利用基本灰度变换对图像进行增强
第五章 遥感图像处理—图像增强

特征;其余三个分量与地物特征没有明确的对应关系。
七、多元信息复合
遥感图像信息融合(Fusion)是将多源遥感数据在统一的 地理坐标系中,采用一定的算法生成一组新的信息或合
其中:
k ( g 'max g 'min ) /( gmax gmin ) 255/ 52 4.9
b g 'ij kgij 0 49 49
2、非线性拉伸
(1)指数变换
xb be
(2)对数变换
axa
c
xb b度进行分层,每一层所包含的亮度值范围可以不
同。
图像密度分割原理可以按如下步骤进行:
(1)求图像的极大值dmax和极小值dmin; (2)求图像的密度区间ΔD = dmax-dmin + 1; (3)求分割层的密度差Δd =ΔD/n ,其中 n为需分割的层数;
(4)求各层的密度区间;
(5)定出各密度层灰度值或颜色。
减法运算可以增加不同地物间光谱反射率以及在 两个波段上变化趋势相反时的反差。不同时相同 一波段图像相减时,可以提取波段间的变化信息。
T M 4 影 像
T M 3 影 像
TM4-TM3影像
87 年 影 像
92 年 影 像 变化监测结果影像
(二)加法运算
B= i /m
i=1 m
加法运算可以加宽波段,如绿色波段和红色波 段图像相加可以得到近似全色图像;而绿色波 段,红色波段和红外波段图像相加可以得到全 色红外图像。
-1 -2 -1 0 0 0 1 2 1 1 2 0 -2 1 0 -1
简述直方图均衡化的基本原理。

简述直方图均衡化的基本原理。
直方图均衡化是一种对图像进行处理的技术,它可以改变图像的明暗效果,增强图像的对比度。
它是一种把图像的灰度分布改变的形式,一种以灰度调整为基础的图像处理技术,也可以称为“灰度变换”。
直方图均衡化的基本原理是利用直方图解析处理图像中的灰度值,使图像变得更加标准化。
它会把图像的灰度分布从原有的偏高或偏低的值,归一化为一个新的更平均的灰度范围,从而提高图像的对比度。
直方图均衡化的基本步骤是:首先,利用灰度直方图,计算图像中每一个灰度值出现的次数,把灰度值表示为概率函数。
然后,根据概率函数计算每一个灰度值对应的累计概率分布函数,对累计概率分布函数进行处理,把每一个灰度值映射到一个新的灰度值上,生成一张新的灰度图像。
直方图均衡化的一个关键应用就是它可以有效地处理图像的曝光不均的问题,例如,当一张图片带有曝光过度的区域时,直方图均衡化可以调整灰度分布,使这些区域亮度变得更均匀,从而改善图像的质量。
另外,直方图均衡化可以有效改善彩色图像的色彩细节,因为在调整灰度分布的同时,也可以调整图像的亮度、饱和度和色调等方面的参数,即使是差的图片也可以令彩色图像看起来更加自然和活力。
尽管直方图均衡化有许多好处,但也有一些不足之处。
首先,它的处理效果有限,因为它无法真正解决图像中特定信号的可操作性问题;其次,它只能用于灰度图像,对于彩色图像,效果不是很好;最后,由于它会增强图像的对比度,所以会使图像中的噪声变得更加明显,会降低图像的质量。
由此可见,直方图均衡化能够改善图像的质量,同时它也有一些局限性。
在实际应用中,我们可以根据实际需要,结合多种图像处理技术,比如图像的缩放、裁剪、色彩校正,利用直方图均衡化的优势,达到更好的处理效果。
如何进行高效的图像增强和降噪

如何进行高效的图像增强和降噪图像增强和降噪是数字图像处理中的重要任务之一。
它们的目的是改善图像的视觉质量和可视化细节,并消除图像中的不必要的噪声。
在本文中,我将介绍一些常用的图像增强和降噪技术,以及一些实现这些技术的高效算法。
一、图像增强技术1.灰度变换:灰度变换是一种调整图像亮度和对比度的常用技术。
它可以通过改变灰度级来增加图像的对比度和动态范围,提高图像的视觉效果。
2.直方图均衡化:直方图均衡化是通过重新分配图像灰度级来增加图像对比度的一种方法。
它通过改变图像的直方图来增强图像的细节和对比度。
3.双边滤波:双边滤波是一种能够保留图像边缘信息,同时消除噪声的滤波技术。
它能够通过平滑图像来改善图像的质量,同时保持图像的细节。
4.锐化增强:锐化增强是一种通过增加图像的高频分量来提高图像的清晰度和细节感的方法。
它可以通过增加图像的边缘强度来突出图像的边缘。
5.多尺度增强:多尺度增强是一种通过在多个尺度上对图像进行增强来提高图像视觉质量的方法。
它可以通过提取图像的不同频率分量来增强图像的细节和对比度。
二、图像降噪技术1.均值滤波:均值滤波是一种常见的降噪方法,它通过将像素值替换为其周围像素的均值来减少噪声。
然而,它可能会导致图像的模糊,特别是在对边缘等细节进行处理时。
2.中值滤波:中值滤波是一种基于排序统计理论的降噪方法,它通过将像素值替换为其周围像素的中值来消除噪声。
相比于均值滤波,中值滤波能够在去除噪声的同时保留图像的边缘细节。
3.小波降噪:小波降噪是一种利用小波变换的降噪方法,它在时频域上对图像进行分析和处理。
它能够通过消除噪声的高频分量来降低图像的噪声水平。
4.非局部均值降噪:非局部均值降噪是一种通过将像素值替换为与其相似的像素均值来减少噪声的方法。
它能够通过比较像素的相似性来区分图像中的噪声和细节,并有选择地进行降噪。
三、高效实现图像增强和降噪的算法1.并行计算:利用并行计算技术,如GPU加速、多线程等,在处理图像增强和降噪算法时,可以提高计算效率和算法的实时性。
图像增强—灰度变换及直方图均衡化试验目的试验原理及知识点

