解一元一次方程复习课-精选
4.2解一元一次方程(6)(复习课)
把原方程化为ax=b(a≠0)的形式.其解法可分为两大步:一步是化为ax=b 的形式,再一步是解方程ax=b.在计算或变形时,要养成良好的学习习惯,注意书写格式的规范性,避免在去分母,去括号、移项时易犯的错误.解下列方程:1.17(2-3y)-5(12-y)=8(1-7y);2.5(z-4)-7(7-z)-9=12-3(9-z);3.3(x-7)-2[9-4(2-x)]=22;4.3{2x-1-[3(2x-1)+3]}=5;解方程2(x-2)-3(4x-1)=9(1-x).解:(怎样才能将所给方程转化为例1所示方程的形式呢?请学生回答) 去括号,得2x-4-12x+3=9-9x,移项,得2x-12x+9x=9+4-3,合并同类项,得-x=10,系数化1,得x=-10.2、解方程:(1)2x+5=25-8x;(2)8x-2=7x-2;(3)2x+3=11-6x;(4)3x-4+2x=4x-3;(5)10y+7=12-5-3y;(6)2.4x-9.8=1.4x-9.(7)3(y+4)12;(8)2-(1-z)=-2;(9)2(3y-4)+7(4-y)=4y;(10)4x-3(20-x)=6x-7(9-x);(11)3(2y+1)=2(1+y)+3(y+3).号)让学生把自己的做题过程到黑板上讲给同学听,注意纠正他的不规范表达和不严谨的地方,给全体学生做示范,加强推理能力的训练板书设计情境创设1、2、例1:………………例2:………………习题………………作业布置P102课后随笔在小结里提出解一元一次方程分为两大步,目的是进一步强调解一元一次方程的指导思想是化归思想.从而使学生明确最简方程是解一元一次方程的化归目标,而解一元一次方程的过程是,首先寻求所给方程与目标的差异,然后设法消除差异,直至达到化归目标,即化为最简方程,求出方程的解.这里化归的具体方法是去分母、去括号、移项、合并同类项等.这样处理,可使学生在解题时思路明确,有章可循。
一元一次方程解法的复习课市公开课一等奖省优质课获奖课件
2
1 x 0.2
第6页
1、 x取何值时,2x-3与-5x+6值
(1)相等
x
9
7
(2)互为相反数
x 1
2x-3=-5x+6 (2x-3)+(-5x+6)=0
第7页
2、方程13-5(4x-3)=8(4x-3)
解是x=____1.
13 5A 8A
第8页
3、解方程: 1 [1 (x 1) 1] 1 22
第12页
第9页
右图是一个长方形,被分隔成6个正方形, 已知中间最小一个正方形边长为1, 正方 形F边长为6,那么这个大长方形面积是多 少?
FB
A
E DC
第10页
第11页
必做题:书上124页 目标与评定 1-7 题 选做题(每日一题): 已知p、q都是质数,而且以x为未 知数一元一次方程px+5q=97解是 x=1,求代数式40p+101q+4值
第3页
甲、乙两位同学对,都正确吗?
甲做法: 方程两边同乘以24,得
乙做法:
6(1 2x) 214 4(1 x) 方程两边同乘以12,得 3(1 2x) 121 2(1 x)
第4页
解方程:
1 (2x 3) x 5
3
37
第5页
解方程:1 2x 0.5
老师将出示10张写有代数式和符号 卡片,请选取其中部分卡片结构任 意你想要方程.
