高电压技术电气设备绝缘试验

合集下载

高电压技术课件 第六章 电气设备绝缘试验(二)

高电压技术课件 第六章 电气设备绝缘试验(二)
(a)决定波前时间; (b)决定半峰值时间
二、冲击电压发生器的基本原理
如需更高的冲击电压,可采用多级的冲击电压发生器。
多级冲击电压发生器工作原理:其工作原理概括起来 说就是利用多级电容器并联充电,然后通过球隙串联 放电,从而产生高幅值的冲击电压。
发明人:产生较高电压的冲击发生器多级回路,首先 由德国人E.马克思(E.Marx)提出,为此他于1923年 获得专利,被称为马克思回路
第六章 电气设备绝缘试验(二)
工频高压试验 直流高压试验 雷电冲击高压试验 操作冲击高压试验
§6-1 工频高压试验
工频耐压试验是在电气设备上施加规定的工 频试验电压并保持一定的时间,以考验绝缘 能否耐受该试验电压的作用。
工频高压试验能有效发现绝缘中危险的集中 性缺陷,是检验电气设备绝缘强度最有效和 最直接的方法。
冲击电压的一般表达式:
u2= U1[exp(-t/τ1)- exp(-t/τ2)]
时间常数:τ1和τ2 1.2/50μs的雷电波:τ1>>τ2
u2由两个指数分量相加构成 波前时间Tf由较小的时间常数τ2决定; 半峰值时间Tt由相对大得多的时间常数τ1决定
冲击电压的产生
冲击电压发生器的基本回路 (a)低效率回路 (b)高效率回路
T3的容量为S T2的容量为2S T1 的容量为3S
n级串级装置的容量利用率
可见,随着试验变压器串接台数的增加,利用 率降低,实际中,串接的试验变压器台数一般 不超过三台。
§6-2 直流高压试验
➢ 在被试品的电容量很大的场合,用工频交流高
电压进行绝缘试验时会出现很大的电容电流,这 就要求工频高压试验装置具有很大的容量,这时 常用直流高电压试验来代替工频高电压试验。 ➢ 工频高电压-整流器-直流高压,倍压整流-直流 高压串级装置-更高直流电压。

高电压技术电气设备绝缘试验课件

高电压技术电气设备绝缘试验课件
总结词
交流耐压试验是检验电气设备绝缘性能的重要手段,通过施加高于正常工作电压的交流电压,测试设备的绝缘强 度和耐压能力。
详细描述
交流耐压试验通常在设备安装完毕后进行,以检验设备在正常工作电压下的绝缘性能。该试验通过施加一定时间 的交流高电压,模拟实际运行中的过电压情况,以检验设备的绝缘材料和结构是否能够承受。
绝缘材料的物理和化学性质
绝缘材料的物理和化学性质,如密度、硬度、热导率、热膨胀系数 等,对电气设备的运行稳定性和寿命也有重要影响。
绝缘材料的机械性能
绝缘材料的机械性能,如抗拉强度、抗压强度、抗弯强度等,决定 了电气设备在受到外力作用时的稳定性和安全性。
绝缘电阻和介电常数
绝缘电阻的定义和测量
绝缘电阻是衡量绝缘材料导电性能的重要参数,通常通过测 量加压后的电流和电压来计算。绝缘电阻越大,说明绝缘性 能越好。
结论与建议
根据分析结果,提出相应的处 理建议和预防措施,确保设备
安全运行。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
06
绝缘试验技术的发展趋 势与展望
新材料在绝缘试验中的应用
要点一
总结词
要点二
详细描述
随着新材料技术的不断发展,越来越多的新材料被应用于 电气设备绝缘试验中,以提高试验的准确性和可靠性。
详细描述
例如,脉冲电压和变频电压等高电压新技术在绝缘试验 中得到了广泛应用。这些技术的应用有助于更准确地模 拟实际运行中的电压情况,提高绝缘试验的可靠性和准 确性。同时,这些技术的应用也有助于缩短试验时间, 提高工作效率。
智能化和自动化在绝缘试验中的发展前景
总结词
随着智能化和自动化技术的不断发展,其在电气设备 绝缘试验中的应用前景广阔。

