多元统计分析试题(A卷)(答案)
多元统计分析期末试题及答案
22121212121~(,),(,),(,),,1X N X x x x x x x ρμμμμσρ⎛⎫∑==∑=⎪⎝⎭+-1、设其中则Cov(,)=____.10312~(,),1,,10,()()_________i i i i X N i W X X μμμ='∑=--∑、设则=服从。
()1234433,492,3216___________________X x x x R -⎛⎫ ⎪'==-- ⎪ ⎪-⎝⎭=∑、设随机向量且协方差矩阵则它的相关矩阵4、__________, __________,________________。
215,1,,16(,),(,)15[4()][4()]~___________i p p X i N X A N T X A X μμμμ-=∑∑'=--、设是来自多元正态总体和分别为正态总体的样本均值和样本离差矩阵,则。
(),123设X=x x x 的相关系数矩阵通过因子分析分解为211X h =的共性方差111X σ=的方差21X g =1公因子f 对的贡献121330.93400.1280.9340.4170.8351100.4170.8940.02700.8940.44730.8350.4470.1032013R ⎛⎫- ⎪⎛⎫⎛⎫ ⎪-⎛⎫ ⎪ ⎪⎪=-=-+ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪ ⎪⎝⎭12332313116421(,,)~(,),(1,0,2),441,2142X x x x N x x x x x μμ-⎛⎫⎪'=∑=-∑=-- ⎪ ⎪-⎝⎭-⎛⎫+ ⎪⎝⎭、设其中试判断与是否独立?11262(90,58,16),82.0 4.310714.62108.946460.2,(5)( 115.6924)14.6210 3.17237.14.5X S μ--'=-⎛⎫ ⎪==-- ⎪ ⎪⎝⎭0、对某地区农村的名周岁男婴的身高、胸围、上半臂围进行测量,得相关数据如下,根据以往资料,该地区城市2周岁男婴的这三个指标的均值现欲在多元正态性的假定下检验该地区农村男婴是否与城市男婴有相同的均值。
厦门大学《应用多元统计分析》试题A答案
一、判断题 1. 正确
( ) 证明: ∀c = c1, c2 ,"cp ,
∑∑ c′∑c =
cic jσ ij
ji
= ∑∑cic j [E(Xi − E(Xi ))(Xj − E(Xj ))]
ji
= E⎢⎡∑c j (Xi − E(Xi ))∑ci (Xj − (E Xj ))⎥⎤
=
(n
−1)[
(n −1) p
n(X − μ0 )′S−1
n(X − μ0 )]
八、
( ) ( ) 在典型相关分析中 X (1) =
X
(1)
1
,
X
(1)
2
"
X
(1)
p
′
,
X
(2)
=
X 1(2 ) ,
X
(2
2
)
"
X
(2
q
)
′
是
两个相互关联的随机向量,分别在两组变量中选取若干有代表性的综合变量 Ui、Vi,使
计算共因子的方差贡献得:
g12
=
λ1
= 1.9633;
g
2 2
=
0.6795;
g 32
=
0.3572 ,分别为公共因子
F1, F2 ,
F
对X
的贡
献,是衡量每个公共因子的相对重要性的尺度。
三、解:先求三元总体 X 的协方差阵 ∑ 的特征根,
σ2 −λ ∑ −λE = ρσ 2
0
ρσ 2 σ2 −λ
ρσ 2
−00.7.6439749⎟⎟⎞⎜⎜⎜⎛ 1.9633 − 0.1772⎟⎠⎜⎜⎝ 0.4479 ⎟⎞ − 0.3812⎟ − 0.1059⎟⎠
多元统计分析期末试题及答案
22121212121~(,),(,),(,),,1X N X x x x x x x ρμμμμσρ⎛⎫∑==∑=⎪⎝⎭+-1、设其中则Cov(,)=____.10312~(,),1,,10,()()_________i i i i X N i W X X μμμ='∑=--∑、设则=服从。
()1234433,492,3216___________________X x x x R -⎛⎫ ⎪'==-- ⎪⎪-⎝⎭=∑、设随机向量且协方差矩阵则它的相关矩阵4、__________, __________,________________。
