理论力学公式 (1) 2
理论力学复习
一.静力学公理
公理1 二力平衡公理
作用于刚体上的两个力,使刚体平衡的必要与充分条件是:
这两个力大小相等、方向相反、作用线共线,作用于同一
个物体上。 (简称等值、反向、共线) 注意: F1 F2
F 1 F 2
注意:①对刚体来说,上面的条件是充要的
②对变形体来说,上面的条件只是必要条件(或多体中)
③二力构件:只在两个力作用下平衡的刚体叫二力构件 (二力体)
二.力的投影和力的分力的区别
力的投影和力的分力是两个不同的概念,不得混淆: (1)力在轴上的投影是代数量,由力的投影X、Y、Z只能 求出力的大小和方向,不能确定其作用点的位置;而力的分
力是矢量,由力的分力完全可以确定力的大小和方向及作用
点的位置。 (2)力的投影是向轴作垂线而得,力的分力则是利用平行 四边形法则而得。在笛卡尔坐标系中关系式
约束物体绕固定端在该平面内转动,如
图悬臂梁所示。
阻碍被约束物体移动的约束力为两
个正交的分力,阻碍被约束物体转动的 为反力偶。 故平面固定端的约束反力又三个 。
§1-5 物体的受力分析和受力图
1.分离体(或脱离体):从周围物体中单独分离出来的研究 对象。 2.受力图:表示研究对象(既脱离体)所受全部力的图形。 主动力一般是先给定的,约束力则需要根据约束的性质来判 断。 3.画物体受力图主要步骤为: (1) 根据题意选取研究对象,并用尽可能简明的轮廓把它 单独画出,即解除约束、取分离体。 (2)在脱离体上画主动力。要画上其所受的全部的主动力,不 能漏掉,也不能把不是作用在该分离体上的力画在该分离体 上。主动力的作用点(线)和方向不能任意改变。
F
O
d
Fz
理论力学公式知识点总结
理论力学公式知识点总结牛顿第一定律:一个物体如果受力为零,那么它要么静止,要么匀速直线运动。
即物体的运动状态不变,或者说物体维持原来的状态不变。
数学表示为\[ \mathbf{F} = 0 \Longrightarrow \frac{d\mathbf{v}}{dt} = 0 \]牛顿第二定律:一个物体受到的力等于它的质量乘以它的加速度。
即\[ \mathbf{F} = m\mathbf{a} \]其中,\(\mathbf{F}\)表示物体受到的合力,\(m\)表示物体的质量,\(\mathbf{a}\)表示物体的加速度。
牛顿第三定律:作用力与反作用力大小相等,方向相反,且作用于不同的物体上。
即\[ \mathbf{F}_{12} = -\mathbf{F}_{21} \]其中,\(\mathbf{F}_{12}\)表示物体1对物体2的作用力,\(\mathbf{F}_{21}\)表示物体2对物体1的反作用力。
力的合成与分解:当一个物体受到多个力的作用时,这些力可合成为一个合力,合力的方向和大小可以通过几何法或者三角法计算得出。
反之,一个力可以分解为多个分力,分力的方向和大小也可以通过几何法或者三角法计算得出。
动量定理:当一个物体受到外力时,它的动量会发生变化。
动量定理可以表示为\[ \mathbf{F} = \frac{d\mathbf{p}}{dt} \]其中,\(\mathbf{F}\)表示外力,\(\mathbf{p}\)表示物体的动量。
冲量:当外力作用时间很短,物体的动量变化可以用冲量来表示。
冲量的大小等于外力在时间上的积分,即\[ \mathbf{I} = \int \mathbf{F} dt \]其中,\(\mathbf{I}\)表示冲量。
角动量:一个物体绕着轴线运动时,它具有角动量。
角动量的大小等于物体的质量乘以它的速度和距离轴线的距离的乘积,即\[ L = r \times p \]其中,\(L\)表示角动量,\(r\)表示物体距离轴线的距离,\(p\)表示物体的动量。
理论力学——运动学
v2
n
加速度a的大小:
a
aτ + a n
2
2
dv 2 v 2 2 ( ) ( ) dt
加速度和主法线所夹的锐角的正切:
tan
aτ an
4、直角坐标于自然坐标之间的关系:
ds 2 dx 2 dy 2 dz 2 v ( ) ( ) ( ) ( ) dt dt dt dt
2
2
九、刚体的基本运动
1、刚体的平动
(1)刚体平动的定义 刚体运动时,若其上任一直线始终保持与它的初始
位置平行,则称刚体作平行移动,简称为平动或移动 。 (2) 平动刚体的运动特点
刚体平动时,其上各点的轨迹形状相同;同一瞬时,
各点的速度相同,加速度也相同。
刚体平动判别:P169题三图,P176题五图,题七图
点加的速度
i + y j + z k vx
a vx i + v y j + vz k xi + yj + zk
ax v x x ay v y y az v z z
3、自然法
用自然法描述的运动方程:
s பைடு நூலகம் f (t )
a 2 a x a y a z a an
1
2
2
2
2
2
a 2 a v2
2
5、匀速、匀变速公式
(1)
aτ=常数,
v v0 aτ t
( 2)v=常数,
1 2 s s0 v0t aτ t 2 2 v 2 v0 2a ( s s0 )
平面运动。
理论力学复习资料
力学复习选择:力系简化最后结果(平面,空间)牵连运动概念(运动参考系运动,牵连点运动) 平面运动刚体上的点的运动平面运动的动能计算(对瞬心,及柯里西算法) 质心运动定理(投影法x ,y ,z ,轨迹)惯性力系想一点简化计算:刚体系统平衡计算(多次取分能力体,一般为2次) 平面运动 速度的综合计算 动能定理应用动静法(其他方法不得分),已知运动求力(先用动能(动量)定理求运动,在用动静法求力)注意:1.功的单位是m WN ------∙2.注意检验fs N F f F ≤∙,判断是否是静摩擦,当为临界状态时max f s s N F F f F ==∙,纯滚动为静摩擦S F ,且只能根据平衡方程解出,与正压力无关。
