函数单调性与最大最小值
函数的单调性与最大(小)值
2.()下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是()
A.y=B.y=e-xC.y=-x2+1D.y=lg|x|
3.()设f(x)为定义在R上的奇函数,且当x≥0时,f(x)单调递减,若x1+x2>0,则f(x1)+f(x2)的值()
2.函数单调性的判断
(1)常用的方法有:定义法、导数法、图象法及复合函数法.
(2)两个增(减)函数的和仍为增(减)函数;一个增(减)函数与一个减(增)函数的差是增(减)函数;
(3)奇函数在关于原点对称的两个区间上有相同的单调性,偶函数在关于原点对称的两个区间上有相反的单调性;
(4)复合函数的单调性:如果y=f(u)和u=g(x)的单调性相同,那么y=f[g(x)]是增函数;如果y=f(u)和u=g(x)的单调性相反,那么y=f[g(x)]是减函数.在应用这一结论时,必须注意:函数u=g(x)的值域必须是y=f(u)的单调区间的子集.
8. ()若函数f(x)=ax(a>0,a≠1)在[-1,2]上的最大值为4,最小值为m,且函数g(x)=(1-4m)在[0,+∞)上是增函数,则a=_________.
类型三 抽象函数的单调性
已知函数f(x)对于任意x,y∈R,总有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,f(1)=-.
(1)求证:f(x)在R上是减函数;
(2)求f(x)在[-3,3]上的最大值和最小值.
()f(x)的定义域为(0,
+∞),且对一切x>0,y>0都有f=f(x)-f(y),当x>1时,有f(x)>0.
<0⇔f(x)在(a,b)内是减函数.
(2)(x1-x2)[f(x1)-f(x2)]>0⇔f(x)在(a,b)内是增函数;(x1-x2)[f(x1)-f(x2)]<0⇔f(x)在(a,b)内是减函数.
函数的单调性与最大(小)值-高考数学复习
f(x)在区间[2,6]上的最大值为 1,最小值为5.
解题心得1.若函数f(x)在区间[a,b]上单调递增(减),则f(x)在区间[a,b]上的最
小(大)值是f(a),最大(小)值是f(b).
2.若函数f(x)在区间[a,b]上单调递增(减),在区间[b,c]上单调递减(增),则f(x)
能力形成点2
利用函数的单调性求最值
1
例3 已知函数 f(x)= .
-1
(1)判断f(x)在区间(1,+∞)内的单调性,并加以证明.
(2)求f(x)在区间[2,6]上的最大值和最小值.
解 (1)函数 f(x)在区间(1,+∞)内单调递减.
证明:任取 x2>x1>1,则
1
1
f(x1)-f(x2)=
−
件 都有 f(x1)<f(x2)
都有 f(x1)>f(x2)
那么就称函数 f(x)在区间 D 上
那么就称函数 f(x)在区间 D 上
单调递减
结 单调递增
论 当函数 f(x)在它的定义域上单调 当函数 f(x)在它的定义域上单调
递增时,称它是增函数
递减时,称它是减函数
图
示
结 如果函数 y=f(x)在区间 I 上单调递增或单调递减,那么就说函数 y=f(x)
的上升或下降确定其单调性
导数法
先求导数,再利用导数值的正负确定函数的单调区间
对于由基本初等函数的和、差构成的函数,可根据各初等函数
性质法
的单调性及f(x)±g(x)的单调性进行判断
对于复合函数y=f(g(x)),先将函数分解成y=f(t)和t=g(x),再讨论(
复合法
判断)这两个函数的单调性,最后根据复合函数“同增异减”的规
函数的单调性与最大(小)值
函数的单调性与最大(小)值
函数的单调性是指函数的图像从某一点开始递增或者递减,而不发生变化。
最大值是指在函数定义域内,函数图像达到最高点时所对应的函数值,它和函数的单调性有关。
最小值是指在函数定义域内,函数图像达到最低点时所对应的函数值,它也和函数的单调性有关。
计算单调性和求函数最大(小)值的方法需要根据单调函数的特性来考虑:
对于在x=a点处连续可导的单调函数,有f'(a)>0时,f(x)在[a,+∞)上单调递增,f(a)为此区间内的极大值;
对于在x=a点处连续可导的单调函数,有f'(a) < 0时,f(x)在(-∞,a]上单调递减,f(a)为此区间的极小值。
另外,如果函数在整个定义域内单调,则可以通过比较函数的值来确定其最大/最小值。
函数的单调性与最大(小)值课件-2022-2023学年高一上学期数学人教A版(2019)必修第一册
f(x1)-f(x2)=(2x1+1)-(2x2+1)=2x1-2x2
=2(x1-x2)
∵x1<x2 ∴x1 -x2<0 ∴2(x1-x2)<0
∴f(x1)-f(x2)<0
即f(x1) < f(x2)
∴函数f(x)=2x+1在其定义域上是增函数.
取值
作差变形
定号
下结论
探究三
那么,我们称M为函数y = f ( x)的最大值
图1
1
2
3
x
f ( x) = x 2
y
通过观察图2,可以发现二次函数 f ( x) =
的图像上有一个最低点(0,0)即
x2
x R, 都有f ( x) f (0)
5
当一个函数f(x)的图像有最低点时,我们就
说函数f(x)有最小值。
4
3
2
1
-3
A.f(x)=x
2
C.f(x)=|x|
答案:B
(
1
B.f(x)=
x
D.f(x)=2x+1
)
2
5.函数 f(x)= ,x∈[2,4],则 f(x)的最大值为______;最小值为
x
________.
答案:1
1
2
题型一 利用图象确定函数的单调区间
例1 求下列函数的单调区间,并指出其在单调区间上是
增函数还是减函数:
∴x1x2>0,x1x2-1<0,x1-x2<0,
∴f(x1)-f(x2)>0,即f(x1)>f(x2).
1
故函数f(x)=x+ 在区间(0,1)内为减函数.
单调性与最大(小)值(第2课时)课件-高一上学期数学人教A版(2019)必修第一册
那么,称M是函数y=f(x)的最小值
思考2:若函数f(x)≤M,则M一定是函数的最大值吗?
提示:不一定,只有定义域内存在一点x0,使f(x0)=M时,M才
是函数的最大值,否则不是.
函数的最值与值域有怎样的关系?
(1)函数的值域一定存在,函数的最值不一定存在.
x1 x2 x1 x2
由2 x1 x2 6,得x2 x1 0,x1 x2 0,于是
f ( x1 ) f ( x2 ) 0,即f ( x1 ) f ( x2 )
∴ 函数f(x) =
是区间[2,6]上的单调递减.
x
求函数的最大(小)值的方法总结:
1.利用二次函数的性质(配方法)求函数的最大(小)值;
1.求函数
f(x)=x+ x在[
1
2
1)
1
2
1
2
x 1x 2
1x 2 1,4] 上的最值.
x
x
x
1x 2
1
2
.
x
4x 2-x 1
x 1x 2-4
x
x
4
4
4x
-x
x
x
1
2
2
1
1 2-4
=(x
=
1-x 2)
4
4
-f(x
)=x
+
-x
-
=x
-x
+
=+
12-4
1
2x 1-x 2=(x
2)
2x 1x
x
-4
∵1≤x
1 1-x
2 2)1 2
1<x 2<2,∴x 1-x 2<0,
第02课函数的单调性与最大(小)值(课件)
【典例】(多选)下列函数在(0,+∞)上单调递增的是( )
A.y=ex-e-x
B.y=|x2-2x|
C.y=x+cos x
D.y= x2+x-2
【解析】∵y=ex 与 y=-e-x 为 R 上的增函数,∴y=ex-e-x 为 R 上的增函数,故 A 正确; 由 y=|x2-2x|的图象知,故 B 不正确;对于选项 C,y′=1-sin x≥0,∴y=x+cos x 在 R 上为增函数,故 C 正确; y= x2+x-2的定义域为(-∞,-2]∪[1,+∞),故 D 不正确.
【典例】已知二次函数 f(x)=x2-2x+3, 当 x∈[t,t+1]时,求 f(x)的最小值 g(t).