高电压技术-电气设备绝缘试验

高电压技术-电气设备绝缘试验

高电压技术-电气设备绝缘试验简介在电气工程中,绝缘试验是一项重要的测试方法,用于评估电气设备的绝缘性能。

绝缘试验主要通过施加高电压来检测设备的绝缘强度,以确保设备在正常运行中不会发生电气故障。

本文将介绍高电压技术和电气设备绝缘试验的基本原理、常见方法以及测试过程中的注意事项。

基本原理高电压试验是一种用于检测电气设备绝缘强度的测试方法。

在正常工作条件下,电气设备应具备足够的绝缘性能,以防止漏电、短路等故障发生。

绝缘试验的基本原理是通过施加高电压来产生电气场,检测设备绝缘系统是否能够耐受其引起的电压应力,以判断其绝缘性能是否符合要求。

常见方法直流高电压试验直流高电压试验是最常用的绝缘试验方法之一。

在这种试验中,直流电源通过绝缘试验变压器施加高电压,对设备的绝缘系统进行测试。

直流高电压试验可以根据需要进行不同的试验模式,如耐受电压试验、击穿电压试验等。

交流高电压试验交流高电压试验是另一种常见的绝缘试验方法。

与直流高电压试验不同,交流高电压试验主要考察设备的耐受能力。

在交流高电压试验中,试验变压器将电源交流电压升高到所需值,通过试验设备的绝缘系统施加高电压,以评估其绝缘性能。

脉冲高电压试验脉冲高电压试验是一种对设备绝缘性能进行更严格检测的方法。

脉冲高电压试验通过产生短暂的高电压脉冲,模拟一些特殊工作条件下的电压冲击,以评估绝缘系统对电压冲击的响应能力。

测试过程及注意事项进行电气设备绝缘试验时,需要按照一定的测试过程和注意事项进行操作,以确保测试结果的准确性和可靠性。

1.准备工作:首先需要准备所需的试验设备和试验电源,确保其正常工作状态。

同时,还需要检查试验设备的接地情况,确保试验过程的安全。

2.样品准备:将待测试的电气设备放置在试验装置中,确保设备与试验装置之间的绝缘良好,并连接试验电源。

3.设定试验参数:根据测试要求,设定试验电压、试验时间等参数。

在直流高电压试验中,还可以根据需要设定耐受时间和击穿电压等参数。

高电压技术电气设备绝缘试验

高电压技术电气设备绝缘试验
电气设备绝缘试验
绝缘诊断与绝缘试验主要内容
1 绝缘测试和诊断的基本概念 2 绝缘电阻和泄漏电流的测量 3 介质损耗角正切的测量 4 局部放电的测量 5 耐压试验与预防性试验方法的特点总结 6 绝缘的在线监测
1 绝缘测试和诊断的基本概念
绝缘的测试和诊断技术概念:电力设备绝
缘在运行中受到电 热 机械 不良环境等各种 因素的作用;其性能将逐渐劣化;以致出现缺陷; 造成故障;引起供电中断 通过对绝缘的试验和 各种特性的测量;了解并评估绝缘在运行过程 中的状态;从而能早期发现故障的技术称为绝 缘的监测和诊断技术
统计诊断:考虑到被试对象特征参数分布的不
确定性;即统计性 对于处于同样状态的同类设备; 其特征参数并不相同;而按一定的统计规律分布 利用这些规律进行绝缘诊断
a 绝缘完好和损坏时
b两者重叠图
概率密度曲线不重叠
某特征参数的概率密度
2 绝缘电阻和泄漏电流的测量
1测量绝缘电阻与吸收比的工作原理 2测量绝缘电阻与吸收比的方法 3泄漏电流的测量 4测量绝缘电阻和泄漏电流的功效 5测量绝缘电阻和泄漏电流的注意事项
5绝缘油脏污 劣化解决等办法是将整体绝缘分解后分部测量 (如分别
测量介损不易对变发压器现线的圈和局套管部的性tgδ 进缺行陷测量:)
1非穿透性局部损坏测介损时没有发生局部放电 2很小部分绝缘的老化劣化 3个别的绝缘弱点
5测量介损时的注意事项
1尽可能地分部测试 2与温度的关系:
不同温度下的测量结果不能换算 为进行比较;要求在相同温度条件下测试 3与电压的关系: 试验电压过低;不易发现缺陷;因接近工作电压 4表面泄漏要排除:加屏蔽环 5抗干扰措施:屏蔽和接地要好 6测量绕组绝缘时;应将绕组首尾短接;避免电感和 励磁铁损造成误差