动摩擦f NF f F =∙。
3. 动静法中惯性力简化()=-IC i i CIC c IC c F m a c F ma c M J α⎧⎫=-⎨⎬⎩⎭⎧⎫⎪⎪⇒⎨⎬=------⎪⎪⎩⎭∑质心过点到底惯性力绕点的惯性力偶二维刚体4.e c i i F ma m a ==∑∑, 22d ,d i i cc c m r r r a m t==∑eF ∑=0,则x v =常数=0(初始静止)则c x =常数=坐标系中所在位置,且c S 为直线。
(一直运动求力)5.平面运动刚体动能*222121122c c c J T mv J ωω⎧⎫⎪⎪⎪⎪=⎨⎬⎪⎪+⎪⎪⎩⎭瞬心法:柯里希法: 6.平面运动速度分析方法:a,基点法:,BA BA BA v v v v AB ω=+=,以Bv为对角线的平行四边形b,速度投影法:cos cos B B A A v v θθ=,,B A θθ是以AB 为基准。
c,速度瞬心法:***,*,0,0AB c c v v BC v a ACωω==∙=≠ 7.平面运动加速度分析:A.基点法:nB A BA BA a a a a τ=++,其中,多数情况下n A A A a a a τ=+,n B B B a a a τ=+注:当牵连运动为转动时,有科氏加速度k a ,2kr av ω=⨯大小:2kr a v ω=,方向:r v 向ω方向转90即可。
理论力学公式范文
理论力学公式范文理论力学是物理学的一个重要分支,研究物体运动的规律。
其核心是用数学方法描述物体受力和运动的关系,从而推导出力学公式。
下面将介绍几个重要的理论力学公式。
1. 牛顿第二定律:F = ma牛顿第二定律是理论力学的基础公式之一,描述了物体受力和加速度之间的关系。
它说明了一个物体所受合力与其质量乘以加速度之间的关系。
在这个公式中,F代表合力,m代表物体质量,a代表物体的加速度。
2.动能定理:W=ΔK动能定理描述了物体动能的变化与力做功之间的关系。
根据这个定理,物体动能的增量等于力对物体所做的功。
其中,W为力所做的功,ΔK为物体动能的变化量。
3.动量定理:FΔt=Δp动量定理描述了力的作用使物体动量发生变化的关系。
它表明力与物体作用时间的乘积等于物体动量的变化量。
其中,F为力的大小,Δt为力的作用时间,Δp为物体动量的变化量。
4. 弹性势能:U = 1/2kx^2弹性势能描述了弹性体由于变形而具有的储存能量。
对于弹性体来说,当其形状发生变化时,会具有恢复力,并且会储存一定的能量,这部分能量就是弹性势能。
其中,U为弹性势能,k为弹簧劲度系数,x为弹性体的变形量。
5.万有引力定律:F=G*(m1*m2)/r^2万有引力定律是描述两个物体之间引力作用的公式。
根据这个定律,两个物体之间的引力与它们的质量成正比,与它们之间的距离的平方成反比。
其中,F为引力的大小,G为万有引力常数,m1和m2为两个物体的质量,r为它们之间的距离。
以上是几个重要的理论力学公式,它们是理论力学研究的基础,被广泛应用于科学研究和工程实践中。
通过这些公式,我们可以准确地描述和解释物体运动的规律,进而预测和控制各种物理现象。
理论力学公式
理论力学公式理论力学是物理学中重要的分支之一,它研究的是物质运动的规律以及力对物体运动的影响。
在理论力学中有很多重要的公式,下面将介绍一些较为常用的公式。
1.速度与位移的关系:速度(v)是一个物体在单位时间内所经过的位移(s)的变化率。
速度的公式可以表示为:v = ds/dt其中,v代表速度,s代表位移,t代表时间。
这个公式表明,速度等于位移的导数。
2.加速度和速度的关系:加速度(a)是一个物体在单位时间内速度(v)的变化率。
加速度的公式可以表示为:a = dv/dt其中,a代表加速度,v代表速度,t代表时间。
这个公式表明,加速度等于速度的导数。
3.牛顿第二定律:牛顿第二定律描述了力对物体运动的影响。
牛顿第二定律可以表示为:F = ma其中,F代表力,m代表物体的质量,a代表物体的加速度。
这个公式表明,物体受到的力等于其质量乘以加速度。
4.动能和功的关系:动能(K)是物体运动时所具有的能量。
根据定义,动能等于物体的质量乘以速度的平方的一半,即:K = (1/2)mv^2其中,K代表动能,m代表物体的质量,v代表物体的速度。
功(W)则描述了力对物体运动所做的功。
功的公式可以表示为:W = F·s·cosθ其中,W代表功,F代表力,s代表位移,θ代表力在位移方向上与位移的夹角。
这个公式表明,功等于力乘以位移乘以力在位移方向上的投影。
5.势能和力的关系:势能(U)是力学系统中保持的一种能量形式。
势能的公式可以表示为:U = -∫F·ds其中,U代表势能,F代表力,s代表位移。
这个公式表明,势能等于力对位移的负积分。
6.角动量和力矩的关系:角动量(L)是一个物体围绕一些点旋转时所具有的动量。
L=r×p其中,L代表角动量,r代表与旋转点的矢量距离,p代表物体的动量。
这个公式表明,角动量等于与旋转点的矢量距离与动量的叉乘。
力矩(τ)则描述了力对物体旋转的影响。
力矩的公式可以表示为:τ=r×F其中,τ代表力矩,r代表与旋转点的矢量距离,F代表力。
大学物理基本公式(二)2024
大学物理基本公式(二)引言概述:大学物理中,物理基本公式是学习和应用物理学概念和原理的基础。
本文将重点介绍大学物理中的一些基本公式(二),包括力学、电磁学和波动光学等领域的公式。
通过学习这些公式,能够更好地理解和应用物理学知识。
正文:1. 力学公式:1.1 牛顿第二定律: F = ma,描述物体在外力作用下的加速度。
1.2 动能公式: E_k = (1/2)mv^2,计算物体的动能。
1.3 势能公式: Ep = mgh,计算物体在重力场中的势能。