2x y2 1 2x y 5(x 1)
x
6 2
第2页
解方程 5(x 1) 2x 6
解:去括号,得 5x+5=2x+6
移项,得 5x 2x 6 5
合并同类项,得 3x 1
《一元一次方程》复习课件
$2(x + 3)^{2} = 16$
首先观察方程中的乘方符 号,然后对方程进行变形 ,将乘方方程转化为一般 的一元一次方程进行求解 。
$(x + 3)^{2} = 8$,开方 得$x + 3 = \pm 2\sqrt{2}$,解得$x = - 3 \pm 2\sqrt{2}$。
含开方的方程例题
总结词
合并同类项不彻底的错误
总结词
合并同类项不彻底导致错误
详细描述
在解一元一次方程时,合并同类项是常见的变形技巧。 然而,不少学生在合并同类项时忽略了彻底合并的要求 ,导致方程变形错误。例如,在方程 3x + 2x = 5 中, 学生们往往直接得到 x = 1,而忽略了合并同类项时需要 将所有同类项合并起来的要求,正确的解应为 x = 1/5。
02
重点知识解析
移项法则
总结词
移项是将方程中的某一项改变符号后,从方程的一边移到另一边,属于等式的变 形。
详细描述
移项的目的是为了将方程中的未知数系数变为相同,以便合并同类项,使方程变 得简单易解。移项时需要注意遵循等式的基本性质,保持等式的两边相等。
去括号法则
总结词
去括号是将方程中的括号去掉,将括号内 的各项按照运算顺序进行展开,属于等式 的变形。
$x + 2 = 16$,解得$x = 14$。
06
综合练习题
含绝对值、乘方、开方的综合练习题
总结词:熟练掌握绝对值、乘方、开方 的概念和性质,了解三者之间的联系和 区别。
3. $3(x - 2)^{3} = 12$ 2. $(2x + 3)^{2} = 16$
详细描述:通过以下题目,加深对一元 一次方程中涉及的绝对值、乘方、开方 等概念的理解和运用能力。
一元一次方程的解法复习课件公开课
移项,得:8 x - 10 x - 6 x = -3 - 1 + 4 - 1
合并同类项,得: - 8x = -1
化系数为1,得: x
=
1 8
判断
3、下列方程变形有没有错,若错, 错在哪里?
4方程:3z - 4 - 3.5 = 0.01- 3z ,
0.02
0.03
去分母得:
3003z - 4- 350 6 = 200(0.01 - 3z)
(1)5y+8=9y移项得5y-9y=8; (2)2x+3=x-1移项得2x-x=3-1; (3)3x-12-2x=4x-3移项得 3x-2x+4x=-12-3.
判断
2、下列方程变形有没有错,若错,错在哪里?
(1)5(y+8)-2 =4y 去括号得 5y+8-2=4y; (2)2x-3(3x-2)=x-1 去括号2x-9x-2=x-1;
3、去分母时(1)勿漏乘不含分母的 项(2)分子是多项式时,去掉分母要 添上括号
4、勿跳步,勿忘判断符号,常检验
比一比,谁正确 解方程
15x - 1- 3 + 2x = 7
2y - y -1 = 2 - y + 3
2
4
3 2 y +1 + 10 y +1 = 1- 1- 2 y
4
6
3
(4) 1 (x +15) = 1 - 1 (x - 7)
5
23
(5) x + 5 - x + 5 = x + 3 - x - 2
5
32
(6) 2x - 1.6 - 3x = 31x + 8
0.3 0.6
3
拓展:
复习一元一次方程省名师优质课赛课获奖课件市赛课一等奖课件
※注意:移项一定要变号。
什么叫方程旳解?
使方程左右两边旳值相等旳 未知数旳值叫做方程旳解.
求方程旳解旳过程叫解方程。
大家判断一下,下列方程旳变形是否正确? 为何?
(1) 3+ x = 5, x = 5+3 ; (×)
(2) 7x = 4, x =
x+0.25x=60 解得 x=48 y-0.25y=60 解得 y=80
60+60-48-80=-8(元)
答:卖这两件衣服总旳亏损了8元。
问题2 某商店为了促销G牌空调机,承诺2023年元旦那天购置该机可分两期付款,即在 购置时先付一笔款,余下部分及它旳利息(年利率为5.6%)在2023年元旦付清,该空 调机售价为每台8224元.若两次付款数相同,那么每次应付款多少元?
剩余工作由乙工作队完毕,则修好这条公路共需要几天?
