公开课(解直角三角形).PPT课件
合集下载
九年级数学解直角三角形省公开课获奖课件市赛课比赛一等奖课件
![九年级数学解直角三角形省公开课获奖课件市赛课比赛一等奖课件](https://img.taocdn.com/s3/m/2c49605ebfd5b9f3f90f76c66137ee06eff94ee0.png)
八回 月圆夜里共话别|(耿老爹坦言明心志,三兄妹年少不知难;共“拜月”分吃大“团月”,何年何月再团圆?)还是耿老爹打破了 这几乎窒息旳沉闷。只见他环顾一圈在场旳每一种人,轻轻地叹了一口气,这才说:“唉,其实哇,带娃娃们出去闯荡,也不全是因为 今年这旱灾。当然啦,暑日里又看到人们在祈雨,也更坚定了俺一定要带娃娃们出去闯荡旳决心。这人哪,没有文化知识就是不行呢! 咱是小老百姓,管不了国家旳那些个大事儿,可咱们还是有能力想某些方法,让周围旳乡亲们过得有意义某些啊!”见大家伙儿都在看 着自己,他接着说:“所以啊,就俺说过旳那样,等俺父子们赚发了回来之后,首先做旳就是在咱们镇上建一种小学堂!假如可能,最 佳还能再盖一座戏台。让咱镇上旳娃娃们都能上得起学,也乐意学习文化知识。然后啊,俺再把咱们镇上旳那些个爱热闹,有说唱天赋 旳人们组织起来,编排某些有意思旳土戏。这到时候哇,逢年过节旳,咱就多多地来他几场,平时逢集什么旳也能够安排某些。想想看 哇,这辛勤劳作一天儿旳乡亲们,吃了晚饭后假如能看上咱们旳这些个土戏,那肯定是不但解乏乐呵,而且还修身养性呢!”说到这里, 耿老爹自个儿旳脸上露出了欣喜旳笑容,好像这些好事儿真成了似旳!但董家成听了,却重重地叹了一口气,说:“唉,弟兄你这个想 法当然是很好哩,只是这,这也太不轻易了哇!你们父子四个这后来指不定要吃多大旳苦呢!”耿老爹收敛笑容后,又轻轻地笑了。他 倔强地说:“想做事嘛,就得付出辛劳哇!”耿憨挨着个儿看看耿正、耿英和耿直后,也叹了一口气说:“唉,你一种大男人吃点儿苦 也就罢了,可娃娃们还小哩,这,这真还让人有些个不放心呢!”看到三家旳女人都已经在撩起衣襟擦眼泪了,耿老爹赶快说:“娃娃 们从小吃点儿苦不是坏事儿,能锻炼人儿哇!这要学到了真本事,那可是让他们受益一辈子旳好事儿呢!再说啦,有俺这个还算不错旳 爹带着他们呢,他们苦不到哪里去旳,倒是有机会增长诸多见识呢!”听了爹爹旳这些话,即将离家南下旳耿正、耿英和耿直甚至有些 兴奋起来了。耿正大声说:“你们都放心哇,俺们才不怕吃苦哪!有机会学本事,增长见识多好哇!俺们跟着爹呢,怕什么啊!再说了, 俺也这么大了,能帮着俺爹照顾俺妹和俺弟兄呢!”秀儿悄悄地问坐在身旁旳耿英:“英妹妹,你真乐意去吗?真不怕吃苦?”耿英坚 定地说:“吃苦算什么啊!俺爹和俺娘经常和俺们说,不吃苦中苦,难为人上人!俺很乐意跟着俺爹和俺哥南下去学本事旳!”“那你 就不怕时间长了想家吗?”“没事儿,过几年就回来了!”耿直则兴奋得脸都红了。他依偎在爹旳身边骄傲地对青山、青海和二壮说: “俺爹
解直角三角形PPT课件
![解直角三角形PPT课件](https://img.taocdn.com/s3/m/d0a1c356fd4ffe4733687e21af45b307e971f945.png)
2024/1/25
正切定理
在直角三角形中,锐角的正切值等于其对边比邻边,即 tanα = a/b。
6
02
勾股定理及其逆定 理
2024/1/25
7
勾股定理内容及证明
2024/1/25
勾股定理内容
在直角三角形中,直角边的平方 和等于斜边的平方。
勾股定理证明
可以通过相似三角形、面积法、 向量法等多种方法进行证明。
2024/1/25
正弦、余弦定理
已知任意两边和夹角,可以利用正弦定理$frac{a}{sin A} = frac{b}{sin B} = frac{c}{sin C}$或余弦定理$c^2 = a^2 + b^2 - 2abcos C$求出第三边和角度。
16
已知一边一角求其他元素
正弦、余弦函数
已知一条边和一个锐角,可以利用正弦或余弦函数求出另一条直角边和斜边。例如,已知直角边$a$和锐角$A$ ,则可以利用$sin A = frac{a}{c}$求出斜边$c$,再利用勾股定理求出另一条直角边$b$。
正切函数
正切(tangent)是一个 角的对边长度与邻边长度 的比值,即 tan(θ) = 对边 / 邻边。
12
特殊角度三角函数值
0°、30°、45°、60°、90°等特殊角 度的三角函数值,如 sin(30°) = 1/2 ,cos(45°) = √2/2,tan(60°) = √3 等。
