圆锥的体积教学案例与反思3
圆锥的体积教学反思(通用15篇)
圆锥的体积教学反思圆锥的体积教学反思(通用15篇)圆锥的体积教学反思篇1《圆锥的体积》是人教版小学数学六年级下册第三单元的内容之一,它是学生在学习了圆柱的认识,圆柱的表面积,圆柱的体积,圆锥的认识基础之上,学习的。
这一堂课,我有幸邀请了三位同伴来听我的课,给我一定的指导,我也从中发现了自己的一些问题。
这节课中,我注重学生操作的过程,我的设想就是要学生经历这个过程。
首先要让学生观察,我手中的学具,圆锥和圆柱有什么共同点?学生发现,它们是等底等高的。
接下来,我提出问题,它们谁的体积大?但是关于这个问题,学生的回答,基本上没有答到点子上,有学生说,因为谁的表面积大,所以体积大。
本来我预设中,很容易观察发现的体积对比,但是,因为我的提问,它们谁的体积大,为什么,这个为什么,让学生绞尽脑汁去想,去套一些内容。
后来我反思,我应该先把圆锥放入圆柱里,让学生直接说出,圆锥的体积,比等底等高的圆柱体积小。
或者用试验的方法,把圆锥的水,倒入圆柱,让学生直接得到体积比大小的结论。
接下来,先让学生说说方法如何验证圆锥和等底等高圆柱体积之间的关系是什么?根据以前学的圆柱体积,学生得出了三个方法,排水法,实验法,测量体积法。
根据一些情况,排水法无法实现。
学具是空心的,会漂浮在水面,其次,学具有缝隙,水会渗进去。
所以排水法,只是作为学生了解的方法,但并不实践。
在试验环节,我没有说清楚具体的操作要求,导致个别学生在操作中,用圆柱的水,倒进圆锥里,这样难以得出正确的结论。
大多数学生,听清了我的要求,几杯圆锥的水,可以倒入圆柱。
学生很容易就得出了结论。
我让学生在黑板上小组演示倒水的过程,同时,也让其他学生一起数杯数,也是加深试验结果。
我多让几个学生说一说,圆锥和等底等高圆柱体积之间的关系,用了关联词,因为...所以...我也引导学生,多次强调,这样的关系一定有一个前提,圆锥和圆柱是等底等高的。
为了验证这样的体积关系,我抽学生上讲台,利用测量法,来验证。
人教版数学六年级下册圆锥的体积教案与反思(推荐3篇)
人教版数学六年级下册圆锥的体积教案与反思(推荐3篇)人教版数学六年级下册圆锥的体积教案与反思【第1篇】一、教案背景1.面向学生:小学2.学科:数学人教六年级下学期3.课时:1二、教学课题本课是人教版数学六年级下学期《圆柱与圆锥》单元的内容。
本节课安排了两个例题:一是圆锥体积公式的推导,二是圆锥体积公式的应用。
圆锥体积公式的推导按引出问题---联想、猜测---实验探究---导出公式,四个层次编排。
圆锥体积的计算,题目给出了圆锥形沙堆的底面直径和高,求沙堆的体积。
通过这个例子的教学,使学生初步学会解决一些与计算圆锥形物体的体积有关的实际问题。
学习本课需要达成以下的目标:1.理解和掌握圆锥体积的计算方法,并能运用公式解决简单实际问题。
2.经历“类比猜想---验证推理”探索圆锥体积计算方法的过程,掌握圆锥体积的计算方法,能正确计算圆锥的体积,并能解决一些简单的实际问题。
3.培养学生动手操作、观察分析的能力,在探究中体验学习的乐趣。
三、教材分析本节内容圆锥的体积是在学生学习了圆柱的体积及圆锥的认识之后,学习的又一个求立体图形体积的内容,是学校阶段学习的最后一个解决“空间与图形”问题的内容,也是前阶段所学知识发展与升华。
教材安排了例2、例3两个例题,例2引导学生推导出圆锥的体积,例3让学生用圆锥的体积公式解决问题。
本课重点在于圆锥体积公式的推导。
鉴于圆柱与圆锥体积的关联,学生在圆柱体积公式推导学习中也领悟到新旧知识转化的特点,因此对于圆锥体积公式的推导仍可以采用转化的方式将圆锥体积与圆柱体积联系起来,通过实验操作来得出计算公式,再辅以及时的运用训练,以使学生理解圆锥体积的计算方法。
从教材的编排可以看出,教材加强了与现实生活的联系,加强了在操作中对空间与图形的思考,使学生在经历观察、猜测、实验、推理等过程中理解和掌握圆锥体积的计算方法,进一步发展空间观念。
四、学情分析:学生是九山小学,属农村的学生。
美国心理学家奥苏泊尔说:“如果我不得不把教育心理学还原为一条原理的话,影响学习的最主要的原因是学生已经知道了什么,我们应当根据学生原有的知识状况进行教学。
《圆锥的体积》教学反思
《圆锥的体积》教学反思圆锥的体积教学反思教学反思是一种能够帮助教师对教学过程进行总结和思考的方式。
本文将围绕圆锥的体积教学反思展开,通过分析教学中的问题和不足,以及对改进的思考,提出提高教学效果的一些建议。
首先,对于圆锥的体积教学,我发现学生对于这一概念的理解存在一定的困难。
部分学生在计算圆锥的体积时容易混淆公式的使用,甚至出现了一些基本计算错误。
这可能是因为我在教学中没有充分引导学生掌握相关的几何知识,也没有对公式的推导进行足够的解释和演示。
为了改进这一问题,我可以在教学前对相关几何知识进行预习或复习,通过实际例题和实物模型的示范,帮助学生全面理解和掌握计算圆锥体积的方法和公式。
其次,我在教学中发现学生对于实际问题的应用能力存在一定的欠缺。
当涉及到将圆锥的体积计算应用到实际生活中的情景时,学生对于问题的分析和解决思路不够清晰。
为了提高学生的应用能力,我可以通过引入更多生活实例,让学生在实际问题中进行思考和运用圆锥的体积公式。