图像增强—灰度变换及直方图均衡化一、实验目的1、了解图像增强的目的及意义,加深对图像增强的感性认识,巩固所学理论知识。
2、掌握直接灰度变换的图像增强方法。
3、掌握灰度直方图的概念及其计算方法;4、掌握直方图均衡化的计算过程;二、实验原理及知识点1、图像增强是指按特定的需要突出一幅图像中的某些信息,同时,消弱或去除某些不需要的信息的处理方法。
其主要目的是处理后的图像对某些特定的应用比原来的图像更加有效。
图像增强可以在空间域中执行,也可以在变换域中执行。
2、空间域指的是图像平面本身,在空间域内处理图像是直接对图像的像素进行处理。
空间域处理方法分为两种:灰度级变换、空间滤波。
空间域技术直接对像素进行操作,其表达式为g(x,y)=T[f(x,y)]其中f(x,y)为输入图像,g(x,y)为输出图像,T是对图像f进行处理的操作符,定义在点(x,y)的指定邻域内。
定义点(x,y)的空间邻近区域的主要方法是,使用中心位于(x,y)的正方形或长方形区域。
此区域的中心从原点(如左上角)开始逐像素点移动,在移动的同时,该区域会包含不同的邻域。
T应用于每个位置(x,y),以便在该位置得到输出图像g。
在计算(x,y)处的g值时,只使用该领域的像素。
2、灰度变换T的最简单形式是使用领域大小为1×1,此时,(x,y)处的g值仅由f在该点处的亮度决定,T也变为一个灰度变换函数。
由于灰度变换函数仅取决于亮度的值,而与(x,y)无关,所以亮度函数通常可写做如下所示的简单形式:s=T(r)其中,r表示图像f中相应点(x,y)的亮度,s表示图像g中相应点(x,y)的亮度。
灰度拉伸又叫对比度拉伸是最基本的一种灰度变换,使用简单的分段线性变换函数,可以提高灰度的动态范围,适用于低对比度图像的处理,增强对比度。
3、直方图是多种空间城处理技术的基础。
直方图操作能有效地用于图像增强。
除了提供有用的图像统计资料外,直方图固有的信息在其他图像处理应用中也是非常有用的,如图像压缩与分割。
灰度对数变换

灰度对数变换
灰度对数变换是一种在数字图像处理中广泛使用的图像增强技术,它
可以通过对图像的灰度进行变换来实现对图像质量的提升。
在灰度对
数变换中,图像的灰度值被转换为对数空间中的值,从而达到增强图
像的目的。
灰度对数变换的具体步骤如下:
1. 将图像的灰度范围限定在0到1之间,这可以通过将灰度值除以255来实现。
2. 对图像的灰度进行对数变换,具体公式为s = c*log(1+r),其中,s 表示转换后的灰度值,r表示原始灰度值,c为常数。
3. 将灰度值范围恢复到0到255之间,这可以通过将转换后的灰度值乘以255来实现。
通过灰度对数变换,可以使得图像中低灰度值区域的对比度得到增加,从而使得图像的细节更加突出。
同时,由于该技术能够有效抑制噪声,因此在图像增强中应用非常广泛,例如在医学影像领域中常用于增强
X光图像的细节。
需要注意的是,灰度对数变换的常数c需要根据具体应用的图像进行选择。
在选择c值时,应该考虑到灰度级数的大小、灰度对数变换的灵敏度以及应用后图像的亮度和对比度等因素。
总之,灰度对数变换是一种简单而有效的图像增强技术。
在实际应用中,我们需要根据具体情况选择合适的常数c值,从而能够达到目标效果。
同时,需要注意该技术的局限性,例如对于梯度较强的图像,可能需要采用其他增强技术。
图像灰度变换 原理

图像灰度变换原理
图像灰度变换是一种图像处理的方法,通过改变图像的灰度级别来增强或调整图像的显示效果。
其原理是对图像中的每个像素点进行灰度级别的转换。
常用的灰度变换函数有线性灰度变换、非线性灰度变换和直方图均衡化。
线性灰度变换是指通过线性映射将原图像的灰度级别转换为新的灰度级别。
常见的线性灰度变换函数有平移、缩放和对比度调整。
平移是将当前灰度级别加上一个偏移量,从而改变整个图像的亮度。
缩放是将灰度级别乘上一个缩放因子,从而调整图像的对比度。
对比度调整是通过同时进行平移和缩放,改变图像的亮度和对比度。
非线性灰度变换是指通过非线性函数将原图像的灰度级别转换为新的灰度级别。
常见的非线性灰度变换函数有幂律变换和对数变换。
幂律变换是通过对原图像的每个像素点进行幂次运算,从而调整图像的亮度和对比度。
对数变换是将原图像的灰度级别取对数,从而改变图像的亮度和对比度。
直方图均衡化是一种将原图像的灰度级别映射到均匀分布的灰度级别上的方法。
其原理是通过计算原图像的灰度直方图,并根据直方图进行灰度级别的重新分布。
这样可以增强图像的对比度和细节,并改善图像的视觉效果。
通过灰度变换,可以调整图像的亮度、对比度、色彩等特性,从而改善图像的视觉效果、增强图像的细节和信息。
在图像处
理和计算机视觉领域,灰度变换是一种常用的图像增强和预处理方法。
图像增强-数字图像处理