特殊角度三角函数值的推导过程及其 在解题中的应用。
2024/1/25
13
三角函数图像与性质
正弦、余弦、正切函数的图像及其周期性、奇偶性、单调性等性质。 利用三角函数图像解决相关问题的思路和方法。
2024/1/25
正切定理
在直角三角形中,锐角的正切值等于其对边比邻边,即 tanα = a/b。
6
02
勾股定理及其逆定 理
2024/1/25
7
勾股定理内容及证明
2024/1/25
勾股定理内容
在直角三角形中,直角边的平方 和等于斜边的平方。
勾股定理证明
可以通过相似三角形、面积法、 向量法等多种方法进行证明。
2024/1/25
正弦、余弦定理
已知任意两边和夹角,可以利用正弦定理$frac{a}{sin A} = frac{b}{sin B} = frac{c}{sin C}$或余弦定理$c^2 = a^2 + b^2 - 2abcos C$求出第三边和角度。
16
已知一边一角求其他元素
正弦、余弦函数
已知一条边和一个锐角,可以利用正弦或余弦函数求出另一条直角边和斜边。例如,已知直角边$a$和锐角$A$ ,则可以利用$sin A = frac{a}{c}$求出斜边$c$,再利用勾股定理求出另一条直角边$b$。
正切函数
正切(tangent)是一个 角的对边长度与邻边长度 的比值,即 tan(θ) = 对边 / 邻边。
12
特殊角度三角函数值
0°、30°、45°、60°、90°等特殊角 度的三角函数值,如 sin(30°) = 1/2 ,cos(45°) = √2/2,tan(60°) = √3 等。
特殊角度三角函数值的推导过程及其 在解题中的应用。
2024/1/25
13
三角函数图像与性质
正弦、余弦、正切函数的图像及其周期性、奇偶性、单调性等性质。 利用三角函数图像解决相关问题的思路和方法。
2024/1/25
25.3解直角三角形及其应用市公开课特等奖市赛课微课一等奖PPT课件
![25.3解直角三角形及其应用市公开课特等奖市赛课微课一等奖PPT课件](https://img.taocdn.com/s3/m/339d5456a200a6c30c22590102020740bf1ecd6e.png)
l
l
例3.一铁路路基横断面是等腰梯形,路基顶部宽 为9.8米,路基高为5.8米,斜坡与地面所成角A为 60度.求路基低部宽(准确到0.1米)
第4页
• 练习:热气球探测器显示,从热气球看一栋高楼 顶部仰角为30°,看这栋高楼底部俯角为60°, 热气球与高楼水平距离为120m,这栋高楼有多 高?(结果准确到0.1m)?
A 已知一直角边和所正确角 B 已知两个锐角
C 已知斜边和一个锐角
D 已知两直角边
(目标1) 2 在Rt△ABC中,∠C=900,cosB=2/3,则 a:b:c=( )
A 2:√5:3 B 1:√2:√3 C 2:√5:√3 D 1:2:3
3 在Rt△ ABC中,CD为斜边AB上高,则以下线段比等于sinA是( )
B
A D
C 第5页
例4:海上有一座灯塔P,在它周围3海里内有暗 礁,一艘客轮以每小时9海里速度由西向东航行, 行至A处测得灯塔P在它北偏东60°,继续行驶20 分钟后,抵达B处,又测得灯塔P在它北偏东 45°,问客轮不改变方向,继续前进有没有触礁 危险?
解:过P点作PD垂直于AB,交AB延长线于D
解:过点A作AB垂直于MN,垂足为B点。
∵ PBA=90°, BPA=30°, PA=160米
∴AB=80米〈100米
∴受影响.
以A为圆心,100米为半径作圆弧,与
B
PN交于点C、D. 连接AC,AD。 ∵AC=100米,AB=80米
C
∴BC=60米 ∴CD=2BC =120米
MP
30° 160
∵v=18千米/小时=5米/秒
45°
A 设BE为x,列方程
C
.30° 45°
解直角三角形-ppt课件
![解直角三角形-ppt课件](https://img.taocdn.com/s3/m/92f86f86a48da0116c175f0e7cd184254a351b65.png)
,∴
∴CH = ,
∴AH=
∴AB=2AH=
−
.
=
,∵∠B=30°,
=
,
26.3 解直角三角形
重 ■题型 解双直角三角形
难
例 如图,在 Rt△ABC 中,∠C=90°,D 是 AC 上一
题
型
点,BD=10
,∠BDC=45°,sinA=
,求 AD 的长.
