-π2-4π-3π-2π4π3π2ππ-πo y x 1-1y=cosx -3π2-5π2-7π27π25π23π2π2-π2-4π-3π-2π4π3π2ππ-πo y x图表归纳:正弦、余弦、正切函数的图像及其性质x y sin =x y cos =x y tan =图象定义域 RR},2|{Z k k x x ∈+≠ππ值域[-1,1][-1,1]R最值max min 2,122,12x k k Z y x k k Z y ππππ=+∈==-∈=-时,时,max min 2,12,1x k k Z y x k k Z y πππ=∈==+∈=-时,时,无周期性 π2=Tπ2=Tπ=T奇偶性奇偶奇单调性 Z k ∈在[2,2]22k k ππππ-+上单调递增 在3[2,2]22k k ππππ++上单调递减在[2,2]k k πππ-上单调递增在[2,2]k k πππ+上单调递减在(,)22k k ππππ-+上单调递增对称性Z k ∈对称轴方程:2x k ππ=+对称中心(,0)k π对称轴方程:x k π= 对称中心(,0)2k ππ+无对称轴 对称中心,0)(2k π3、能够对照图象讲出函数的相关性质:定义域、值域、对称中心、奇偶性、单调性、周期性.函数()ϕω+=x A y sin 的图象 1、对于函数:()ϕω+=x A y sin 与()ϕω+=x A y cos :振幅A ,最小正周期为wT π2=,初相ϕ,相位ϕω+x ,频率π21w Tf ==.()ϕω+=x A y tan 的最小正周期为wT π=注:(1)求函数sin()y A x ωϕ=+图像的对称轴与对称中心,只需令()2x k k Z πωϕπ+=+∈与()x k k Z ωϕπ+=∈(2)ω要根据周期来求,ϕ要用图像的关键点来求.2、能够讲出函数x y sin =的图象与()sin y A x B ωϕ=++的图象之间的平移伸缩变换关系. ① 先平移后伸缩:sin y x = 平移||ϕ个单位()sin y x ϕ=+(左加右减)横坐标不变 ()sin y A x ϕ=+纵坐标变为原来的A 倍纵坐标不变()sin y A x ωϕ=+横坐标变为原来的1||ω倍平移||B 个单位 ()sin y A x B ωϕ=++(上加下减)② 先伸缩后平移:sin y x = 横坐标不变 sin y A x =纵坐标变为原来的A 倍纵坐标不变sin y A x ω=横坐标变为原来的1||ω倍平移ϕω个单位()sin y A x ωϕ=+(左加右减) 平移||B 个单位 ()sin y A x B ωϕ=++(上加下减)§1.6、三角函数模型的简单应用。

高中三角函数知识点总结

高中三角函数知识点总结

高中三角函数知识点总结一、三角函数的定义在平面直角坐标系中,设角α的顶点在坐标原点,始边与 x 轴正半轴重合,终边上任取一点 P(x,y),它与原点的距离为 r(r =√(x²+ y²),r > 0),则角α的正弦、余弦、正切分别定义为:正弦:sinα = y / r余弦:cosα = x / r正切:tanα = y / x (x ≠ 0)二、特殊角的三角函数值要熟练记住以下特殊角的三角函数值:|角度| 0°| 30°| 45°| 60°| 90°||||||||| sin | 0 | 1/2 |√2/2 |√3/2 | 1 || cos | 1 |√3/2 |√2/2 | 1/2 | 0 || tan | 0 |√3/3 | 1 |√3 |不存在|三、同角三角函数的基本关系1、平方关系:sin²α +cos²α = 12、商数关系:tanα =sinα /cosα (cosα ≠ 0)四、诱导公式诱导公式可以将任意角的三角函数转化为锐角三角函数。