215,1,,16(,),(,)15[4()][4()]~___________i p p X i N X A N T X A X μμμμ-=∑∑'=--、设是来自多元正态总体和分别为正态总体的样本均值和样本离差矩阵,则。
12332313116421(,,)~(,),(1,0,2),441,2142X x x x N x x x x x μμ-⎛⎫⎪'=∑=-∑=-- ⎪ ⎪-⎝⎭-⎛⎫+ ⎪⎝⎭、设其中试判断与是否独立?(),123设X=xx x 的相关系数矩阵通过因子分析分解为211X h =的共性方差111X σ=的方差21X g =1公因子f 对的贡献121330.93400.1280.9340.4170.8351100.4170.8940.02700.8940.44730.8350.4470.1032013R ⎛⎫- ⎪⎛⎫⎛⎫⎪-⎛⎫ ⎪ ⎪⎪=-=-+ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪ ⎪⎝⎭11262(90,58,16),82.0 4.310714.62108.946460.2,(5)( 115.6924)14.6210 3.17237.14.5X S μ--'=-⎛⎫ ⎪==-- ⎪ ⎪⎝⎭0、对某地区农村的名周岁男婴的身高、胸围、上半臂围进行测量,得相关数据如下,根据以往资料,该地区城市2周岁男婴的这三个指标的均值现欲在多元正态性的假定下检验该地区农村男婴是否与城市男婴有相同的均值。
多元统计考题A卷
1.6
5.2
800
5
0.9
4.2
813
6
1.7
3.8
812
7
2.1
1.1
862
8
2.5
4.5
765
9
2.0
2.7
820
五、(15分)
设有5个产品,每个只测量了一个指标,得数据如下:1,2,4.5,6,8试用欧式距离和最短距离法将它们进行分类,并画出系统聚类图。
六、(15分)
设 与 有相关关系,其8组观测数据见下表。
4.设 来自于A1,A2,…Ag总体,按贝叶斯准则建立多总体判别模型即是要求,其 k=1,2,…,g。
5.聚类分析分Q型和R型聚类,当需要研究变量与变量之间关系时,一般使用,常用统计量作为分类依据。
二、(10分)
设 是 维随机向量, , ,其中 为非零向量,
证明:
三、(10分)
设有 组样本观测值数据
其中, 表示第 次试验或第 个样本关于变量 的观测值,证明:
四、(15分)
某钻探区钻了9口探井,下表列出了这9口井的横坐标 、纵坐标 以及某含油层顶面的海拔高程 。含油层海拔高度的单位是米。试求其一次趋势面方程。
序号
横坐标,
纵坐标,
海拔高程,
1
0.6
1.7
873
2
1.4
6.2
793
3
0.3
6.1
870
序号
1
38
47.5
23
66.0
2
41
21.3
17
43.0
3
34
36.5
21
36.0
4
多元统计分析期末试题及答案
22121212121~(,),(,),(,),,1X N X x x x x x x ρμμμμσρ⎛⎫∑==∑=⎪⎝⎭+-1、设其中则Cov(,)=____.10312~(,),1,,10,()()_________i i i i X N i W X X μμμ='∑=--∑、设则=服从。
()1234433,492,3216___________________X x x x R -⎛⎫ ⎪'==-- ⎪ ⎪-⎝⎭=∑、设随机向量且协方差矩阵则它的相关矩阵4、__________, __________,________________。
215,1,,16(,),(,)15[4()][4()]~___________i p p X i N X A N T X A X μμμμ-=∑∑'=--、设是来自多元正态总体和分别为正态总体的样本均值和样本离差矩阵,则。
12332313116421(,,)~(,),(1,0,2),441,2142X x x x N x x x x x μμ-⎛⎫⎪'=∑=-∑=-- ⎪ ⎪-⎝⎭-⎛⎫+ ⎪⎝⎭、设其中试判断与是否独立?(),123设X=x x x 的相关系数矩阵通过因子分析分解为211X h =的共性方差111X σ=的方差21X g =1公因子f 对的贡献121330.93400.1280.9340.4170.8351100.4170.8940.02700.8940.44730.8350.4470.1032013R ⎛⎫- ⎪⎛⎫⎛⎫⎪-⎛⎫ ⎪ ⎪⎪=-=-+ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎪⎝⎭11262(90,58,16),82.0 4.310714.62108.946460.2,(5)( 115.6924)14.6210 3.17237.14.5X S μ--'=-⎛⎫ ⎪==-- ⎪ ⎪⎝⎭0、对某地区农村的名周岁男婴的身高、胸围、上半臂围进行测量,得相关数据如下,根据以往资料,该地区城市2周岁男婴的这三个指标的均值现欲在多元正态性的假定下检验该地区农村男婴是否与城市男婴有相同的均值。
多元统计学多元统计分析试题(A卷)(答案)
《多元统计分析》试卷1、若),2,1(),,(~)(n N X p =∑αμα 且相互独立,则样本均值向量X 服从的分布为2、变量的类型按尺度划分有_间隔尺度_、_有序尺度_、名义尺度_。
3、判别分析是判别样品 所属类型 的一种统计方法,常用的判别方法有__距离判别法_、Fisher 判别法、Bayes 判别法、逐步判别法。
4、Q 型聚类是指对_样品_进行聚类,R 型聚类是指对_指标(变量)_进行聚类。
5、设样品),2,1(,),,('21n i X X X X ip i i i ==,总体),(~∑μp N X ,对样品进行分类常用的距离有:明氏距离,马氏距离2()ijd M =)()(1j i j i x x x x -∑'--,兰氏距离()ij d L =6、因子分析中因子载荷系数ij a 的统计意义是_第i 个变量与第j 个公因子的相关系数。
7、一元回归的数学模型是:εββ++=x y 10,多元回归的数学模型是:εββββ++++=p p x x x y 22110。
8、对应分析是将 R 型因子分析和Q 型因子分析结合起来进行的统计分析方法。
9、典型相关分析是研究两组变量之间相关关系的一种多元统计方法。
一、填空题(每空2分,共40分)1、设三维随机向量),(~3∑μN X ,其中⎪⎪⎪⎭⎫ ⎝⎛=∑200031014,问1X 与2X 是否独立?),(21'X X 和3X 是否独立?为什么?解: 因为1),cov(21=X X ,所以1X 与2X 不独立。
把协差矩阵写成分块矩阵⎪⎪⎭⎫⎝⎛∑∑∑∑=∑22211211,),(21'X X 的协差矩阵为11∑因为12321),),cov((∑='X X X ,而012=∑,所以),(21'X X 和3X 是不相关的,而正态分布不相关与相互独立是等价的,所以),(21'X X 和3X 是独立的。
多元统计试题及答案
准则1:修正的复相关系数 达到最大。因为:
从这个关系式容易看出, 达到最大时, 达到最小。
2从预测的角度考虑,可以采用预测平方和达到最小的准则以及 准则
准则2:预测平方和 达到最小
准则3:( 准则):定义 统计量为 要求选择 小,且 小的回归方程。
检验假设
根据 分布的定义,有 ,这里 ,对于给定的显著性水平,当 时,我们拒绝 ,反之就接受 ,在SPSS软件的输出结果中,可以直接从P值看出检验结果,那么我们拒绝的P值区间是多少呢?
⑶统计性的依据是什么?给出一个回归分析方程如何作显著性检验?
统计性的依据方差分析
对于多元线性回归作显著性检验就是要看自变量 从整体上对随机变量y是否有明显的影响,即检验假设
如果 被接受,则表明y与 之间不存在线性关系,为了说明如何进行检验,我们要首先建立方差分析表.
在进行显著性的检验中,我们可以用F统计量来检验回归方程的显著性,也可以用P值法做检验.F统计量是:
当 为真时, ,给定显著性水平α,查F分布表得临界值 ,计算F的观测值,若 ,则接受 ,即认为在显著性水平α之下,认为y与 之间线性关系不显著.
试用最长距离法对这六个样品进行聚类,并画出谱系图。(10分)
解答:首先将6个样品的各自看成一类,即:
Gi=(i),i=1,2,3,4,5,6
将相关系数矩阵记为R0,则:
从这个矩阵可以看出,G1,G2的相关性最大,因此将G1,G2在水平0.92上合成一个新类G7={1,2},计算G7与G3,G4,G5,G6之间的最长距离,得到:
2.3聚类分析
⑴系统聚类的基本思想:
先将待聚类的n个样品(或者变量)各自看成一类,公有n类,然后按照事先选定的方法计算每两类之间的聚类统计,即某种距离(或者相似系数),将关系最密切的两类并为一类,其余不变,既得到n-1类;再按照前面的计算方法计算新类与其他类之间的距离(或者相似系数),再将关系最密切的两类并为一类,其余不变,即得到n-2类;如此继续下去,每次重复都减少一类,直到最后所有的样品(或者变量)归为一类为止.
多元统计分析试卷(a)答案
1. 设随机向量 X = ( X , X , X )' ,且其协方差阵为 ∑ = -49 -2 ⎪ ,则它的相关 3 -2 16⎪⎭ 1 - 2 矩阵 R = - 1 - 1 ⎪ 。
1 ⎪ 3(α) ~ N ( μ, ∑),( α = 1,2, n) 且相互独立,样本均值向量为 X ,样本离差阵为n - 1 B ⎢11 0⎥ 22 0⎥ D = C D ⎢13 24 19 0⎥- X )' , 则 X ~N (μ , 1 ∑) , L ~ W (n - 1,∑) 。
L =∑( X- X )( X5. 设三维随机向量 X ~ N (μ , ∑) ,其中 ∑ = 1 3 0 ⎪ ,则 X 与 X 不独立 ; 0 0 2 ⎪⎢ A 0⎥ 11 0⎥ 12 22 0 ⎥C (0) =⎢解:样品与样品之间的明氏距离为: D ⎢ E 10 23 5 6 0 ⎥ ⎭n⎣ ⎦学 号精品文档东 北 大 学 秦 皇 岛 分 校课程名称: 多元统计分析 试卷类型: A 答案 考试形式:闭卷授课专业: 信科、应数、统计 考试日期: 2013 年 7 月 9 日 试卷:共 3 页( X , X )' 和 X 独立(填独立或不独立)。
1 2 36. 变量的类型按尺度划分有间隔尺度 、有序尺度 、名义尺度 。
二、判断题(每小题 3 分,共 15 分) 1. [×] 因子载荷矩阵 A 是对称阵。
2. [×] 方差分析是检验多个正态总体的方差或协方差阵是否相等的统计分析方法。
班 级题号得分阅卷人一 二 三 四 总分3. [√] 聚类分析中快速聚类法指的就是 k -均值法。
4. [√] 判别分析中,“留一个观测在外”的原则是指在交叉验证时,某个观测不参与估计判别函数,但要根据除这个观测以外的其他观测估计的判别函数来预测该观测的所属类,从而使这个 观测得到验证。
姓 名装订线内不要答题装订线一、填空题:(每空 2 分,共 32 分)⎛ 4 -4 3 ⎫ ⎪ 1 2 3 ⎝⎛ 3 ⎫3 8 ⎪2 3 6 ⎪⎝ 8 - 61 ⎪⎪2. 系统聚类分析的方法很多,其中的五种分别为最长距离法、最短距离法、重心法、类 平均法、离差平方和法。
多元统计分析试题及答案
多元统计分析试题及答案华南农业⼤学期末试卷(A 卷)2006学年第2学期考试科⽬:多元统计分析考试类型:(闭卷)考试时间:120 分钟⼀、填空题(5×6=30)22121212121~(,),(,),(,),,1X N X x x x x x x ρµµµµσρ∑==∑=+-1、设其中则Cov(,)=____.10312~(,),1,,10,()()_________iiii XN i W XXµµµ='∑=--∑ 、设则=服从。
()1234433,492,3216___________________X x x x R -?? ?'==-- ? ?-?=∑、设随机向量且协⽅差矩阵则它的相关矩阵________________。
(),123设X=xx x 的相关系数矩阵通过因⼦分析分解为211X h =的共性⽅差111X σ=的⽅差21X g =1公因⼦f 对的贡献121330.9340.1280.9340.4170.8351100.4170.8940.027 0.8940.44730.8350.4470.1032013R ?-?-=-=-+5,1,,16(,),(,)15[4()][4()]~___________i p p X i N X A N TX A X µµµµ-=∑∑'=-- 、设是来⾃多元正态总体和分别为正态总体的样本均值和样本离差矩阵,则。
⼆、计算题(5×11=50)12332313116421(,,)~(,),(1,0,2),441,2142X x x x N x x x x x µµ-??'=∑=-∑=-- --??+、设其中试判断与是否独⽴?11262(90,58,16),82.0 4.310714.62108.946460.2,(5)( 115.6924)14.62103.17237.14.5X S µ--'=-?? ?==-- ? 0、对某地区农村的名周岁男婴的⾝⾼、胸围、上半臂围进⾏测量,得相关数据如下,根据以往资料,该地区城市2周岁男婴的这三个指标的均值现欲在多元正态性的假定下检验该地区农村男婴是否与城市男婴有相同的均值。
多元统计分析期末试题及答案
22121212121~(,),(,),(,),,1X N X x x x x x x ρμμμμσρ⎛⎫∑==∑=⎪⎝⎭+-1、设其中则Cov(,)=____.10312~(,),1,,10,()()_________i i i i X N i W X X μμμ='∑=--∑、设则=服从。
()1234433,492,3216___________________X x x x R -⎛⎫ ⎪'==-- ⎪ ⎪-⎝⎭=∑、设随机向量且协方差矩阵则它的相关矩阵4、__________, __________,________________。
215,1,,16(,),(,)15[4()][4()]~___________i p p X i N X A N T X A X μμμμ-=∑∑'=--、设是来自多元正态总体和分别为正态总体的样本均值和样本离差矩阵,则。