同时,我还可以设计一些综合性的问题和活动,让学生能够在实际操作中灵活运用所学知识,提高解决问题的能力。
另外,我还意识到在教学中应该更加注重学生的参与和合作。
在以往的教学中,我主要采用讲授和示范的方式进行教学,学生的参与度和主动性较低。
为了改进这一状况,我可以引入小组合作学习的方式,让学生之间进行合作、讨论和分享,从而激发学生的学习兴趣和积极性。
同时,我还可以定期组织一些小组活动和比赛,加强学生之间的互动和竞争,鼓励学生积极参与其中,提高学习效果。
最后,我认识到在教学反思中,教师的个人能力和知识水平也是重要的因素。
作为教师,我需要不断提升自己的专业素养和教育教学能力,通过学习和研究不断拓宽自己的知识面和教学方法。
同时,我还需要与同行进行交流和分享,借鉴他人的成功经验和教学模式,不断完善自己的教学策略和方法。
只有不断提升自己,才能更好地指导学生,提高教学效果。
综上所述,通过对圆锥的体积教学进行反思,我意识到在教学中存在的问题和不足,并提出了相应的改进思考和建议。
圆锥的体积教学设计及反思
圆锥的体积教学设计及反思一、教学设计1.教学目标通过本次教学,学生将能够:理解圆锥的定义,能够辨别与其他几何体的区别;掌握计算圆锥体积的公式及应用方法;运用所学知识解决实际问题。
2.教学内容圆锥的定义及性质圆锥体积的计算公式实际问题的解决3.教学步骤步骤一:引入通过展示实物圆锥及与其他几何体的对比,引发学生对圆锥的认知,并让学生思考圆锥体积的计算方法。
步骤二:讲解介绍圆锥的定义及性质,帮助学生理解圆锥的特点和几何性质。
推导圆锥体积的计算公式,让学生理解公式的来源和意义,并进行演示计算示例。
步骤三:练习给学生发放练习册,让学生进行圆锥体积的计算练习,包括简单计算和应用题。
在练习过程中,及时给予学生指导和激励,确保学生能够熟练运用所学知识。
步骤四:拓展应用提出一些实际问题,让学生运用所学知识解决,如计算圆锥容器的容量、设计圆锥形纸杯等。
鼓励学生思考更多关于圆锥体积的实际应用场景,拓展应用能力。
4.教学评价在练习环节中观察学生的解题情况,检查学生对圆锥体积计算的掌握程度。
对学生的解题思路和方法进行评价,给予针对性的指导和反馈。
考察学生在拓展应用环节的创造性思维和解决问题的能力。
二、教学反思本次教学设计在引导学生理解圆锥的定义和性质的同时,注重培养学生的计算能力和应用能力。
通过引入实际问题和拓展应用,促使学生将所学知识应用到实际生活中。
在教学过程中,学生的参与度和反馈积极,大多数学生能够熟练计算圆锥体积并解决简单的实际问题。
然而,个别学生在应用题上仍存在困难,需要在后续教学中进行进一步辅导。
同时,教学评价方面需要更加细致,以便更好地发现学生的问题和需求,调整和改进教学方法。
《圆锥的体积》优秀教学反思范文(通用5篇)
《圆锥的体积》优秀教学反思《圆锥的体积》优秀教学反思范文(通用5篇)《圆锥的体积》优秀教学反思1让学生真正成为活动的主动者,才能让学生真正的感受自己是学习的主人。
在图形的教学中,根据学习内容的特点,注重操作,注重实践,可以让教学达到最高效。
《圆锥》这节课,其教学目标是:1)、认识圆锥,了解圆锥的底面、侧面和高;2)、掌握圆锥高的测量方法;3)、圆锥体积公式的推导;4)、通过例一例二使学生会应用圆锥公式进行简单的计算。
教学中,学生通过实际触摸,动手测量、探索推导等活动,前三个教学目标在轻松快乐的氛围中顺利完成。
在公式应用这个环节,考虑到学生已经预习过例题,就把例二教学做了改动给出一圆锥形麦堆,底面直径是20分米,高是14分米,每立方米小麦重0.375千克,求这堆小麦重多少千克?让学生自主练习,本以为应用公式很快就能解决的一个问题,可学生算了好长时间还没有完成。
原来我在改动数字时没有考虑到圆锥体积公式的1/3和3。
14给出的直径和高与1/3都不能约分,使本应该巩固公式应用的目标辩词了复杂的小数计算,浪费了大量的时间,课后习题没有处理完就匆匆结束了这节课。
课后反思数学既活又严谨,看似一个简单数字的出示也要付出周密的策划。
一节简单流畅的好课,并不是随手拈来的,只要用心的去思考,统筹安排,关注到每个细节才能得到。
教学需要学习,教学更需要反思,在反思中进步,在反思中提高。
《圆锥的体积》优秀教学反思2圆锥的体积是在学生直观认识圆锥的特征,会算圆的面积,以及长方体、正方体、圆柱体的体积的基础上安排教学的。
因此,我有针对性地设计、制作了本节课的辅助教学课件,既突出重点、突破难点,又激发学生的学习兴趣,优化教学过程,提高课堂教学质量。
1、复习迁移,做好铺垫由于圆锥体的体积是在学生学过圆柱体的体积的基础上安排教学的,为了让学生回忆圆柱体的体积计算公式,以便为知识的`迁移和新知识的学习做好铺垫,我制作了一张图文并茂的图文片向学生展示了一个圆柱体图形,并在图形下面用醒目的文字向学生提出问题:这是什么形体?它的体积应怎样计算?这样一张集文字、图形、声音于一体的图文片,很容易引起学生注意,营造学习气氛。
圆锥的体积教学案例及反思
落实学生的主体地位渗透数学与生活的联系——《圆锥的体积》教学案例及反思一、设计说明:《圆锥的体积》是课标教材人教版十二册第二单元《圆柱与圆锥》的最后一个知识点。
是在学生掌握了圆柱的体积和认识了圆锥的特点的基础上进行教学的,教材通过例2和例3来对本节课的知识点进行教学。
例2按引出问题——联想、猜测——试验探究——导出公式四个层次编排,例3就是圆锥体积的应用。