1、sin(α) =sinα,cos(α) =cosα,tan(α) =tanα2、sin(π +α) =sinα,cos(π +α) =cosα,tan(π +α) =tanα3、sin(π α) =sinα,cos(π α) =cosα,tan(π α) =tanα4、sin(2π α) =sinα,cos(2π α) =cosα,tan(2π α) =tanα5、sin(π/2 +α) =cosα,cos(π/2 +α) =sinα6、sin(π/2 α) =cosα,cos(π/2 α) =sinα五、两角和与差的正弦、余弦、正切公式1、两角和的正弦:sin(α +β) =sinαcosβ +cosαsinβ2、两角差的正弦:sin(α β) =sinαcosβ cosαsinβ3、两角和的余弦:cos(α +β) =cosαcosβ sinαsinβ4、两角差的余弦:cos(α β) =cosαcosβ +sinαsinβ5、两角和的正切:tan(α +β) =(tanα +tanβ) /(1 tanαtanβ)6、两角差的正切:tan(α β) =(tanα tanβ) /(1 +tanαtanβ)六、二倍角的正弦、余弦、正切公式1、二倍角的正弦:sin2α =2sinαcosα2、二倍角的余弦:cos2α =cos²α sin²α =2cos²α 1 =1 2sin²α3、二倍角的正切:tan2α =2tanα /(1 tan²α)七、三角函数的图像和性质1、正弦函数 y = sinx定义域:R值域:-1, 1周期性:T =2π奇偶性:奇函数单调性:在π/2 +2kπ, π/2 +2kπ (k∈Z)上单调递增,在π/2 +2kπ, 3π/2 +2kπ (k∈Z)上单调递减2、余弦函数 y = cosx定义域:R值域:-1, 1周期性:T =2π奇偶性:偶函数单调性:在π +2kπ, 2kπ (k∈Z)上单调递增,在2kπ, π +2kπ (k∈Z)上单调递减3、正切函数 y = tanx定义域:{ x |x ≠ π/2 +kπ, k∈Z }值域:R周期性:T =π奇偶性:奇函数单调性:在( π/2 +kπ, π/2 +kπ )(k∈Z)上单调递增八、函数 y =Asin(ωx +φ) 的图像和性质1、 A 叫做振幅,决定了函数的值域为A, A2、ω 叫做角频率,决定了函数的周期 T =2π/ω3、φ 叫做初相,决定了函数图像的左右平移函数 y =Asin(ωx +φ) 的图像可以通过“五点法”作图得到,也可以由 y = sinx 的图像经过平移、伸缩变换得到。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 三角函数
一、三角函数的基本概念 1.角的概念的推广
(1)角的分类:正角(逆转) 负角(顺转) 零角(不转) (2)终边相同角:)(3600Z k k ∈+⋅=αβ
(3)直角坐标系中的象限角与坐标轴上的角. 2.角的度量
(1)角度制与弧度制的概念 (2)换算关系:8157)180(1)
(180'≈==
π
π弧度弧度
(3)弧长公式:r l
⋅=α 扇形面积公式:22
1
21r lr S α==
3.任意角的三角函数
y
x
x y x r
r x y r
r y =
=====
ααααααcot tan sec cos csc sin
注:三角函数值的符号规律“一正全、二正弦、三双切、四余弦” 二、同角三角函数的关系式及诱导公式
(一) 诱导公式:
α±⋅
2
k )(Z k ∈与α的三角函数关系是“立变平不变,符号
看象限”。

如:
()⎪⎭
⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+απαπαπ25sin ;5tan ,27cos 等。

(二)
同角三角函数的基本关系式:①平方关系1
cos sin
22
=+αα;
α
ααα22
22tan 11cos cos 1tan 1+=⇔=
+②商式关系
α
α
α
tan cos sin =;αααcot sin cos =③倒数关系1cot tan =αα;1sec cos ;1csc sin ==αααα。

(三) 关于公式1cos sin
22
=+αα的深化
()
2
cos sin sin 1ααα±=±;
α
ααcos sin sin 1±=±;
2
cos
2
sin
sin 1α
α
α+=+
如:
4cos 4sin 4cos 4sin 8sin 1--=+=+;4cos 4sin 8sin 1-=-
注:1、诱导公式的主要作用是将任意角的三角函数转化为 0~ 90角的三角函数。

2、主要用途: a) 已知一个角的三角函数值,求此角的其他三角函数值(①要注意题设中角的范围,②用三角函数的定义求解会更方便);
b)
化简同角三角函数式; 证明同角的三角恒等式。

三、两角和与差的三角函数 (一)两角和与差公式
()βαβαβαsin cos cos sin sin ±=± ()β
αβαβαsin sin cos cos cos =±
()β
αβ
αβαtan tan 1tan tan tan ±=
±
(二)倍角公式 1、公式βαα
cos sin 22sin = cos 2α=
2
2cos 1α
+ sin 2α=
2
2cos 1α
-
ααααα2222sin 211cos 2sin cos 2cos -=-=-=
α
αα2tan 1tan 22tan -=
α
α
ααα
sin cos 1cos 1sin 2
tan
-=
+=
)sin(cos sin 22ϕααα++=+b a b a )sin ,(cos 2
2
2
2
b
a a b
a b
+=
+=
ϕϕ
注: (1)对公式会“正用”,“逆用”,“变形使用”。