突
∴S
AB·AE= ×4×4 =8 ,
CD·DE= ×5 ×15=
四边形 ABDC=S△CDE-S△ABE=
,
.
(方法二)如图 2,过点 A 作 AF⊥CD 于点 F,过点
B 作 BG⊥AF 于点 G,则∠ABG=30°,
∴AG=
AB=2,BG= − =2 ,
况讨论,求出不同情况下的答案.
26.3 解直角三角形
■方法:运用割补法求不规则图形的面积
方
法
割补法是求不规则图形面积问题的最常用方法,割补法
技
巧 包含三个方面的内容:一是分割原有图形成规则图形;二
点
拨 是通过作辅助线将原有图形补为规则图形;三是分割和补
形兼而有之.
26.3 解直角三角形
例 如图,在四边形 ABDC 中,∠ABD=120°,AB⊥AC,
=
2
=25
26.3 解直角三角形
变式衍生 如图,在Rt△ABC中,∠ACB=90°,D 是 AB
解直角三角形完整版PPT课件
![解直角三角形完整版PPT课件](https://img.taocdn.com/s3/m/43549b4802d8ce2f0066f5335a8102d277a26179.png)
余弦或正切函数计算得出。
已知一边和一角求另一边
02
在直角三角形中,已知一边长和一个锐角大小可以求出另一边
长,通过正弦、余弦或正切函数计算得出。
解直角三角形的实际应用
03
例如测量建筑物高度、计算航海距离等。
三角函数在实际问题中应用
测量问题
在测量问题中,可以利用三角函数计算高度、距离等未知量。例如,利用正切函数可以计算 山的高度或者河的宽度。
直角三角形重要定理
勾股定理
如上所述,勾股定理描述了直角三角 形三边之间的数量关系。
射影定理
相似三角形判定定理
若两个直角三角形的对应角相等,则 这两个直角三角形相似。根据此定理, 可以推导出一些重要的直角三角形性 质和定理。
射影定理涉及直角三角形中斜边上的 高与斜边及两直角边之间的数量关系。
02
三角函数在解直角三角形中应用
• 性质:正弦、余弦函数值域为[-1,1],正切函数值域为R;正弦、余弦函 数在第一象限为正,第二象限正弦为正、余弦为负,第三象限正弦、余 弦都为负,第四象限余弦为正、正弦为负;正切函数在第一、三象限为 正,第二、四象限为负。
利用三角函数求边长和角度
已知两边求角度
01
在直角三角形中,已知两边长可以求出锐角的大小,通过正弦、
注意单位换算和精确度
在求解过程中,要注意单位换算和精确度的控制,避免因单位或精 度问题导致答案错误。
拓展延伸:非直角三角形解法简介
锐角三角形和钝角三角形的解法
对于非直角三角形,可以通过作高线或利用三角函数等方法将其转化为直角三角形进行 求解。
三角形的边角关系和面积公式
了解三角形的边角关系和面积公式,有助于更好地理解和解决非直角三角形问题。
沪科版数学九年级上册 23.2 解直角三角形 课件(共14张PPT)
![沪科版数学九年级上册 23.2 解直角三角形 课件(共14张PPT)](https://img.taocdn.com/s3/m/47dad86f11661ed9ad51f01dc281e53a5902511c.png)
在Rt△PAD中,∵∠PAD=90°-60°=30°
AD 3PD, 12 x 3x,
x 12 6( 3 1) 18. 3 1
∴渔船不改变航线继续向东航行,有触礁危险.
巩固练习
1.小明为了测量其所在位置,A点到 河对岸B点之间的距离,沿着与AB垂 A m C 直的方向走了m米,到达点C,测得 ∠ACB=α,那么AB等于( B)
两边
2
(2)根据AC= 2 ,BC= 6
C
6 B 你能求出这个三角形的其他元素吗?
∠A ∠B AB
(3)根∠A=60°,∠B=30°, 两角
你能求出这个三角形的其他元
素吗? 不能
解直角三角形
解直角三角形:在直角三角形中,由已知元素求未知元素的
程.
A
事实上,在直角三角形的六个元素
(三条边,三个角)中,除直角外,
分析:作PD⊥BC,设PD=x,则 BD=x,AD=x+12,根据AD= 3 PD, 得x+12= 3 x,求出x的值,再 比较PD与18的大小关系.
D
解:
有触礁危险
D
理由:过点P作PD⊥AC于D.设PD为x, 在Rt△PBD中,∠PBD=90°-45°=45°. ∴BD=PD=x,AD=12+x.
b
c
如果再知道两个元素(其中至少有一
个是边),这个三角形就可以确定下 来,这样就可以由已知的两个元素求
Ca
B
出其余的三个元素.
