中考数学专题探究-动手操作问题
中考数学专题复习——操作探究(详细答案)
中考数学专题复习——操作探究一.选择题1.(2018•临安•3 分.)如图,正方形硬纸片A BCD的边长是4,点E.F分别是A B.BC的中点,若沿左图中的虚线剪开,拼成如图的一座“小别墅”,则图中阴影部分的面积是()A.2 B.4 C.8 D.102. (2018•嘉兴•3 分)将一张正方形纸片按如图步骤①,②沿虚线对折两次,然后沿③中平行于底边的虚线剪去一个角,展开铺平后的图形是()A. (A)B. (B)C. (C)D. (D)3. (2018•广西南宁•3 分)如图,矩形纸片A BCD,AB=4,BC=3,点P在B C 边上,将△CDP 沿D P 折叠,点C落在点E处,PE.DE 分别交A B 于点O、F,且O P=OF,则c os∠ADF 的值为()A.1113B.1315C.1517D.17194.(2018•海南•3 分)如图1,分别沿长方形纸片A BCD 和正方形纸片E FGH 的对角线A C,EG 剪开,拼成如图2所示的▱KLMN,若中间空白部分四边形O PQR 恰好是正方形,且▱KLMN 的面积为50,则正方形E FGH 的面积为()A.24 B.25 C.26 D.27二、填空题1. (2018•杭州•4 分)折叠矩形纸片 ABCD 时,发现可以进行如下操作:①把△ADE 翻折,点A落在D C 边上的点F处,折痕为D E,点E在A B 边上;②把纸片展开并铺平;③把△CDG 翻折,点C落在直线A E 上的点H处,折痕为D G,点G在B C 边上,若AB=AD+2,EH=1,则A D= 。
2.(2018•临安•3 分.)马小虎准备制作一个封闭的正方体盒子,他先用5 个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子(添加所有符合要求的正方形,添加的正方形用阴影表示).3.(2018•金华、丽水•4分)如图2,小靓用七巧板拼成一幅装饰图,放入长方形A BCD内,装饰图中的三角形顶点E,F分别在边A B,BC上,三角形①的边G D在边A D上,则ABBC的值是.4. (2018·湖北省恩施·3 分)在Rt△ABC 中,AB=1,∠A=60°,∠AB C=90°,如图所示将R t△ABC沿直线l无滑动地滚动至R t△DE F,则点B所经过的路径与直线l所围成的封闭图形的面积为.(结果不取近似值)5.(2018•贵州贵阳•8 分)如图①,在 R t△ABC 中,以下是小亮探究sin a A 与sin bB之间关系 的方法:∵sin A=a c ,sinB=b c ∴c =sin a A ,c=sin b B∴sin a A =sin b B根据你掌握的三角函数知识.在图②的锐角△ABC 中,探究sin a A 、sin b B 、sin cC之间的关 系,并写出探究过程.三.解答题1.(2018•江苏无锡•10 分)如图,平面直角坐标系中,已知点 B 的坐标为(6,4). (1)请用直尺(不带刻度)和圆规作一条直线 A C ,它与 x 轴和 y 轴的正半轴分别交于点 A 和点 C ,且使∠AB C=90°,△ABC 与△AOC 的面积相等.(作图不必写作法,但要保留作图痕迹.) (2)问:(1)中这样的直线 A C 是否唯一?若唯一,请说明理由;若不唯一,请在图中画出 所有这样的直线 A C ,并写出与之对应的函数表达式.2.(2018•江苏徐州•7 分)如图,方格纸中的每个小方格都是边长为 1 个单位的正方形,在 建立平面直角坐标系后,△ABC 的顶点均在格点上,点 B 的坐标为(1,0)①画出△A BC 关于 x 轴对称的△A 1B 1C 1;②画出将△ABC 绕原点 O 按逆时针旋转 90°所得的△A 2B 2C 2;③△A 1B 1C 1 与△A 2B 2C 2 成轴对称图形吗?若成轴对称图形,画出所有的对称轴;④△A 1B 1C 1 与△A 2B 2C 2 成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标.3.(2018•山东东营市•10 分)(1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△A BC 中,点O在线段B C 上,∠BA O=30°,∠O AC=75°,AO=BO:CO=1:3,求A B 的长.