图像增强
2.图像噪声的特点 (1)噪声在图像中的分布和大小不规则,即具有随机性。 (2)噪声与图像之间一般具有相关性。 (3)噪声具有叠加性。
图像增强
3.3.2 模板卷积 模板操作是数字图像处理中常用的一种邻域运算方式,
灰度变换就是把原图像的像素灰度经过某个函数变换成 新图像的灰度。常见的灰度变换法有直接灰度变换法和直方 图修正法。直接灰度变换法可以分为线性变换、分段线性变 换以及非线性变换。直方图修正法可以分为直方图均衡化和 直方图规定化。
图像增强
3.1.1 线性变换 假定原图像f(x,y)的灰度范围为[a ,b],希望变换后图像
ቤተ መጻሕፍቲ ባይዱ
图像增强
例如,假定一幅大小为64×64、灰度级为8个的图像,其灰 度分布及均衡化结果如表3-1 所示,均衡化前后的直方图及变 换用的累积直方图如图3-10所示,则其直方图均衡化的处理 过程如下。
图像增强
图像增强 由式(3-12)可得到一组变换函数:
依此类推:s3=0.81,s4=0.89,s5=0.95,s6=0.98,s7=1.0。变换函 数如图3-10(b)所示。
图像增强
1
图像增强
图3-1 灰度线性变换
图像增强
图3-2 灰度线性变换示例
图像增强
3.1.2 分段线性变换 为了突出感兴趣的灰度区间,相对抑制那些不感兴趣的
灰度区间,可采用分段线性变换。常用的3段线性变换如图33所示,L 表示图像总的灰度级数,其数学表达式为
图像增强
图3-3-分段线性变换
图像增强
设r 为灰度变换前的归一化灰度级(0≤r≤1),T(r)为变换函 数,s=T(r)为变换后的归一化灰度级(0≤s≤1),变换函数T(r)满足 下列条件:
灰度变换算法原理

灰度变换算法原理
灰度变换是一种将图像的灰度级进行适当调整的方法,可以改善图像的对比度和亮度。
灰度变换的基本原理是将输入图像的每个像素点的灰度级通过某种函数进行映射转换,并得到输出图像的像素灰度级。
常用的灰度变换函数有线性变换、非线性变换和直方图均衡化等。
1. 线性变换:
线性变换是灰度变换中最简单的一种方法。
它通过一个线性函数将输入图像的灰度级映射到输出图像的灰度级。
线性变换的数学表达式为:
g(x,y) = a*f(x,y) + b
其中,g(x,y)为输出图像的像素灰度级,f(x,y)为输入图像的像素灰度级,a和b为常数。
2. 非线性变换:
非线性变换是通过非线性函数将输入图像的灰度级映射到输出图像的灰度级。
非线性变换可以对输入图像的不同灰度级进行不同的映射处理,从而调整图像的对比度和亮度。
常用的非线性变换函数有幂次变换、对数变换和指数变换等。
3. 直方图均衡化:
直方图均衡化是一种通过对输入图像的直方图进行变换,从而使得输出图像具有更均匀的灰度分布的方法。
通过直方图均衡化,可以增强图像的对比度,使得图像中细节更加清晰。
直方图均衡化的基本原理是将输入图像的累计分布函数映射到均匀
分布,使得输出图像的直方图近似均匀。
总结起来,灰度变换算法原理是通过对输入图像的灰度级进行适当调整,使用线性变换、非线性变换,或者直方图均衡化等方法,从而改变输出图像的灰度级,达到调整图像对比度和亮度的目的。
利用基本灰度变换对图像进行增强