在解直角三角形的过程中,一般要用到下面一些关系:
(1)三边之间的关系 a2 b2 c2(勾股定理)
B
斜边c (2)两锐角之间的关系 ∠A+∠B=90°
∠A的对边a
《解直角三角形》-完整版PPT课件
![《解直角三角形》-完整版PPT课件](https://img.taocdn.com/s3/m/7fd46873bceb19e8b8f6bafd.png)
整理,得4t2-26t+39=0
解之,得
t1
13413,t2
13 13 4
∴台风抵达D港的时间为 1 3 1 3 小时.
B
∵轮船从A处用 1 3
≈25.5.
4
13
4
小时到达D港的速度为60÷
1
3413∴为台风抵达D港之前轮船到D港,轮船至少应提速6里/时.
例7 如图,公路MN和公路N上沿PN方向行驶时,学校是否会受 到噪声影响?请说明理由(2)如果受影响,已知拖拉机的速 度为18千米/时,那么学校受影响的时间为多少秒?
(1)切割法:把图形分成一个或几个直角三角形与 其 他特殊图形的组合;
(2)粘补法:此方法大都通过延长线段来实现
例1 要求tan30°的值,可构造如图所示的直角三角形进行
计算:作Rt△ABC,使∠C=90°,斜边AB=2,直角边AC=1,
那么BC= ,
3
∴tan30°= AC 1 3 BC 3 3
A
D
C
B
祝同学们学习进步! 再见!
∴C1D0=201208(02米)
学校受噪声影响的时间t=120米÷18千米/时= 时=1 24秒
150
小结:
1、将实际问题经提炼数学知识,建立数学模 型转化为数学问题 2、设法寻找或构造可解的直角三角形,尤其 是对于一些非直角三角形图形,必须添加 适当的辅助线,才能转化为直角三角形的 问题来解决
C FG
∵ sinB= ,AG AB
D E
AG=AB•sinB=415•sin37°=415 06=
A
37 °B
249 25cm,
即EF 25cm
答:球的直径约为25cm
《解直角三角形(第一课时)》教学PPT课件【初中数学】公开课
![《解直角三角形(第一课时)》教学PPT课件【初中数学】公开课](https://img.taocdn.com/s3/m/c023115c03d8ce2f0166230d.png)
活动五
2..直角三角形中一共有六个元素,即三条边和三个角,除直 角外,另外的五个元素中,只要已知一条边和一个角或两条 边,就可以求出其余的所有未知元素.
3.求未知元素时,有时可选择的关系式不止一 种,应考虑计算的方便,先求角后求边。
4.计算时要尽量利用原始数据,以防误差扩大。
教学活动6、课堂练习:
斜边,一锐角(如c,∠A) 一直角边,一锐角(如a,∠A)
1)∠B=90°-∠A; (2)由sin A=,得a=c·sin A; (3)由cos A=,得b=c·cos A
(1)∠B=90°-∠A;
(2) 由tan A= a ,得b a
b
tan A
(3) 由sinA= a ,得c a
c
sin A
或者AB=2AC=4
BC 42 22 2 3
活动四
2.在RtΔABC中,∠C=90°,若AC=2,AB=4,求∠A,∠B的度数和 BC的长.
解:∵ AC 2BC2 AB2
BC 42 22 2 3
sin B AC 1 AB 2
∴∠B=30° ∴∠A=90°-30°=60°
复习回顾
2. 特殊角的三角函数
1
2
3
sin30°= 2 ,sin45°= 2 ,sin60°= 2 ;
3
2
1
cos30°= 2 ,cos45°= 2 ,cos60°= 2 ;
3 tan30°= 3 ,tan45°= 1 ,tan60°= 3 .
活动一
如图所示,轮船在A处时,灯塔B位于它的北偏东35°的方 向上,轮船向东航行5 km,到达C处时,轮船位于灯塔的 正南方,此时轮船距灯塔多少千米? (tan55°≈1.4281,结果保留两位小数)
《解直角三角形》PPT课件
![《解直角三角形》PPT课件](https://img.taocdn.com/s3/m/89e0353ca517866fb84ae45c3b3567ec112ddc47.png)
C
5B
例3 如图,在△ABC中,∠B=30°,∠C=45°,AC=2,求BC.
解:过点 A作 AD⊥BC于D.
在△ACD中,∠C=45°,AC=2,
∴CD=AD=sinC·AC=2sin45°= 2 .
在△ABD中,∠B=30°,
∴BD= AD 2 6
tan B 3
∴BC=CD+BD=3 2 + 6
不好,会增大结果的误差,应尽可能用原题中的数据.
注意事项:
1、数形结合有利于分析问题;
2、选择关系式时,尽量使用原始数据,以防“累积
误差”和“一错再错”;
3、解直角三角形时,应求出所有未知元素。
A
解直角三角形的原则:
(1)有角先求角,无角先求边 (2)有斜用弦, 无斜用切;
50
﹖
宁乘毋除, 取原避中。
(2)如何求∠A?