经过社团成员讨论发现,过点B作B D∥A C,交A O 的延长线于点D,通过构造△A BD 就可以解决.问题(如图2)请回答:∠ADB= 75 °,AB= .(2)请参考以上解决思路,解决问题:在四边形A BCD 中,对角线A C 与B D 相交于点O,A C⊥AD,A O=ABC=∠A CB=75°,如图3,BO:OD=1:3,求D C 的长.4.(2018•山东济宁市•7分)在一次数学活动课中,某数学小组探究求环形花坛(如图所示)面积的方法,现有以下工具;①卷尺;②直棒EF;③T 型尺(CD 所在的直线垂直平分线段AB).(1)在图1 中,请你画出用T 形尺找大圆圆心的示意图(保留画图痕迹,不写画法);(2)如图2,小华说:“我只用一根直棒和一个卷尺就可以求出环形花坛的面积,具体做法如下:将直棒放置到与小圆相切,用卷尺量出此时直棒与大圆两交点M,N 之间的距离,就可求出环形花坛的面积”如果测得MN=10m,请你求出这个环形花坛的面积.5.一节数学课上,老师提出了这样一个问题:如图1,点P 是正方形ABCD 内一点,PA=1,PB=2,PC=3.你能求出∠A PB 的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将△B PC 绕点B逆时针旋转90°,得到△BP′A,连接P P′,求出∠APB的度数;思路二:将△A PB 绕点B顺时针旋转90°,得到△CP'B,连接P P′,求出∠APB 的度数.请参考小明的思路,任选一种写出完整的解答过程.【类比探究】如图2,若点P是正方形A BCD 外一点,PA=3,PB=1,PB 的度数.答案详解一.选择题(2018•临安•3 分.)如图,正方形硬纸片A BCD的边长是4,点E.F分别是A B.BC的中点,若沿左1.图中的虚线剪开,拼成如图的一座“小别墅”,则图中阴影部分的面积是()A.2 B.4 C.8 D.10【分析】本题考查空间想象能力.【解答】解:阴影部分由一个等腰直角三角形和一个直角梯形组成,由第一个图形可知:阴影部分的两部分可构成正方形的四分之一,正方形的面积=4×4=16,∴图中阴影部分的面积是16÷4=4.故选:B.【点评】解决本题的关键是得到阴影部分的组成与原正方形面积之间的关系2. (2018•嘉兴•3分)将一张正方形纸片按如图步骤①,②沿虚线对折两次,然后沿③中平行于底边的虚线剪去一个角,展开铺平后的图形是()A. (A)B. (B)C. (C)D. (D)【答案】A【分析】根据两次折叠都是沿着正方形的对角线折叠, 展开后所得图形的顶点一定在【解析】正方形的对角线上, 根据③的剪法,中间应该是一个正方形.【解答】根据题意,两次折叠都是沿着正方形的对角线折叠的,根据③的剪法,展开后所得图形的顶点一定在正方形的对角线上,而且中间应该是一个正方形.故选A.【点评】关键是要理解折叠的过程,得到关键信息,如本题得到展开后的图形的顶点在正方形的对角线上是解题的关键.3. (2018•广西南宁•3分)如图,矩形纸片A BCD,AB=4,BC=3,点P在B C 边上,将△C DP 沿D P 折叠,点C落在点E处,PE.DE 分别交A B 于点O、F,且O P=OF,则c o s∠ADF 的值为()A.1113B.1315C.1517D.1719【分析】根据折叠的性质可得出DC=DE.CP=EP,由∠EOF=∠B OP、∠B=∠E.OP=OF 可得出△OE F≌△OBP(AAS),根据全等三角形的性质可得出O E=OB.EF=BP,设E F=x,则B P=x、DF=4﹣x、BF=PC=3﹣x,进而可得出A F=1+x,在R t△DAF 中,利用勾股定理可求出x的值,再利用余弦的定义即可求出c o s∠A DF 的值.【解答】解:根据折叠,可知:△D CP≌△DE P,∴DC=DE=4,CP=EP.在△O EF 和△O BP 中,EOF BOPB EOP OF∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△O EF≌△OB P(AAS),∴OE=OB,EF=BP.