【解析】①当 t>1 时,f(x)在[t,t+1]上是增函数, 所以当 x=t 时,f(x)取得最小值,此时 g(t)=f(t)=t2-2t+3. ②当 t≤1≤t+1,即 0≤t≤1 时,f(x)在[t,t+1]上先递减后递增, 故当 x=1 时,f(x)取得最小值,此时 g(t)=f(1)=2. ③当 t+1<1,即 t<0 时,f(x)在[t,t+1]上是减函数,所以当 x=t+1 时,f(x)取得最小值,
函数 f(x)= x-1在其定义域内是增函数.
【解析】函数 f(x)= x-1的定义域是[1,+∞),
设∀x1,x2∈[1,+∞),且 x1<x2,则 f(x2)-f(x1)= x2-1- x1-1
=
x2-1- x1-1 x2-1+ x2-1+ x1-1
x1-1=
x2-x12-+x1x1-1.
因为 x1,x2∈[1,+∞),且 x1<x2,所以 x2-1+ x1-1>0,x2-x1>0.
3.2.1单调性与最大(小)值
概念学习
PART 2
知识点一 增函数与减函数的定义
前提条件
设函数f(x)的定义域为I,区间D⊆I
条件
∀x1,x2∈D,x1<x2
都有f(x1) < f(x2)
都有f(x1) > f(x2)
图示
结论
f(x)在区间D上单调递增
f(x)在区间D上单调递减
当函数f(x)在它的定义域上单调递 当函数f(x)在它的定义域上单调递
高一数学
第1课时 函数的单调性
y=f(x)
MATHEMATICS
MATHEMATICS
知识引入
概念学习
例题讲解
课堂练习
课后作业
本课任务
知识引入
PART 1
知识引入
y
y = x2
(2) y 随 x 的增大而增大
y y = x3
o
x
o
x
(1)(-3;∞)上 随 x 的增大而增大
输入例子(注释)
输入例子辅助理解该概念。输入例子辅助理
解该概念。输入例子辅助理解该概念。
输入例子(注释)
输入例子辅助理解该概念。输入例子辅助理
解该概念。输入例子辅助理解该概念。
分组讨论
此处输入简短的分组说明
PART 4
分组讨论
概念讨论
概念深入学习与理解。
请在此输入内容 请在此输入内容 请在此输入内容 请在此输入内容 请在此输入内容 请在此输入内容 请在此输入内容 请在此输入内容
2.若本例(2)的函数f(x)是定义在(0,+∞)上的减函数,求x的取值范围.
2x-3>0,
解
由题意可知,5x-6>0, 2x-3<5x-6,
函数的最大值和最小值的求解方法省公开课获奖课件说课比赛一等奖课件
综上可知,a>0时,f(x)在(-1,1)上为减函数;
a<0时,f(x)在(-1,1)上为增函数.
题型二 复合函数旳单调性
【例2】已知函数f(x)=log2(x2-2x-3),则使f(x)为减
函数旳区间是
(D )
A.(3,6)
B.(-1,0)
C.(1,2)
D.(-3,-1)
思维启迪 先求得函数旳定义域,然后再结合二次 函数、对数函数旳单调性进行考虑.
f '(x)
( x2 1)2
a( x2 1) ax 2x
( x2 1)2
ax2 a 2ax2 (x2 1)2
a(1 x2 (x2 1)2
)
.
当a>0时,∵-1<x<1,
a(1 x2 ) (x2 1)2 0, 即f′(x)<0,此时f(x)在(-1,1)上为减函数.
同理,当a<0时,f(x)在(-1,1)上为增函数.
则f(x)在(-1,+∞)上为增函数.
探究提升 对于给出详细解析式旳函数,判断或证明 其在某区间上旳单调性问题,能够结合定义(基本步 骤为取点、作差或作商、变形、判断)求解.可导函 数则能够利用导数解之.
知能迁移1
试讨论函数
f
(x)
ax x2 1,
x∈(-1,1)旳单
调性(其中a≠0).
解 措施一 根据单调性旳定义求解.
设-1<x1<x2<1,
则f
( x1 )
f
(x2 )
ax1 x12 1
ax2 x22 1
a(x2 x1)(x1x2 1) . (x12 1)(x22 1)
∵-1<x1<x2<1,∴|x1|<1,|x2|<1,x2-x1>0,
3.2.1函数单调性与最大(小)值-第2课时高一上学期数学人教A版(2019)必修第一册
1
3.函数 f(x)= ,x∈[ 1,2] ,则 f(x)的最大值为________,
x
最小值为________.
【答案】1 ,
1
【解析】∵f(x)= 在区间[ 1,2] 上为减函数,
x
1
∴f(2)≤f(x)≤f(1),即 ≤f(x)≤1.
2
二、知识回顾
函数最大值与最小值
最大值
最小值
=
.
x1x2
x1x2
∵1≤x1<x2<2,∴x1-x2<0,x1x2-4<0,x1x2>0,
∴f(x1)>f(x2),∴f(x)在[1,2)上是减函数.
同理 f(x)在[ 2,4] 上是增函数.
∴当 x=2 时,f(x)取得最小值 4;当 x=1 或 x=4 时,f(x)取得最大值 5.
题型三 函数最值的实际应用
【规律方法】
解实际应用题的四个步骤
1审题:解读实际问题,找出已知条件、未知条件,确定自变量和因变量
的条件关系.
2建模:建立数学模型,列出函数关系式.
3求解:分析函数性质,利用数学知识探究问题解法一定注意自变量的取
值范围.
4回归:数学问题回归实际问题,写出答案.
【跟踪训练】
3.将进货单价为 40 元的商品按 50 元一个出售时,能卖出 500 个,已知这
1
D. ,2
2
【答案】C
【解析】由图可知,f( x)的最大值为 f( 1)=2,f(x) 的最小
值为 f(-2)=-1.
2.设函数 f(x)=2x-1(x<0),则 f(x)(
)
A.有最大值
B.有最小值
第二节函数的单调性与最大(小)值
(1)当a= 围.
时,求函数f(x)的最小值;
(2)若对任意x∈[1,+∞),f(x)>0恒成立,试求实数a的取值范
高考总复习•数学(文科) 解析:(1)当a= 时,f(x)=x+ +2.
∵f(x)在区间[1,+∞)上为增函数, ∴f(x)在区间[1,+∞)上的最小值为f(1)= (2)(法一)在区间[1,+∞)上,f(x)= 2x+a>0恒成立. . >0恒成立⇔x2+
高考总复习•数学(文科) 解析:(1) 原函数等价于 y= 作出如下函数图象:
高考总复习•数学(文科)
由函数图象可知,
函数 y =-x2 + 2|x| + 3在 ( - ∞ ,- 1] , [0,1] 上是增函数, 在[-1,0],[1,+∞)上是减函数. (2)由4x-x2>0,得函数的定义域是(0,4). 令t=4x-x2, ∵t=4x-x2=-(x-2)2+4, ∴t=4x-x2的递减区间是[2,4),递增区间是(0,2].
高考总复习•数学(文科)
(7)(数形结合法)将函数化为分段函数形式,即
高考总复习•数学(文科) 画出它的图象 ( 如右图所示 ) ,由图象可知,函数的值域是
{y|y≥3}.
(几何法)∵函数y=|x+1|+|x-2|表示数轴上的动点x到两定点 -1,2的距离之和,∴易得y的最小值是3.∴函数的值域是 [3, 如下图所示.
时,函数fK(x)的单调递增区间为______.
高考总复习•数学(文科)
解析: 由f(x)=2-|x|≤
∴|x|≥1.∴x≥1或x≤-1. ∴fK(x)=
得-|x|≤-1,
当x∈ (1,+∞)时,
fK(x)=2-|x|= 函数.
,在(1,+∞)上为减函数.