高电压技术 电气设备绝缘预防性试验

高电压技术 电气设备绝缘预防性试验

绝缘电阻及K1或K2的测量
2.用数字兆欧表测量 它不是用手摇发电机产生固定不变的直流电压,
而是采用整流电源,用户可根据需要选择电压量 程。 当在试品绝缘上施加电压时,取试品电压、电流 信号经A/D转换,简单数值计算,用液晶数显方 式给出结果。
3.2 介质损耗角正切的测量
介质损耗角正切tgδ是绝缘品质的重要指标, 测量tgδ是判断电气设备绝缘状态的一项灵敏 有效的方法。
因此测量K1不足以反映吸收的全过程。
极化指数:
K2
R10 min R1min
1. 手摇式兆欧表测量
原理:两个线圈WV、WA处于永久磁场中,当有电流 通过时,产生相反方向的力,在力矩差的作用下,指
针旋转,直到力矩平衡。
a
f
( Iv ) IA
f ( RA Rx ) Rv
f (Rx )
手摇式兆欧表有: 500V,1000V, 2500V,5000V
R(t) U i
(C1 C2 )2 (R1 R2 )R1R2
(C1
C2
)2
R1R2
(R2C2
R1C1 ) 2
t
e
通常意义的绝缘电阻:指吸收电流衰减完毕所测得的稳态 电阻值。R∞=R1+R2
稳态绝缘电阻值可以揭示:绝缘整体受潮;局部严重受潮; 贯穿性缺陷。
多层介质的吸收现象
2. 吸收比
测绝缘电阻的不足之处:吸收电流衰减较慢时,需要一定 的时间;难以给出判断标准。
R2
t
e
Ig ia
(C1
C2 )
R1R2 R1 R2
流过试品的电流由两部分组成:传导电流Ⅰg及吸收电流ia,
如果R1C1≈R2C2,吸收现象不明显;如果R1C1和R2C2相 差较大,则吸收现象将十分明显。

高铁高压供电设备之绝缘试验的基本原理—绝缘电阻和吸收比测量试验

高铁高压供电设备之绝缘试验的基本原理—绝缘电阻和吸收比测量试验
绝缘电阻和吸收比测量 试验
01 注意事项 02 测量结果分析
绝缘电阻和吸收比测量试验
一、注意事项 应根据被测设备的额定电压选择合适的兆欧表。 • 额定电压为 1kV 以下:选用 500V 或 1000V 的兆欧表 • 额定电压为 1kV 以上:选用 2500V 或 5000V 的兆欧表
测量前要断开被试品的电源及被试品与其他设备的连线,并对被试品进 行充分放电。
通常把处于同一运行条件下,不同相的绝缘电阻值进行比较。
3
或者把本次测得的数据与同一温度下出厂或交接时的数值及历年的测量记
录 相比较。
4
与大修前后和高电压试验前后的数据相比较。
5
与同类型的设备相比较,同时还应注意环境的可比条件。比较结果不应有明
显的降低或有较大的差异,否则应引起注意,对重要的设备必须查明原因。
读取兆欧表数值后,应先断开兆欧表与被试品的L端连线,然后再停兆 欧表,以免被 试品的电容上所充的电荷经兆欧表放电而损坏仪表。
绝缘电阻和吸收比测量试验
测量时应记录当时的温度与湿度,以便进行校正。
绝缘电阻和吸收比测量试验
二、测阻值应等于或大于一般规程所允许的数值。
2

高电压技术--3电气设备绝缘试验

高电压技术--3电气设备绝缘试验
第三章 电气设备的绝缘试验
主要内容:
电气设备的故障及检测概述 绝缘电阻和吸收比的测量 介质损耗角正切的测量 局部放电的测量 电压分布的检测 绝缘的高电压试验
第1节 电气设备的故障及检测概述
一、电气设备的绝缘缺陷分类 1.局部性或集中性缺陷
绝缘开裂、绝缘局部磨损、绝缘局部受潮 2.整体性和分布性缺陷
电压分布的测量、局部放电的测量、绝缘油气相色谱分 析。 (2)破坏性试验
检测绝缘的电气强度,即耐压试验。通过对绝缘施 加很高的电压,检测其耐受电压的能力,可发现比较隐 蔽的缺陷。是保证电气设备安全运行最直接可靠的检验 手段。
工频高压试验、直流高压试验、冲击高压试验。
第2节 绝缘电阻和吸收比的测量
一、绝缘电阻的测量
因此,测量绝缘表面的电压分布可以发现某些绝 缘的缺陷
1.线路绝缘子串的电压分布
等值电路 500kV绝缘子串电压分布 C:每片绝缘子的本体电容,30~50pF CE:每片的对地电容,4~5pF CL:每片对高压线电容,0.5~1pF
2.改善电压分布措施 可以使用在导线处安装均压环的方法改善电压分
布。
绝缘电阻是一切电介质和绝缘机构的绝缘状态最
基本的综合性特性参数。
1.兆欧表的工作原理
电流通路:
RV—WV Rx—RA—WA
f ( IV ) f ( RA Rx )
IA
RV
f (Rx )
2.兆欧表的使用方法 (1)兆欧表的接线
芯柱 屏蔽环
(2)屏蔽端子G的作用 瓷体 在套管装设金属屏蔽环
或者几匝裸铜丝。只测体积 法兰
1.K1参数(吸收比)
K1
Rt 2 Rt1
It1 It2
i ig ia