教学过程由学生喜闻乐见的动画片《喜洋洋与灰太狼》来引入课题,通过让学生猜想、小组实验、合作探究、推导公式来设计教学流程,最后通过分层次的针对性练习来消化学生的知识体系。
整节课的设计层次感鲜明,符合学生的认知规律,落实了学生的主体地位,向学生渗透数学来源于生活、回到生活中去的数学思想,体现了新课标的教学理念。
在小学数学课堂教学中,学生自主探究越来越引起广大教师的重视。
我在备课时,有意识地引出问题、让学生猜想、通过小组活动、实验操作、合作交流,充分发挥学生的主体地位,使学生自主探索出等底等高的圆锥和圆柱体积之间的关系,从而推导出圆锥的体积计算公式。
这样做同时也激发了学生的自主探索意识,发展了学生的空间观念。
最后让学生运用所掌握的圆锥体积公式来解答生活中的数学问题,进一步向学生渗透了数学与生活的紧密联系。
下面就是我设计的《圆锥的体积》的教学过程。
二、教学设计:教学内容:《圆锥的体积》教材25、26页,练习四部分习题教材分析:这节课的内容是在学生掌握了圆柱的体积计算方法和认识了圆锥的特点的基础上进行教学的,是要学生通过小组实验、合作探究从而推导出圆锥的体积计算公式,并能运用圆锥的体积计算方法去解决数学问题。
“三维”目标:知识与能力:让学生推导出圆锥的体积计算公式并掌握圆锥的体积计算公式,能运用知识灵活地解决生活中的数学问题,从而发展学生的想象思维,培养学生的动手实践能力、计算能力和运用知识灵活解决问题的能力。
过程与方法:让学生通过联想和猜测、小组实验、合作探究、推导出圆锥的体积公式,并能运用圆锥的体积计算公式解决生活中的数学问题。
《圆锥的体积》教学案例与反思
《圆锥的体积》教学案例与反思《圆锥的体积》教学案例与反思苏立西教育改革期待教育的创新。
需要变革传统的学习方式,因为它太强调接受与掌握,冷落和忽视发现与探究,学生学习成了被动地接受、记忆的过程。
这种学习窒息人的思维和智力,催残人的学习兴趣。
教师要为学生创设一个宽松的学习环境,放手让学生去探究、去发现、去体验。
使他们能够积极自主、充满自信地学习数学,平等地交流各自的数学理解,在相互合作去解决面临的问题。
[案例]一、师生交流师:你觉得圆锥体积的大小与它的什么有关?生:圆锥的底面积和高。
师:你认为圆锥的体积和什么图形和体积联系最密切?生:圆柱的体积。
师:你们所说的圆锥和圆柱又有什么关系呢?生:等底等高。
(课件显示长方形、直角三角形旋转一周的过程。
)师:看了刚才旋转的过程,请同学们大胆猜测圆锥体积和等底等高的圆柱体积之间有什么关系。
(可能会说是1/2、1/3等)二、实验师:请各组拿出实验材枓。
(圆柱、圆锥容器及水、沙土)装沙或装水由各小组自由选择。
介绍实验方法:先在圆锥内装满沙(水),装沙时圆锥口抺平,然后将沙(水)倒入圆柱内,看看几次将圆柱倒满。
提出实验要求:(课件出示)(1)实验材料中,圆锥的底面和圆柱的底面有什么关系?它们的高有什么关系?你是怎么知道的?(2)圆锥的体积和同它等底等高的圆柱体积有什么关系?(3)圆锥的体积怎样算?计算公式是什么?师:现在,我们来分组实验,同学们边实验边讨论实际的要求。
(学生做实验,教师巡视指导,倾听)[反思]一、在“交流”中激发参与欲望教学中培养学生积极的情感、态度、信念、动机、需要等。
是教育改革的客观要求。
本课一开始,教师并没有像传统的教学那样,直接拿出等底等高圆柱和圆锥容器的教具,让学生观察倒沙实验,而是通过师生间的交流、问答、猜想来激发学生的学习热情,探究欲望,使学生急于以实验来证实自己的`猜想。
二、在“体验”中感悟学习不仅要用自己的脑子思考,而且用自己的眼睛看,用自己的耳朵听,用自己的嘴说话,用自己的手操作,即用自己的亲身经历,用自己的心灵去亲自感悟。
圆锥的体积优秀的教学反思(5篇)
圆锥的体积优秀的教学反思〔精选5篇〕圆锥的体积优秀的教学反思〔精选5篇〕圆锥的体积优秀的教学反思1 教学圆锥的体积是在掌握了圆锥的认识和圆柱的体积的根底上教学的。
本课教学摒弃了以往把学生分成假设干组,小组实验得出结论的方法。
新课一开场,我就让学生观察,先猜测圆锥的体积和什么有关,学生联络到了圆柱的体积,在猜测中激发学生的学习兴趣,使学生明白学习目的。
然后让学生看白板演示将圆锥里的水倒入等底等高的圆柱里,需要倒几次。
虽然孩子们没有进展实验,但孩子目睹了过程,从中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。
对圆锥的体积建立了鲜明的印象之后,就应用公式解决实际的生活问题,稳固深化知识点。
考虑:虽然学生在学习的过程中,应该成为一个探究者、研究者、发现者,但不是并不是每个知识的获得都必须学生动手操作。
从课后的作业反应来看,学生的出错率比以前小组合作的学习的还要好。
看来,这样的学习,学生学的活,记得牢,即发挥老师的主导作用,又表达了学生的主体地位。
圆锥的体积优秀的教学反思2 《圆锥的体积》是在掌握了圆锥的认识和圆柱的体积的根底上教学的。
教学时让学生通过实验来发现圆锥与等底等高的圆柱之间的关系,从而得出圆锥的体积等于和它等底等高的圆柱体积的三分之一,并能运用这个关系计算圆锥的体积,让学生从感性认识上升到理性认识。
学生感到非常简单易懂,因此学起来并不感到困难。