3 利用基本灰度变换对图像进行增强灰度变换原理:灰度变换是一种空域处理方法,其本质是按一定的规则修改每个像素的灰度,从而改变图像的动态范围实现期望的增强效果。
灰度变换按映射函数可分为线性、分段线性和非线性等多种形式。
3.1 线性灰度变换线性灰度变换是将输入图像灰度值的动态范围按线性关系公式拉伸扩展至指定范围或整个动态范围。
可突出感兴趣目标,抑制不感兴趣的目标。
在实际运算中,原图像f(x,y)的灰度范围为[a,b],使变换后图像g(x,y)的灰度扩展为[c,d],则采用下述线性变换来实现:c a y x f ab cd y x g +---=]),([),(线性灰度变换对图像每个灰度范围作线性拉伸,将有效地改善图像视觉效果。
源代码如下:1、利用灰度调整函数变换图像A=imread('e:\7.tif','tif'); %读入图像 B=imadjust(A,[0.1,0.8],[0,1]); %灰度调整 imwrite(B,'E:\ 1.tif'); %图像保存subplot(2,2,1);imshow(A); %显示调整前后图像及其直方图 subplot(2,2,2);imhist(A); subplot(2,2,3);imshow(B); subplot(2,2,4);imhist(B);0100200500010020050010002、利用灰度调整算法变换图像clear;a=60; %图像变换参数设定b=180;c=0;d=255;A=imread('pout.tif','tif'); %读入图像[m,n]=size(A);A=double(A);for i=1:1:m %灰度调整for j=1:1:nif (A(i,j)>=a)&(A(i,j)<b)B(i,j)=(A(i,j)-a)*(d-c)/(b-a)+c;endendenduint8(A); uint8(B);imwrite(B,'E:\2.tif'); %图像保存subplot(2,2,1); imshow(A); %显示调整前后图像及其直方图subplot(2,2,2); imhist(A);subplot(2,2,3); imshow(B);subplot(2,2,4); imhist(B);0100200500010020020004000600080003.2 分段线性灰度变换为了突出图像中感兴趣的研究对象,常常要求局部拉伸某一范围的灰度值,或对不同范围的灰度值进行不同拉伸处理,即分段线性拉伸,数学表达式如下:⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<+---≤<+---≤≤=MfyxfbdbyxfbMfdMgbyxfacayxfabcdayxfyxfacyxg),(]),([),(]),([),(),(),(源代码如下:clear;a=80; %图像变换参数设定b=160;Mf=255;c=50;d=200;Mg=255;A=imread('pout.tif','tif'); %读入图像 [m,n]=size(A); A=double(A);for i=1:1:m %灰度调整 for j=1:1:n if A(i,j)<aB(i,j)=(c/a)*A(i,j);elseif (A(i,j)>=a)&(A(i,j)<b)B(i,j)=(A(i,j)-a)*(d-c)/(b-a)+c; elseB(i,j)=(A(i,j)-b)*(Mg-d)/(Mf-b)+d; end end enduint8(A); uint8(B);imwrite(B,'E:\3.tif'); %图像保存subplot(2,2,1); imshow(A); %显示调整前后图像及其直方图 subplot(2,2,2); imhist(A); subplot(2,2,3); imshow(B); subplot(2,2,4);imhist(B);010020005001000100200020004000600080003.3 非线性灰度变换非线性灰度变换在整个灰度范围内采用统一的变换函数,利用变换函数的数学性质实现对不同灰度值区间的扩展和压缩。
图像的基本灰度变换

Digital Image Processing 数字图像处理实验DIP Lab 2数字图像处理实验2 —空间域增强(1):图像的灰度变换实验目的1.学习常见的图像增强的方法并实际体会图像增强前后画质的变化;2.了解几种不同增强方式用于不同图像处理所取得的效果;3.培养处理实际图像的能力并为课堂教学提供配套的实践机会。
实验要求1.利用MatLab工具箱中关于图像增强的函数对本指导书中的指定图像进行灰度增强处理;2.自己编制程序实现MatLab工具箱中函数以外的图像增强算法,对于本指导书中指定的图像进行处理。
实验内容一:灰度变换1.运用亮度变换函数imadjust对图像进行增强处理,观察图像对比度的变化。
实验教材P63 -642.学习教材【例2-21】和【例2-22】,实现对图像进行分段线性变换:编程实验:对图pout.tif ,将其小于30的灰度值不变,将30到150的灰度值拉伸到30到200,同时压缩150到255的灰度值到200到255之间.3.编程实验:对图像Fig3.04(a).jpg进行求反,观察图像处理前后的变化;4.验证实验:对图像进行对数变换,观察图像处理前后的变化;5.总结灰度变换增强方法处理的特点;常见图像格式数据类操作提示(续)w贴图时可以点击图像窗口的Edit,然后在下拉菜单中点击Copy Figure,即可将图像放入减切板,然后就可以在WORD文档中粘贴。
灰度变换原图像f(m,n) 的灰度范围[a,b] 线形变换为图像g(m,n),灰度范围[a’,b’]公式:g(m,n)=a’+(b’-a’)* f(m,n) /(b-a)运用灰度变换函数imadjustJ = imadjust(I,[low in;high in],[low out;high out],gamma)反转实验:思考用matlab自带函数imadjust实现图像反转,图3.4(a)思考题/问答题1.小结一下本实验所用的增强方法。
图像增强实验