设E F=x,则B P=x,DF=DE﹣EF=4﹣x,又∵B F=OB+OF=OE+OP=PE=PC,PC=BC﹣BP=3﹣x,∴AF=AB﹣BF=1+x.在R t△DAF中,AF 2+AD2=DF2,即(1+x)2+32=(4﹣x)2,解得:x=35,∴DF=4﹣x=175,∴co s∠AD F=AD DF=1517.故选:C.【点评】本题考查了全等三角形的判定与性质、勾股定理以及解直角三角形,利用勾股定理 结合 A F=1+x ,求出 A F 的长度是解题的关键.4.(2018•海南•3 分)如图 1,分别沿长方形纸片 A BCD 和正方形纸片 E FGH 的对角线 A C ,EG 剪开,拼成如图 2 所示的▱KLMN ,若中间空白部分四边形 O PQR 恰好是正方形,且▱KLMN 的面 积为 50,则正方形 E FGH 的面积为( )A .24B .25C .26D .27【分析】如图,设 P M=PL=NR=AR=a ,正方形 O RQP 的边长为 b ,构建方程即可解决问题; 【解答】解:如图,设 P M=PL=NR=AR=a ,正方形 O RQP 的边长为 b .由题意:a 2+b 2+(a+b )(a ﹣b )=50, ∴a 2=25,∴正方形 E FGH 的面积=a 2=25, 故选:B .【点评】本题考查图形的拼剪,矩形的性质,正方形的性质等知识,解题的关键是学会利用 参数构建方程解决问题,学会利用数形结合的思想解决问题,属于中考选择题中的压轴题.二.填空题1. (2018•杭州•4 分)折叠矩形纸片 ABCD 时,发现可以进行如下操作:①把△ADE 翻折,点 A 落在 D C 边上的点 F 处,折痕为 D E ,点 E 在 A B 边上;②把纸 片展开并铺平;③把△CDG 翻折,点 C 落在直线 A E 上的点 H 处,折痕为 D G ,点 G 在 B C 边上, 若 AB=AD+2,EH=1,则 A D= 。
北师大中考数学总复习《操作探究型问题》课件
探究三 平移旋转操作探究问题 例3 [2013·山西改编] 数学活动——求重叠部分的面积.
问题情境:数学活动课上,老师出示了一个问题:
如图41-4,将两块全等的直角三角形纸片△ABC和△DEF叠放在 一起,其中∠ACB=∠E=90°,BC=DE=6,AC=FE=8,顶点D 与边AB的中点重合,DE经过点C,DF交AC于点G. 求重叠部分(△DCG)的面积.
图41-1
小明发现:分别延长QE,MF,NG,PH,交FA,GB,HC,ED的延
长线于点R,S,T,W,可得△RQF,△SMG,△TNH,△WPE是四
个全等的等腰直角三角形(如图41-1②). 请回答: (1)若将上述四个等腰直角三角形拼成一个新的正方形(无缝隙, 不重叠),则这个新的正方形的边长为________a ; (2)求正方形MNPQ的面积;
图41-4
求重叠部分(△DCG)的面积. (1)独立思考:请解答老师提出的问题;
ቤተ መጻሕፍቲ ባይዱ
(2)合作交流:“希望”小组受此问题的启发,将△DEF绕点 D旋转,使DE⊥AB交AC于点H,DF交AC于点G,如图41-5,你 能求出重叠部分(△DGH)的面积吗?请写出解答过程.
图41-5
例题分层分析 (1)为求△DCG的面积,需要研究该三角形的边角的特征; (2)当将△DEF绕点D旋转,使DE⊥AB交AC于点H,此时G点 是AH的中点吗?△DGH的面积与△DAH的面积之间是倍分关 系吗? 解题方法点析 此类问题通过平移、旋转等动态过程创建了一个探究问题 的情景和一个思维空间.解答中常常需要分类讨论、自主 探究、叙述推理.关键是掌握好平移前后,旋转前后的图 形是全等形.平移前后,每一个点移动的方向相同、距离 相等;旋转前后图形上每一点的旋转角度都相同.
2020年中考数学专题复习教学案--动手操作题(附答案)
同步测试4
(2020最新模拟·南宁)已知 在平面直角坐标系中的位置如图16所示.画出 绕点 按顺时针方向旋转 .
【答案】旋转后的图形如图17.
动手操作题
近年来中考数学试题加强了对学生动手操作能力的考查,出现了一类新题型--动手操作题.这类试题能够有效地考查学生的实践能力、创新意识和直觉思维能力.解决这类问题需要通过观察、操作、比较、猜想、分析、综合、抽象和概括等实践活动和思维过程,灵活运用所学知识和生活经验,探索和发现结论,从而解决问题.