新课一开场,我就让学生观察,先猜测圆锥的体积和什么有关,学生联络到了圆柱的体积,在猜测中激发学生的学习兴趣,使学生明白学习目的。
老师从展示实物图形到空间图形,采用比照的方法,加深学生对形体的认识。
然后让学生动手实验,以小组合作学习的方式让每个学生都能参与到探究中去,学生在实验中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。
这样,就有一种水到渠成的感觉。
对圆锥的体积建立了鲜明的印象之后,就应用公式解决实际的生活问题,起到稳固深化知识点的作用。
六年级数学圆锥的体积教教案例与反思
一、教学目标:1.知识与技能:(1)掌握圆锥的概念和性质。
(2)能够计算圆锥的体积。
2.过程与方法:(1)通过引导学生观察和发现,引入圆锥的概念。
(2)通过实际操作和计算,让学生理解圆锥的体积计算方法。
3.情感态度价值观:培养学生对数学的兴趣,培养学生对实际问题的思考能力和解决问题的能力。
二、教学重难点:1.教学重点:(1)圆锥的体积计算。
(2)培养学生的观察力和实际问题的思考能力。
2.教学难点:(1)将实际问题转化为数学问题。
(2)引导学生进行自主学习和合作学习。
三、教学过程:1.导入新知:通过师生互动的方式,引导学生观察以下实物图片,并引出圆锥的概念。
(展示图片1:一个蛋锥状的冰淇淋)T:同学们,你们有没有吃过这种蛋锥状的冰淇淋呢?你们觉得这个形状像什么?S:像一个圆锥。
T:非常好!确实是一个圆锥。
你们还能想到其他类似的实物吗?(展示图片2:一个饱满的冰淇淋蛋筒)S:冰淇淋蛋筒也是一个圆锥。
T:非常好!你们对圆锥有一定的了解了。
下面我们来看一下圆锥的性质。
2.探求圆锥的性质:通过师生共同探讨,引导学生总结出圆锥的性质。
(展示图片3:一个圆锥,一个圆柱和一个长方体的比较)T:同学们,请你们观察一下这个绘制在黑板上的图形,这是一个圆锥,我们知道圆锥有哪些特点呢?S:有一个圆形底面,一个顶点,侧面是一些倾斜的三角形。
T:非常好!圆锥是由一个圆形底面和一些倾斜的三角形组成的。
接下来我们来看一下圆锥的体积计算方法。
3.计算圆锥的体积:通过具体的实际问题,引导学生计算圆锥的体积。
(示例问题1)T:假设现在有一个圆锥,它的底面半径是3cm,高度是8cm,你们能计算一下它的体积吗?S:体积等于1/3×底面积×高。
T:非常好,那么根据公式,我们可以得到这个圆锥的体积是多少呢?S:1/3×π×3²×8=24π(立方厘米)。
T:非常好!所以这个圆锥的体积是24π(立方厘米)。
《圆锥的体积》教学反思15篇
《圆锥的体积》教学反思15篇作为一名人民老师,我们都希望有一流的课堂教学能力,我们可以把教学过程中的感悟记录在教学反思中,教学反思应该怎么写呢?下面是小编整理的《圆锥的体积》教学反思,欢迎阅读,希望大家能够喜欢。
《圆锥的体积》教学反思 1六年级的学生对立体图形已经有了初步的认识,因此,在教学中,我借助圆锥体和圆柱体的联系和区别,引出圆锥体的特征,进而分散了难点。
在讲授体积公式时,我设计的实验环节,把学习的主动权交给了学生,学生就可以既动手又动脑,通过自己的努力总结出圆锥体的体积公式,在学习中体会到成功的喜悦。
建构主义认为,学生的学习不是由教师向学生的单向知识传递,而是学生建构自己知识的过程。
学生不是被动的信息接受者,而是一个主动探究、发现知识的研究者。
基于以上的认识,我很注重让学生自主学习,通过动手制作圆锥体,培养学生的空间概念,自主探究圆锥体的计算方法,提高解决问题的能力。
这节课为学生提供了具体的实践活动,创设了引导学生探索、操作和思考的情境,把教师变成“一位顾问”,“一位交换意见的参与者”,“一位帮助发现矛盾论点、而不是拿出现成真理的人”。
这节课把学生推到探究新知的“第一线”,让他们自己动手、动口、动脑,主动思考问题,并在探究新知的过程中,暴露感知的矛盾和差异,把他们弄不懂的地方、错误的地方都摆在桌面上,再引导他们通过独立思考,摒弃错误,发现真理,实现由感性认识到理性认识的转化。
这样,通过活动,让学生自己发现要学习的东西,能够积极地被同化,因而容易得到更深刻的理解。
整节课大部分时间都是学生在操作,有独立的思考,有小组的合作学习,有猜想,有验证,有观察,有分析,有想像,使学生在尽可能大的活动空间中切实体验到数学对解决实际问题是有用的,让学生在探究的氛围中自主地学习知识,发现规律,实际应用,从而获得成功的体验。
《圆锥的体积》教学反思 2教学圆锥的体积是在掌握了圆锥的认识和圆柱的体积的基础上教学的。
《圆锥的体积》教案6篇
《圆锥的体积》教案6篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作计划、工作总结、事迹材料、心得体会、调查报告、讲话致辞、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work plans, work summaries, historical materials, insights, investigation reports, speeches, documentary evidence, teaching materials, essay summaries, other sample essays, and more. If you want to learn about different sample essay formats and writing methods, please stay tuned!《圆锥的体积》教案6篇教案是教师根据学生的学习反馈,提供个性化的学习指导,编写教案可以帮助我们预测和解决可能出现的教学问题和困难,提高教学的针对性和灵活性,本店铺今天就为您带来了《圆锥的体积》教案6篇,相信一定会对你有所帮助。