已知的BC和AC的比构成tanA,用 tanA=BC:AC来求.
例2 如图,在Rt△ABC中,∠C=90°,AC=15,BC=8.解这个直角 三角形.(角度精确到1”)
(3)如何求∠B?
B
利用∠A+∠B=90°.
8
(4)如何求AB?
A
C
15
利用勾股定理.
B
解:在Rt△ABC中
8
tan A BC 8 0.53, AC 15
由边长可
A
15 C
∴∠A=28°
导出角度
sin28°≈0.47, cos28°≈0.88,
∴∠B=90°-∠A=90°-28°=62°. 在Rt△ABC中,由勾股定理得
tan28°≈0.53
AB AC2 BC2 82 152 17
解直角三角形(共30张)PPT课件
![解直角三角形(共30张)PPT课件](https://img.taocdn.com/s3/m/26b18168182e453610661ed9ad51f01dc28157b1.png)
比例性质应用
利用相似三角形中对应边 之间的比例关系进行计算。
实际应用举例
测量问题
利用相似三角形原理解决 测量中的实际问题,如测 量建筑物高度、河宽等。
航海问题
在航海中,利用相似三角 形原理解决船只定位、航 向确定等问题。
物理问题
在物理实验中,利用相似 三角形原理解决光学、力 学等问题,如光的折射、 力的合成与分解等。
利用相似三角形求边长
通过已知边长和相似比,可以求出未知边长。
利用相似三角形求角度
通过已知角度和相似关系,可以求出未知角度。
利用相似三角形求面积
通过已知面积和相似比,可以求出未知面积。
相似比计算方法和技巧
01
02
03
直接计算法
根据已知条件直接计算相 似比。
间接计算法
通过引入辅助线或构造特 殊图形来计算相似比。
解直角三角形(共30张)PPT课 件
目录
• 直角三角形基本概念与性质 • 解直角三角形方法论述 • 三角函数在解直角三角形中应用 • 相似三角形在解直角三角形中作用
目录
• 复杂图形中解直角三角形策略探讨 • 拓展延伸:非直角三角形解法探讨
01
直角三角形基本概念与性 质
直角三角形定义及特点
有一个角为90度的三角形称为直角三角形。
案例三
在三角形中解直角三角形问题。 通过作高线构造直角三角形,并
结合相似性质进行求解。
总结归纳与提高建议
总结归纳
在复杂图形中解直角三角形的关键在于构造直角三角形并利用 已知条件进行推理和计算。通过添加辅助线、利用相似性质和 三角函数关系等方法,可以有效地解决这类问题。
提高建议
为了更好地掌握解直角三角形的技巧和方法,建议多做相关练 习题并总结归纳经验。同时,也可以学习一些高级的数学知识 和技巧,如三角函数恒等式、极坐标等,以便更好地应对复杂 的数学问题。
《解直角三角形》示范公开课PPT教学课件【九年级数学下册北师大版】
![《解直角三角形》示范公开课PPT教学课件【九年级数学下册北师大版】](https://img.taocdn.com/s3/m/9b7b0724ba68a98271fe910ef12d2af90242a8e7.png)
(2)由已知边与所求边的比值所对应的一个锐角三角函数值,求出该边的长度.
(1)由“直角三角形的两个锐角互余”求出另一个锐角;
已知一边和一锐角解直角三角形的方法:
例1 在Rt△ABC中,已知∠C=90°,a=35,b=28,求∠A,∠B的度数(结果精确到1°)和c的长(结果精确到1).
至少知道几个元素,就可以求出其他的元素?
在Rt△ABC中,如果已知其中两边的长,你能求出这个三角形的其他元素吗?
如图,在Rt△ABC中,已知∠C=90°,a=4,c=8.解这个直角三角形.
a
b
c
也可以换成其他两边试一试!
在Rt△ABC中,a=4,c=8,
由勾股定理求直角边b,
再由∠A+∠B=90°求出∠B.
A
B
C
35°
4.如图,一个长为 10 m 的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为 8 m.分别求梯子的底端距墙多少米,梯子与墙和梯子与地面的夹角(精确到1°)?
解:如图,依题Байду номын сангаас知,在Rt△ABC中, ∠C=90°,AB=10 m,BC=8 m.
∴ ∠A ≈37°,
所以,梯子的底端距墙6米,梯子与墙和梯子与地面的夹角分别为53°和37°.
a
b
c
在Rt△ABC中,∠C=90°,其他边角关系如下:
(2) 三边之间的关系: a2+b2=_____;
(1) 锐角之间的关系:∠A+∠B=_____;
(3) 边与角之间的关系:sinA=cosB=_____,cosA=sinB=_____, tanA=_____,tanB=_______.