(),123设X=x x x 的相关系数矩阵通过因子分析分解为211X h =的共性方差111X σ=的方差21X g =1公因子f 对的贡献121330.93400.1280.9340.4170.8351100.4170.8940.02700.8940.44730.8350.4470.1032013R ⎛⎫- ⎪⎛⎫⎛⎫ ⎪-⎛⎫ ⎪ ⎪⎪=-=-+ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪ ⎪⎝⎭12332313116421(,,)~(,),(1,0,2),441,2142X x x x N x x x x x μμ-⎛⎫⎪'=∑=-∑=-- ⎪ ⎪-⎝⎭-⎛⎫+ ⎪⎝⎭、设其中试判断与是否独立?11262(90,58,16),82.0 4.310714.62108.946460.2,(5)( 115.6924)14.6210 3.17237.14.5X S μ--'=-⎛⎫ ⎪==-- ⎪ ⎪⎝⎭0、对某地区农村的名周岁男婴的身高、胸围、上半臂围进行测量,得相关数据如下,根据以往资料,该地区城市2周岁男婴的这三个指标的均值现欲在多元正态性的假定下检验该地区农村男婴是否与城市男婴有相同的均值。
(完整)多元统计分析期末试题及答案,推荐文档.docx
1 、设 X ~ N2 ( ,), 其中 X( x1 , x 2 ),( 1 ,212 ),,1则 Cov( x1x 2 , x1x 2 )=____.102、设X i ~N 3 (,), i 1, L,10,则 W =( X i)( X i)i 1服从_________。
4433、设随机向量X x1x2x3, 且协方差矩阵 4 9 2 ,3 2 16则它的相关矩阵R___________________4、设 X= x1x2x3,的相关系数矩阵通过因子分析分解为112330.93400.1280.4171R100.4170.9340.83530.8940.8940.027 0.83500.4472010.4470.10332__________,__________,X1的共性方差 h1X1的方差11公因子 f 1对 X的贡献 g12________________。
5、设 X i , i 1,L ,16 是来自多元正态总体N p (, ), X 和 A分别为正态总体N p ( ,)的样本均值和样本离差矩阵 , 则T 215[4( X)] A 1[4( X)] ~ ___________。
1642、设( x1 , x2 , x3) ~ N3(, ),其中(1,0, 2) ,44 1 ,1X214试判断 x12 x3与x2x3是否独立?x12、对某地区农村的 6 名 2 周岁男婴的身高、胸围、上半臂围进行测量,得相关数据如下 , 根据以往资料 , 该地区城市 2周岁男婴的这三个指标的均值0(90,58,16), 现欲在多元正态性的假定下检验该地区农村男婴是否与城市男婴有相同的均值。
82.0 4.310714.62108.9464其中 X60.2 ,(5 S ) 1( 115.6924)114.6210 3.17237. 376014.58.946437.376035.5936 (0.01,F 0.01 (3, 2)99.2, F 0.01 (3,3)29.5,F0.01 (3, 4)16.7)、设已知有两正态总体G与 G,且12,24,1211,3126219而其先验概率分别为q1q20.5,误判的代价C (2 1)4;e ,C(1 2)e试用判别法确定样本X 3属于哪一个总体?Bayes514、设X( X1 , X2 , X3 , X4 )T,协方差阵1~ N (0, ),0111(1)试从Σ出发求 X 的第一总体主成分;(2)试问当取多大时才能使第一主成分的贡献率达95%以上。
多元统计分析期末试题及答案
. z4、 __________, __________, ________________。
(1) 试从Σ出发求*的第一总体主成分;(2) 试问当 取多大时才能使第一主成分的奉献率达95%以上。
1、0 2、W 3〔10,∑〕 3、211342113611146R ⎛⎫-⎪ ⎪ ⎪=-- ⎪ ⎪ ⎪- ⎪⎝⎭4、0.872 1 1.7435、T 2〔15,p 〕或〔15p/(16-p)〕F 〔p ,n-p 〕一、填空题:1、多元统计分析是运用 数理统计 方法来研究解决 多指标 问题的理论和方法.2、回归参数显著性检验是检验 解释变量 对 被解释变量 的影响是否著.3、聚类分析就是分析如何对样品〔或变量〕进展量化分类的问题。
通常聚类分析分为 Q 型 聚类和 R 型 聚类。
4、相应分析的主要目的是寻求列联表 行因素A 和 列因素B 的根本分析特征和它们的最优联立表示。
5、因子分析把每个原始变量分解为两局部因素:一局部为 公共因子 ,另一局部为 特殊因子 。
6、假设()(,),P x N αμα∑=1,2,3….n 且相互独立,则样本均值向量x 服从的分布为_x ~N(μ,Σ/n)_。