1.4 动量公式: p = mv,描述物体的动量。
1.5 万有引力定律: F = G(m1m2/r^2),计算两个物体之间的引力。
2. 电磁学公式:2.1 库仑定律: F = k(q1q2/r^2),描述两个电荷之间的作用力。
2.2 电场强度公式: E = F/q,描述电荷在电场中所受的力。
2.3 电压公式: V = IR,描述电流通过导体时的电势差。
2.4 磁场强度公式: B = µ0(I/2πr),计算在电流通过导线时的磁场强度。
2.5 磁感应强度公式: B = µ0N/lI,计算螺线管中的磁感应强度。
3. 波动光学公式:3.1 光速公式: c = λν,描述光的传播速度。
3.2 折射定律: n1sinθ1 = n2sinθ2,描述光在两种介质中的折射现象。
3.3 成像公式: 1/f = 1/v + 1/u,计算透镜成像的距离。
3.4 焦距公式: f = R/2,计算球面镜的焦距。
3.5 干涉公式: Δd = mλ,描述两束光相干干涉时的光程差。
4. 其他公式:4.1 热力学公式: Q = mcΔT,计算物体的热量变化。
4.2 波函数公式: Ψ(x,t) = A sin(kx - ωt + φ),描述波动的波函数。
4.3 相对论能量公式: E = mc^2,描述物体的能量与质量之间的关系。
4.4 等离子体频率公式: ω^2 = (e^2n)/(ε0m),计算等离子体中的电磁波频率。
理论力学课后答案
理论力学课后答案理论力学是力学的基础学科,它主要研究物体的运动与力的关系。
通过学习理论力学,我们可以深入了解物体在不同力的作用下的运动规律,掌握解题方法和技巧。
下面就是一些常见的理论力学问题的答案,希望能对大家的学习有所帮助。
1. 一个质点在匀速直线运动中,如果在t=0时刻位置为x0,速度为v0,则它的位置公式为x = x0 + v0t。
2. 一个质点在匀加速直线运动中,如果在t=0时刻位置为x0,速度为v0,则它的位置公式为x = x0 + v0t + (1/2)at^2。
3. 一个质点在竖直上抛运动中,如果在t=0时刻位置为x0,速度为v0,则它的位置公式为x = x0 + v0t - (1/2)gt^2,其中g为重力加速度。
4. 一个质点做匀速圆周运动,它的速度大小保持不变,但方向不断变化。
当向圆心的向心力为F时,质点的加速度大小为a = v^2 / R,其中v为质点的速度大小,R为圆的半径。
5. 动能定理:物体的动能变化等于物体所受的净功,即ΔK = W,其中ΔK为动能变化量,W为物体所受的净功。
6. 动量定理:物体的动量变化等于物体所受的净冲量,即Δp = FΔt,其中Δp为动量变化量,F为物体受到的净力,Δt为作用时间。
7. 万有引力定律:两个质点之间的引力大小与它们的质量成正比,与它们之间的距离平方成反比。
引力的大小由F = G(m1m2 /r^2)给出,其中F为引力的大小,G为引力常数,m1和m2分别为两个质点的质量,r为两个质点之间的距离。
以上是一些常见的理论力学问题的答案,它们涉及了匀速直线运动、匀加速直线运动、竖直上抛运动、匀速圆周运动、动能定理、动量定理和万有引力定律等内容。
通过学习和掌握这些知识,我们可以更好地理解和解决理论力学的问题。
理论力学是物理学的基础,它不仅在学术研究中有广泛应用,也在工程技术领域中发挥着重要作用。
通过深入研究理论力学,我们可以更好地理解物体的运动规律,为工程设计和科学研究提供有力的理论支持。
理论力学 动能定理
第11章动能定理即质点系的动能等于其随质心平BCθABθCPA2rOr C力的功2rOr CAP2rOr CAP2rOr CAPs汽车驱动问题能量角度:汽缸内气体爆炸力是内力,不改变汽车的动量,但使汽车的动能增加。
动量角度:地面对后轮的摩擦力是驱动力,使汽车的动量增加,但不做功,不改变汽车的动能。
内力不能改变质点系的动量和动量矩,但可以改变能量;外力能改变质点系的动量和动量矩,但不一定能改变能量。
例题11-8水平悬臂梁AB,B端铰接滑轮B,匀质滑轮质量m1,半径r;绳一端接滚,轮C,半径r,质量m2视为质量集中在边缘;绳另端接重物D,质量m3。
求重物加速度。
CωDv BωCv 解:末位置是一般位置hconst 01==T T =2T 2321D v m 221B B J ω+221CP J ω+运动学关系rr v v B C C D ωω===2121rm J B =2222222rm r m r m J P=+=2321222121Dv m m m T ⎟⎠⎞⎜⎝⎛++=gh m W 312=CωDv BωCv h1212W T T =−gh m T v m m m D 30232122121=−⎟⎠⎞⎜⎝⎛++对t 求导h g m vv m m m D D &&33210)221(=−++Dv h =&D D a v=&gm m m m a D 3213221++=例11-9匀质圆盘和滑块的质量均为m。
圆盘的半径为r。
杆平行于斜面,其质量不计。
斜面的倾斜角为θ。
圆盘、滑块与斜面的摩擦因数均为μ。
圆盘在斜面上作纯滚动。
试求滑块下滑加速度。
1212W T T =−01=T 2222212121mvJ mv T A ++=ω解()sF F mgs mgs W B A +−+=θθsin sin 12θμcos mg F F B A ==取导221,mrJ v r A ==ω2245mvT =()θμθcos sin 2452−=gs v a v v s==&&,()θμθcos sin 54−=g a F A 是静摩擦力,理想约束,不作功。
理论力学 (2)
静力学引言1.刚体:在力的作用下,其内部任意两点之间的距离始终保持不变的物体。
2.力:力是物体之间相互的机械作用,这种作用的效果是使物体的运动状态发生变化,同时使物体的形状发生改变。