国家电考试高电压技术6(国考试)

国家电考试高电压技术6(国考试)
㈠ 高压试验变压器特点: ⑴试验变压器的绝缘裕度小。 ⑵容量小。 ⑶体积小。
⑷试验变压器连续运行时间不长,发热较轻,因而不需要 复杂的冷却系统,但由于试验变压器的绝缘裕度小、散 热条件差,所以一般在额定电压或额定功率下只能做短 时运行。
⑸与电力变压器相比,试验变压器的漏抗较大,短路电流 较小,因而可降低绕组机械强度方面的要求,节省费 用。
T1-第1级试验变压器;1-T1的低压绕组;2-T2的高压绕组;3-累接绕组 T2-第2级试验变压器;4-T2的低压绕组;5-T2的高压绕组;AV-调压器; TO-被试品;Z-绝缘支柱
二、工频高压试验的基本接线图
T
A
Lf
~ AV
V PV1
Cf
R1 R2 PV2 TO (Cx) KV
F
图6-2 工频高压试验的基本接线图
LOGO
—球隙电阻;
P1、P2—测压绕组输出端子;P3、P4—低压绕组测压端子;
P5—分压输出端子
第二节 直流高电压试验
如果被试品的电容量很大,用工频交流高电 压进行绝缘试验时会出现很大的电容电流,这就 要求工频高压试验装置具有很大的容量,但一般 很难做到,这时常用直流高电压试验来代替工频 高电压试验。
高压试验室中通常采用将工频高电压经高压 整流器而变换成直流高压,利用倍压整流原理制 成的直流高压串级装置来产生更高的直流试验电 压。
合上电源后,各级电容 上的电压由下而上逐渐增 大,理想情况可获得空载输 出电压等于2nUm(n为级数)
C
C


C
C
C
C
~ 图6-6 串级直流高压
发生器原理图
第三节 冲击高压试验
1、雷电冲击高压试验
雷电冲击耐压考验电力设备承受雷电过电 压的能力。只在制造厂进行本项试验,因为试 验会造成绝缘的积累效应,所以在规定的试验 电压下只施加3次冲击。 国家标准规定额定电压≥220kV,容≥120MVA 的变压器出厂时应进行本项试验。

高电压技术绝缘电阻和吸收比测量实验报告

高电压技术绝缘电阻和吸收比测量实验报告

实验报告实验项目:绝缘电阻和吸收比测量
备注:序号(一)、(二)、(三)为实验预习填写项
五、程序调试及实验总结
实验过程:
实验数据:
绝缘电阻R(MΩ)
变压器高压绕组对地490
变压器低压绕组对地520
变压器高压绕组对低用绿细460
电容对地1000
实验总结:
在本次实验课上,我使用了虚拟仿真实验软件,模拟了高电压技术的绝缘电阻和吸收比测量试验。