由“直角三角形两个锐角互余”可得∠B,
(1)由“直角三角形的两个锐角互余”求出另一个锐角;
已知一边和一锐角解直角三角形的方法:
例1 在Rt△ABC中,已知∠C=90°,a=35,b=28,求∠A,∠B的度数(结果精确到1°)和c的长(结果精确到1).
至少知道几个元素,就可以求出其他的元素?
在Rt△ABC中,如果已知其中两边的长,你能求出这个三角形的其他元素吗?
如图,在Rt△ABC中,已知∠C=90°,a=4,c=8.解这个直角三角形.
a
b
c
也可以换成其他两边试一试!
在Rt△ABC中,a=4,c=8,
由勾股定理求直角边b,
再由∠A+∠B=90°求出∠B.
A
B
C
35°
4.如图,一个长为 10 m 的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为 8 m.分别求梯子的底端距墙多少米,梯子与墙和梯子与地面的夹角(精确到1°)?
解:如图,依题Байду номын сангаас知,在Rt△ABC中, ∠C=90°,AB=10 m,BC=8 m.
∴ ∠A ≈37°,
所以,梯子的底端距墙6米,梯子与墙和梯子与地面的夹角分别为53°和37°.
a
b
c
在Rt△ABC中,∠C=90°,其他边角关系如下:
(2) 三边之间的关系: a2+b2=_____;
(1) 锐角之间的关系:∠A+∠B=_____;
(3) 边与角之间的关系:sinA=cosB=_____,cosA=sinB=_____, tanA=_____,tanB=_______.
由“直角三角形两个锐角互余”可得∠B,
《解直角三角形》PPT课件 (公开课获奖)2022年华师大版 (12)
![《解直角三角形》PPT课件 (公开课获奖)2022年华师大版 (12)](https://img.taocdn.com/s3/m/fe81507284868762cbaed5f6.png)
*
问题1:怎样利用解直角三角形的知识 ,去解决与 等腰三角形有关的实际问题 ?
问题2:怎样利用解直角三角形的知识 ,去解决与 直角梯形有关的问题 ?
例:如图,在直角梯形中,∠B=900,BC=3,CD=2,AB=6, 求∠A的度数?
D
C
A
B
解后反思1
直角梯形 和矩形
过D作高 分割
D
A
*
直角三角形 C B
题(3)能这样解吗?
(2x2y)3 ·(−7xy2) ÷ (14x4y3) =(2x2y)3[·(−7)÷14]·x1−4 y 2−3
☾ 同底幂的除法法则:
题(4)能 (2a+b)4÷(2a+b)2
am÷an =am−n 这样解吗? =(24a4b4)÷(22a2b2)
括号内是积、
两个底数是相同的多项式时,
练习(1)一段坡面的坡角为60° ,那么坡度i =______;
______ ,坡角α______度.
*
坡度在日常生活中的应用也很广泛!
例 如图 ,一段路基的横断面是梯形 ,高为 米 ,上底的宽是米 ,路基的坡面与地面的 倾角分别是32°和28°.求路基下底的 宽.〔精确到米〕
*
解 作DE⊥AB ,CF⊥AB ,垂足分别为E、F.由题意可知
如图 ,坡面的铅垂高度〔h〕和水平长度〔l〕的
比叫做坡面坡度〔或坡比〕.记作i ,即i =
h
.
l
坡面与水平面的夹角叫做坡角 ,记作a ,即i=
h
=tan a
l
显然 ,坡度越大 ,坡角a就越大 ,坡面就越陡.
坡度通常写成1∶m的形式 , 如i =1∶6.
*
图19.4.5
问题1:怎样利用解直角三角形的知识 ,去解决与 等腰三角形有关的实际问题 ?
问题2:怎样利用解直角三角形的知识 ,去解决与 直角梯形有关的问题 ?
例:如图,在直角梯形中,∠B=900,BC=3,CD=2,AB=6, 求∠A的度数?
D
C
A
B
解后反思1
直角梯形 和矩形
过D作高 分割
D
A
*
直角三角形 C B
题(3)能这样解吗?
(2x2y)3 ·(−7xy2) ÷ (14x4y3) =(2x2y)3[·(−7)÷14]·x1−4 y 2−3
☾ 同底幂的除法法则:
题(4)能 (2a+b)4÷(2a+b)2
am÷an =am−n 这样解吗? =(24a4b4)÷(22a2b2)
括号内是积、
两个底数是相同的多项式时,
练习(1)一段坡面的坡角为60° ,那么坡度i =______;
______ ,坡角α______度.
*
坡度在日常生活中的应用也很广泛!
例 如图 ,一段路基的横断面是梯形 ,高为 米 ,上底的宽是米 ,路基的坡面与地面的 倾角分别是32°和28°.求路基下底的 宽.〔精确到米〕
*
解 作DE⊥AB ,CF⊥AB ,垂足分别为E、F.由题意可知
如图 ,坡面的铅垂高度〔h〕和水平长度〔l〕的
比叫做坡面坡度〔或坡比〕.记作i ,即i =
h
.
l
坡面与水平面的夹角叫做坡角 ,记作a ,即i=
h
=tan a
l
显然 ,坡度越大 ,坡角a就越大 ,坡面就越陡.