函数的单调性、奇偶性与最值
函数的单调性、奇偶性与最大(小)值1.函数的单调性(1)单调函数的定义如果y=f(x)在区间A上是增加的或是减少的,那么称A为单调区间.2.奇函数、偶函数图像关于原点对称的函数叫作奇函数.图像关于y轴对称的函数叫作偶函数.3.奇(偶)函数的性质(1)奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反(填“相同”、“相反”).(2)在公共定义域内①两个奇函数的和函数是奇函数,两个奇函数的积函数是偶函数.②两个偶函数的和函数、积函数是偶函数.③一个奇函数,一个偶函数的积函数是奇函数.(3)若函数f(x)是奇函数且在x=0处有定义,则f(0)=0.4.周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫作f(x)的最小正周期.5.函数的最值1.函数单调性定义的理解(1)对于函数f (x ),x ∈D ,若x 1,x 2∈D 且(x 1-x 2)·[f (x 1)-f (x 2)]>0,则函数f (x )在D 上是增函数.( )(2)函数f (x )=2x +1在(-∞,+∞)上是增函数.( ) (3)(教材改编)函数f (x )=1x 在其定义域上是减函数.( )(4)已知f (x )=x ,g (x )=-2x ,则y =f (x )-g (x )在定义域上是增函数.( ) 2.函数的单调区间与最值(5)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1, +∞).( ) (6)(教材改编)函数y =1x 的单调递减区间是(-∞,0)∪(0,+∞).( ) (7)(2013·北京卷改编)函数y =lg|x |的单调递减区间为(0,+∞).( ) (8)函数f (x )=log 2(3x +1)的最小值为0.( ) 3.对奇偶函数的认识及应用(1)函数y =x 2,x ∈(0,+∞)是偶函数.( )(2)偶函数图像不一定过原点,奇函数的图像一定过原点.( )(3)(教材习题改编)如果函数f (x ),g (x )为定义域相同的偶函数,则F (x )=f (x )+g (x )是偶函数.( )(4)若函数y =f (x +a )是偶函数,则函数y =f (x )关于直线x =a 对称.( )(5)(2013·山东卷改编)已知函数f (x )为奇函数,且当x >0时,f (x )=x 2+1x ,则f (-1)=-2.( )(6)(2014·鹰潭模拟改编)已知函数y =f (x )是定义在R 上的偶函数,且在(-∞,0)上是减函数,若f (a )≥f (2),则实数a 的取值范围是[-2,2].( )4.对函数周期性的理解(7)函数f (x )在定义域上满足f (x +a )=-f (x ),则f (x )是周期为2a (a >0)的周期函数.( )(8)(2013·湖北卷改编)x为实数,[x]表示不超过x的最大整数,则函数f(x)=x-[x]在R 上是周期函数.()考点一确定函数的单调性或单调区间【例1】(1)判断函数f(x)=x+ax(a>0)在(0,+∞)上的单调性.(2)(2013·高安中学模拟)求函数y=log 13(x2-4x+3)的单调区间.【训练1】试讨论函数f(x)=axx-1(a≠0)在(-1,1)上的单调性.考点二利用单调性求参数【例2】若函数f(x)=ax-1x+1在(-∞,-1)上是减函数,则a的取值范围是________.【训练2】(1)函数y=x-5x-a-2在(-1,+∞)上单调递增,则a的取值范围是().A.{-3}B.(-∞,3)C.(-∞,-3]D.[-3,+∞)(2)(2014·贵溪模拟)若f(x)=-x2+2ax与g(x)=ax+1在区间[1,2]上都是减函数,则a的取值范围是().A.(-1,0)∪(0,1)B.(-1,0)∪(0,1] C.(0,1)D.(0,1]考点三利用函数的单调性求最值【例3】已知f(x)=x2+2x+ax,x∈[1,+∞).(1)当a=12时,求函数f(x)的最小值;(2)若对任意x∈[1,+∞),f(x)>0恒成立,试求实数a的取值范围.【训练3】已知函数f(x)对于任意x,y∈R,总有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,f(1)=-2 3.(1)求证:f(x)在R上是减函数;(2)求f(x)在[-3,3]上的最大值和最小值.考点四函数奇偶性的判断及应用【例1】 (1)判断下列函数的奇偶性: ①f (x )=x 2-1+1-x 2;②f (x )=ln 1-x1+x.(2)(2013·辽宁卷)已知函数f (x )=ln(1+9x 2-3x )+1,则f (lg 2)+f (lg 12)=( ). A .-1 B .0 C .1D .2【训练1】 (1)(2013·湖南卷)已知f (x )是奇函数,g (x )是偶函数,且f (-1)+g (1)=2, f (1)+g (-1)=4,则g (1)等于( ). A .4 B .3 C .2D .1(2)设f (x )为定义在R 上的奇函数.当x ≥0时,f (x )=2x +2x +b (b 为常数),则f (-1)=( ). A .-3 B .-1 C .1 D .3考点五 函数的单调性与奇偶性【例2】 (1)(2014·山东实验中学诊断)下列函数中,在其定义域中,既是奇函数又是减函数的是( ).A .f (x )=1x B .f (x )=-x C .f (x )=2-x -2xD .f (x )=-tan x(2)(2013·江西九校联考)已知f (x )是定义在R 上的偶函数,在区间[0,+∞)上为增函数,且f ⎝ ⎛⎭⎪⎫13=0,则不等式f (log 18x )>0的解集为( ).A .⎝ ⎛⎭⎪⎫12,2B .(2,+∞)C .⎝ ⎛⎭⎪⎫0,12∪(2,+∞)D .⎝ ⎛⎭⎪⎫12,1∪(2,+∞)【训练2】 (2013·天津卷)已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上单调递增.若实数a 满足f (log 2a )+f (log 12a )≤2f (1),则a 的取值范围是( ).A .[1,2]B .⎝ ⎛⎦⎥⎤0,12C .⎣⎢⎡⎦⎥⎤12,2D .(0,2]考点六 函数的单调性、奇偶性、周期性【例3】 (经典题)已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( ).A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)【训练3】 设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ),当x ∈[0,2]时,f (x )=2x -x 2.(1)求证:f (x )是周期函数;(2)当x ∈[2,4]时,求f (x )的解析式; (3)计算f (0)+f (1)+f (2)+…+f (2 014).基础巩固题组 (建议用时:40分钟)一、选择题1.函数f (x )=1-1x 在[3,4)上( ). A .有最小值无最大值 B .有最大值无最小值 C .既有最大值又有最小值D .最大值和最小值皆不存在2.已知函数f (x )=2ax 2+4(a -3)x +5在区间(-∞,3)上是减函数,则a 的取值范围是( ). A .⎝ ⎛⎭⎪⎫0,34 B .⎝ ⎛⎦⎥⎤0,34 C .⎣⎢⎡⎭⎪⎫0,34 D .⎣⎢⎡⎦⎥⎤0,343.(2013·玉山一中模拟)已知函数f (x )为R 上的减函数,则满足f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1x <f (1)的实数x 的取值范围是( ).A .(-1,1) B .(0,1) C .(-1,0)∪(0,1) D .(-∞,-1)∪(1,+∞)4.(2014·南昌模拟)已知函数y =f (x )的图像关于x =1对称,且在(1,+∞)上单调递增,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( ).A .c <b <aB .b <a <cC .b <c <aD .a <b <c5.(2013·渭南模拟)下列函数中既是偶函数,又在区间(0,+∞)上单调递增的函数是( ). A .y =x 3 B .y =|x |+1 C .y =-x 2+1 D .y =2x6. (2013·咸阳二模)若函数f (x )=sin x(x +a )2是奇函数,则a 的值为( ). A .0 B .1 C .2D .47. 函数f (x )是周期为4的偶函数,当x ∈[0,2]时,f (x )=x -1,则不等式xf (x )>0在[-1,3]上的解集为( ).A .(1,3)B .(-1,1)C .(-1,0)∪(1,3)D .(-1,0)∪(0,1)二、填空题8.函数f (x )=log 5(2x +1)的单调增区间是________.9.(2012·安徽卷)若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a =________.10.设a >1,函数f (x )=log a x 在区间[a,2a ]上的最大值与最小值之差为12,则a =________. 