一、实验目的1、了解图像增强的目的及意义,加深对图像增强的感性认识,巩固所学理论知识。
2、学会对图像直方图的分析。
3、掌握直接灰度变换的图像增强方法。
4、掌握直方图均衡化。
5、采用均值滤波、中值滤波实现图像平滑。
6、采用梯度方法、拉普拉斯算子、Sobel 算子和 Prewitt 算子实现图像锐化。
二、实验原理及知识点图像增强是指按特定的需要突出一幅图像中的某些信息,同时,消弱或去除某些不需要的信息的处理方法。
其主要目的是处理后的图像对某些特定的应用比原来的图像更加有效。
图像增强技术主要有直接灰度尺度变换、直方图修改处理、图像平滑化处理、图像尖锐化处理等。
1、 灰度变换灰度变换是图像增强的一种重要手段,它常用于改变图象的灰度范围及分布,是图象数字化及图象显示的重要工具。
在实际应用中,为了突出图像中感兴趣的研究对象,常常要求局部扩展拉伸某一范围的灰度值,或对不同范围的灰度值进行不同的拉伸处理。
若假定原图像f(x, y)的灰度范围为[a, b ],希望变换后图像 g(x, y)的灰度范围扩展至[c, d ],则线性变换可表示为:g (x , y )= [ f (x , y ) − a ] + c2、 直方图变换直方图是图像的最基本的统计特征,它反映的是图像的灰度值的分布情况。
直方图均衡化的目的是使图像在整个灰度值动态变化范围内的分布均匀化,改善图像的亮度分布状态,增强图像的视觉效果。
直方图均衡化是通过灰度变换将一幅图像转换为另一幅具有均衡直方图,即在每个灰度级上都具有相同的象素点数的过程。
依据定义,在离散形式下, 用 r k 代表离散灰度级,用 p r (r k )代表 p r (r ),并且有下式成立:ab c d --P r(r k)=n k0 ≤r k≤ 1 k= 0,1,2,L,l−1 n式中:n k为图像中出现r k级灰度的像素数,n是图像像素总数,而n k/n即为频数。
k nj ks k= T (r k)=∑=∑ p r(r j) 0≤ r j≤1 k =0,1,L,l −1nj =0j =03、空域滤波空域滤波是在图像空间中借助模板对图像进行领域操作,处理图像每一个像素的取值都是根据模板对输入像素相应领域内的像素值进行计算得到的。
图像增强最全的几种方法和手段

图像增强最全的几种方法和手段图像处理学院信息工程学院姓名钟佳杭班级14级物联网工程学号1440903010321、图像增强的原理及应用前景图象增强是图像处理的基本内容之一,图像增强是指按特定的需要突出一幅图像中的某些信息,同时削弱或去除某些不需要信息的处理方法,其目的是使得处理后的图像对某种特定的应用,比原始图像更合适。
增强图象中的有用信息,它是一个失真的过程,其目的是要改善图像的视觉效果,针对给定图像的应用场合,有目的地强调图像的整体或局部特性,将原来不清晰的图像变得清晰或强调某些感兴趣的特征,扩大图像中不同物体特征之间的差别,抑制不感兴趣的特征,使之改善图像质量、丰富信息量,加强图像判读和识别效果,满足某些特殊分析的需要。
近年来,随着消费型和专业型数码相机的日益普及,海量的图像数据正在被产生.但由于场景条件的影响,很多在高动态范围场景、昏暗环境或特殊光线条件下拍摄的图像视觉效果不佳,需要进行后期增强处理调整动态范围或提取一致色感才能满足显示和印刷的要求。
人类视觉系统具有强烈的全局和区域的自适应性和非线性,在多种不同的光照条件下都能清晰地辨识细节,具有电子设备所不可比拟的优势。
因此,图像增强引起了广泛的关注,很多图像增强方法在设计时考虑描述和模仿人类视觉系统的特性,以期获得符合人类视觉系统特性的增强效果。
2图像增强的算法分类图像增强算法可分成两大类:频率域法和空间域法。
前者把图像看成一种二维信号,对其进行基于二维傅里叶变换的信号增强。
基于频域的算法是在图像的某种变换域内对图像的变换系数值进行某种修正,是一种间接增强的算法。
采用低通滤波(即只让低频信号通过)法,可去掉图中的噪声;采用高通滤波法,则可增强边缘等高频信号,使模糊的图片变得清晰。
基于空域的算法处理时直接对图像灰度级做运算,具有代表性的空间域算法有局部求平均值法和中值滤波(取局部邻域中的中间像素值)法等,它们可用于去除或减弱噪声。
基于空域的算法分为点运算算法和邻域去噪算法。
图像增强与复原

4.1 图像增强 4.2 图像复原
目录
光电图像处理
4.1 图像增强
4.1.1 灰度变换
对比度:是指图像灰度的最大值与最小值之间的比值。 灰度变换
1.线性拉伸 线性灰度变换能将输入图像的灰度值的动态范围线性拉伸至指定 范围或整个动态范围。
g(x, y) a b'a' [ f (x, y) a] ba
光电图像处理
4.1 图像增强
4.1.4 图像锐化
1. 微分运算锐化 (1)一阶微分运算
梯度的幅值即模值,为:
对图像f施用梯度模算子,便可产生所谓的梯度图像g,g与f像素之 间的关系是
g(i, j) G[ f (i, j)]
(2)二阶微分运算 二阶微分一般指拉氏算子。拉氏算子是一个刻画图像变化的二阶微 分算子。它是线性算子,具有各向同步性和位移不变性。拉氏算子是点、 线、边界提取算子。
的均匀分布。经过灰度均衡变换后,图像中各个像素点之间的间隔被拉 大,使灰度值分布比较均衡,这样的效果是将原本偏暗的图像亮度得到 较大的提高。
光电图像处理
4.1 图像增强
4.1.3 图像空域平滑
图像平滑就是针对图像噪声的操作,其主要作用是为了消除噪声 1.邻域平均
邻域平均也叫做线性滤波,是用一个像素邻域内所有像素灰度值的平 均值来代替该像素灰度值的方法,所以也叫做均值滤波。设一幅大小为 N×N的图像f(x,y),邻域平均的计算为
化的灰度级用r表示,修正后的归一化灰度级用s表示,
0 ≤ r ≤ 1, 0 ≤ s ≤ 1 s=T (r)
令Pr(r)和Ps(s)分别表示原图像和变换后图像灰度级的概率密度函 数
光电图像处理
4.1 图像增强
数字图像处理方法-图像增强2