解: 1)设两工程队合作需要x天完毕。
等量关系:甲工作量+乙工作量=1
依题意得 1 x 1 x 1 80 120 x=48
2)设修好这条公路共需要 y 天完毕。 等量关系: 甲30天工作量+乙队y天旳工作量 = 1
依题意得
1 30 1 y 1 80 120
解题
图示 相等关系
甲乙后5天生产零件旳总个数
头3天甲生产 甲后5天生 零件旳个数 产旳个数
乙后5天生 产旳个数
940个
头3天甲 后5天甲 后5天乙
生产零件 + 生产零件 + 生产零件 旳个数 旳个数 旳个数
=940
解:设乙每天生产零件的个数为x, 由题意得
380 580 5x 940 解得 x 60 答:乙每天生产零件60个.
解一元一次方程复习课
(4).所含 字母相同 ,并且相同字母的 指数 也相同的项叫做同类项.
(5).等式的性质:等式的两边同时乘以或除以 一个不等于0的数,结果仍是 等式 .
(6).分数的性质:分数的分子、分母同 时 乘以或除以同一个不等于0的数 ,分数的 值不变.
q
mq
(7). 空).
p
=
mp ( m 0,用“>”、“<”或“=”填
2.解一元一次方程的一般步骤: 一.去分母 二.去括号 三.移项 四.合并同类项 五.系数化为1
3.将方程 x 2 2x 3 的两边同时乘以: 12 ,
4
6
可得到:3(x 2) 2(x 3) .
4.(1)将方程5 1 2x 0 去分母,
(2) 5x 3 2x 10 √
(3) 3x 1 x 1 ×
x
(4) 3y 5 2ቤተ መጻሕፍቲ ባይዱy2
×
例1.已知 x 2m3 6 m 是关于x的一元一次
方程,(1)求m的值; (2)求 (m 3)2009 的值.
解:(1) 由题意得: 2m 3 1
m2
解一元一次方程复习课
一 方程
1.方程的概念
方程是含有未知数的等式.
2.方程的解 方程的解是使方程的左右两边相等的未知 数的取值.
3.一元一次方程的概念 一元一次方程是只含有一个未知数,且未 知数的次数是1,各项均为整式的方程.
4.下列方程中,哪些是一元一次方程?不 是的说明理由.
(1) x 2 y 3 2x 1 ×
1
2
5
6.解下列一元一次方程:
(1) 2x 5 3x 2 1
一元一次方程总复习课件(166张ppt)
本讲之后你应该学会
1.理解一元一次方程的概念
本讲之后你应该学会
2.会求一元一次方程的解
本讲之后你应该学会
3.能利用一元一次方程解决实际问题
教材知识点梳理
一、方程的概念
动脑想一想
汽车匀速行驶途经 王家庄、青山、秀水三 地的时间如表所示,翠 湖在青山、秀水两地之 间,距青山50千米,距 秀水70千米.王家庄到 翠湖的路程有多远?
(2)设未知数;
(3)列方程.
解: 设还需要x辆36座的客车. 列方程
7 + 36x =187.
知识点及时练
(2)学校组织植树活动,已知在甲处植树的 有27人,在乙处植树的有18人.如果要使在甲处植 树的人数是乙处植树人数的2倍,需要从乙队调多 少人到甲队? 找等量关系; 甲处人数=2×乙数人数 设未知数; x 列方程. 解:设需要从乙队调x人到甲队, 列方程 27+x=2×(18-x).
x 50 x 70 3 5
方程
含有未知数的等式叫做方程
教材知识点梳理
一、方程的概念 x 50 x 70 3 5
x 50 方程中, 3 的意义是 从王家庄到青山的车速 x 70 的意义是 从王家庄到秀水的车速 。 5
教材知识点梳理
一、方程的概念
交流和讨论
想一想列方程的过程?
找出问题中的等量关系 写出含有未知数的等式 方程
设字母表示未知数
讨论交流:比较用算术方法和列方程解题的特点
算术方法: 列出的算式表示解题的计算过 程,其中只能 用已知数.对于较复杂的问题, 列算式比较困难.
列方程(代数方法): 方程是根据题中的等 量关系列出的等式.其中既含已知数,又含 未未知数.使问题的已知量与未知量之间的 关系很容易表示,解决问题就比较方便. 所以,从算术到方程是数学的进步.