11. (2014·临川二中)f (x )为奇函数,当x <0时,f (x )=log 2(1-x ),则f (3)=________. 12. 设定义在[-2,2]上的偶函数f (x )在区间[0,2]上单调递减,若f (1-m )<f (m ),则实数m 的取值范围是________.三、解答题13.已知函数f (x )=1a -1x (a >0,x >0). (1)判断函数f (x )在(0,+∞)上的单调性; (2)若f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域是⎣⎢⎡⎦⎥⎤12,2,求a 的值.14. f (x )为R 上的奇函数,当x >0时,f (x )=-2x 2+3x +1,求f (x )的解析式.能力提升题组1.(2014·宜春模拟)下列函数中,在[-1,0]上单调递减的是( ). A .y =cos x B .y =-|x -1| C .y =ln2+x2-xD .y =e x +e -x 2.已知函数f (x )=x 2-2ax +a 在区间(-∞,1)上有最小值,则函数g (x )=f (x )x 在 区间(1,+∞)上一定( ).A .有最小值B .有最大值C .是减函数D .是增函数3. (2013·吉安模拟)已知偶函数f (x )对任意x ∈R 都有f (x -2)=-f (x ),且当x ∈[-1,0]时f (x )=2x ,则f (2 013)=( ).A .1B .-1C .12D .-123.已知函数f (x )=x 2+ax (a >0)在(2,+∞)上递增,则实数a 的取值范围是________.。
第2节 函数的单调性与最大(小)值
第2节函数的单调性与最大(小)值考试要求 1.理解函数的单调性、最大(小)值及其几何意义;2.会运用基本初等函数的图像分析函数的性质.知识梳理1.函数的单调性(1)单调函数的定义增函数减函数定义在函数y=f(x)的定义域内的一个区间A上,如果对于任意两数x1,x2∈A当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间A上是增加的当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间A上是减少的图像描述自左向右看图像是上升的自左向右看图像是下降的(2)单调区间的定义如果y=f(x)在区间A上是增加的或是减少的,那么称A为单调区间.2.函数的最值前提函数y=f(x)的定义域为D条件(1)对于任意x∈D,都有f(x)≤M;(2)存在x0∈D,使得f(x0)=M(3)对于任意x∈D,都有f(x)≥M;(4)存在x0∈D,使得f(x0)=M结论M为最大值M为最小值[常用结论与微点提醒]1.若f(x),g(x)均为区间A上的增(减)函数,则f(x)+g(x)也是区间A上的增(减)函数.2.函数y =f (x )(f (x )>0或f (x )<0)在公共定义域内与y =-f (x ),y =1f (x )的单调性相反.3.“对勾函数”y =x +ax (a >0)的单调增区间为(-∞,-a ),(a ,+∞);单调减区间是[-a ,0),(0,a ].诊 断 自 测1.判断下列结论正误(在括号内打“√”或“×”)(1)对于函数f (x ),x ∈D ,若对任意x 1,x 2∈D ,且x 1≠x 2有(x 1-x 2)[f (x 1)-f (x 2)]>0,则函数f (x )在区间D 上是增函数.( )(2)函数y =1x 的单调递减区间是(-∞,0)∪(0,+∞).( ) (3)对于函数y =f (x ),若f (1)<f (3),则f (x )为增函数.( )(4)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).( ) 解析 (2)此单调区间不能用并集符号连接,取x 1=-1,x 2=1,则f (-1)<f (1),故应说成单调递减区间为(-∞,0)和(0,+∞). (3)应对任意的x 1<x 2,f (x 1)<f (x 2)成立才可以.(4)若f (x )=x ,f (x )在[1,+∞)上为增函数,但y =f (x )的单调递增区间是R . 答案 (1)√ (2)× (3)× (4)×2.(老教材必修1P37例1改编)下列函数中,在区间(0,+∞)上单调递增的是( )A.y =x 12 B.y =2-x C.y =log 12xD.y =1x解析 函数y =x 12在(0,+∞)上是增函数,函数y =2-x ,y =log 12x ,y =1x 在(0,+∞)上均是减函数. 答案 A3.(新教材必修第一册P61例5改编)函数y =xx -1在区间[2,3]上的最大值是________.解析 函数y =x x -1=1+1x -1在[2,3]上递减,当x =2时,y =x x -1取得最大值22-1=2.答案 24.(2017·全国Ⅱ卷)函数f (x )=ln(x 2-2x -8)的单调递增区间是( ) A.(-∞,-2) B.(-∞,1) C.(1,+∞)D.(4,+∞)解析 由x 2-2x -8>0,得x >4或x <-2. 设t =x 2-2x -8,则y =ln t 为增函数.要求函数f (x )的单调递增区间,即求函数t =x 2-2x -8的单调递增区间. ∵函数t =x 2-2x -8的单调递增区间为(4,+∞), ∴函数f (x )的单调递增区间为(4,+∞). 答案 D5.(2020·西安模拟)函数y =f (x )是定义在[-2,2]上的减函数,且f (a +1)<f (2a ),则实数a 的取值范围是________.解析由条件知⎩⎨⎧-2≤a +1≤2,-2≤2a ≤2,a +1>2a ,解得-1≤a <1.答案 [-1,1)6.(2020·青岛二中月考)函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为________.解析 当x ≥1时,函数f (x )=1x 为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2. 故函数f (x )的最大值为2. 答案 2考点一 确定函数的单调性(区间)【例1】 (1)函数y =log 12(-x 2+x +6)的单调增区间为( )A.⎝ ⎛⎭⎪⎫12,3B.⎝ ⎛⎭⎪⎫-2,12 C.(-2,3)D.⎝ ⎛⎭⎪⎫12,+∞ 解析 由-x 2+x +6>0,得-2<x <3,故函数的定义域为(-2,3),令t =-x 2+x +6,则y =log 12t ,易知其为减函数,由复合函数的单调性法则可知本题等价于求函数t =-x 2+x +6在(-2,3)上的单调递减区间.利用二次函数的性质可得t = -x 2+x +6在定义域(-2,3)上的单调递减区间为⎝ ⎛⎭⎪⎫12,3,故选A.答案 A(2)(一题多解)试讨论函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性. 解 法一 设-1<x 1<x 2<1, f (x )=a ⎝ ⎛⎭⎪⎫x -1+1x -1=a ⎝ ⎛⎭⎪⎫1+1x -1, f (x 1)-f (x 2)=a ⎝ ⎛⎭⎪⎫1+1x 1-1-a ⎝ ⎛⎭⎪⎫1+1x 2-1=a (x 2-x 1)(x 1-1)(x 2-1),由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0,故当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),函数f (x )在(-1,1)上单调递减; 当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),函数f (x )在(-1,1)上单调递增. 法二 f ′(x )=(ax )′(x -1)-ax (x -1)′(x -1)2=a (x -1)-ax (x -1)2=-a(x -1)2.当a >0时,f ′(x )<0,函数f (x )在(-1,1)上单调递减; 当a <0时,f ′(x )>0,函数f (x )在(-1,1)上单调递增.规律方法 1.(1)求函数的单调区间,应先求定义域,在定义域内求单调区间,如例1(1).(2)单调区间不能用集合或不等式表达,且图像不连续的单调区间要用“和”“,”连接.2.(1)函数单调性的判断方法有:①定义法;②图像法;③利用已知函数的单调性;④导数法.(2)函数y =f [g (x )]的单调性应根据外层函数y =f (t )和内层函数t =g (x )的单调性判断,遵循“同增异减”的原则.【训练1】 (1)设函数f (x )=⎩⎨⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是________.解析由题意知g (x )=⎩⎨⎧x 2,x >1,0,x =1,-x 2,x <1,函数的图像如图所示的实线部分,根据图像,g (x )的递减区间是[0,1). 答案 [0,1)(2)判断并证明函数f (x )=ax 2+1x (其中1<a <3)在x ∈[1,2]上的单调性.解 f (x )在[1,2]上单调递增,证明如下: 设1≤x 1<x 2≤2,则f (x 2)-f (x 1)=ax 22+1x 2-ax 21-1x1=(x 2-x 1)⎣⎢⎡⎦⎥⎤a (x 1+x 2)-1x 1x 2,由1≤x 1<x 2≤2,得x 2-x 1>0,2<x 1+x 2<4. 