坡度通常写成1∶m的形式 , 如i =1∶6.
*
图19.4.5
解直角三角形公开课ppt课件
![解直角三角形公开课ppt课件](https://img.taocdn.com/s3/m/401b706b580102020740be1e650e52ea5418ce73.png)
综合应用举例
具体步骤
根据实际问题建立直角三角形模型,确定已知条件和所求量。然后选择合适的解 法(如已知两边求角、已知两角求边等)进行计算,得出结果并进行检验。
注意事项
在综合应用过程中,需要注意实际问题的背景和限制条件,以及计算结果的合理 性和准确性。同时,还需要掌握多种解法,以便灵活应对不同的问题和情况。
已知两角求边
具体步骤
设已知的两个锐角为α和β,其中α为与已知边相邻的角,β为另一个锐角。则 可以利用正弦函数sin(α) = a/c或余弦函数cos(α) = b/c求解边长a或b,其中c 为斜边。
注意事项
在求解过程中,需要注意角度的单位和范围,以及正弦和余弦函数在不同象限 的正负性。同时,还需要注意已知边与所求边之间的关系,避免出错。
直角三角形两直角边互相 垂直,且斜边是直角边的 平方和的平方根。
直角三角形的元素
包括直角边、斜边和两个 锐角。
解直角三角形的意义
解决实际问题
解直角三角形可以帮助我们解决很多 实际问题,如测量、航海、建筑等。
培养数学思维
为后续学习打下基础
解直角三角形是学习数学的基础,对 于后续学习三角函数、解析几何等具 有重要意义。
力学问题中的解直角三角形
力的分解与合成
在力学中,经常需要将一个力分解为两个或多个分力,或 将多个分力合成为一个力,这时可以利用直角三角形的性 质和三角函数进行计算。
运动学中的问题
在研究物体的运动轨迹、速度、加速度等问题时,可以利 用直角三角形的性质进行求解,如抛物线运动、圆周运动 等。
动力学中的问题
定义、性质、三角函数定义和应用的理解程度等。
学习困难与问题反馈
02
鼓励学生反馈在学习过程中遇到的困难和问题,以便教师及时
解直角三角形PPT示范课市公开课一等奖省优质课获奖课件
![解直角三角形PPT示范课市公开课一等奖省优质课获奖课件](https://img.taocdn.com/s3/m/a70bf38a81eb6294dd88d0d233d4b14e85243e22.png)
第5页
例题分析
2、已知:在Rt△ABC中,∠C=90°,a=3, b= 3 .求: (1)c大小; (2)∠A、∠B大小.
第6页
基础练习
在Rt△ABC中,∠C=90°,a、b、c分别为 ∠A 、∠B、 ∠C对边.依据已知条件, 解直角三角形. (1)c=8,∠A =60°; (2) b= 2 2, c=4; (3)a= 2 3, b=6 ; (4)a=1, ∠B=30°.
(3)边角之间关系:
sin A a , c
cos A b , c
tan A a b
第3页
B
c a
A
bC
利用以上关系,假如知道其中2个元 素(其中最少有一个是边),那么就能够求 出其余3个未知元素.
由直角三角形中已知元素,求出全部 未知元素过程,叫做解直角三角形.
第4页
例题分析
1、在Rt△ABC中,∠C=90°,∠A=30°, a=5.解这个直角三角形 .
第7页
Байду номын сангаас
例题分析
3、已知:如图,⊙O半径为10,求⊙O内接 正五边形ABCDE边长.
D
E
C
O
AH B
第8页
基础练习
2、求半径为12圆内接正八边形边长.
o
A HB
第9页
能力提升
在Rt△ABC中, ∠C=90°, ∠A, ∠B, ∠C
对边分别是a,b,c.且a+b=4 , 个直角三角形.
sin A ,2解这
B
c a
A
bC
在直角三角形中,除直角外,还有哪些元素?
这5个元素之间有什么关系?
知道其中哪些元素,能够求出其余元素?
第2页
例题分析
2、已知:在Rt△ABC中,∠C=90°,a=3, b= 3 .求: (1)c大小; (2)∠A、∠B大小.
第6页
基础练习
在Rt△ABC中,∠C=90°,a、b、c分别为 ∠A 、∠B、 ∠C对边.依据已知条件, 解直角三角形. (1)c=8,∠A =60°; (2) b= 2 2, c=4; (3)a= 2 3, b=6 ; (4)a=1, ∠B=30°.
(3)边角之间关系:
sin A a , c
cos A b , c
tan A a b
第3页
B
c a
A
bC
利用以上关系,假如知道其中2个元 素(其中最少有一个是边),那么就能够求 出其余3个未知元素.