(2)掌握“角的演变”规律(3)将公式和其它知识衔接起来使用。

(4)倍角公式揭示了具有倍数关系的两个角的三角函数的运算规律,可实现函数式的降幂的变化。

2、两角和与差的三角函数公式能够解答的三类基本题型: (1)求值
①“给角求值”:给出非特殊角求式子的值。

仔细观察非特殊角的特点,找出和特殊角之间的关系,利用公式转化或消除非特殊角
②“给值求值”:给出一些角得三角函数式的值,求另外一些角得三角函数式的值。

找出已知角与所求角之间的某种关系求解
③ “给值求角”:转化为给值求值,由所得函数值结合角的范围求出角。

④ “给式求值”:给出一些较复杂的三角式的值,求其他式子的值。

将已知式或所求式进行化简,再求之 三角函数式常用化简方法:切割化弦、高次化低次
注意点:灵活角的变形和公式的变形, 重视角的范围对三角函数值的影响,对角的范围要讨论
(2)化简
①化简目标:项数习量少,次数尽量低,尽量不含分母和根号
②化简三种基本类型:根式形式的三角函数式化简、多项式形式的三角函数式化简、分式形式的三角函数式化简 ③化简基本方法:用公式;异角化同角;异名化同名;化切割为弦;特殊值与特殊角的三角函数值互化。

(3)证明①化繁为简法②左右归一法③变更命题法④条件等式的证明关键在于分析已知条件与求证结论之间的区别与联系。

无论是化简还是证明都要注意:(1)角度的特点(2)函数名的特点(3)化切为弦是常用手段(4)升降幂公式的灵活应用 四、三角函数的性质
y=sinx
y=cosx
y=tanx
y=cotx
图象
定义域 x ∈R x ∈R x ≠k π+
2
π
(k ∈Z ) x ≠k π(k ∈Z )
值域 y ∈[-1,1] y ∈[-1,1] y ∈R y ∈R 奇偶性
奇函数
偶函数
奇函数
奇函数
单调性
在区间[2k π-2
π,2k π+
2
π
]上都是增函数 在区间[2k π+2
π

2k π+2
3π]上都是减函数
在区间[2k π-2k π]上都
是增函数
在区间[2k π,2k π+π]
上都是减函数
在每一个开区间
(k π-2π, k π+2
π)
内都是增函数
在每一个开区间 (k π,k π+π)内都是减函数
周 期 T=2π
T=2π T=π
T=π 对称轴
2
π
π+
=k x
π
k x =


对称 中心
()0,πk
⎪⎭⎫
⎝⎛+0,2ππk ⎪⎭⎫
⎝⎛0,2πk ⎪⎭

⎝⎛0,2πk 五、已知三角函数值求角 1、反三角概念: (1)若sinx=a ⎥⎦

⎢⎣⎡-∈≤2,2,1ππx a 则x=arcsina ,说明:a>0,arcsina 为锐角; a=0,arcsina=0; a<0, arcsina
为“负锐角”。

(2) 若cosx=a
[]π,0,1∈≤x a 则x=arccosa 说明:a>0,arccosa 为锐角; a=0,arccosa=900; a<0, arccosa
为钝角。

(3)若tanx=a
⎪⎭

⎝⎛-∈∈2,2,ππx R a 则x=arctana 说明:a>0,arctana 为锐角; a=0,arctana=0; a<0, arctana
为“负锐角”。

如;arcsin
0602
3
=,arcsin 22arcsin 45)22(0-=-=-.
arccos 2
1
arccos 32)21(-==-
ππ,arctan3>060,而arctan(-3)=--arctan3. 而sin(arcsin )3
π不存在。

2、反三角关系:
(1) arcsin(-x)=-arcsinax; arctan(-x)=arctanx; arcos(-x)=π-arccosx 由此可知:
x y x y arctan ,arcsin ==是匠函数,而x y arccos =非奇非偶。

(2) arcsinx+arccosx=2
π
3、[)π2,0∈
x 时求角x :
六、三角函数的最值 (1)
配方法求最值
主要是利用三角函数理论及三角函数的有界性,转化为二次函数在闭区间上的最值问题,如求函数
2sin sin 1y x x =++的最值,可转化为求函数[]21,1,1y t t t =++∈-上的最值问题。

(2) 化为一个角的三角函数,再利用有界性求最值:sin )a x bcox x ϕ+=+
(3)
换元法求最值
①利用换元法将三角函数问题转化为代数函数,此时常用万能公式和判别式求最值。

②利用三角代换将代数问题转化为三角函数,然而利用三角函数的有界性等求最值。

相关文档
最新文档