1<x 1x 2<4,-1<-1x 1x 2<-14.又因为1<a <3,所以2<a (x 1+x 2)<12, 得a (x 1+x 2)-1x 1x 2>0,从而f (x 2)-f (x 1)>0,即f (x 2)>f (x 1), 故当a ∈(1,3)时,f (x )在[1,2]上单调递增. 考点二 求函数的最值【例2】 (1)已知函数f (x )=a x +log a x (a >0,且a ≠1)在[1,2]上的最大值与最小值之和为log a 2+6,则a 的值为( ) A.12B.14C.2D.4(2)(2020·九江一中月考)对于任意实数a ,b ,定义min{a ,b }=⎩⎨⎧a ,a ≤b ,b ,a >b .设函数f (x )=-x +3,g (x )=log 2x ,则函数h (x )=min{f (x ),g (x )}的最大值是________. 解析 (1)f (x )=a x +log a x 在[1,2]上是单调函数, 所以f (1)+f (2)=log a 2+6, 则a +log a 1+a 2+log a 2=log a 2+6, 即(a -2)(a +3)=0,又a >0,所以a =2.(2)法一 在同一坐标系中,作函数f (x ),g (x )的图像,依题意,h (x )的图像如图所示的实线部分. 易知点A (2,1)为图像的最高点, 因此h (x )的最大值为h (2)=1.法二 依题意,h (x )=⎩⎨⎧log 2x ,0<x ≤2,-x +3,x >2.当0<x ≤2时,h (x )=log 2x 是增函数, 当x >2时,h (x )=3-x 是减函数, 因此h (x )在x =2时取得最大值h (2)=1. 答案 (1)C (2)1规律方法 求函数最值的四种常用方法(1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图像法:先作出函数的图像,再观察其最高点、最低点,求出最值.(3)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值.(4)导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值. 【训练2】 (1)定义max{a ,b ,c }为a ,b ,c 中的最大值,设M =max{2x ,2x -3,6-x },则M 的最小值是( ) A.2B.3C.4D.6(2)设函数f (x )=⎩⎪⎨⎪⎧x 2,x ≤1,x +6x-6,x >1,则f (x )的最小值是________.解析 (1)画出函数M ={2x ,2x -3,6-x }的图像(如图),由图可知,函数M 在A (2,4)处取得最小值22=6-2=4, 故M 的最小值为4.(2)当x ≤1时,f (x )=x 2的最小值为0,当x >1时,f (x )=x +6x -6≥26-6(当且仅当x =6时,取“=”). 由于26-6<0,所以f (x )min =26-6. 答案 (1)C (2)26-6 考点三 函数单调性的应用 多维探究角度1 利用单调性比较大小【例3-1】 已知函数f (x )的图像关于直线x =1对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (e),则a ,b ,c 的大小关系为( )A.c >a >bB.c >b >aC.a >c >bD.b >a >c解析 因为f (x )的图像关于直线x =1对称,所以f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫52.由当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,知f (x )在(1,+∞)上单调递减.又1<2<52<e ,所以f (2)>f ⎝ ⎛⎭⎪⎫52>f (e),即f (2)>f ⎝ ⎛⎭⎪⎫-12>f (e),故b >a >c . 答案 D角度2 求解函数不等式【例3-2】 (2018·全国Ⅰ卷)设函数f (x )=⎩⎨⎧2-x ,x ≤0,1,x >0.则满足f (x +1)<f (2x )的x的取值范围是( ) A.(-∞,-1]B.(0,+∞)C.(-1,0)D.(-∞,0)解析 当x ≤0时,函数f (x )=2-x 是减函数,则f (x )≥f (0)=1.作出f (x )的大致图像如图所示,结合图像知,要使f (x +1)<f (2x ),当且仅当⎩⎨⎧x +1<0,2x <0,2x <x +1或⎩⎨⎧x +1≥0,2x <0,解得x <-1或-1≤x <0,即x <0.答案 D角度3 求参数的值或取值范围【例3-3】 (1)(2018·全国Ⅱ卷)若f (x )=cos x -sin x 在[0,a ]上是减函数,则a 的最大值是( ) A.π4B.π2C.3π4D.π(2)如果函数f (x )=⎩⎨⎧(2-a )x +1,x <1,a x ,x ≥1满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么a 的取值范围是________.解析 (1)∵f (x )=cos x -sin x =-2sin ⎝ ⎛⎭⎪⎫x -π4,∴当x -π4∈⎣⎢⎡⎦⎥⎤-π2,π2,即x ∈⎣⎢⎡⎦⎥⎤-π4,3π4时, y =sin ⎝ ⎛⎭⎪⎫x -π4单调递增,f (x )=-2sin ⎝ ⎛⎭⎪⎫x -π4单调递减,∴⎣⎢⎡⎦⎥⎤-π4,3π4是f (x )在原点附近的单调减区间, 结合条件得[0,a ]⊆⎣⎢⎡⎦⎥⎤-π4,3π4,∴a ≤3π4,即a max =3π4.(2)对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0,所以y =f (x )在(-∞,+∞)上是增函数.所以⎩⎨⎧2-a >0,a >1,(2-a )×1+1≤a ,解得32≤a <2. 故实数a 的取值范围是⎣⎢⎡⎭⎪⎫32,2.答案 (1)C (2)⎣⎢⎡⎭⎪⎫32,2规律方法 1.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.2.求解函数不等式,其实质是函数单调性的逆用,由条件脱去“f ”.3.利用单调性求参数的取值(范围)的思路是:根据其单调性直接构建参数满足的方程(组)(不等式(组))或先得到其图像的升降,再结合图像求解.对于分段函数,要注意衔接点的取值.【训练3】 (1)(角度2)已知函数f (x )=⎩⎨⎧e -x ,x ≤0,-x 2-2x +1,x >0,若f (a -1)≥f (-a ),则实数a 的取值范围是( ) A.⎝ ⎛⎦⎥⎤-∞,12 B.⎣⎢⎡⎭⎪⎫12,+∞ C.⎣⎢⎡⎦⎥⎤0,12D.⎣⎢⎡⎦⎥⎤12,1 (2)(角度1)(2019·全国Ⅲ卷)设f (x )是定义域为R 的偶函数,且在(0,+∞)单调递减,则( )A.f ⎝ ⎛⎭⎪⎫log 314>f (2-32)>f (2-23) B.f ⎝ ⎛⎭⎪⎫log 314>f (2-23)>f (2-32) C.f (2-32)>f (2-23)>f ⎝ ⎛⎭⎪⎫log 314D.f (2-23)>f (2-32)>f ⎝ ⎛⎭⎪⎫log 314(3)(角度3)若函数f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则a 的取值范围是( )A.(-1,0)∪(0,1)B.(-1,0)∪(0,1]C.(0,1)D.(0,1]解析 (1)作出函数f (x )的图像如图所示,知函数f (x )在R 上是减函数,由f (a -1)≥f (-a ),得a -1≤-a , 解得a ≤12.(2)因为f (x )是定义域为R 的偶函数,所以f ⎝ ⎛⎭⎪⎫log 314=f (-log 34)=f (log 34).又因为log 34>1>2-23>2-32>0,且函数f (x )在(0,+∞)上单调递减,所以f (log 34)< f (2-23)<f (2-32).即f ⎝ ⎛⎭⎪⎫log 314<f (2-23)<f (2-32).(3)因为f (x )=-x 2+2ax =-(x -a )2+a 2在[1,2]上为减函数,所以由其图像得a ≤1.g (x )=a x +1,g ′(x )=-a(x +1)2,要使g (x )在[1,2]上为减函数,需g ′(x )<0在[1,2]上恒成立,故有-a <0,因此a >0.综上可知0<a ≤1. 答案 (1)A (2)C (3)DA 级 基础巩固一、选择题1.(2019·唐山调研)设函数f (x )=x (e x +e -x ),则f (x )( ) A.是奇函数,且在(0,+∞)上是增函数 B.是偶函数,且在(0,+∞)上是增函数 C.是奇函数,且在(0,+∞)上是减函数 D.是偶函数,且在(0,+∞)上是减函数解析 f (-x )=(-x )(e -x +e x )=-f (x ),所以f (x )为奇函数,f ′(x )=e x +e -x +x (e x - e -x ),当x >0时,e x -e -x >0,e x +e -x >0,所以f ′(x )>0.