我通过软件设置了不同的电压等级和测量时间,测量了变压器高压绕组对低压绕组及外壳以及各绕组对地及绕组间的绝缘电阻,并计算了吸收比。

首先,在模拟试验中,我通过虚拟仿真软件对变压器高压绕组对低压绕组、外壳以及各绕组对地和绕组间的绝缘电阻进行了精确的测量。

这使我能够理解不同部分之间的电气隔离情况,为保障电力设备的正常运行提供了基础。

通过对测量结果的分析,我深感绝缘电阻的合格与否直接关系到电力设备的安全性,这也是电气工程领域中至关重要的一环。

绝缘电阻是反映电气设备绝缘的电阻值,它与绝缘材料的结构、体积、温度、湿度等因素有关,一般来说,绝缘电阻越大,绝缘质量越好。

吸收比是指绝缘电阻在不同时间点的比值,它反映了绝缘的吸收现象,即绝缘在直流电压作用下逐渐吸收电荷的过程。

吸收比可以判断绝缘是否受潮或有缺陷,一般来说,吸收比越大,绝缘状态越好。

通过本次实验,我不仅加深了对绝缘电阻和吸收比的理论知识的理解,也提高了实验的操作技能和分析能力。

我认识到,实验是理论学习的重要补充,只有通过实验,才能将理论知识转化为实际能力,才能发现和解决实际问题。

我还意识到,实验是一项系统的工程,需要做好实验前的准备,实验中的记录和实验后的总结,才能取得好的效果。

第2篇_电气绝缘与高电压实验

第2篇_电气绝缘与高电压实验

测量绝缘电阻时应注意下列几点:
(1)试验前应将试品接地放电一定时间。对容量较 大的试品,一般要求5-10min. (2)高压测试连接线应尽量保持架空,确需使用支 撑时,要确认支撑物的绝缘对被试品绝缘测量结果 的影响极小。 (3)测量吸收比时,应待电源电压达稳定后再接入 试品,并开始计时。
(4)对带有绕组的被试品,应先将被测绕组首尾短 接,再接到L端子:其他非被测绕组也应先首尾短 接后再接到应接端子。 (5)绝缘电阻与试品温度有十分显著的关系。 (6)每次测试结束时,应在保持兆欧表电源电压的 条件下,先断开L端子与被试品的连线,以免试品 对兆欧表反向放电,损坏仪表。
图3-16 双层复合电介质及其等效电路
用 R0 和 R∞分别表示t=0和t=∞时测得的绝 缘电阻,则:
rR R0 = r+R
R R∞ = 1+ R0 r
R∞ = R
式中,
R1 R2 ( R1 + R2 )(C1 + C2 ) 2 R = R1 + R2 , r = ( R1C1 − R2C2 ) 2
小 结
绝缘电阻是一切电介质和绝缘结构的绝缘状态最 基本的综合特性参数。 电气设备中大多采用组合绝缘和层式结构,故在 直流电压下均有明显的吸收现象,测量吸收比可检 验绝缘是否严重受潮或存在局部缺陷。 测量泄漏电流从原理上来说,与测量绝缘电阻是 相似的,但它所加的直流电压要高得多,能发现用 兆欧表所不能显示的某些缺陷,具有自己的某些特 点。
测量绝缘电阻能有效地发现下列缺陷:总体绝 缘质量欠佳;绝缘受潮;两极间有贯穿性的导电通 道;绝缘表面情况不良。测量绝缘电阻不能发现下 列缺陷:绝缘中的局部缺陷:如非贯穿性的局部损 伤、含有气泡、分层脱开等;绝缘的老化。

高电压技术第三章电气设备绝缘试验技术

高电压技术第三章电气设备绝缘试验技术
第三章 电气设备绝缘试验技术
高电压与绝缘技术是一门理论与实验紧密结合的 学科,由于其依赖的电介质理论尚不够完善,高电 压与电气绝缘的很多问题必须通过试验来解释;电 气设备绝缘设计、故障检测与诊断等也都必须借助 试验来完成。
.
电气设备绝缘试验的分类:
检查性试验 绝 (非破坏性试验) 缘 试 验
耐压试验 (破坏性试验)
(Cg Cb)(Us Ur)
.
Ca上的电压变化为:Ua CaCbCb (Us Ur)
视在放电量: q ( C a C b ) U a C b ( U s U r)(可以测量)
q Cb CgUa及q是可以测量的,常将q作为度量局放强度参数
在直流电压下,单位时间内放电次数要比交流下低多,
.
2.2 交流高电压的测量(续2)
电容分压器的优点: (1)电容分压器只造成幅值误差,不会引起 相 角误差。幅值误差可以减小和克服。 (2)基本上不消耗有功功率,不会造成温升 而引起参数的变化造成误差。
.
3.7 直流耐压试验
一、 产生直流高电压的方法:直流高压通常是由交流高压整流得到 1、半波整流电路
.
工频耐压原理接线
过电流保护装置
调压设备
试验变压器
过电流保护装置 被试品
测量球隙
.
2.1工频试验变压器(续1)
2. 串级试验变压器
.
各绕组电压电流关系:T3 P 3U 4I4U 2I2
T T 2 P 2 U 3 I 3 U 2 I 2 U 4 I 4 2 U 2 I 2 2 P 3 1
3.4.1 局部放电的测量原理
含气泡的介质 (a)示意图 (b)等值电路 1-电极;2-绝缘介质;3-气泡
.

7.高电压技术第2章_高电压下绝缘评估及试验方法3

7.高电压技术第2章_高电压下绝缘评估及试验方法3

课堂练习:
试品绝缘表面脏污、受潮,在试验电压下产生表面泄漏电流, 对试品 tgδ 和C 测量结果的影响程度是( )。 A.试品电容量越大,影响越大; B.试品电容量越小,影响越小;
C.试品电容量越小,影响越大;
D.与试品电容量的大小无关。 C
课堂练习:
若设备组件之一的绝缘试验值为tgδ1=5%,C1=250pF;而设 备其余部分绝缘试验值为tgδ2=0.4%,C2=10000pF,则设备 整体绝缘试验时,其总的tgδ值与( )接近。 A. 0.3%; B. 0.5%; C. 4.5%; D. 2.7%
影响tgδ的因素
2、频率的影响(交流) 在一定的频率范围内,tgδ 随 f 的增加而增加。 增加到一定程度( f0),频率转换太快,极化不完全, 介质损耗将随 f 的增加而减小。 一般试验采用的电源都是50Hz,所以 f 的影响在现场 中不予考虑。
影响tgδ的因素
3、电压的影响
一般说来,良好的绝缘在其额定电压范围内,绝缘的 tgδ是几乎不变的,但如绝缘中存在气泡,分层、脱壳 等,情况就不同了。
若缺陷部分体积V2<<良好部分体积V1,则C2<<C1 ,得: C2 tg tg1 tg 2 C1 只有缺陷部分较大时,在整体tgδ中才明显。
对于电机、电缆这类电气设备,由于运行中故障多为集中 性缺陷发展所致,而且被试绝缘的体积较大,便不做这个 项目。
对于套管绝缘,由于体积小,tgδ 试验就是一项必不可少 而且比较有效的试验。
测量电容量Cx有时对于判断其绝缘状况也是有价值的。对于电容型套
管,如果Cx明显增加,常表示内部电容层间有短路现象或有水分浸入。
五、试验接线
正接法:被试品两端对地绝缘,实验室采用,安全。 反接法:被试品一端固定接地,一般现场试验采用,为了保证安全, 使用绝缘杆操作。

高电压技术4-电气设备的绝缘试验课件.ppt

高电压技术4-电气设备的绝缘试验课件.ppt
两种位置进行两次测量,两次测量的tanδ的平均值 可近似作为被试品真实的tanδ值。
二、测量时的主要注意事项
(一)尽可能分部测试
如果缺陷在整个绝缘中所占的比重很小,即使
缺陷部分的tanδ变得很大,整个绝缘的tanδ也增
加很小。
(二)测量时应选取合适的温度
绝缘的tanδ与温度有关,所以测量时也应记录温 度,在和其他值比较时应进行温度换算。
电容C和放电管F用来分流被试品击穿时的短路电流, 电容的存在除具有分流高频电流的作用外,还可使 放电管两端电压上升陡度降低,有利于放电管达到 击穿电压时能及时动作。
电阻R用来产生电压,使流 过微安表的电流达到一定值 时放电管击穿。 R的阻值一 般选为流过它的电流为微安 表的满刻度值时,其上的电 压等于放电管的击穿电压。
第一节 绝缘电阻和吸收比的测量
一、兆欧表的工作原理和接线
绝缘电阻为电介质电导的倒数,按照电介质的 等值电路,测量绝缘电阻时应在绝缘上施加直 流电压。现场普遍采用兆欧表来进行绝缘电阻 的测量。
摇表:带有手摇直流发电机的兆欧表,俗称摇 表。
兆欧表的结构和工作原理
接线图如图所示,其内部主要由两部分组成: 一部分为直流电源,另一部分为测量机构。
二、绝缘电阻和吸收比的测量方法
在电气设备的绝缘上加上直流电压后,流过绝缘的 电流要经过一个过渡过程才达到稳态值,故绝缘电 阻也要经过一定的时间才能达到稳定值。
通常规定加压60s时所测得的数值为被试绝缘的绝 缘电阻。
试验时可先将兆欧表的E端子与被试绝缘的一端(通 常为接地端)相连,然后驱动兆欧表达额定转速, 用绝缘工具将兆欧表的L端子的引出线与被试绝缘 的另一端相连,同时记录时间,读取60s时的绝缘 电阻。
(二)测量过程中的干扰及消除措施 1、电场干扰

高电压技术电气设备绝缘预防性试验

高电压技术电气设备绝缘预防性试验

由UCA UCB Z1 Z2
UAD UBD
Z3 Z4
其中
U
Z1
1 Rx
1
jCx
Z
2
1
j C N
Z3 R3
1
Z4
1 R4
jC4
Rx Z1 A
I1 C I2
Z2
Cx CN
B
V I1
P Z3 R4
Z4 I2
V
R3
C4
D
24/41
高电压技术
第三章 电气设备绝缘预防性试验
第三节 介质损耗角正切的测量
一.tg 测量的特点
tg 能反映绝缘的整体性缺陷和小电容试品中的严重
局部性缺陷。
当绝缘受潮,油劣化变质,绝缘油中气隙放电,
则流过绝缘的电流中有功分量增大, tg 增大
tg 是反映绝缘功率损耗大小的特征参数,与绝缘的
体积大小无关
tg 测量不能灵敏地反映大容量发电机、变压器和电
力电缆绝缘中的局部性缺陷。
➢ 分析因吸收现象而出现的过渡过程
④ 由于吸收现象→U10≠U1∞ ,U20≠U2∞则 电压的变化规律为
u U (U U0 )et 代入U10、U1∞ 、U20 、 U2∞的值可得
u1
U
R1 R1 R2
C2 C1 C2
R1 R1 R2
t e
U1 U2
双层介质等值电路图
一.测量绝缘电阻与吸收比的工作原理
大多电气设备的绝缘是多层的,一般用双层介质的模型来分 析多层介质的特应
➢ 分析因吸收现象而出现的过渡过程
① t=0+ (S合闸瞬间),电压按电容分布
U10
U
C2 C1 C2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021/3/7
5
绝缘预防性试验概念:为了对绝缘状态
作出判断,需对绝缘进行各种试验和检测, 通称为绝缘预防性试验。
2021/3/7
6
绝缘的监测和诊断技术的三个基本环节:
传感器与测量方法:正确选用各种传感器及测量 手段,检测或监测被试对象的种种特性,采集各 种特性参数;
数据处理:对原始的杂乱信息加以分析处理(数据 处理),去除干扰,提取反映被试对象运行状态最 敏感、有效的特征参数;
价的主观不确定性,即模糊性,许多情况不能 简单地用“有”、“无”和“好”、“坏”来 评定。模糊诊断中被试对象的特征和状态不用 二值逻辑量描述,而用多值逻辑的特征函数来 描述,如某特征“很强”、“强”、“一般”、 “弱”、“很弱”,某故障“严重”、“较严 重”、“一般”、“轻微”、“无”等,然后 按特征或状态参数的取值量确定归入某一类别。 如采用连续变化的特征函数,判断可更加准确。
1)测量绝缘电阻与吸收比的工作原理 2)测量绝缘电阻与吸收比的方法 3)泄漏电流的测量 4)测量绝缘电阻和泄漏电流的功效 5)测量绝缘电阻和泄漏电流的注意事项
2021/3/7
11
1)测量绝缘电阻与吸收比的工作原理 双层介质模型的电流-时间特性
i(t)=[U/( R1+R2)]+{U(R1 C1-R1 C2)2/ [(C1+C2)2( R1+R2) R1R2]} exp(-t/τ)
缘在运行中受到电、热、机械、不良环境等各 种因素的作用,其性能将逐渐劣化,以致出现 缺陷,造成故障,引起供电中断。通过对绝缘 的试验和各种特性的测量,了解并评估绝缘在 运行过程中的状态,从而能早期发现故障的技 术称为绝缘的监测和诊断技术
2021/3/7
3
绝缘的测试和诊断技术分类:
1)按照对设备造成的影响程度分类(两类)
规程等规定:
电力变压器及大型发电机凡采用沥青浸胶及烘卷云母绝缘 者:K值应不小于1.3,P值应不小于1.5
大发电机当采用环氧粉云母者:K值应不小于1.6,P应不 小于2.0。
பைடு நூலகம்
发电机容量在200MW及以上者推荐测量
2021/3/7
14
绝缘状态的判定