5.将任意三角形剪切可以拼成一个与此三角形面积相等的矩形.
方法如下(如图23—1):
请你类似上面图示的方பைடு நூலகம்,解答下列的问题:
(1)对任意三角形(如图23—2),设计一种与上例不同的方案,将它分成若干块,再拼成一个与原三角形面积相等的矩形.
(2)对任意四边形(如图23—3),设计一种方案,将它分成若干块,再拼成一个与原四边形面积相等的矩形.
【答案】1.
类型二:图形拼接型动手操作题
图形拼接问题,就是将已知的若干个图形重新拼合成符合条件的新图形.
例2(2020最新模拟·安徽)如图5,将正方形沿图中虚线(其中x<y)剪成①②③④四块图形,用这四块图形恰能拼成一个矩形(非正方形).请画出拼成的矩形的简图.
【分析与解答】我们观察图5中的4块图形各边之间的对应关系,找出能拼接在一起的边,如图6就是一种拼接方法.
中考数学试题中动手操作题可分为图形折叠型动手操作题、图形拼接型动手操作题、图形分割型动手操作题和作图型动手操作题等四种类型.
一道中考动手操作探究题的变式与拓展
t gr以
多题 、 题 多解 、 一 多题 一解 的方式 , 学 生 使 触 类 旁通 ,从 多 方 面感 知数 学 的 思 想 方 法 , 养 学 生 的应 变 能 力 , 高 学 生 分 析 培 提 问题 、解 决 问 题 的 能 力.下 面 , 笔 者 以
2 0 年 上海 市 的 一 道 中 考数 学 试 题 为 例 01
() 1当点 Q 边 C 上 时 , 在 D 线段 | 与 线 P Q
得N = . Q MP
投稿 箱, j v 3 o 邮 s k i1 . m x @ p6c
A
数 学教学通讯 ( 师版 ) … … … … … 教
试 题研究 试题探 究
M
\
』 D v
Q
线, C 交 于 点 Q 改 为 “ 一 边 与 线 段 f 相  ̄D ” 另
D 相 交 于点 , 余 条件 不 变 , 究线 段 A 其 探
P E与线 段 P B之 间 有 怎 样 的 大 小 关 系.如
下题 :
DC AD AC BC AB
所 以 矩 形AG
所 以 一G BC P
试 题研究 , 探究 试题
数学教学通讯 ( 师版 ) 教
投 稿邮箱: j v . 3 o sk i1 . m x @ p6c
福建 大田第二 中学
一一 删 一 一 ~ ~
朱成灯
360 6 10
一
椿
在 中考 总 复 习 中 . 如何 让 学 生 从 “ 题
海 ” 跳 出来 , 中 在短 时间 内熟 练 掌握 初 中 段馏 之 间有 怎样 的大 小 关 系 ?试 证 明你 观察 得 到 的结论 ;
数学中考冲刺:动手操作与运动变换型问题--知识讲解(提高)
中考冲刺:动手操作与运动变换型问题—知识讲解(提高)【中考展望】1.对于实践操作型问题,在解题过程中学生能够感受到数学学习的情趣与价值,经历“数学化”和“再创造”的过程,不断提高自己的创新意识与综合能力,这是《全日制义务教育数学课程标准(实验稿)》的基本要求之一,因此,近年来实践操作性试题受到命题者的重视,多次出现.2.估计在今年的中考题中,实践操作类题目依旧是出题热点,仍符合常规题型,与三角形的全等和四边形的性质综合考查.需具备一定的分析问题能力和归纳推理能力.图形的设计与操作问题,主要分为如下一些类型:1.已知设计好的图案,求设计方案(如:在什么基本图案的基础上,进行何种图形变换等).2.利用基本图案设计符合要求的图案(如:设计轴对称图形,中心对称图形,面积或形状符合特定要求的图形等).3.图形分割与重组(如:通过对原图形进行分割、重组,使形状满足特定要求).4.动手操作(通过折叠、裁剪等手段制作特定图案).解决这样的问题,除了需要运用各种基本的图形变换(平移、轴对称、旋转、位似)外,还需要综合运用代数、几何知识对图形进行分析、计算、证明,以获得重要的数据,辅助图案设计.另外,由于折叠操作相当于构造轴对称变换,因此折叠问题中,要充分利用轴对称变换的特性,以获得更多的图形信息.必要时,实际动手配合上理论分析比单纯的理论分析更为快捷有效.从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的.