故f (x )在(0,+∞)上是增函数. 答案 A2.(2020·合肥模拟)已知函数f (x )在R 上单调递减,且a =33.1,b =⎝ ⎛⎭⎪⎫13π,c =ln 13,则f (a ),f (b ),f (c )的大小关系为( ) A.f (a )>f (b )>f (c ) B.f (b )>f (c )>f (a ) C.f (c )>f (a )>f (b )D.f (c )>f (b )>f (a )解析 因为a =33.1>30=1,0<b =⎝ ⎛⎭⎪⎫13π<⎝ ⎛⎭⎪⎫130=1,c =ln 13<ln 1=0,所以c <b <a ,又因为函数f (x )在R 上单调递减,所以f (c )>f (b )>f (a ). 答案 D3.已知函数f (x )=log a (-x 2-2x +3)(a >0且a ≠1),若f (0)<0,则此函数的单调递增区间是( ) A.(-∞,-1] B.[-1,+∞) C.[-1,1)D.(-3,-1]解析 令g (x )=-x 2-2x +3,由题意知g (x )>0,可得-3<x <1,故函数的定义域为{x |-3<x <1}.根据f (0)=log a 3<0,可得0<a <1,又g (x )在定义域(-3,1)内的减区间是[-1,1),∴f (x )的单调递增区间为[-1,1). 答案 C4.函数y =2-xx +1,x ∈(m ,n ]的最小值为0,则m 的取值范围是( )A.(1,2)B.(-1,2)C.[1,2)D.[-1,2)解析 函数y =2-x x +1=3-(x +1)x +1=3x +1-1在区间(-1,+∞)上是减函数,且f (2)=0,所以n =2.根据题意,x ∈(m ,n ]时,y min =0. ∴m 的取值范围是[-1,2). 答案 D5.(2020·福州调研)已知函数f (x )=⎩⎨⎧x 2+(4a -3)x +3a ,x <0,log a (x +1)+1,x ≥0(a >0且a ≠1)在R 上单调递减,则a 的取值范围是( ) A.⎣⎢⎡⎭⎪⎫34,1 B.⎝ ⎛⎦⎥⎤0,34 C.⎣⎢⎡⎦⎥⎤13,34D.⎝ ⎛⎦⎥⎤0,13 解析 由分段函数f (x )在R 上单调递减,可得0<a <1,根据二次函数图像及性质,可得-4a -32≥0,解得a ≤34,又由3a ≥log a (0+1)+1得3a ≥1,解得a ≥13. ∴实数a 的取值范围是⎣⎢⎡⎦⎥⎤13,34.答案 C 二、填空题6.函数y =|x |(1-x )的单调递增区间是________.解析 y =|x |(1-x )=⎩⎨⎧x (1-x ),x ≥0,-x (1-x ),x <0=⎩⎨⎧-x 2+x ,x ≥0,x 2-x ,x <0,函数的大致图像如图所示.由图易知函数的单调递增区间是⎣⎢⎡⎦⎥⎤0,12.答案 ⎣⎢⎡⎦⎥⎤0,127.设函数f (x )=ax +1x +2a在区间(-2,+∞)上是增函数,那么a 的取值范围是________. 解析 f (x )=ax +2a 2-2a 2+1x +2a =a -2a 2-1x +2a ,∵函数f (x )在区间(-2,+∞)上是增函数, ∴⎩⎨⎧2a 2-1>0,-2a ≤-2,即⎩⎨⎧2a 2-1>0,a ≥1,即a ≥1.答案 [1,+∞)8.设函数f (x )=⎩⎨⎧-x 2+4x ,x ≤4,log 2x ,x >4.若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a 的取值范围是________. 解析 作函数f (x )的图像如图所示,由图像可知f (x )在(a ,a +1)上单调递增,需满足a ≥4或a +1≤2,即a ≤1或a ≥4. 答案 (-∞,1]∪[4,+∞) 三、解答题9.已知函数f (x )=1a -1x (a >0,x >0). (1)求证:f (x )在(0,+∞)上是增函数; (2)若f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域是⎣⎢⎡⎦⎥⎤12,2,求a 的值.(1)证明 设x 2>x 1>0,则x 2-x 1>0,x 1x 2>0,∵f (x 2)-f (x 1)=⎝ ⎛⎭⎪⎫1a -1x 2-⎝ ⎛⎭⎪⎫1a -1x 1=1x 1-1x 2=x 2-x 1x 1x 2>0,∴f (x 2)>f (x 1),∴f (x )在(0,+∞)上是增函数.(2)解 ∵f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域是⎣⎢⎡⎦⎥⎤12,2,又由(1)知f (x )在⎣⎢⎡⎦⎥⎤12,2上是单调增函数,∴f ⎝ ⎛⎭⎪⎫12=12,f (2)=2,易得a =25. 10.已知函数f (x )=a -22x +1.(1)求f (0);(2)探究f (x )的单调性,并证明你的结论; (3)若f (x )为奇函数,求满足f (ax )<f (2)的x 的范围. 解 (1)f (0)=a -220+1=a -1. (2)f (x )在R 上单调递增.证明如下:∵f (x )的定义域为R ,∴任取x 1,x 2∈R 且x 1<x 2, 则f (x 1)-f (x 2)=a -22x 1+1-a +22x 2+1=2·(2x 1-2x 2)(1+2x 1)(1+2x 2), ∵y =2x 在R 上单调递增且x 1<x 2,∴0<2x 1<2x 2,∴2x 1-2x 2<0,2x 1+1>0,2x 2+1>0. ∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2). ∴f (x )在R 上单调递增.(3)∵f (x )是奇函数,∴f (-x )=-f (x ), 即a -22-x+1=-a +22x +1,解得a =1. ∴f (ax )<f (2)即为f (x )<f (2), 又∵f (x )在R 上单调递增,∴x <2. ∴x 的取值范围是(-∞,2).B 级 能力提升11.已知函数f (x )=⎩⎨⎧x 3,x ≤0,ln (x +1),x >0,若f (2-x 2)>f (x ),则实数x 的取值范围是( )A.(-∞,-1)∪(2,+∞)B.(-∞,-2)∪(1,+∞)C.(-1,2)D.(-2,1)解析 ∵当x =0时,两个表达式对应的函数值都为0,∴函数的图像是一条连续的曲线.又∵当x ≤0时,函数f (x )=x 3为增函数,当x >0时,f (x )=ln(x +1)也是增函数,∴函数f (x )是定义在R 上的增函数.因此,不等式f (2-x 2)>f (x )等价于2-x 2>x ,即x 2+x -2<0,解得-2<x <1. 答案 D12.(2020·皖东名校联盟联考)若函数f (x )=⎩⎪⎨⎪⎧-12x +m ,x <e ,x -ln x ,x ≥e的值域是[e -1,+∞),其中e 是自然对数的底数,则实数m 的最小值是________. 解析 当x ≥e 时,(x -ln x )′=1-1x >0,此时函数f (x )在[e ,+∞)上单调递增,值域是[e -1,+∞).当x <e 时,y =-12x +m 是减函数,其值域是⎝ ⎛⎭⎪⎫-e 2+m ,+∞.因此⎝ ⎛⎭⎪⎫-e 2+m ,+∞⊆[e -1,+∞).于是-e 2+m ≥e -1,解得m ≥3e2-1,故实数m 的最小值是3e2-1.答案 3e 2-113.已知定义在区间(0,+∞)上的函数f (x )是增函数,f (1)=0,f (3)=1. (1)解不等式0<f (x 2-1)<1;(2)若f (x )≤m 2-2am +1对所有x ∈(0,3],a ∈[-1,1]恒成立,求实数m 的取值范围.解 (1)由⎩⎨⎧x 2-1>0,1<x 2-1<3,解得2<x <2或-2<x <- 2.∴原不等式的解集为{x |-2<x <-2或2<x <2}. (2)∵函数f (x )在(0,3]上是增函数, ∴f (x )在(0,3]上的最大值为f (3)=1,∴不等式f (x )≤m 2-2am +1对所有x ∈(0,3],a ∈[-1,1]恒成立转化为1≤m 2-2am +1对所有a ∈[-1,1]恒成立,即m 2-2am ≥0对所有a ∈[-1,1]恒成立. 设g (a )=-2ma +m 2,a ∈[-1,1], ∴需满足⎩⎨⎧g (-1)≥0,g (1)≥0,即⎩⎨⎧2m +m 2≥0,-2m +m 2≥0,解该不等式组,得m ≤-2或m ≥2或m =0, 即实数m 的取值范围为(-∞,-2]∪{0}∪[2,+∞).C 级 创新猜想14.(多填题)(2019·北京卷)设函数f (x )=e x +a e -x (a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是________. 解析 若f (x )为奇函数,则f (-x )=-f (x ), 即e -x +a e x =-(e x +a e -x ),即(a +1)(e x +e -x )=0对任意的x 恒成立,所以a =-1.若函数f(x)=e x+a e-x是R上的增函数,则f′(x)=e x-a e-x≥0恒成立,所以a≤e2x恒成立,则有a≤0,即a的取值范围是(-∞,0].答案-1(-∞,0]。
函数的单调性与最大小值
条件
f(x)≤M;
②存在x0∈A,使得f(x0)=M.
结论 M为最大值
考基联动
考向导析
限时规范训练
联动思考
想一想:单调区间与函数定义域有何关系? 答案:单调区间是定义域的子区间. 议一议:若一个函数出现两个或两个以上单调区间时,能否用“∪”来联结? 1 答案:不能.如函数y= 在(-∞,0)和(0,+∞)上单调递减,但不能说函数在 x (-∞,0)∪(0,+∞)上递减,因为若可以这么说,由于-1<1,由函数递减知 f (-1)>f (1),但f (-1)=-1,f(1)=1,f (-1)<f (1)矛盾,故不能将两个单调区间 并起来.
考基联动
考向导析
限时规范训练
考向一 函数单调性判断与证明
2 1 【例1】 试判断函数f (x)=x - 在(0,+∞)上的单调性,并加以证明. x 1 解:解法一:函数f (x)=x2 - 在(0,+∞)上是单调增函数,设0<x1 <x2 , x 1 1 1 2 2 则f (x1 )-f (x2)=x1 -x 2 - - =(x1 -x2 )x1 +x2 + x1 x2 x1 x2 1 ∵x2 >x1 >0,∴x1 -x2 <0,x1 +x2 + >0,∴f (x1 )-f(x2 )<0,即f(x1 )<f(x2 ). x1 x2 故f (x)在(0,+∞)上单调递增. 1 解法二:f ′(x)=2x+ 2 ,当x>0时,f ′(x)>0,故f (x)在(0,+∞)上为增函数. x
反思感悟:善于总结,养成习惯 对于给出具体解析式的函数,证明其在某区间上的单调性有两种方法,(1)可以结 合定义(基本步骤为取值、作差或作商、变形、判断)求解.(2)可导函数则可以利 用导数解之.但是,对于抽象函数单调性的证明,一般采用定义法进行.
ppt-0302--函数单调性与极值、最值
y
b a
2 2
x y
(X
x).
令Y=0,得切线在x轴上的截距 X
a
2
.
x
令X=0,得切线在y轴上的截距 Y b2 . y
可知切线与两个坐标轴所围成的三角形面积为
S 1 XY a2b2 .
2
2xy
yb a
a2
x2 ,
S
a2b2 2xb a2 b2
a
(0 x a).
但是S最小当且仅当其分母 2bx a2 x2最大. a
令f (x) 0, 得到f (x)的驻点x1 1,x2 4.
f (1) 11,f (1) 41,f (2) 2,
6
6
3
可知f (x)在[1,2]上的最大值点为x 1,
最大值为f (1) 11. 6
最小值点为x 1,最小值为f (1) 41. 6
2
例6 设f (x) 1 2 (x 2)3,求f (x)在[0,3]上的最大值与 3
令y 0得驻点x1 1,x2 0,x3 3. y 12x2 16x 12.
y |x1 12 16 12 16 0
y |x0 12 0 y |x3 48 0
可知x1 1为函数的极小值点,
相应的极小值为y
| x 1
7. 3
x2 0为函数的极大值点,
相应极小大值为y |x0 0.
又因a,b为正常数,x a2 x2 0,
所以S最小当且仅当u x2 (a2 2x2 )最大.由于
u 2a2x 4x3 2x(a2 2x2 ),
令u 0,解出在(0,a)内的唯一驻点x0
2 a. 2
此时y0
2 b. 2
S a2b2 ab.
函数的单调性与最大(小)值PPT课件
∴f(x)在[-1,0]上是增函数,在(-∞,-1]上是减函数. 又x∈[0,1],u∈[-1,0]时,恒有f(x)≥f(u),等号只在x=u=0时取到,故
f(x)在[-1,1]上是增函数. (3)由(2)知函数f(x)在(0,1)上递增,在[1,+∞)上递减,则f(x)在x=1处
可取得最大值. ∴f(1)=, ∴函数的最大值为 ,无最小值.
x≤1,
.是
,
上的减函数, 那么a的取值范围是(
)
A.(0,1)
C.
1 7
,
1 3
B.
0,
1 3
D.
1 7
,1
[错解]依题意应有
3a 1 0, 0 a 1,
解得0
a
1 3
,
选B.
[剖析] 本题的错误在于没有注意分段函数的特点,只保证了函数
在每一段上是单调递减的,没有使函数f(x)在(-∞,1]上的最小值
【典例2】利用定义判断函数f x x x2 1在区间
R上的单调性.
[错解]设x1, x2 R,且x1 x2 ,则f x2 f x1
(x2 x22 1) (x1 x12 1)
x2 x1 ( x22 1 x12 1),
因为x1 x2 ,则x2 x1 0,且 x22 1 x12 1 0,
(2)在解答过程中易出现不能正确构造f(x2-x1)的形式或不能将不 等式右边3转化为f(2)从而不能应用函数的单调性求解,导致此 种错误的原因是没有熟练掌握单调性的含义及没弄清如何利 用题目中的已知条件或者不能正确地将抽象不等式进行转化.
错源一不注意分段函数的特点
【典例1】已知f
x
(3a 1)x 4a, logax, x 1
第二节 函数的单调性与最大(小)值
f(x-1)>0 的解集是
()
A.(-∞,-1)∪12,+∞ C.-∞,-12∪(1,+∞)
B.-12,1 D.-1,12
[解析] f(x)的定义域为 R ,且 f(-x)=ax-a1x=-f(x),所以 f(x)为奇函数.
__________.
解析:易知f(x)=x2-2kx+4的图象的对称轴为x=k,由题意可得k≤5或 k≥20.
答案:(-∞,5]∪[20,+∞)
三、“基本思想”很重要 1.(数形结合)设定义在[-1,7]上的函数 y=f(x)的图象如图所示,则函数 y=f(x)
的增区间为________.
解析:由图象可知函数的增区间为[-1,1]和[5,7]. 答案:[-1,1]和[5,7]
命题点三 函数单调性的应用(多角探明) [逐点例析]
题点(一) 比较大小
x2+1,x≥0, [例 1] (2020·湘潭三模)设函数 f(x)=13x3-32x2+2x+1,x<0, a=f(0.7-0.5),
b=f(0.8-0.5),c=f(log0.75),则 a,b,c 的大小关系是
A.b<c<a
3.(2021·石家庄模拟)对于任意实数 a,b,定义 min{a,b}=ab,,aa≤>bb. , 设函 数 f(x)=-x+3,g(x)=log2x,则函数 h(x)=min{f(x),g(x)}的最大值是 ________.
解析:在同一坐标系中,作出函数 f(x),g(x)的图象,依题意, h(x)的图象如图中实线所示.易知点 A(2,1)为图象的最高点, 因此 h(x)的最大值是 h(2)=1. 答案:1
(2)单调区间D必为定义域的子集,所以函数的单调性是函数的局部性质. (3)对于区间端点,由于它的函数值是唯一确定的常数,没有增减的变化,所
单调性与最大(小)值PPT
【互动探究】 2.(2010 年天津)设函数 f(x)=x-1x,对任意 x∈[1,+∞),f(mx)
+mf(x)<0 恒成立,则实数 m 的取值范围是___m_<_-__1__. 解析:已知 f(x)为增函数且 m≠0,所以 2mx2<1+mm2.显然 m>0
时不符合题意.则 m<0,即有 1+m12<2x2.因为 y=2x2 在 x∈[1, +∞)上的最小值为 2,所以 1+m12<2,即 m2>1,解得 m<-1.
【互动探究】 1.试用函数单调性的定义判断函数 f(x)= x-2x1在区间(0,1)上
的单调性. 解:任取 x1,x2∈(0,1),且 x1<x2. 则 f(x1)-f(x2)=x12-x11-x22-x21=x12-x12-xx2-1 1. 由于 0<x1<x2<1,x1-1<0,x2-1<0,x2-x1>0, 故 f(x1)-f(x2)>0,即 f(x1)>f(x2). 所以,函数 f(x)=x-2x1在(0,1)上是减函数.
函数的单调性与最(小)值
考纲要求
考纲研读
利用函数单调性、图象等方法求
1.会求一些简单函数的值域. 一些简单函数的值域或最值;或
2.理解函数的单调性、最大值、 以最值为载体求参数的范围,并
最小值及其几何意义.