一元一次方程的复习课(公开课)
系数化为1法
总结词
通过将方程两边同除以未知数的系数,使 未知数的系数为1,从而求解未知数。
VS
详细描述
系数化为1法是一元一次方程中最常用的解 法之一。通过将方程两边同除以未知数的 系数,使未知数的系数为1,从而求解未知 数。例如,对于方程 $3x = 6$,将两边同 时除以3,得到 $x = 2$。
举例
如总结出“去括号是简化一元一次方程的关键步骤之一”,以及 “验证解的正确性是不可或缺的一步”。
06 一元一次方程的易错点解 析
移项时符号错误
要点一
总结词
移项时符号处理不当
要点二
详细描述
学生在解一元一次方程时,常常在移项时忘记改变符号,导 致方程的解不正确。例如,将-x移到等号的右边时,应变为 +x,但学生可能会忘记变号,写成-x。
详细描述
通过合并同类项、移项、去括号等 代数操作,将一元一次方程转化为 标准形式,简化方程的复杂性。
举例
如将方程 $3x + 2 = 5 - x$ 化简为 $4x = 3$。
方程解的验证
总结词
验证求解得到的解是否正 确。
详细描述
将求得的解代入原方程进 行验证,确保等式成立, 以避免出现不符合原方程 的解。
公式法
总结词
通过一元一次方程的标准形式,利用公式求解的方法 。
详细描述
对于一般的一元一次方程 (ax + b = 0),其解为 (x = frac{b}{a}),其中 (a neq 0)。这个解是通过公式法得到 的,即先将方程化为标准形式,然后代入公式求解。
试探法
总结词
通过试探未知数的值,逐步逼近方程的解的方法。
举例
如解得 $x = 1$ 是方程 $2x - 3 = 5$ 的解,验证 过程为将 $x = 1$ 代入原 方程,得到 $2(1) - 3 = 5$,验证通过。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二 解一元一次方程
1.与解一元一次方程相关的概念 (1). 乘积的为两1 个数互为倒数.
(2).乘积为-1的两个数互为 负倒. 数
(3).互为相反数的两个数和为 0.
(4).所含 字母相,同并且相同字母的 指也数相同的项叫做同类项.
(5).等式的性质:等式的两边同时乘以或除以 一个不等于0的数,结果仍是 等式.
46
可得到: 3(x2)2 512去x 分0母,
2
得: 1 0(12x)0
.
(2)将方程 2x1去x分1母1,
10 4
得: 2 (2 x 1 ) 5 (x 1 )20
5.将方程 0.3x10.2x的系0.1数化1为整
0.02 0.5
数,有
30x1002x11
2
5
解一元一次方程复习课
一 方程
1.方程的概念
方程是含有未知数的等式.
2.方程的解 方程的解是使方程的左右两边相等的未知 数的取值.
3.一元一次方程的概念 一元一次方程是只含有一个未知数,且未 知数的次数是1,各项均为整式的方程.
4.下列方程中,哪些是一元一次方程?不 是的说明理由.
(1) x2y32x1×
(2) 5x32x10√
(3) 3x 1 x1 ×
x
(4) 3y52y2
×
例1.已知 x2m3是6 关m 于x的一元一次方程,
(1)求m的值; (2)求
的(值m. 3)2009
解: (1) 由题意得: 2m31
m 2
(2) (m 3)2009(23)2009 (1)20091
练习:1.关于x的方程(k+2)x2+4kx-5k=0是
6.解下列一元一次方程:
(1) 2x53x21
6
8
(2) 0.2x0.10.0x30.02 2
0.3
0.02
7.应用:
当x等于什么数时,代数式3(3x-2)的值 比 4 x 1 的值的2倍小6?
2
课堂作业
课本:P115 第1题 :(6) 、(8) 第4题
(6).分数的性质:分数的分子、分母同 时 乘以或除以同一个不,等分于数0的的值数不变.
(7). q ( mq 用“>”、“<”或“=”填空).
p = mp m 0,
2.解一元一次方程的一般步骤: 一.去分母 二.去括号 三.移项 四.合并同类项 五.系数化为1
3.将方程 x2 的2x两3边同时乘以: