中考二次函数面积最值问题(含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数最值问题
例1、小磊要制作一个三角形的钢架模型,在这个三角形中,长度为x(单位:cm)的边与这
条边上的高之和为40 cm ,这个三角形的面积S(单位:cm 2)随x(单位:cm)的变化而变化.
(1)请直接写出S 与x 之间的函数关系式(不要求写出自变量x 的取值范围); (2)当x 是多少时,这个三角形面积S 最大?最大面积是多少?21世纪教育网
解:(1)x 02x 21
2+-=S
(2)∵a=21
-<0 ∴S 有最大值
∴022120
2a
2b x =-⨯-=-=)
(
∴ S 的最大值为2002002202
1
2=⨯+⨯-=S
∴当x 为20cm 时,三角形面积最大,最大面积是200cm 2。 2.如图,矩形ABCD 的两边长AB =18cm ,AD =4cm ,点P 、Q 分别从A 、B 同时出发,P 在边AB 上沿AB 方向以每秒2cm 的速度匀速运动,Q 在边BC 上沿BC 方向以每秒1cm 的速度匀速运动.设运动时间为x 秒,△PBQ 的面积为y (cm 2).
(1)求y 关于x 的函数关系式,并写出x 的取值范围; (2)求△PBQ 的面积的最大值.
解:(1)∵S △PBQ =2
1
PB ·BQ,
PB=AB -AP=18-2x ,BQ=x ,
∴y=2
1
(18-2x )x ,即y=-x 2+9x (0 (2)由(1)知:y=-x 2+9x , ∴y=-(x -29)2 +4 81,∵当0 时,y 随x 的增大而增大, 而0 3.如图,在矩形ABCD 中,AB=6cm ,BC=12cm ,点P 从点A 出发,沿AB 边向点B 以 1cm/s 的速度移动,同时点Q 从点B 出发沿BC 边向点C 以2cm/s 的速度移动,如 果P ,Q 两点同时出发,分别到达B ,C 两点后就停止移动. (1)设运动开始后第t 秒钟后,五边形APQCD 的面积为Scm 2,写出S 与t 的函数关 系式,并指出自变量t 的取值范围. (2)t 为何值时,S 最小?最小值是多少? 解:(1)第t 秒钟时,AP=tcm ,故PB=(6﹣t )cm ,BQ=2tcm , 故S △PBQ =•(6﹣t )•2t=﹣t 2+6t ∵S 矩形ABCD =6×12=72.∴S=72﹣S △PBQ =t 2﹣6t+72(0<t <6); (2)∵S=t 2﹣6t+72=(t ﹣3)2+63,∴当t=3秒时,S 有最小值63cm . 4.在某居民小区要在一块一边靠墙(墙长15m )的空地上修建一个矩形花园ABCD ,花园 的一边靠墙,另三边用总长为40m 的栅栏围成如图,若设花园的BC 边长为x (m )花园 的面积为y (m 2) (1)求y 与x 之间的函数关系式,并求自变量的x 的范围. (2)当x 取何值时花园的面积最大,最大面积为多少? 解:(1)∵四边形ABCD 是矩形, ∴AB=CD ,AD=BC , ∵BC=xm ,AB+BC+CD=40m ,∴AB=, ∴花园的面积为:y=x • =﹣x 2+20x (0<x ≤15); ∴y 与x 之间的函数关系式为:y=﹣x 2+20x (0<x ≤15); (2)∵y=﹣x 2+20x=﹣(x ﹣20)2+200, ∵a=﹣<0,∴当x <20时,y 随x 的增大而增大, ∴当x=15时,y 最大,最大值y=187.5. ∴当x 取15时花园的面积最大,最大面积为187.5. 5.已知边长为4的正方形截去一个角后成为五边形ABCDE (如图),其中AF=2,BF=1. 试在AB 上求一点P ,使矩形PNDM 有最大面积. 解:设矩形PNDM 的边DN=x ,NP=y , 则矩形PNDM 的面积S=xy (2≤x ≤4) 易知CN=4-x ,EM=4-y . 过点B 作BH ⊥PN 于点H 则有△AFB ∽△BHP ∴ PH BH BF AF = ,即3412--=y x , ∴521 +-=x y , x x xy S 52 1 2+-==)42(≤≤x , 此二次函数的图象开口向下,对称轴为x=5,∴当x ≤5时,函数值y 随x 的增大而增大, 对于42≤≤x 来说,当x=4时,124542 1 2=⨯+⨯-=最大S . 6.如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50 m 长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x 米. (1)要使鸡场面积最大,鸡场的长度应为多少m ? (2)如果中间有n (n 是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少米?比较(1)(2)的结果,你能得到什么结论? 解:(1)∵长为x 米,则宽为 3 50x -米,设面积为S 平方米. )50(31 3502x x x x S --=-⋅ = 3 625 )25(312+ --=x ∴当25=x 时,3 625 max =S (平方米) 即:鸡场的长度为25米时,面积最大. (2) 中间有n 道篱笆,则宽为2 50+-n x 米,设面积为S 平方米. 则:)50(21 2502x x n n x x S -+-=+-⋅= 2 625 )25(212++ -+-=n x n ∴当25=x 时,2 625 max +=n S (平方米) 由(1)(2)可知,无论中间有几道篱笆墙,要使面积最大,长都是25米. 即:使面积最大的x 值与中间有多少道隔墙无关. 7.如图,矩形ABCD 的边AB=6 cm ,BC=8cm ,在BC 上取一点P ,在CD 边上取一点Q ,使∠APQ 成直角,设BP=x cm ,CQ=y cm ,试以x 为自变量,写出y 与x 的函数关系式. A B C D Q 解:∵∠APQ=90°, ∴∠APB+∠QPC=90°. ∵∠APB+∠BAP=90°, ∴∠QPC=∠BAP ,∠B=∠C=90° ∴△ABP ∽△PCQ. ,86,y x x CQ BP PC AB =-=∴x x y 3 4612+-=. 8.小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化. (1)求S 与x 之间的函数关系式,并写出自变量x 的取值范围; (2)当x 是多少时,矩形场地面积S 最大?最大面积是多少? 解:(1)根据题意,得x x x x S 302 2602+-=⋅-= 自变量的取值范围是 (2)∵01<-=a ,∴S 有最大值