能解决实际生活中的一些优化
问题.
1.函数的单调性的定义 设函数 y=f(x)的定义域为 A,区间 I⊆A,如果对于区间 I 内 的任意两个值 x1,x2,当 x1<x2 时,都有__f_(x_1_)_<_f(_x_2)_,那么就说 y =f(x)在区间 I 上是单调增函数,I 称为 y=f(x)的___单__调__增__区__间___; 如果对于区间 I 内的任意两个值x1,x2,当x1<x2 时,都有_f_(_x1_)_>_f_(x_2,) 那么就说 y = f(x) 在区间 I 上 是单调减函数 ,I 称 为 y = f(x) 的 _单__调__减__区__间___.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当堂检测反馈:
1、如果 x , x a , b ,且 x x 时,有 f ( x1 ) f ( x 2 ) ,则函数 1 2 a , b 上是( D ) 在 A.增函数 B.减函数 C先减后增. D.不能确定
1 2
f (x)
2、函数 y x 2 6 x 1 0 在区间(2,4)上为( C A.增函数 B.减函数 C.先减后增函数 D.先增后减函数
知识迁移,应用提高
例1、下图是定义在区间[-5,5]上的函数y=f(x), 根据图象说出函数的单调区间,以及在每个区间 上,它是增函数还是减函数?
思考:能否写成 [-5,-2) 解:函数y=f(x)的单调区间有 ∪[1,3)?
[-5,-2),[-2,1),[1,3),[3,5] 其中y=f(x)在区间[-5,-2), [1,3)是减函数, 在区间[-2,1), [3,5] 上是增函数。
)
3、已知函数 f ( x ) 在 a , b 上单调,且 f ( a ) f ( b ) 0 ,则方 程 f ( x ) 0 在区间 a , b 上( B ) A.至少有一个实根 B.至多有一个实根 C.没有实根 D.必有一个实根 4、证明函数 f ( x ) x
注意:函数的单调性是对某个区间而言的, 对于单独的一点,由于它的函数值是唯一 确定的常数,因而没有增减变化,所以不 存在单调性问题;对于闭区间上的连续函 数来说,只要在开区间上单调,它在闭区 间上也就单调,因此,在考虑它的单调区 间时,包括不包括端点都可以;
例2、证明函数f(x)=3x+2在R上是增函数。
注意:
1、函数的单调性是在定义域内的某个区间上 的性质,是函数的局部性质; 2 、必须是对于区间D内的任意两个自变量x1, x2;当x1<x2时,总有f(x1)<f(x2) 或f(x1)>f(x2) 分别是增函数和减函数.
下面是常见的基本初y
在(-∞,+∞) 是减函数 在(-∞,0) 和(0,+∞) 是减函数
函数 f ( x )
1 x
在 ( 0 , ) 上是减函数
.
小结
利用定义确定或证明函数f(x)在给定的 区间D上的单调性的一般步骤:
1.取数:任取x1,x2∈D,且x1<x2; 2.作差:f(x1)-f(x2); 3.变形:通常是因式分解和配方; 4.定号:判断差f(x1)-f(x2)的正负; 5.小结:指出函数f(x)在给定的区间D上的 单调性.
1 x
在(0,1)上是减函数
证明: 1,x2是R上的任意两个实数,且x1<x2,则 设x
f(x1)-f(x2)=(3x1+2)- (3x2+2) =3( x1-x2 ) 由x1<x2,得x1-x2<0 于是f(x1)-f(x2)<0 即f(x1)<f(x2) 所以,函数f(x)=3x+2在R上是增函数。
---定号 --下结论 ---取值 ---作差 ---变形
x
对于函数定义域I内某个区间D上的任意两个自变量 x1 , x 2 的值,若当 x 1 < x 2 时,都有 f ( x1 ) > f ( x 2 ) , 则称函数 f ( x ) 在区间D上是减函数.
思考3:如果函数y=f(x)在区间D上是增函 数或减函数,则称函数 f ( x )在这一区间具有 (严格的)单调性,区间D叫做函数 f ( x ) 的 单调区间.那么二次函数在R上具有单调性吗? 2 函数 f ( x ) ( x 1) 的单调区间如何?
证明函数单调性的方法步骤
利用定义证明函数f(x)在给定的区间D上的单 调性的一般步骤: 1 任取x1,x2∈D,且x1<x2;
2 作差f(x1)-f(x2);
3 变形(通常是因式分解和配方);
4 定号(即判断差f(x1)-f(x2)的正负);
5 下结论(即指出函数f(x)在给定的区间D上的 单调性).
单调性与最大(小)值
曹利霞
问题提出
德国有一位著名的心理学家艾宾浩斯,对人类 的记忆牢固程度进行了有关研究.他经过测试,得 到了以下一些数据:
时间间隔 刚记 20分 60分 8-9 1天 2天 6天 一个 t 后 后 月后 忆完 钟后 钟后 小时 后 毕 后 记忆量y 100 58.2 44.2 35.8 33.7 27.8 25.4 21.1 (百分比)
例 3 .函 数 f ( x ) 1 在 (0, )上 是 增 函 数 还 是 x 减 函 数 ? 证 明 你 的 结 论.
1 x1 1 x2 1
减函数
f(x)在定义域 上是减函数吗? 取x1=-1,x2=1 f(-1)=-1 x f(1)=1 -1<1 f(-1)<f(1)
证明: 1,x2∈(0,+∞),且x1<x2,则 设x
f ( x1 ) , f ( x2 )
y
-1 1
O
f ( x1 ) f ( x 2 )
1 x1
1
x 2 x1 x1 x 2
x2
-1
x1 , x 2 ( 0 , ) x1 x 2 0 f ( x1 ) f ( x 2 ) 0 f ( x1 ) f ( x 2 ) x1 x 2 x 2 x1 0
b 在 - , 2a
在(o y x x
∞,+∞)是
增函数
在(-∞,0) 和(0,+∞) 是增函数
o y
o
y
o
x
增函数 b , 在 2a 减函数
o
x
在 增函数 b 在 - , 2 a 减函数
b , 2a
以上数据表明,记忆量y是时间 间隔t的函数. 艾宾浩斯根据这 些数据描绘出了著名的“艾宾浩 斯遗忘曲线”,如图.
y
100 80
60 40
20
o
1
2
3
t
思考1:当时间间隔t逐渐增 y 大你能看出对应的函数值y 100 80 有什么变化趋势?通过这个 60 试验,你打算以后如何对待 40 20 刚学过的知识? o 思考2:“艾宾浩斯遗忘曲线” 从左至右是逐渐下降的,对此, 我们如何用数学观点进行解释?
f (x)
对于函数定义域I内某个区间D上的任意两个自变量 x1 , x 2 的值,若当 x 1 < x 2 时,都有 f ( x1 ) < f ( x 2 ) , 则称函数 f ( x ) 在区间D上是增函数.
知识探究(二)
考察下列两个函数:
2
(1) f ( x ) x ; (2) f ( x ) x ( x 0 )
思考3:如图为函数 f ( x ) 在定义域 I内某个区间D上的图象,对于该 区间上任意两个自变量x1和x2, f 当 x1 x 2 时, ( x1 )与 f ( x 2 ) 的大 小关系如何?
y
y f (x)
f ( x2 )
f ( x1 )
o
x1
x2
x
思考4:我们把具有上述特点的函数称为增函数, 那么怎样定义“函数f ( x ) 在区间D上是增函数”?
y
f ( x1 ) f ( x2 )
y f (x)
y
o
x
o
x
思考1:这两个函数的图象分别是什么?二者有何 共同特征?
思考2:我们把具有上述特点的 函数称为减函数,那么怎样定 义“函数 f ( x ) 在区间D上是减 函数”?
f (x)
y
y f (x)
f ( x1 )
f ( x2 )
o
x1
x2
1
2
3
t
知识探究(一)
考察下列两个函数:
2
(1) f ( x ) x ; (2) f ( x ) x ( x 0 )
y y
o
x o x
思考1:这两个函数的图象分别是什么?二者有何 共同特征? 思考2:如果一个函数的图象从左至右逐渐上升, 那么当自变量x从小到大依次取值时,函数值y的 变化情况如何?