3.静力学的两个基本要素:力和力螺旋。
4.力系简化或等效替换中的基本概念① 等效力系:两力系对同一物体作用效果相同② 力系的等效替换:把一个力系用与之等效的另一个力系代替 ③ 力系的简化:一个复杂力系用一个简单力系等效替换的过程第一章 静力学公理和物体的受力分析 1. 静力学公理⑴ 公理① 力的平行四边形法则② 二力平衡条件 只受两个力作用而平衡的构件,作用线必在两点连线上。
③ 加减平衡力系原理 ⑵ 推论① 力的可传性 力的三要素为:大小、方向、作用线。
(滑动矢量) ② 三力平衡汇交原理③ 作用力与反作用力 ④ 刚化原理2. 约束和约束力⑴ 基本概念:自由体、非自由体、约束、约束(反)力 ⑵ 几种常见约束① 光滑面约束(N F ) ② 柔索类约束(T F )③ 光滑铰链约束(径向轴承、圆柱铰链、固定铰链支座等):因主动力未定时,约束力方向不定,所以用正交分力x F 、y F 表示。
④ 滚动支座(N F ):垂直于支撑面⑤ 球铰链、止推轴承:三正交分量(x F 、y F 、z F )3. 物体的受力分析和受力图分析过程⑴ 明确研究对象,取分离体。
(注意是否为整体)⑵ 先标出主动力,再利用二力杆原理、约束力特点、作用力与反作用力原理、三力平衡汇交原理等分析系统中的被动力,从而得出受力分析图。
第二章 平面力系1. 平面力系分为平面汇交力系、平面力偶系、平面平行力系、平面任意力系。
2. 平面汇交力系⑴ 平面汇交力系合成的几何法:力多边形法则 平衡条件:该利系多边形自行封闭。
⑵ 平面汇交力系合成与平衡的解析法(合力R F )① 建立平面直角坐标系原因:此时分力大小与力的投影成正比,非直角坐标系(平行四边形法则求分力)不成正比。
理论力学复习要点整理
理论⼒学复习要点整理第⼀章静⼒学公理和物体的受⼒分析1.静⼒学是研究物体在⼒系作⽤下的平衡条件的科学。
2.静⼒学公理公理1 ⼆⼒平衡公理:作⽤于刚体上的两个⼒,使刚体保持平衡的必要和充分条件是:这两个⼒⼤⼩相等、⽅向相反且作⽤于同⼀直线上。
F=-F’⼯程上常遇到只受两个⼒作⽤⽽平衡的构件,称为⼆⼒构件或⼆⼒杆。
公理2 加减平衡⼒系公理:在作⽤于刚体的任意⼒系上添加或取去任意平衡⼒系,不改变原⼒系对刚体的效应。
推论⼒的可传递性原理:作⽤于刚体上某点的⼒,可沿其作⽤线移⾄刚体内任意⼀点,⽽不改变该⼒对刚体的作⽤。
公理3 ⼒的平⾏四边形法则:作⽤于物体上某点的两个⼒的合⼒,也作⽤于同⼀点上,其⼤⼩和⽅向可由这两个⼒所组成的平⾏四边形的对⾓线来表⽰。
推论三⼒平衡汇交定理:作⽤于刚体上三个相互平衡的⼒,若其中两个⼒的作⽤线汇交于⼀点,则此三个⼒必在同⼀平⾯内,且第三个⼒的作⽤线通过汇交点。
公理4 作⽤与反作⽤定律:两物体间相互作⽤的⼒总是同时存在,且其⼤⼩相等、⽅向相反,沿着同⼀直线,分别作⽤在两个物体上。
公理5 钢化原理:变形体在某⼀⼒系作⽤下平衡,若将它钢化成刚体,其平衡状态保持不变。
对处于平衡状态的变形体,总可以把它视为刚体来研究。
3.约束和约束⼒限制⾮⾃由体某些位移的周围物体,称为约束。
约束对⾮⾃由体施加的⼒称为约束⼒。
约束⼒的⽅向与该约束所能阻碍的位移⽅向相反。
1.柔性体约束2.光滑接触⾯约束3.光滑铰链约束4.物体的受⼒分析和受⼒图画物体受⼒图时,⾸先要明确研究对象(即取分离体)。
物体受的⼒分为主动⼒和约束⼒。
要注意分清内⼒与外⼒,在受⼒图上⼀般只画研究对象所受的外⼒;还要注意作⽤⼒和反作⽤⼒之间的相互关系。
常见问题问题⼀画受⼒图时,严格按约束性质画,不要凭主观想象与臆测。
第⼆章平⾯⼒系本章总结1. 平⾯汇交⼒系的合⼒( 1 )⼏何法:根据⼒多边形法则,合⼒⽮为合⼒作⽤线通过汇交点。
( 2 )解析法:合⼒的解析表达式为2. 平⾯汇交⼒系的平衡条件( 1 )平衡的必要和充分条件:( 2 )平衡的⼏何条件:平⾯汇交⼒系的⼒多边形⾃⾏封闭。
(完整版)理论力学公式
静力学静力学是研究物体在力系作用下平衡的科学。
第一章、静力学公理和物体的受力分析1、 基本概念:力、刚体、约束和约束力的概念。
2、 静力学公理:(1)力的平行四边形法则;(三角形法则、多边形法则)注意:与力偶的区别 (2)二力平衡公理;(二力构件)(3)加减平衡力系公理;(推论:力的可传性、三力平衡汇交定理) (4)作用与反作用定律; (5)刚化原理。
3、常见约束类型与其约束力:(1)光滑接触约束——约束力沿接触处的公法线; (2)柔性约束——对被约束物体与柔性体本身约束力为拉力; (3)铰链约束——约束力一般画为正交两个力,也可画为一个力; (4)活动铰支座——约束力为一个力也画为一个力;(5)球铰链——约束力一般画为正交三个力,也可画为一个力; (6)止推轴承——约束力一般画为正交三个力;(7)固定端约束——两个正交约束力,一个约束力偶。
4、物体受力分析和受力图: (1)画出所要研究的物体的草图; (2)对所要研究的物体进行受力分析;(3)严格按约束的性质画出物体的受力。
意点:(1)画全主动力和约束力; (2)画简图时,不要把各个构件混在一起画受力图;(3)灵活利用二力平衡公理(二力构件)和三力平衡汇交定理; (4)作用力与反作用力。
第二章、平面汇交力系与平面力偶系1、平面汇交力系: (1)几何法(合成:力多边形法则;平衡:力多边形自行封闭)(2)解析法(合成:合力大小与方向用解析式;平衡:平衡方程0xF=∑,0y F =∑)注意点:(1)投影轴尽量与未知力垂直;(投影轴不一定相互垂直)(2)对于二力构件,一般先设为拉力,若求出负值,说明受压。
2、平面力对点之矩——()O M Fh =±F ,逆时针正,反之负 意点:灵活利用合力矩定理 3、平面力偶系: (1)力偶:由两个等值、反向、平行不共线的力组成的力系。
(2)力偶矩:M Fh =±,逆时针正,反之负。