二、简答1、简述典型变量与典型相关系数的概念,并说明典型相关分析的根本思想。
在每组变量中找出变量的线性组合,使得两组的线性组合之间具有最大的相关系数。
选取和最初挑选的这对线性组合不相关的线性组合,使其配对,并选取相关系数最大的一对,如此下去直到两组之间的相关性被提取完毕为止。
被选ρ(),123设X=xx x 的相关系数矩阵通过因子分析分解为211X h =的共性方差111X σ=的方差. z出的线性组合配对称为典型变量,它们的相关系数称为典型相关系数。
2、简述相应分析的根本思想。
相应分析,是指对两个定性变量的多种水平进展分析。
设有两组因素A 和B ,其中因素A 包含r 个水平,因素B 包含c 个水平。
对这两组因素作随机抽样调查,得到一个rc 的二维列联表,记为 。
研究生多元统计分析试题(A卷)(答案)
内蒙古农业大学2009—2010学年第一学期一、判断题(每小题2分,共10分) 1.多元正态分布的任何边缘分布为正态分布; ( 对 ) 2.正态总体),(∑μp N 的样本均值X 是μ的无偏,有效,一致估计; ( 对 ) 3.Wilks 统计量可以化成2T 统计量但是化不成F 统计量; ( 错 ) 4.Fisher 判别法对总体的分布有特定的要求; ( 错 )5.. ( 对 )二、填空题(每小题3分,共15分)1. 设X 和S 分别是正态总体),(∑μp N 的样本均值和离差阵,则X 和S 的关系为相互独立;2.若X ~),0(∑p N ,S ~),(∑n W p 且X 与S 相互独立,则X S X pp n 1'1-+-~(,1)F p n p -+;3.若1A ~),(1∑n W p ,p n ≥1,2A ~),(2∑n W p ,∑>0,且1A 和2A 相互独立, 则211A A A +~12(,,)p n n ∧;4.设资料阵X=()pn ijx ⨯,则样品()i X 与()j X 的切比雪夫距离)(∞ij d =1max ||i j px x ααα≤≤-;5.设S 是正态总体),(∑μp N 的离差阵,则∑的相合估计为11()1s s n n - . 三、选择题(每小题3分,共15分)1.设S 是正态总体),(∑μp N 的离差阵,样本容量为n ,则S 为正定矩阵的充要..条件..是(A ) A .n >p B. n <p C. n ≥p D. n ≤p2.下列不.是.系统聚类法是( ) A. 对应分析法 B.重心法 C. 可变法 D. 类平均法3. 以下关于聚类分析的说法不正确...的是(A ) A.聚类分析与群分析是不同的统计分析方法 B. 聚类分析属于多元统计分析方法 C. 系统聚类法是一种常用的聚类分析法 D. 模糊聚类法是一种常用的聚类分析法4. 判别分析是种常用的商情分析工具,下列关于判别分析的说法正确的是( D ) A. 判别分析是属于一元统计方法 B. 判别函数只有线性判别一种类型C. 无论判别标准是否相同,所得到的结论是相同的D. 判别分析是判别样本所属类型的统计方法5.“用一条直线代表散点图上的分布趋势,使各点与该纵向距离的平方和最小”是( A )方法B. 判别分析C. 聚类分析D. 相关分析四、计算题(每小题10分,共 30分)1.设抽取五个样品,每个样品只测一个指标,它们是2,3,4.5,8,10,试用最短距离法对五个样品进行分类. (请用绝对距离)解: 设样品为: x1,x2,x3,x4,x5 则他们的距离(绝对值距离)为(0)D =12345123450102.5 1.5065 3.5087 5.520x x x x x x x x x x ⎛⎫ ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪ ⎪⎝⎭ (1)D =1234512345,,01.505 3.507 5.52x x x x x x x x x x ⎛⎫⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭(2)D =1234512345,,,,03.505.520x x x x x x x x x x ⎛⎫ ⎪ ⎪ ⎪⎪⎝⎭ (3)D =1234512345,,,,,0, 3.50x x x x x x x x x x ⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭2.设三元总体X 的协方差阵为200050009⎛⎫ ⎪∑= ⎪ ⎪⎝⎭,从∑出发,求总体主成分123,,F F F ,并求前两个主成分的累积贡献率。
应用多元统计分析试题及答案
一、填空题:1、多元统计分析是运用数理统计方法来研究解决多指标问题的理论和方法.2、回归参数显著性检验是检验解释变量对被解释变量的影响是否著.3、聚类分析就是分析如何对样品(或变量)进行量化分类的问题。
通常聚类分析分为 Q型聚类和R型聚类。
4、相应分析的主要目的是寻求列联表行因素A 和列因素B 的基本分析特征和它们的最优联立表示。
5、因子分析把每个原始变量分解为两部分因素:一部分为公共因子,另一部分为特殊因子。