《圆锥的体积》教学反思[五篇范例]
《圆锥的体积》教学反思[五篇范例]第一篇:《圆锥的体积》教学反思《圆锥的体积》教学反思身为一名优秀的人民教师,我们的工作之一就是课堂教学,借助教学反思我们可以快速提升自己的教学能力,那么教学反思应该怎么写才合适呢?以下是小编整理的《圆锥的体积》教学反思,仅供参考,大家一起来看看吧。
《圆锥的体积》教学反思 1在本课的教学中,我首先让学生猜想圆锥的体积可能与它的什么有关系,再来猜想圆锥的体积可能和什么立体图形的体积有关系,通过学生自主的实验操作,探究出圆锥和圆柱在等底等高情况下的倍数关系,再通过学生的讨论,推导出圆锥的体积公式,最后应用探索出的结论解决生活中的实际问题。
一、让学生经历猜想—实验—验证—结论的实践探索的全过程。
新课程标准明确指出,数学学习内容应当“有利于学生主动地进行观察、试验、猜测、验证、推理与交流等教学活动”数学史上许多重大的发现都离不开猜想。
著名科学家牛顿说过“没有大胆的猜想就做不出伟大的发现”所以,在课初,猜想圆锥的体积与他的什么有关系,再来猜想圆锥的体积和什么图形的体积有关系,然后通过学生的动手实践验证了自己的猜想,并应用新知解决了问题。
这样,即向学生渗透“猜想---验证‘ 的数学思想,有极大的调动了学生的求知欲,使学生经历了知识形成的全过程,学会了怎样学习。
二、给学生一个“合作交流、自主探究”的空间。
新课程标准明确指出,有效地数学学习活动不能单纯的依耐模仿和与记忆,动手实践、资助探索与合作交流是学生学习数学的重要方式。
书学者们课程,不但需要观察,还需要试验。
有些知识单凭解说是无法让学生真正理解的,只有通过试验,才能深刻领悟其中的内在奥秘。
在探究圆锥体积计算方法的学习过程中,教师把动手的主动权交给了学生,让学生动手实践,自主探索,合作交流,主动地获取知识改变了一教师讲解、师范为主的教学方式。
学生不再是实验演示的被动的观看者,而是参与操作的主动探索者,真正成为学习的主人。
教师只是学习的组织者、引导者与合作者,是平等中的首席。
《圆锥的体积》教案设计及反思
《圆锥的体积》教案设计及反思•相关推荐《圆锥的体积》教案设计及反思《圆锥的体积》教案设计及反思教学目的: 1、知识目标:使学生理解和掌握求圆锥体积的计算公式,并能正确求出圆锥的体积。
. 2、能力目标:培养学生初步的空间观念,动手操作能力和逻辑思维能力。
3、情感目标:向学生渗透知识间可以相互转化的辩证唯物主义思想,让学生学习将新知识转化为原有知识的学习方法. 教学重点:圆锥的体积计算教学难点:圆锥的体积计算公式的推导. 教学准备:圆锥形萝卜、绳子,每个小组一个计算器、等底等高的圆柱和圆锥容器模型、沙土水等。
教学过程: 一、复习导入。
师:同学们,你们知道桌上那个白萝卜,它是什么形体吗?(圆柱体),现在,如是假设它的底面积是5平方厘米,高是4厘米,你怎样求它的体积呢?求出体积后,问:现在老师想请你们帮个忙,把它削成一个最大的圆锥,你们有办法吗?说一说什么样的圆锥体才算最大呢?(与原来的圆柱体萝卜等底等高) 二、探究新知1、实践猜想. 师:好,现在请同学们动手削萝卜,比比哪一组削得最漂亮? 学生削完后,问:谁来猜猜,现在削成的圆锥体积与刚才圆柱有什么关系呢?你是怎么猜测的? 生1:我猜圆锥的体积可能等于原来那个萝卜体积的,就是5立方厘米。
生2:我猜圆锥的体积可能等于原来那个萝卜体积的,就是10立方厘米。
我是根据我们以前学过的在长方形里剪一个最大的三角形,三角形的面积是长方形的,所以我认为圆锥的体积也是圆柱体积的。
生3: 我猜圆锥的体积可能等于原来那个萝卜体积的,就是6立方厘米,是把削去的萝卜拼起来和圆锥体萝卜进行比较,发现削去的部分的体积大约是圆锥体积的2倍。
. 生4: 我猜圆锥的体积可能等于原来那个萝卜体积的,就是8立方厘米,我是估计的。
. 师:那你有什么方法可以验证你的猜想呢? 生5:我可以把削成的圆锥与削去的萝卜都拿去称,再比较它们的重量。
. 生6:我把圆锥体萝卜浸入盛有水的圆柱容器里,算出它的体积,再把削去部分的萝卜也浸入盛有水的圆柱形容器里,根据水面上升的高度求出它的体积就知道了。
六年级数学下册圆锥的体积教案(优秀5篇)
六年级数学下册圆锥的体积教案(优秀5篇)教学重点篇一圆锥体体积计算公式的推导过程.小学数学《圆锥的体积》教案篇二教学目标:1、渗透转化思想,培养学生的自主探索意识。
][2、初步学会用转化的数学思想和方法,解决实际问题的能力3、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。
教学重点:掌握圆柱体积的计算公式。
教学难点:圆柱体积的计算公式的推导。
教学准备:主题图、圆柱形物体教学过程:一、复习:1、长方体的体积公式是什么?(长方体的体积=长×宽×高,长方体和正方体体积的统一公式“底面积×高”,即长方体的体积=底面积×高)2、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么,怎么求。