求出:k1和k2 求出:l1和l2
第五章 图像增强
23
空域处理—彩色图像增强
彩色平衡实现的算法
9 分别对R、G、B图像实施变换:
*=
+
R(x, y) k1*R(x, y) k 2
B(x, y)* = l1*B(x, y) + l2
G(x, y)* = G(x, y)
9 得到彩色平衡图像
第五章 图像增强
直方图均衡化的技术要点:
公理:直方图p(rk ),为常数的图像对比度最好
目标:寻找一个灰度变换函数T(r),使结果图像 的直方图p(sk )为一个常数
第五章 图像增强
3
空域处理—直方图增强
直方图均衡—灰度变换函数
1) 求出原图 f 的灰度直方图,设为h。h为一个256维的向 量。
2) 求出图像 f 的总体像素个数, Nf=m ×n
第五章 图像增强
32
空域处理—彩色图像增强
伪彩色增强
人类可以分辨比灰度层次更多的颜色种类 将灰度图像变换为彩色图像——伪彩色图像 方法:伪彩色变换,密度分割
伪彩色变换法—独立映射表变换法
9对灰度图像 f(x, y),建立颜色映射表:
IR
=
T (I ) R
IG
=
T (I ) G
I = T (I )
B
B
9形成RGB图像各分量为: R (x , y ) = T R ( f (x , y
))
第五章 图像增强
G (x, y ) = TG( f (x, y ))
B(x, y) = TB( f (x, y
33
))
空域处理—彩色图像增强
伪彩色变换流程
灰度线性变换

灰度线性变换
灰度线性变换是一种用于MCU图像增强处理的常用方法。
它是把图像
的每个像素点的灰度值从原始灰度级映射到新的灰度级,实现对图像亮度、对比度等特性进行调节,以达到增强图像质量的目的。
灰度线性变换的基
本形式是:s=a*r+b,其中,s、r分别表示图像灰度变化后和变化前的灰
度值,a、b分别为变化系数。
灰度线性变换的过程依赖于变换参数a、b的选取,a的取值范围是0
至1,表示变换的量度程度,也就是变化的幅度;而b的取值范围是0至255,表示变换的量度偏移,也就是亮度上的平衡值。
如果a取值大于1,就会使图像变得更亮,a取值小于1时,图像就会变暗;如果b取值大于1,则图像会变亮;反之,图像就变暗。
通过选择合适的变换参数,就可以实现灰度线性变换,使图像质量得
到提升。
此外,灰度线性变换还可以被用来增强图像的对比度,提高图像
的色彩饱和度,从而达到更好的视觉效果。
灰度变换原理

灰度变换原理灰度变换是数字图像处理中常用的一种方法,它可以通过对图像的灰度级进行变换,来实现对图像的增强、调整和处理。
灰度变换原理是基于对图像的灰度级进行映射,从而改变图像的对比度、亮度和色调,达到图像处理的目的。
在数字图像处理中,灰度变换是一种非常重要的技术,它在图像增强、边缘检测、图像分割等领域都有着广泛的应用。
灰度变换的原理可以通过以下几个步骤来进行简要的描述:1. 灰度级映射。
灰度变换的核心是对图像的灰度级进行映射,即将原始图像的灰度级映射到新的灰度级上。
这个映射关系可以通过一个函数来描述,通常用像素的灰度值作为自变量,用新的灰度值作为因变量。
这个函数可以是线性的,也可以是非线性的,通过这种映射关系,可以实现对图像灰度级的调整和变换。
2. 灰度变换函数。
灰度变换函数是描述灰度变换映射关系的数学表达式,它可以是线性的,也可以是非线性的。
常用的线性灰度变换函数包括对数变换、幂律变换和分段线性变换等,而非线性灰度变换函数则包括直方图均衡化、直方图匹配等。
不同的灰度变换函数可以实现不同的图像处理效果,如增强对比度、调整亮度、增强细节等。
3. 灰度变换的应用。
灰度变换在数字图像处理中有着广泛的应用,常见的应用包括图像增强、边缘检测、图像分割等。
在图像增强中,可以通过灰度变换来增强图像的对比度、调整图像的亮度和色调,使图像更加清晰和美观;在边缘检测中,可以通过灰度变换来突出图像中的边缘信息,方便后续的图像分析和处理;在图像分割中,可以通过灰度变换来将图像分割成不同的区域,便于对图像进行分析和识别。
总结。
灰度变换是数字图像处理中常用的一种方法,它通过对图像的灰度级进行映射,来实现对图像的增强、调整和处理。
灰度变换的原理是基于灰度级映射和灰度变换函数,通过这些数学关系,可以实现对图像的灰度级调整和变换。
灰度变换在图像增强、边缘检测、图像分割等领域都有着广泛的应用,是数字图像处理中的重要技术之一。
通过灰度变换,可以实现对图像的各种处理需求,为图像分析和识别提供了重要的技术支持。
三种不同灰度图像增强算法对比