6、若()(,), Px N αμα∑=1,2,3….n且相互独立,则样本均值向量x服从的分布为_x~N(μ,Σ/n)_。
二、简答1、简述典型变量与典型相关系数的概念,并说明典型相关分析的基本思想。
在每组变量中找出变量的线性组合,使得两组的线性组合之间具有最大的相关系数。
选取和最初挑选的这对线性组合不相关的线性组合,使其配对,并选取相关系数最大的一对,如此下去直到两组之间的相关性被提取完毕为止。
被选出的线性组合配对称为典型变量,它们的相关系数称为典型相关系数。
2、简述相应分析的基本思想。
相应分析,是指对两个定性变量的多种水平进行分析。
设有两组因素A和B,其中因素A包含r个水平,因素B包含c个水平。
对这两组因素作随机抽样调查,得到一个rc的二维列联表,记为。
要寻求列联表列因素A和行因素B 的基本分析特征和最优列联表示。
相应分析即是通过列联表的转换,使得因素A 和因素B具有对等性,从而用相同的因子轴同时描述两个因素各个水平的情况。
把两个因素的各个水平的状况同时反映到具有相同坐标轴的因子平面上,从而得到因素A 、B 的联系。
3、简述费希尔判别法的基本思想。
从k 个总体中抽取具有p 个指标的样品观测数据,借助方差分析的思想构造一个线性判别函数 系数:确定的原则是使得总体之间区别最大,而使每个总体内部的离差最小。
将新样品的p 个指标值代入线性判别函数式中求出 值,然后根据判别一定的规则,就可以判别新的样品属于哪个总体。
多元统计分析期末试题(卷)与答案解析
22121212121~(,),(,),(,),,1X N X x x x x x x ρμμμμσρ⎛⎫∑==∑=⎪⎝⎭+-1、设其中则Cov(,)=____.10312~(,),1,,10,()()_________i i i i X N i W X X μμμ='∑=--∑、设则=服从。
()1234433,492,3216___________________X x x x R -⎛⎫ ⎪'==-- ⎪⎪-⎝⎭=∑、设随机向量且协方差矩阵则它的相关矩阵4、__________, __________,________________。
215,1,,16(,),(,)15[4()][4()]~___________i p p X i N X A N T X A X μμμμ-=∑∑'=--、设是来自多元正态总体和分别为正态总体的样本均值和样本离差矩阵,则。
(),123设X=x xx 的相关系数矩阵通过因子分析分解为211X h =的共性方差111X σ=的方差21X g =1公因子f 对的贡献121330.93400.1280.9340.4170.8351100.4170.8940.02700.8940.44730.8350.4470.1032013R⎛⎫- ⎪⎛⎫⎛⎫⎪-⎛⎫ ⎪ ⎪⎪=-=-+ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎪⎝⎭12332313116421(,,)~(,),(1,0,2),441,2142X x x x N x x x x x μμ-⎛⎫⎪'=∑=-∑=-- ⎪ ⎪-⎝⎭-⎛⎫+ ⎪⎝⎭、设其中试判断与是否独立?11262(90,58,16),82.0 4.310714.62108.946460.2,(5)( 115.6924)14.6210 3.17237.14.5X S μ--'=-⎛⎫ ⎪==-- ⎪ ⎪⎝⎭0、对某地区农村的名周岁男婴的身高、胸围、上半臂围进行测量,得相关数据如下,根据以往资料,该地区城市2周岁男婴的这三个指标的均值现欲在多元正态性的假定下检验该地区农村男婴是否与城市男婴有相同的均值。
应用多元统计分析A卷答案
成份 初始特征值 提取平方和载入 合计
方差的 %
累积 %
合计
方差的 % 累积 %
1 2
3 .732
4 .46
5 5 .235 6
.064
提取方法:主成份分析。
成份得分系数矩阵
成份
1
2 体重 .342 腰围 .285
脉搏 .127 单杠 .239 .244 仰卧起坐 .270 .238 跳高
.182 .519
提取方法 :主成份。
1)当贡献率超过85%时应该选取几个主成分。
应该选取3个主成分
2)写出第一、第二主成分表达式
1123456
21234560.2420.2650.1270.2390.270.1820.3420.2850.4610.2440.2380.519Z X X X X X X Z X X X X X X =--++++=+-+++
3)第一到第三主成分的方差分别是多少 ,,
4)进行适当的主成分分析
通过分析可以看出,第一主成分代表的是先天的身体素质,第二主成分代表的是运动指标
2.在某年级44名学生的期末考试中,有的课程采用闭卷,有的课程采用开卷,对数据进行了因子分析,输出结果如下:
Eigenvalues of the Correlation Matrix: Total = 5 Average = 1
Eigenvalue Difference Proportion Cumulative 1 2. 1. 2 0. 3 0. 0. 4 0. 0.