3、复习圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。
二、新课:1、圆柱体积计算公式的推导:(1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。
(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块,把它们拼成一个近似长方体的立体图形——课件演示)(2)由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。
(课件演示将圆柱细分,拼成一个长方体)(3)通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。
(长方体的体积=底面积×高,所以圆柱的体积=底面积×高,V=Sh)2、教学补充例题:(1)出示补充例题:一根圆柱形钢材,底面积是50平方厘米,高是2.1米。
它的体积是多少?(2)指名学生分别回答下面的问题:①这道题已知什么?求什么?②能不能根据公式直接计算?③计算之前要注意什么?(计算时既要分析已知条件和问题,还要注意要先统一计量单位)(3)出示下面几种解答方案,让学生判断哪个是正确的.①V=Sh50×2.1=105(立方厘米)答:它的体积是105立方厘米。
人教版数学六年级下册圆锥的体积教案与反思(推荐3篇)
人教版数学六年级下册圆锥的体积教案与反思(推荐3篇) 人教版数学六年级下册圆锥的体积教案与反思【第1篇】教学目标:1、通过动手操作实验,推导出圆锥体体积的计算公式。
2、理解并掌握体积公式,能运用公式求圆锥的体积,并会解决简单的实际问题。
3、通过学生动脑、动手,培养学生的观察、分析的综合能力。
教具准备:等底等高的圆柱体和圆锥体5套,大小不同的圆柱体和圆锥体5套、水槽5个,以及多媒体辅助教学课件。
教学过程设计:一、复习旧知,做好铺垫。
1、认识圆柱(课件演示),并说出怎样计算圆柱的体积?(屏幕出示:圆柱体的体积=底面积×高)2、口算下列圆柱的体积。
(1)底面积是5平方厘米,高6厘米,体积=?(2)底面半径是2分米,高10分米,体积=?(3)底面直径是6分米,高10分米,体积=?3、认识圆锥(课件演示),并说出有什么特征?二、沟通知识、探索新知。
教师导入:同学们,我们已经认识了圆锥,掌握了它的特征,但是,对于圆锥的学习我们不能只停留在认识上,有关圆锥的知识还有很多有待于我们去学习、去探究。
这节课我们就来研究“圆锥的体积”。
(板书课题)1、探讨圆锥的体积计算公式。
教师:怎样推导圆锥的体积计算公式呢?在回答这个问题之前,请同学们先想一想,我们是怎样知道圆柱体积计算公式的?学生回答,教师板书:圆柱------(转化)------长方体圆柱体积计算公式--------(推导)长方体体积计算公式教师:借鉴这种方法,为了我们研究圆锥体体积的方便,每个组都准备了一个圆柱体和一个圆锥体。
你们小组比比看,这两个形体有什么相同的地方?学生操作比较后,再用课件演示。
(1)提问学生:你发现到什么?(圆柱和圆锥的底和高有什么关系?)(学生得出:底面积相等,高也相等。
)教师:底面积相等,高也相等,用数学语言说就叫“等底等高”。
(板书:等底等高)(2)为什么?既然这两个形体是等底等高的,那么我们就跟求圆柱体体积一样,就用“底面积×高”来求圆锥体体积行不行?(不行,因为圆锥体的体积小)教师:(把圆锥体套在透明的圆柱体里)是啊,圆锥体的体积小,那你估计一下这两个形体的体积大小有什么样的倍数关系?(指名发言)用水和圆柱体、圆锥体做实验。
《圆锥的体积》教学案例及反思2篇
《圆锥的体积》教学案例及反思2篇Teaching case and Reflection on volume of co ne《圆锥的体积》教学案例及反思2篇前言:小泰温馨提醒,数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种,在人类历史发展和社会生活中,数学发挥着不可替代的作用,是学习和研究现代科学技术必不可少的基本工具。
本教案根据数学课程标准的要求和针对教学对象是小学生群体的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划、并以启迪发展学生智力为根本目的。
便于学习和使用,本文下载后内容可随意修改调整及打印。
本文简要目录如下:【下载该文档后使用Word打开,按住键盘Ctrl键且鼠标单击目录内容即可跳转到对应篇章】1、篇章1:《圆锥的体积》教学案例及反思2、篇章2:圆锥的体积教学案例分析篇章1:《圆锥的体积》教学案例及反思1、能用实验的方法推导出圆锥体积的计算公式,并会用此公式计算出简单的圆锥的体积。
2、培养学生空间观念和逻辑思维能力及实验操作能力。
3、培养学生合作交流的能力及互相协作的意识。
教学重点:用实验法推倒出圆锥的体积公式。
教学难点:圆锥体积计算公式:“v圆锥=1/3sh"中乘以的道理和来历。
教学关键:利用等底等高的圆柱体体积公式推导出圆锥体积公式。
教学准备:圆柱以及也圆柱等底等高;等底不等高;等高不等底圆锥。