三种不同灰度图像增强算法对比一、摘要本文主要是运用直方图均衡化、平滑、锐化三种常见的图像增强算法对图像进行处理,并在此基础上分别用这 3 种算法处理的灰度图像进行比较,比对它们对图像的处理效果, 分析 3 种方法在图像增强处理能力的优劣之处。
结果发现,直方图均衡化可以均衡图像的灰度等级, 经过直方图的均衡化,图像的细节更加清楚了,但是由于直方图均衡化没有考虑图像的内容,只是简单的将图像进行直方图均衡,提高图像的对比度,使图像看起来亮度过高,使图像细节受到损失;图像平滑的目的是减少或消除图像的噪声, 图像平滑可以使图像突兀的地方变得不明显, 但是会使图像模糊,这也是图像平滑后不可避免的后果,只能尽量减轻,尽量的平滑掉图像的噪声又尽量保持图像细节,这也是图像平滑研究的主要问题;图像锐化使图像的边缘、轮廓变得清晰,并使其细节清晰,常对图像进行微分处理,但是图像的信噪比有所下降。
关键词: 图像增强 灰度图 直方图 平滑 锐化二、三种图像增强算法图像预处理是相对图像识别、图像理解而言的一种前期处理,主要是指按需要进行适当的变换突出某些有用的信息,去除或削弱无用的信息,在对图像进行分析之前, 通常要对图像质量进行改善,改善的目的就是要使处理后的图像比原始图像更适合特定的应用。
影响图像清晰度的因素很多,主要有光照不足、线路传输收到干扰等。
现存的图像增强技术主要分为空间域法和频率域法两类,其中的增强方法主要有直方图的修正、灰度变换、图像平滑、图像锐化、伪彩色和假彩色处理等。
下面主要采用直方图均衡化、图像平滑、图像线性锐化对图像进行增强处理, 对比他们的处理效果,分析 3 种方法的在图像增强处理方面的优劣。
1、直方图均衡化直方图均衡化也称为直方图均匀化,是一种常见的灰度增强算法,是将原图像的直方图经过变换函数修整为均匀直方图,然后按均衡后的直方图修整原图像。
为方便研究,先将直方图归一化,然后图像增强变换函数需要满足2个条件。
OpenCV图像处理之常见的图像灰度变换