(3)力偶的性质:[1]、力偶中两力在任何轴上的投影为零;[2]、力偶对任何点取矩均等于力偶矩,不随矩心的改变而改变;(与力矩不同) [3]、若两力偶其力偶矩相等,两力偶等效; [4]、力偶没有合力,力偶只能由力偶等效。
理论力学拉力设计值计算公式
理论力学拉力设计值计算公式
理论学拉力设计值公式:F=w/s,拉力简写为F,力的单位为牛顿,简称牛,符号N。
弹簧的拉力大小F跟弹簧的伸长(或缩短)的长度成正比,即F=kx,公式中的k叫做弹簧的劲度系数。
拉力是按力的效果定义的,从力的性质来看,拉力也是弹力,而从力的作用对象来看,拉力可能是内力,也可能是外力。
如果物体在受到阻力和拉力两个力的情况下,如果物体做匀速直线运动或保持静止状态,那么此时F拉=F阻,拉力和阻力是一对平衡力,物体处于二力平衡状态(合力为零)。
在特定情况下,如果物体做加速运动,则F拉>F阻;如果物体做减速运动,则F拉<F阻。
汽车作匀速直线运动时,拉力(牵引力)跟摩擦力平衡。
摩擦力等于拉力吗
当物体处于静止状态时,摩擦力为静摩擦力,大小等于拉力;当物体处于匀速直线运动状态时,摩擦力为动摩擦力,大小等于拉力。
摩擦力的方向与物体相对运动或相对运动趋势的方向相反。
理论力学知识点总结公式
理论力学知识点总结公式理论力学是物理学的一个重要分支,研究物体的运动和受力情况。
它是物理学的基础,对于理解自然界的运动规律和分析物体的运动状态具有重要的意义。
本文将介绍理论力学的基本概念、重要定律和公式,并对其应用进行探讨。
一、基本概念1. 物体的质点和刚体质点是指质量可以集中于一个点的物体,它没有大小和形状,仅有质量和位置。
刚体是指即使受到外力也能保持形状不变的物体,它具有质量、大小和形状。
2. 位矢和位移位矢是指从参考点到物体的位置的矢量,通常用r表示。
位移是指物体在运动过程中位置的变化,通常用Δr表示。
3. 速度和加速度速度是指单位时间内物体位置的变化率,通常用v表示。
加速度是指单位时间内速度的变化率,通常用a表示。
4. 动量和力动量是指物体运动的特性,通常用p表示。
力是导致物体加速的原因,通常用F表示。
5. 动力学方程动力学方程描述了物体运动的规律,它由牛顿的第二定律得出:F=ma。
二、重要定律1. 牛顿三定律牛顿第一定律:物体静止或匀速运动的状态会保持下去,直到受到外力的作用改变为止。
牛顿第二定律:物体的加速度与受到的力成正比,与物体的质量成反比。
牛顿第三定律:对于任何施加力的物体,它都会受到一个与之大小相等、方向相反的反作用力。
2. 质点系和刚体系质点系的基本原理是质点的加速度等于所有作用在其上的力之和。
刚体系的基本原理是刚体上每一点的加速度相等。
三、运动方程1. 直线运动对于直线运动的质点,其运动方程可以由牛顿第二定律得出:F=ma,从而得出质点位置的变化规律。
2. 曲线运动对于曲线运动的质点,需要考虑外力对其产生的速度和加速度的影响,从而得出质点运动的轨迹和位移。
3. 刚体运动对于刚体的运动,需要考虑刚体上各部分的相对运动关系,从而得出刚体的整体运动规律。
四、能量和功1. 功功是力在物体运动过程中对物体产生的影响,它等于力与位移的乘积。
通常用W表示。
2. 功率功率是指单位时间内做功的速率,它等于功与时间的比值。
理论力学之动量矩定理
证明 过固定点O建立固定坐标系 Oxyz,以质点系的质心 C为
z
原点,取平动坐标系Cx y z ,它以质心的速度vC 运动。
ri rc rri 质心的性质 vi vc vri
z' A vr v vC vC y y'
mi ri mi rri rc rc 0 M M 定系 动系 Mvc mi vi mi vri 0
rC
C
x'
rr
O
质点系内任一质点 A的绝对速度 v=ve+vr=vc+vr , 则质点系对固定点O的动量矩
x
(r
LO
C
mi vi )
(r m v ) [(r
i
(r
i i
C
rri ) mi vi ]
ri mi v C )
(r
ri mi v ri )
d M O (mv ) M O ( F ) dt
质点对固定点的动量矩对时间的一阶导数等 于作用于质点上的力对同一点的力矩。
B 固定轴
d M O (mv ) M O ( F ) dt
(将上式两边分别向坐标轴投影,再利用对点和 对轴动量矩公式可得): d M x (mv ) M x ( F ) dt d M y (mv) M y (F ) dt d M z (mv) M z (F ) dt 质点对某固定轴的动量矩对时间的导数,等于作用 于该质点的所有力对于同一轴之矩的代数和。 质点对定点的动量矩定理在三个坐 标轴的投影方程不独立
O
A
mivi
ri
LO =∑ MO(mivi) = ∑(miri )×vC 又因为 (∑mi )rC = ∑miri 所以 LO = ∑mi rC ×vC=rC× (∑mi )vC
理论力学中的牛顿第二定律
理论力学中的牛顿第二定律在理论力学中,牛顿第二定律是一个基础性的原理,它描述了物体的加速度是由外力和物体质量的乘积所决定的。
牛顿第二定律在物理学研究中起着重要的作用,本文将探讨该定律的概念、公式以及应用。
牛顿第二定律的概念是指当一个物体受到外力作用时,它的加速度与作用在物体上的合力成正比,与物体的质量成反比。
这个定律可以用以下公式表示:F = m * a其中,F表示物体所受到的合力,m表示物体的质量,a表示物体的加速度。
牛顿第二定律可以用于解决各种物理问题,例如计算物体的加速度、力的大小等。
下面将通过几个例子来说明牛顿第二定律的应用。
例一:一个质量为2kg的物体受到一个5N的力作用,求物体的加速度。
根据牛顿第二定律的公式,我们可以得到:F = m * a5 = 2 * a解方程可得,a = 2.5 m/s^2因此,物体的加速度为2.5 m/s^2。
例二:一个质量为0.5kg的物体加速度为4 m/s^2,求作用在物体上的合力大小。
根据牛顿第二定律的公式,我们可以得到:F = m * aF = 0.5 * 4解方程可得,F = 2N因此,作用在物体上的合力大小为2N。
通过上述例子,我们可以看到牛顿第二定律可以在实际问题中起到不可或缺的作用。
它使我们能够计算物体的加速度和力的大小,从而更好地理解物体运动的规律。
除了常规的问题求解,牛顿第二定律还有其他一些重要的应用。
例如,在工程领域中,我们可以利用该定律来设计和优化各种机械结构。
在航天工程中,牛顿第二定律被用来计算火箭的推力和轨道以及卫星的运动轨迹。
在运动学中,牛顿第二定律的推导可以用来解释物体自由落体运动的规律。
总结一下,牛顿第二定律是理论力学中的一个基础性原理,它描述了物体加速度与外力和物体质量的关系。
通过运用牛顿第二定律,我们可以解决各种与力、质量和加速度相关的物理问题。
该定律在物理学研究和各个实际应用领域都有着广泛的应用。
对于理论力学的学习和了解,深入理解和掌握牛顿第二定律是非常重要的一步。
理论力学常用公式
理论力学常用公式第1章、静力学部分1-1力沿直角坐标轴的解析表达式F=F x i+F y j+F z k;F x、F y、F z为力F相对于各坐标轴的投影;力与坐标轴x、y、z夹角为θ1、θ2、θ3,则力在x、y、z上的投影分别为F x=F cosθ1,F y=F cosθ2,F z=F cosθ3。
F=F x+F y+F z;F x、F y、F z为力 F在x、y、z轴上的分力。
1-2力对点的矩M o(F)=r×F;M o(F)=|i j kx y zF x F y F z|。
1-3力对轴的矩力F对某一轴的矩等于这个力在垂直于该轴的平面上的投影对于该轴与该平面的交点的矩,为代数量。
当力与矩轴在同一平面时,力对该轴的矩为零。
1-4基本约束与约束力1)柔索。
约束力作用在接触点,方向沿着柔索,指向背离物体,使物体受拉。
2)光滑接触面。
约束力作用在接触点,方向沿接触面在该点的公法线,并为压力(指向物体内部)。
3)固定铰支座。
约束力垂直于销钉轴线,通过销钉中心,方向不定。
通常用两个相互垂直的力表示。
4)铰链接。
约束力通常表示为两个相互垂直的力。
5)活动铰支座或辊轴支座。
约束力通过销钉中心,垂直于支撑面,指向不定(即可能是压力或拉力)。
6)链杆。
约束力沿着链杆中心线,指向不定。
7)滑移支座。
约束力可表示为垂直于支撑面方向的一个力和一个力偶。
8)球铰支座。
约束力通过球心,通常用三个相互垂直的分力来表示。
9)径向轴承。
约束力可用垂直于轴线的两个相互垂直的分力表示。
10)止推轴承。
与径向轴承相比,其约束力增加了沿轴线方向的分力。
11)固定支座或固定端。
平面固定端的约束力为一个方向未定的力和一个力偶;空间固定端的约束力为空间内一个方向未定的力和方向未定的力偶矩矢。
1-5物体的受力分析方法1)取研究对象。
将所研究部分的周围约束去掉,并从整体中分离出来;2)受力分析。
根据外加载荷和约束性质判断并确定作用在物体上有几个力,哪些是主动力,哪些是约束力,并判断各力的作用线、方向、大小;3)画受力图。
理论力学
题型 空间汇交力系 空间平行力系 传动轴 六力矩式平衡方程
例3 空间支架由三根直杆组成,如图所示,已知W=1kN。α=30° β=60°,φ=45°,试求杆AB、BC、BD所受的力。 解 取B铰为研究对象。
∑ Fz = 0
FBD
∑ Fy = 0
FBD cos α W = 0 W W 2 = = = W = 1.155 kN cos α cos α 3 FBC sin β FBD sin α cos = 0
(2) R ≠0,主矩MO≠0,且 F′ ⊥M ′ FR O,得作用于O’点的一个合力 。 FR
其作用线离简化中心O的距离为: d =
MO FR
。
R R R
R
R
a)
b)
c)
3.空间力系简化为力螺旋的情形 空间力系简化为力螺旋的情形 力螺旋:由一力和一力偶组成的力系,其中的力垂直于力偶的作用面。
R R R
60m m
例 2 如图所示,铅直力F=500N, 作用于曲柄上。试求此力对轴x、y、z 之矩及对原点O之矩。
30 0m m
30°
36 0m m
解:F对x、y、z之矩 分别为:
M x (F ) = F (300+ 60) = 500× 360 = 180×103 N mm = 180N m M y (F ) = F × 360cos30° = 500× 360× = 155.9 N m M z (F ) = 0
4、Mz(F)为零情况 、 为零情况 力的作用线与轴平行(Fxy=0)或相交(h=0)时,力对该轴的矩为零。 即,当力的作用线与轴线共面时,力对该轴之矩为零。
5、力对轴之矩合力矩定理 、 定理: 定理:合力FR对某轴之矩,等于各分力对同一轴之矩的代数和。 即:M z ( FR ) =
理论力学公式汇总.pdf
解题思路上的要点�一、解题要点:�(1)求约束反力:�a 、一般用动量定理、质心运动定理;�b 、若约束反力对转轴之矩不为零,也可用动量矩定理;�c 、但不能用动能定理,因为它不能求不做功的约束反力。
�(2)求位移(或角位移):用动能定理。
�(3)求速度(或角速度):a 、约束反力不做功,做工的力可计算,多用动能定理;b 、系统内力复杂、做功情况不明确,多用动量定理、质心运动定理;c 、如有转动问题,可用动量矩定理。
(4)求加速度(或角加速度):a 、对质点系,可用动量定理,质心运动定理;b 、定轴转动刚体,可用动量矩定理、刚体定轴转动微分方程;c 、平面运动刚体,可用平面运动微分方程;d 、有两个以上转轴的质点系,或既有转动刚体、又有平动、平面运动的复杂问题,可用积分形式的动能定理,建立方程后求导求解。
(5)补充方程:运动学补充方程,力的补充方程。