由直角三角形中已知元素,求出全部 未知元素过程,叫做解直角三角形.
第4页
例题分析
1、在Rt△ABC中,∠C=90°,∠A=30°, a=5.解这个直角三角形 .
第7页
Байду номын сангаас
例题分析
3、已知:如图,⊙O半径为10,求⊙O内接 正五边形ABCDE边长.
D
E
C
O
AH B
第8页
基础练习
2、求半径为12圆内接正八边形边长.
o
A HB
第9页
能力提升
在Rt△ABC中, ∠C=90°, ∠A, ∠B, ∠C
对边分别是a,b,c.且a+b=4 , 个直角三角形.
sin A ,2解这
B
c a
A
bC
在直角三角形中,除直角外,还有哪些元素?
这5个元素之间有什么关系?
知道其中哪些元素,能够求出其余元素?
第2页
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
问题:1、解直角三角形至少 需要几个条件?
2、解直角三角形的条 件可分为哪几类?
1、解直角三角形除直角外,至少要知道 两个元素(这两个元素中至少有一条边)
2、解直角三角形的条件可分为两大类: ①、已知一锐角、一边 (一锐角、一直角边或一斜边) ②、已知两边 (一直角边,一斜边或者两条直角边)
1、在下列直角三角形中 不能求解的是(D ) A、已知一直角边一锐角 B、已知一斜边一锐角 C、已知两边 D、已知两角
(2)如图,在Rt△ABC 中∠C=90°,a、 b、c、∠A、∠B这五个 元素间有哪些等量关系呢? c B
a
a
Ab
C
直角三角形中元素间的三种关系:
(1)两锐角关系 : ∠ A+ ∠ B= 90º
(2)三边关系: a2+b2=c2(勾股定理);
B
(3)边与角关系:
c
sinA=
a c
cosA=
b c
参考数据:(sin36°≈0.588; cos36° ≈0.809; tan36° ≈0.727)
D
E O.
C
367°2°
A
HB
小结与回顾
1、通过这节课的学 习你有什么收获?
2、本节课你有什么疑惑?
你能根据图上信息,提出一个用锐角三角 函数解决的实际问题吗?试一试
P
30° 45°
A 400米 B
讲师:XXXXXX XX年XX月XX日
B
C 2
60°
1
A
D
如图,在四边形ABCD中, A来自=2, CD=1, ∠A= 60°, ∠D= ∠B= 90°,求 此四边形ABCD的面积。
B
C 2
60°
1
A
D
E
E
B
C 2
1 A 60°
D
B
C 2F
1 A 60°
E
D
如图, ⊙O的半径为10,求⊙O的内接正五边形 ABCDE的边长(精确到0.1)
C
2.已知:在Rt△ABC中,∠C=90,b=2 3 、
c=4.
求:(1)a、∠B=
B
A
C
3、如图所示,已知:在△ABC中,∠A=60°, ∠B=45°,AB=8.求:△ABC的面积(结果可保 留根号).
3、已知:如图,在ΔABC中,∠ACB= 90°,CD⊥AB,垂足为D, 若∠B=30°,CD=6,求AB的长.
C
A
B
D
4、(2011青岛中考)已知AB是⊙o的弦,半径等 于6cm, ∠ACB=120°,求AB的长
o
A
B
写在最后
成功的基础在于好的学习习惯
The foundation of success lies in good habits
27
谢谢大家
荣幸这一路,与你同行
It'S An Honor To Walk With You All The Way
学习目标:
1、理解解直角三角形的概念 2、会根据三角形中的已知量正确地求未知量 3、体会数学中的“转化” 思想
自学指导
认真看课本P85---P86 注意: 1.小组内完成探究问题,并找一名代表回答。 2.看例1例2注意解题格式和步骤,能做与其类 似的检测题。
(1)在直角三角形中,除直角外共有几个 元素?
A
b
a
C
tanA=
a b
1、在Rt△ABC中,∠C=90°: (1)已知a=4,c=8,求b, ∠A ,∠B (2)已知b=10,∠B=60°,求 ∠A ,a,c.
(3)已知c=20,∠A=60°,求 ∠B, a,b.
(4)已知a=1,b= 3 ,求c, ∠A, ∠B
定义:
由直角三角形中的已知 元素,求出所有末知元素的 过程,叫做解直角三角形.
“卡努” 台风将一棵大树刮断,经测量,大树刮断一端 的着地点A到树根部C的距离为4米,倒下部分AB与地平面AC的夹 角为300,你知道这棵大树有多高吗?
30°
A
4米
1、如图,在⊿ABC中,∠A=30°,
tanB=
,AC=2
3
,求AB. C
A
D
B
如图,在四边形ABCD中, AB=2, CD=1, ∠A= 60°, ∠D= ∠B= 90°,求 此四边形ABCD的面积。