OpenCV图像处理之常见的图像灰度变换1.灰度线性变换图像的灰度线性变换是图像灰度变换的⼀种,图像的灰度变换通过建⽴灰度映射来调整源图像的灰度,从⽽达到图像增强的⽬的。
灰度映射通常是⽤灰度变换曲线来进⾏表⽰。
通常来说,它是将图像的像素值通过指定的线性函数进⾏变换,以此来增强或者来减弱图像的灰度,灰度线性变换的函数就是常见的线性函数。
g(x, y) = k · f(x, y) + d设源图像的灰度值为x,则进⾏灰度线性变换后的灰度值为y = kx + b (0<=y<=255),下⾯分别来讨论k的取值变化时线性变换的不同效果(1).|k|>1时当k>1时,可以⽤来增加图像的对⽐度,图像的像素值在进⾏变换后全部都线性⽅法,增强了整体的显⽰效果,且经过这种变换后,图像的整体对⽐度明显增⼤,在灰度图中的体现就是变换后的灰度图明显被拉伸了。
(2).|k|=1时当k=1时,这种情况下常⽤来调节图像的亮度,亮度的调节就是让图像的各个像素值都增加或是减少⼀定量。
在这种情况下可以通过改变d值来达到增加或者是减少图像亮度的⽬的。
因为当k=1,只改变d 值时,只有图像的亮度被改变了,d>0时,变换曲线整体发⽣上移,图像的亮度增加,对应的直⽅图整体向右侧移动,d<0时,变换曲线整体下移,图像的亮度降低,对应的直⽅图发⽣⽔平左移。
(3).0<|k|<1时此时变换的效果正好与k>1时相反,即图像的整体对⽐度和效果都被削减了,对应的直⽅图会被集中在⼀段区域上。
k值越⼩,图像的灰度分布也就越窄,图像看起来也就显得越是灰暗。
(4).k<0时在这种情况下,源图像的灰度会发⽣反转,也就是原图像中较亮的区域会变暗,⽽较暗的区域将会变量。
特别的,此时我们令k = -1,d = 255,可以令图像实现完全反转的效果。
对应的直⽅图也会发⽣相应的变化。
相应的程序试下如下://实现图像的灰度线性变化#include <iostream>#include <opencv2\core\core.hpp>#include <opencv2\highgui\highgui.hpp>#include <opencv2\imgproc\imgproc.hpp>using namespace std;using namespace cv;int main(){Mat srcImg = imread("1234.jpg");if (!srcImg.data){cout << "读⼊图⽚失败" << endl;return -1;}imshow("原图像", srcImg);double k, b;cout << "请输⼊k和b值:";cin >> k >> b;int RowsNum = srcImg.rows;int ColsNum = srcImg.cols;Mat dstImg(srcImg.size(), srcImg.type());//进⾏遍历图像像素,对每个像素进⾏相应的线性变换for (int i = 0; i < RowsNum; i++){for (int j = 0; j < ColsNum; j++){//c为遍历图像的三个通道for (int c = 0; c < 3; c++){//使⽤at操作符,防⽌越界dstImg.at<Vec3b>(i, j)[c] = saturate_cast<uchar>(k* (srcImg.at<Vec3b>(i, j)[c]) + b);}}}imshow("线性变换后的图像", dstImg);waitKey();return 0;}当k=1.2,b=50时执⾏程序的效果如下:2.灰度对数变换对数变换的基本形式为其中,b是⼀个常数,⽤来控制曲线的弯曲程度,其中,b越⼩越靠近y轴,b越⼤越靠近x轴。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 利用基本灰度变换对图像进行增强
灰度变换原理:灰度变换是一种空域处理方法,其本质是按一定的规则修改每个像素的灰度,从而改变图像的动态范围实现期望的增强效果。
灰度变换按映射函数可分为线性、分段线性和非线性等多种形式。
3.1 线性灰度变换
线性灰度变换是将输入图像灰度值的动态范围按线性关系公式拉伸扩展至指定范围或整个动态范围。
可突出感兴趣目标,抑制不感兴趣的目标。
在实际运算中,原图像f(x,y)的灰度范围为[a,b],使变换后图像g(x,y)的灰度扩展为[c,d],则采用下述线性变换来实现:
c a y x f a
b c
d y x g +---=]),([),(
线性灰度变换对图像每个灰度范围作线性拉伸,将有效地改善图像视觉效果。
源代码如下:
1、利用灰度调整函数变换图像
A=imread('e:\7.tif','tif'); %读入图像 B=imadjust(A,[0.1,0.8],[0,1]); %灰度调整 imwrite(B,'E:\ 1.tif'); %图像保存
subplot(2,2,1);imshow(A); %显示调整前后图像及其直方图 subplot(2,2,2);imhist(A); subplot(2,2,3);imshow(B); subplot(2,2,4);imhist(B);
0100200
500
1000
0100200
500
1000
2、利用灰度调整算法变换图像
clear;
a=60; %图像变换参数设定
b=180;
c=0;
d=255;
A=imread('pout.tif','tif'); %读入图像
[m,n]=size(A);
A=double(A);
for i=1:1:m %灰度调整
for j=1:1:n
if (A(i,j)>=a)&(A(i,j)<b)
B(i,j)=(A(i,j)-a)*(d-c)/(b-a)+c;
end
end
end
uint8(A); uint8(B);
imwrite(B,'E:\2.tif'); %图像保存
subplot(2,2,1); imshow(A); %显示调整前后图像及其直方图subplot(2,2,2); imhist(A);
subplot(2,2,3); imshow(B); subplot(2,2,4);
imhist(B);
100
200
0500
1000
100
200
02000
40006000
8000
3.2 分段线性灰度变换
为了突出图像中感兴趣的研究对象,常常要求局部拉伸某一范围的灰度值,或对不同范围的灰度值进行不同拉伸处理,即分段线性拉伸,数学表达式如下:
⎪⎪⎪
⎩
⎪⎪
⎪⎨⎧≤<+---≤<+---≤≤=Mf y x f b d
b y x f b Mf d
Mg b y x f a c a y x f a b c
d a y x f y x f a c
y x g ),(]),([),(]),([),(0)
,(),(
源代码如下: clear;
a=80; %图像变换参数设定
b=160;
Mf=255;
c=50;
d=200;
Mg=255;
A=imread('pout.tif','tif'); %读入图像
[m,n]=size(A);
A=double(A);
for i=1:1:m %灰度调整
for j=1:1:n
if A(i,j)<a
B(i,j)=(c/a)*A(i,j);
elseif (A(i,j)>=a)&(A(i,j)<b)
B(i,j)=(A(i,j)-a)*(d-c)/(b-a)+c;
else
B(i,j)=(A(i,j)-b)*(Mg-d)/(Mf-b)+d;
end
end
end
uint8(A); uint8(B);
imwrite(B,'E:\3.tif'); %图像保存
subplot(2,2,1); imshow(A); %显示调整前后图像及其直方图subplot(2,2,2); imhist(A);
subplot(2,2,3); imshow(B);
subplot(2,2,4); imhist(B);
0100
200
0500
1000
100
200
02000
40006000
8000
3.3 非线性灰度变换
非线性灰度变换在整个灰度范围内采用统一的变换函数,利用变换函数的数学性质实现对不同灰度值区间的扩展和压缩。
1、对数扩展。
对数变换常用来扩展低值灰度,压缩高值灰度,这样可以使低值灰度的图像细节更容易看清,从而达到增强的效果。
还可使图像灰度分布与人视觉特性相匹配。
其具体形式为: ]1),(ln[),(+=y x f c y x g
式中:[f(x,y)+1]是为了避免对零求对数;C 为尺度比例系数,用于调节动态范围。
源代码如下: clear;
A=imread('pout.tif','tif'); %读入图像 B=log(A+1); %灰度调整 imwrite(B,'e:\4.tif'); %图像保存
subplot(2,2,1); imshow(A); %显示调整前后图像及其直方图 subplot(2,2,2); imhist(A);
subplot(2,2,3); imshow(B); subplot(2,2,4); imhist(B);
2、指数扩展。
指数扩展的基本形式为: 1),(]),([-=-a y x f c b y x g
式中:a 为可以改变曲线的起始位置;c 为可以改变曲线的变化速率,指数扩展可以对图像的高亮度进行大幅扩展。
源代码如下: clear;
a=0.45; %图像变换参数设定 b=255; c=255;
A=imread('pout.tif','tif'); [m,n]=size(A); B=im2double(A); for i=1:1:m for j=1:1:n
B(i,j)=uint8(b^(c*(B(i,j)-a))-1); end end
imwrite(B,'E:\4.tif'); %图像保存
subplot(1,2,1); imshow(D); %显示调整前后图像及其直方图 subplot(1,2,2); imhist(D);。