教学方法:采用启发讨论式、实验探究式教学,鼓励学生大胆猜想,引导学生发现问题,并且进行验证。
教学片段:动手操作,推导圆锥的体积计算公式:师:今天我们来研究圆锥的体积计算公式,你们先在心里猜一猜圆锥的体积计算公式应该是什么,不要说出来,等咱们研究过以后,看看谁的猜测是正确的。
一、出示动手操作的步骤:1、自选圆锥。
2、测量所选圆锥和圆柱底面和高之间的关系。
3、用所选的圆锥往圆柱里倒水。
(圆锥里的水要尽可能的满)4、记录实验的结果。
《圆锥的体积》教学反思(15篇)
《圆锥的体积》教学反思(15篇)《圆锥的体积》教学反思1圆锥的体积是在学生直观认识圆锥的特征,会算圆的面积,以及长方体、正方体、圆柱体的体积的基础上安排教学的。
因此,我有针对性地设计、制作了本节课的辅助教学课件,既突出重点、突破难点,又激发学生的学习兴趣,优化教学过程,提高课堂教学质量。
一节课下来,我静心思考,有以下几点反思:一、学生动手操作,激发兴趣,培养了学生自主学习的精神。
我在教学圆锥的体积计算公式时,为了让学生直观感知圆锥的体积与它等底等高的圆柱的体积的关系。
首先让学生在课前自己动手做实验,加深学生对圆柱和圆锥的认识。
在课堂上改教师演示为学生分组动手实验,用圆锥装满水倒入和它等底等高的圆柱里的过程。
并在动画下面巧设问题:用圆锥装满水倒入和它等底等高的空圆柱里,倒几次正好倒满?每次水的高度是圆柱高度的几分之几?有层次的教学设计,丰富多彩的教学活动,充分体现以教师为主导,以学生为主体的教与学的双边活动。
学生通过认真操作实验,观察思考,都明白了圆锥的体积等于和它等底等高的圆柱体积的1/3,从而推导出圆锥体积的计算公式,这样就有一种水到渠成的感觉。
同时也培养学生观察、操作、讨论、归纳、整理等技能,形成良好的学习习惯和认真操作的态度。
二、激发学生的求知欲。
数学课程要关注学生的生活经验和已有的知识体验,教师在引入新知时,创设了一个有趣的童话情境,使枯燥的数学问题变为活生生的生活现实,让数学课堂充满生命活力。
学生在判断公平与不公平中蕴涵了对等底等高圆柱和圆锥体积关系的猜想,他们在这一情境中敢猜想、要猜想、乐猜想,在猜想中交流,在交流中感悟,自然地提出了一个富有挑战性的数学问题,从而引发了学生进一步探究的强烈欲望。
在应用公式的教学中,又把问题转向到课初学生猜测且还没有解决的问题,引导学生计算出圆锥的体积,终于使悬念得出了满意的结果,使学生获得了成功的喜悦。
三、全体学生的积极参与,突出学生的主体作用。
由于我平时非常重视让学生参与教学的全过程,重视培养学生的思维想象力,因此,学生在这节课上,表现也相当的出色。
最新《圆锥的体积》教学设计及反思【优秀3篇】
最新《圆锥的体积》教学设计及反思【优秀3篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!最新《圆锥的体积》教学设计及反思【优秀3篇】作为一名辛苦耕耘的教育工作者,时常需要用到教案,编写教案有利于我们科学、合理地支配课堂时间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥的体积教学案例与反思
背景分析:《圆锥的体积》是人教版小学数学第十二册的内容,本节课的重点是掌握圆锥的体积,难点是圆锥体积公式的推导过程。
教学目标
1、能用实验的方法推导出圆锥体积的计算公式,并会用此公式计算出简单的圆锥的体积。
2、培养学生空间观念和逻辑思维能力及实验操作能力。
3、培养学生合作交流的能力及互相协作的意识。
教学重点:用实验法推倒出圆锥的体积公式。
教学难点:圆锥体积计算公式:“V圆锥=1/3sh"中乘以的道理和来历。
教学关键:利用等底等高的圆柱体体积公式推导出圆锥体积公式。
教学准备:圆柱以及也圆柱等底等高;等底不等高;等高不等底圆锥。
教学方法:采用启发讨论式、实验探究式教学,鼓励学生大胆猜想,引导学生发现问题,并且进行验证。
一、以旧引新,激发兴趣
教师:同学们看一看,这是什么几何形体?
[说明:教师手里拿着圆柱和圆锥两个教具,通过提问使学生在意识形态中建立起几何形体,从而为下一步学习构建合理学习氛围。
]
学生:圆柱体和圆锥体。
教师:圆柱的体积的计算公式用字母怎样表示?
[说明:因求得圆锥的体积公式要用到和它等底等高的圆柱的底面积和高,这里做一下铺垫。
]
学生:V=sh
教师:圆锥和圆柱底面是什么形状?
学生:圆形。
教师:圆形的面积的计算公式,用字母怎样表示?
学生:S=πr2
[说明:在计算圆锥体积时要涉及到圆形的面积,这里的安排就是想让学生计算圆锥体积时比较顺畅。
]
教师:通过上节课学习,你对圆锥有哪些认识?
[说明:让学生进一步感受圆锥的结构特点。
]
教师:你还想知道有关圆锥的哪些方面的数学知识?
[说明:既然给学生说的机会,学生一定会畅所欲言,这时教师要筛选出跟这节课有关的数学信息,其它问题可以课后讨论或查阅资料完成。
]
教师:这节课我们就来学习圆锥的体积。
[说明:板书:圆锥的体积。
]
二、实践操作,揭示公式
老师拿出课件,让学生观察黑板上的三幅图,教师问:通过观察你能提哪些有价值的数学信息吗?
[说明:教师之所以没问学生三幅图有什么不同,就是想让学生学会观察,并且提出一些有价值的问题,学生在观察的同时建立了空间观念,增加了想象空间。
]
学生a:三幅图的圆柱圆锥谁的体积大?