5 0.
Factor Pattern
Factor1 Factor2 Factor3 x1 力学(闭) x2 物理(闭) x3 代数(开)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多元统计分析试题(A卷)(答案)
《多元统计分析》试卷
一、填空题(每空2分,共40分)
1、若且相互独立,则样本均值向量X服从的分布为
2、变量的类型按尺度划分有_间隔尺度_、_有序尺度_、名义尺度_。
3、判别分析是判别样品的一种统计方法,常用的判别方法有__
_、、、。
4、Q型聚类是指对_进行聚类,R型聚类是指对进行聚类。
'
5、设样品,总体X~Np(
,对样品进行分类
常用的距离有:明氏距离,马氏距离
,兰氏距离
6、因子分析中因子载荷系数aij的统计意义是_第i个变量与第j个公因子的相关系数。
7、一元回归的数学模型是:,多元回归的数学模型
是:。
8、对应分析是将和
结合起来进行的统计分析方法。
9、典型相关分析是研究两组变量之间相关关系的一种多元统计方法。
二、计算题(每小题10分,共40分)
1、设三维随机向量,其中
130
,问X1与X2是否独立?
和X3是否独立?为什么?
解:因为,所以X1与X2不独立。
把协差矩阵写成分块矩阵
,的协差矩阵为因为
,而,所以和X3是不相关的,而正态分布不
相关与相互独立是等价的,所以和X3是独立的。
2、设抽了五个样品,每个样品只测了一个指标,它们分别是1 ,2 ,4.5 ,6 ,8。
若样
本间采用明氏距离,试用最长距离法对其进行分类,要求给出聚类图。
x1013.557
02.546
01.53.5
02
x2
x3
解:样品与样品之间的明氏距离为:D(0)
样品最短距离是1,故把X1与X2合并为一类,计算类与类之间距离(最长距离法)
{x1,x2}
03.557
01.53.5
02x3
x4
得距离阵 D(1)
类与类的最短距离是1.5,故把X3与X4合并为一类,计算类与类之间距离(最长距离法)得距离阵D(2)
{x1,x2}
057
{x3,x4}
x5
类与类的最短距离是3.5,故把{X3,X4}与X5合并为一类,计算类与类之间距离(最
{x1,x2}
07
长距离法)得距离阵D(3)
分类与聚类图(略)(请你们自己做)
3、设变量X1,X2,X3的相关阵为
0.631.000.35
0.35,R的特征值和单位化特征向量
分别为
T
T
T
(1)取公共因子个数为2,求因子载荷阵A。
(2)计算变量共同度hi及公共因子Fj的方差贡献,并说明其统计意义。
解:因子载荷阵
2
2
2
0.680.680.68
2
变量共同度:
2
2
2
2
0.68)=
2
2
公共因子Fj的方差贡献:
2
222
2
0.68)
2
统计意义(省略)(学生自己做)
4、设三元总体X的协方差阵为
030
,从出发,求总体主成分F1,F2,F3,并
求前两个主成分的累积贡献率。
解:
特征方程,得特征根:
的特征方程:
的特征方程:
的特征方程:
,得特征向量,得特征向量,得特征向量
前两个主成分的累积贡献率
910
三、简述题(20分)
简述多元统计的主要内容,结合你本专业谈谈能用到那些统计方法。
(省略)(学生自己做)。