�二、几个关节点:�(1)求运动量,特别是速度问题,优先考虑用动能定理.�(整体分析)�(2)求约束反力,必须用动量定理或质心运动定理.也�涉及到动量矩定理(转动,曲线运动)�(3)初瞬时问题,鲜用动能定理.�(4)注意约束的位置和性质及是否系统的动量或动量�矩守恒(某一方向).�(5)根据题意寻找运动学方程或约束方程往往是解动�力学问题的关键.动量定理:(守恒)▲:在什么情况下用动量定理?(1)求刚体尤其刚体系统或质点系统的约束反力及线加速度问题.(2)守恒条件下的速度、位移和运动轨迹问题.动量矩定理:(1)对定点O:())1(F )v m (dt d e i n 1i n1i i i ∑∑===())2(F a m e in1i i n 1i i ∑∑===()())4(F a M )3(F )v M (dt de in1i c e i n 1i c ∑∑====())5(F dt p d e i n1i ∑==())F (M dt L d e i n 1i o O∑==(2)对质心:平动钢体:定轴转动刚体:⎟⎠⎞⎜⎝⎛=∑F M J Z Z v α平面运动刚体:())2()(e iCC FMJ ∑=α动能定理:主动力做功,理想约束不做功∑=−AW T T 12平动刚体:定轴转动刚体:平面运动刚体机械能守恒:势能零势面达朗伯原理(动静法):(惯性力)惯性力系的简化:平动刚体:定轴转动刚体:平面运动刚体:注意:有质量对称面且转轴垂直此面的刚体的定轴转动是刚体平面运动的特例,故刚体平面运动的惯性力系的简化方法也适合于这样的定轴转动的刚体.▲:达朗伯原理的应用(1)动载荷下求约束反力及加速度问题.(2)多自由度系统或多约束系统下求加速度及约束反力问题.虚位移原理:(静止平衡系统)在完整,定常,理想约束下的质点系静止平衡的充分必要条件是:作用于质点系上的主动力在任何虚位移中的元功之和为零.(静力学普遍方程)r Fi i=⋅∑δ)F (M dt L d n 1i )e (i C C∑==CC C O L V M r L +×=()e in1i c F a M ∑==()e in1i c F a M ∑==2CMv 21T =2Z J 21T ω=2C 2C2P J 21Mv 21J 21T ωω+==()()()0F M F M 0F F i i g O e i O g e i=+⎟⎠⎞⎜⎝⎛=+∑∑∑∑非惯性系中质点动力学的基本方程()A F F F dtV d m Ce g g r ++=~()5121212212−′+′=−e g Fr r W W mV mV 分析力学基础:广义力与广义坐标:广义力是质点系中一群力和力偶的组合.它是分析力学中的一个基本概念.它与广义坐标直接相关,不同的的广义坐标对应着不同的广义力.kN1k kii q q r r δδ⋅∂∂=∑=ki n1i i k q r F Q ∂∂⋅=∑=广义力的求解:坐标法,虚功法以广义坐标表示的质点系的平衡条件:如果质点系统平衡,则各广义坐标对应的广义力分别为零.11=δ⋅=δ⋅∑∑==Nk k k ni i iq Q r FQ Q Q Q N 321==⋅⋅⋅===动力学普遍方程:(虚位移原理与达朗伯的结合):理想约束下,质点系任一瞬时主动力与惯性力在虚位移上的功之和为零。
角加速度的所有公式
角加速度的所有公式
角加速度是描述物体旋转加速度的物理量,是指物体在单位时间内旋转速度增加的量大小。
以下是关于角加速度的常用公式:
1.角加速度的定义:α=t/t,其中α为角加速度,t为单位时间内物体角速度变化的量。
2.旋转运动的匀加速直线运动公式:θ=ω0t+(1/2)αt^2,其中θ为物体在一段时间内转过的角度,ω0为初始角速度,t为时间,α为角加速度。
3.牛顿第二定律:τ=Iα,其中τ为物体的转动力矩,I为物体的转动惯量,α为物体的角加速度。
4.动能定理:K=(1/2)Iω^2,其中K为物体的转动动能,I为物体的转动惯量,ω为物体的角速度。
5.能量守恒定律:E=K+U,其中E为物体的总能量,K为物体的转动动能,U为物体的转动势能。
6.平均角加速度公式:α=(Δω/Δt),其中Δω为物体在一段时间内角速度的变化量,Δt为时间。
7.切向加速度公式:aT=rα,其中aT为物体在单位时间内切向速度的变化量,r为物体的半径,α为物体的角加速度。
以上是角加速度的常用公式,它们在解决旋转运动问题时具有非常重要的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
理论力学公式
运动学公式
定轴转动刚体上一点的速度和加速度:(角量与线量的关系)
1.点的运动
矢量法 2
2 , , )(dt
r
d dt v d a dt r d v t r r ==== 直角坐标法
)
()()(321t f z t f y t f x ==
=z
v y v x v z y x ===z
a y a x
a z y x === 点的合成运动
r
e a v v v +=r e a a a a +=(牵连运动为平动时)
k r e a a a a a ++=(牵连运动为转动时)
其中, )
,sin(2 , 2r e r e k r e k v v a v a ωωω=⨯=2
2 , , )(dt
d dt d dt d t f ϕ
ωεϕωϕ====
三.运动学解题步骤.技巧及注意的问题
1.分析题中运动系统的特点及系统中点或刚体的运动形式。
2.弄清已知量和待求量。
3.选择合适的方法建立运动学关系求解。
各种方法的步骤,技巧和使用中注意的问题详见每次习题课中的总结。
动力学公式
1. 动量定理
质点系动量定理的微分形式,即质点系动量的增量等于作用于质点系的外力元冲量
的矢量和;或质点系动量对时间的导数等于作用于质点系的外力的矢量和.