若绝缘内部有集中性导电通道,或绝缘严重受潮,则电阻R1 、R2会显 著降低,泄漏电流大大增加,时间常数τ大为减小,吸收电流迅速衰减。 即使绝缘部分受潮,只要R1与R2中的一个数值降低,τ值也会大为减小, 吸收电流仍会迅速衰减,仍可造成吸收比K(及极化指数P,下同)的下 降。当K=1或接近于1,则设备基本丧失绝缘能力。
τ=R1R2(C1+C2)/ ( R1+R2)
双层介质等值电路图
2021/3/7
绝吸缘收电和阻泄的漏变电化流曲及线 12
i(t)=Kexp(-t/τ)
τ=R1R2(C1+C2)/ ( R1+R2)
在工程应用上的表达方便,把介质处在吸收过 程时的U/i也称呼为绝缘电阻R
双层介质等值电路图
2021/3/7
和“无”两种(或特征参数大于某给定的阈值则为 “有”该特征,否则为“无”),诊断对象的状态 同样只归结为“有”和“无”,或“好”和“坏” 两种,即特征和状态均采用二值逻辑量来描述。
逻辑诊断简单明了,应用较广,但把问题过于简 化,诊断准确度较低
2021/3/7
8
模糊诊断:考虑到被试对象的特征及状态评
包含的种类:交流耐压试验、直流耐压试验、雷电冲 击耐压试验及操作冲击耐压试验
2021/3/7
4
2)按照设备是否带电的方式分类(两类)
离线:在离线的测试和诊断时,要求被试设备退出运行
状态,通常是周期性间断地施行,试验周期由电力设备预 防性试验规程(DL/T 596)规定
特点:可采用破坏性试验和非破坏性试验两种方式,
2021/3/7
9
统计诊断:考虑到被试对象特征参数分布的不
确定性,即统计性。对于处于同样状态的同类设 备,其特征参数并不相同,而按一定的统计规律 分布。利用这些规律进行绝缘诊断
(a) 绝缘完好和损坏时
(b)两者重叠图
概率密度曲线不重叠
某特征参数的概率密度
2021/3/7
10
2 绝缘电阻和泄漏电流的测量
绝吸缘收电和阻泄的漏变电化流曲及线
13
定义吸收比K:为加压60秒时的绝缘电阻R
时电阻R 15″之比值
60″与15秒
K = R60″/ R15″
定义极化指数P:为加压10分钟时的绝缘电阻R10′与1分
钟时电阻R1′之比值 P= R10′/ R1′
我国电力行业标准DL/T596-1996即电力设备预防性试验
两种方式是相辅相成的。耐压试验往往是在非破坏性试验 之后才进行。缺点是对绝缘耐压水平的判断比较间接,尤 其对于周期性的离线试验更不易判断准确
在线:在线监测则是在被试设备处于带电工作运行的
条件下,对设备的绝缘状况进行连续或定时的监测,通常 是自动进行的
特点:只能采用非破坏性试验方式。由于可连续监
测,除测定绝缘特性的数值外,还可分析特性随时间的变 化趋势,从而显著提高了其判断的准确性
电气设备绝缘试验
2021/3/7
1
绝缘诊断与绝缘试验主要内容
1 绝缘测试和诊断的基本概念 2 绝缘电阻和泄漏电流的测量 3 介质损耗角正切的测量 4 局部放电的测量 5 耐压试验与预防性试验方法的特点总结 6 绝缘的在线监测
2021/3/7
2
1、绝缘测试和诊断的基本概念
绝缘的测试和诊断技术概念:电力设备绝
非破坏性试验,亦称绝缘特性试验:在较低电压下
或用其它不会损伤绝缘的方法测量绝缘的不同特性,采用 综合分析的方法来判断绝缘内部的缺陷
包含的种类:绝缘电阻和泄漏电流的试验、介质损耗 角正切试验、局部放电试验、绝缘油的气相色谱分析等
破坏性试验,即耐压试验:以高于设备的正常运行电
压来考核设备的电压耐受能力和绝缘水平。耐压试验对绝 缘的考验严格,能保证绝缘具有一定的绝缘水平或裕度; 缺点是可能在试验时给绝缘造成一定的损伤,同时不能反 映绝缘缺陷的性质
绝缘诊断:根据提取的特征参数和对绝缘老化过 程的知识以及运行经验,参照有关规程对绝缘运 行状态进行识别、判断,即完成诊断过程。并对 绝缘的发展趋势进行预测,从而对故障提供预警, 并能为下一步的维修决策提供技术根据。
2021/3/7
7
绝缘诊断规则:
规则分类:逻辑诊断,模糊诊断,统计诊断
逻辑诊断:逻辑诊断中将特征只归结为“有”
相关文档
最新文档