学生b:三幅图的圆锥圆柱有等底、等高的,有不等底、不等高的。
学生c:第一幅图和第二幅图圆柱和圆锥是等底不等高和等高不等底的,第三幅图圆柱和圆锥是等底等高的。
教师:好,第一幅图和第二幅图,圆柱和圆锥的关系不能确定,在等底等高的情况下,圆柱和圆锥存在什么关系,同学们想研究一下吗?
[说明:此时抛出的问题,给学生创设了求知的欲望,为下一步的实验操作奠定了基础。
] 教师:我们以小组合作的形式做一下实验:同学们桌子上有等底等高的圆柱和圆锥还有沙。
你可以选择把圆柱装满沙倒入圆锥中,还可以选择圆锥装满沙倒入圆柱中。
可以得到什么结论?之后小组交流意见,然后汇报结果,同学们听清了吗?开始实验。
[说明:此时给学生提供了想象空间,也增强了同学之间合作的意识,我们为的是结果,但结果并不重要,最主要培养学生独立思考,认真探究的学习过程。
]
小组交流意见,汇报实验结果。
教师:用一句话概括圆锥体和圆柱体之间在等底等高情况下有什么关系?
学生:在等底等高情况下圆锥体积是圆柱体积的三分之一。
教师:圆锥体的体积等于什么?用字母来表示?
学生汇报出V锥=1/3sh
三、、实验操作、合作交流、自主探究
1、自选圆锥。
2、测量所选圆锥和圆柱底面和高之间的关系。
3、用所选的圆锥往圆柱里倒水。
(圆锥里的水要尽可能的满)
4、记录实验的结果。
学生开始活动。
四、根据实验的结果整理完成下表:(红颜色的为学生填写)
小组交流意见,汇报实验结果。
教师:用一句话概括圆锥体和圆柱体之间在等底等高情况下有什么关系?
学生:在等底等高情况下圆锥体积是圆柱体积的三分之一。
教师:圆锥体的体积等于什么?用字母来表示?
学生汇报出V锥=1/3sh
六:小结:师:我们通过实验推出了圆锥的体积计算公式,怎么样?和你猜想的一样吗?用你最酷的表情或者动作告诉老师。
七、组内合作,自学例题
教师:看书86页内容,之后自学例1、例2,如果有总是可以在你的小组中交流一下,看哪一小组合作学习效果好,一会汇报,开始看书自学。
学生汇报(1生板演)
[说明:培养学生认真读书和独立思考的习惯,加强同学之间的合作意识,促进学生自主学习的意识。
]
小结:通过例题反映出同学们对圆锥的体积公式掌握很好,在实际做题时,我们要根据题目的不同,要求确定不同方法,面下我们来做习题:
八、巩固练习
1、下面我们来做基本练习
求下面各圆锥的体积:⑴、底面积是7.8平方米,高是1.8米。
⑵底面半径是4厘米,高是21厘米。
⑶底面直径6分米,高是6分米。
⑷底面周长是31.4厘米,高是9厘米。
默读题,讨论一下怎样来做,指名说一说。
[说明:学生做时讲清依据,巩固学生对圆锥体积公式的掌握和应用]
2、综合练习
填空:
⑴、一个圆锥的体积是21立方米,把它削成一个最大的圆锥,圆锥,圆锥的体积是()立方米。
⑵一个圆锥,底面半径是2厘米,高是3厘米,它的体积是()立方厘米
⑶如果一个圆锥体的底面半径扩大2倍,高缩小为原来的一半,它的体积是原来的()
[说明:目的是突破教学重点,培养学生独立思维,解决问题的能力]
3、判断:
⑴圆锥的体积等于圆住体积的1/3。
⑵、体积单位比面积单位大。
()
⑶、一个圆柱的体积是50立方厘米,把它削成一个最大的圆锥,则削去部分的体积为20立方厘米。
⑷、圆锥的体积一定比圆柱的体积小。
()
[说明:既让学生进一步认知圆锥体,又培养了学生空间,观念和敏锐的观察能力] 看来你们今天的收获真的不小,利用课余时间些一篇数学日记,就写今天课堂上的猜想——实验验证——得出结论——你的心情和想法。
教学反思:
让学生在宽松的教学环境中学习数学,在实践的活动中体验学习数学的过程,在一个平等、民主、和谐、宽松、贴近生活的学习环境学习,本案例中十分注重这方面的创设。
(1)亲身经历探究、发现知识的过程。
圆锥的体积公式推导,学生用自己的思维方式大胆的进行猜想,对于自己的猜想设法加以验证,来获得知识的结论。
尽管圆锥的体积公式早已被前人所发现,但我们的学生想知其然,更想知其所以然。
(2)注重自主探索、合作交流的学习方式。
本课中让学生通过观察、操作、归纳、猜想、交流等活动来激发学生的学习兴趣和发展思维能力。
在独立思考、自主探索的基础上,组织学生进行合作交流是重点环节。
在课前充分的让学生从自己的实际思维出发去发现问题,探究一些圆锥的基础知识,虽然有些知识不一定完全正确,但至少体现了学生自主探索的意识和能力。
把一些一时说不清,一时搞不懂或者自己无法说清(圆锥的体积等于等底等高圆柱的1/3)的知识留给了小组讨论,让学习小组一起合作研究,在合作交流中相互启发,共同发展。
真正让学生体会1/3的由来。
(3)关注了学生学习数学的情感体验。
课堂教学的目标不但要关注学生掌握几个知识点,更应关注学生在发现问题、解决问题
的过程中获得良好的情感体验。
本节课中的实验验证等底等高圆锥的体积是圆柱的1/3的方法,不断有学生想出一种又一种的方法,这样大大的刺激了学生的好奇、好表现的心理需求,使学生在成功的体验中,逐渐提高对学习数学的兴趣,对个性的塑造。