质心运动定理
ω
R v =ε
τR a =2
ωR a n =全加速度:
),(ε=
n a
tg 轮系的传动比:
n n n n i Z Z R R n n i ωωωω
ωωωωωω13221111221212112 ,-⋅⋅⋅⋅======
ω
ω , ⋅=+=AB v v v v BA BA A B 为图形角速度
ετ
⋅=AB a BA 2
ω
⋅=AB a
n BA
ω,ε分别为图形的角速度,角加速度
n
BA
BA A B a a a a ++=τ()
d d
e i
p
F t
=∑
M a c = ∑F ≡ R
2. 动量矩定理:
平行移轴定理
刚体平面运动微分方程
三.动能定理
平面运动刚体的动能:
四. 达朗伯原理
对整个质点系,主动力系、约束反力系、惯性力系形式上构成平衡力系。
这就是质点系的达朗伯原理。
可用方程表示为:
用动静法求解动力学问题时,对平面任意力系,刚体平面运动可分解为
随基点(质点C )的平动:
绕通过质心轴的转动:
质点系相对质心的动量矩定理
∑==)
()( )(e C e i C r C M F m dt
L d ∑=-W
T T 12质点系动能定理的积分形式
)()()(0
=++=++∑∑∑∑∑∑i O
i
O
i
O
i
i
i
Q m
N m F m Q N F ∑==)
()()(e O e i O O M F m dt L d 一质点系对固定点的动量矩定理
)
(2
2)
( e z
z e z
z M dt d I M I ==∴ϕε或—刚体定轴转动微分方程
222222
1 21)(2121ωωωC C C I v M d M I +=+=T C
Q a M R -=ε
C QC I M -=2
'md I I zC z +=∑∑==
∴)
( , )
(e C
C
C F
m I F a m ε
根据动静法,有
虚位移原理
在某瞬时,质点系在约束允许的条件下,可能实现的任何无限小的位移称为虚位移 .
力在虚位移中作的功称虚功.
对于具有理想约束的质点系,其平衡的充分必要条件是:作用于质点系的所有主动力在任何虚位移中所作的虚功的和等于零.
材料力学常用公式
1.
外力偶矩计算公式 (P 功率,n 转速)
2. 弯矩、剪力和荷载集度之间的关系式
3. 轴向拉压杆横截面上正应力的计算公式
(杆件横截面轴力F N ,横截面面积A ,拉应力为正)
4. 轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x
轴正方向逆时针转至外法线的方位角为正)
即
∑=⋅0
i i r F δ虚位移 ϕ
δδδ,,x r
等 实位移
d ,d ,d r x ϕ
等
(3)
02/cos , 0)((2) 0sin , 0(1) 0cos , 0000
=-⋅==+-==-+=∑∑∑QA
A n
Q n
A n Q
A
M l m g F m R m g R F R m g R F ϕϕϕτ
τ
τr
F W δδ⋅=
5.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1)
6.纵向线应变和横向线应变
7.泊松比
8.胡克定律
9.受多个力作用的杆件纵向变形计算公式?
10.承受轴向分布力或变截面的杆件,纵向变形计算公式
11.轴向拉压杆的强度计算公式
12.许用应力,脆性材料,塑性材料
13.延伸率
14.截面收缩率
15.剪切胡克定律(切变模量G,切应变g )
16.拉压弹性模量E、泊松比和切变模量G之间关系式
17.圆截面对圆心的极惯性矩(a)实心圆
(b)空心圆
18.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r)
19.圆截面周边各点处最大切应力计算公式
20.扭转截面系数,(a)实心圆
(b)空心圆
21.薄壁圆管(壁厚δ≤ R0 /10 ,R0为圆管的平均半径)扭转切应力计算公式
22.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式
23.同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或
24.等直圆轴强度条件
25.塑性材料;脆性材料
26.扭转圆轴的刚度条件? 或
27.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式,
28.平面应力状态下斜截面应力的一般公式
,
29.平面应力状态的三个主应力,
,
30.主平面方位的计算公式
31.面内最大切应力
32.受扭圆轴表面某点的三个主应力,,
33.三向应力状态最大与最小正应力 ,
34.三向应力状态最大切应力
35.广义胡克定律
36.四种强度理论的相当应力
37.一种常见的应力状态的强度条件,
38.组合图形的形心坐标计算公式,
39.任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式
40.截面图形对轴z和轴y的惯性半径? ,
41.平行移轴公式(形心轴z c与平行轴z1的距离为a,图形面积为A)
42.纯弯曲梁的正应力计算公式
43.横力弯曲最大正应力计算公式
44.矩形、圆形、空心圆形的弯曲截面系数? ,,
45.几种常见截面的最大弯曲切应力计算公式(为中性轴一侧的横截面对中性轴z的静矩,b为横截面在中性轴处的宽
度)
46.矩形截面梁最大弯曲切应力发生在中性轴处
47.工字形截面梁腹板上的弯曲切应力近似公式
48.轧制工字钢梁最大弯曲切应力计算公式
49.圆形截面梁最大弯曲切应力发生在中性轴处
50.圆环形薄壁截面梁最大弯曲切应力发生在中性轴处
51.弯曲正应力强度条件
52.几种常见截面梁的弯曲切应力强度条件
53.弯曲梁危险点上既有正应力σ又有切应力τ作用时的强度条件或
,
54.梁的挠曲线近似微分方程
55.梁的转角方程
56.梁的挠曲线方程?
57.轴向荷载与横向均布荷载联合作用时杆件截面底部边缘和顶部边缘处的正应力计算公式
58.偏心拉伸(压缩)
59.弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式,
60.圆截面杆横截面上有两个弯矩和同时作用时,合成弯矩为
61.圆截面杆横截面上有两个弯矩和同时作用时强度计算公式
62.
63.弯拉扭或弯压扭组合作用时强度计算公式
64.剪切实用计算的强度条件
65.挤压实用计算的强度条件
66.等截面细长压杆在四种杆端约束情况下的临界力计算公式
67.压杆的约束条件:(a)两端铰支μ=l
(b)一端固定、一端自由μ=2
(c)一端固定、一端铰支μ=0.7
(d)两端固定μ=0.5
68.压杆的长细比或柔度计算公式,
69.细长压杆临界应力的欧拉公式
70.欧拉公式的适用范围
71.压杆稳定性计算的安全系数法
72.压杆稳定性计算的折减系数法。