动态问题一般分两类,一类是代数综合题,在坐标系中有动点,动直线,一般是利用多种函数交叉求解.另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考查.所以说,动态问题是中考数学当中的重中之重,只有完全掌握,才有机会拼高分.【方法点拨】实践操作问题:解答实践操作题的关键是要学会自觉地运用数学知识去观察、分析、抽象、概括所给的实际问题,揭示其数学本质,并转化为我们所熟悉的数学问题.解答实践操作题的基本步骤为:从实例或实物出发,通过具体操作实验,发现其中可能存在的规律,提出问题,检验猜想.在解答过程中一般需要经历操作、观察、思考、想象、推理、探索、发现、总结、归纳等实践活动过程,利用自己已有的生活经验和数学知识去感知发生的现象,从而发现所得到的结论,进而解决问题.动态几何问题:1、动态几何常见类型(1)点动问题(一个动点)(2)线动问题(二个动点)(3)面动问题(三个动点)2、运动形式平移、旋转、翻折、滚动3、数学思想函数思想、方程思想、分类思想、转化思想、数形结合思想4、解题思路(1)化动为静,动中求静(2)建立联系,计算说明(3)特殊探路,一般推证【典型例题】类型一、图形的剪拼问题1.直角三角形通过剪切可以拼成一个与该直角三角形面积相等的矩形.方法如下(如图所示):请你用上面图示的方法,解答下列问题:(1)对下图中的三角形,设计一种方案,将它分成若干块,再拼成一个与原三角形面积相等的矩形;(2)对下图中的四边形,设计一种方案,将它分成若干块,再拼成一个与原四边形面积相等的矩形.【思路点拨】对于三角形的分割重组,要想拼成一个矩形,则分割时必须构造出直角来,示例中通过作中位线的垂线段而分割出①③两个直角三角形.对于四边形的分割重组,可以先把四边形转化为三角形的问题,再利用三角形的分割重组方法进行.【答案与解析】解:(1)如图所示:(2)如图所示:【总结升华】按照三角形的剪拼方法,探索规律,将任意四边形先分割成三角形,再进行剪拼,使学生经历由简单到复杂的探索过程.举一反三:【变式】(2016•绥化)把一张正方形纸片如图①、图②对折两次后,再按如图③挖去一个三角形小孔,则展开后图形是()A. B. C. D.【答案】A .当正方形纸片两次沿对角线对折成为一直角三角形时,在直角三角形中间的位置上剪三角形,则直角顶点处完好,即原正方形中间无损,且三角形关于对角线对称,三角形的AB边平行于正方形的边.再结合C点位置可得答案为C.故选C .类型二、实践操作2.如图所示,现有一张边长为4的正方形纸片ABCD ,点P 为正方形AD 边上的一点(不与点A 、点D 重合)将正方形纸片折叠,使点B 落在P 处,点C 落在G 处,PG 交DC 于H ,折痕为EF ,连接BP 、BH .(1)求证:∠APB =∠BPH ;(2)当点P 在边AD 上移动时,△PDH 的周长是否发生变化?并证明你的结论;(3)设AP 为x ,四边形EFGP 的面积为S ,求出S 与x 的函数关系式,试问S 是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.【思路点拨】 (1)要证∠APB=∠BPH ,由内错角∠APB=∠PBC ,即证∠PBC=∠BPH ,折叠后∠EBP=∠EPB=90°,再由性质等角的余角相等即可得证.(2)△PHD 的周长为PD+DH+PH .过B 作BQ ⊥PH 构造直角三角形,再利用三角形全等:△ABP ≌△QBP 和△BCH ≌△BQH .证明AP=QP , CH=QH ,可得其周长为定值.(3)1()2S BE CF BC =+,关键是用x 来表示BE 、CF .过F 作FM ⊥AB ,垂足为M ,先由边角关系得△EFM ≌△BPA ,得EM AP ==x .在Rt △APE 中可由勾股定理表示出BE ,再由228x CF BE EM x =-=+-,很容易用x 表示出S ,再配方求最值.【答案与解析】解:(1)∵PE=BE ,∴∠EBP=∠EPB .又∵∠EPH=∠EBC=90°,∴∠EPH-∠EPB=∠EBC-∠EBP .即∠PBC=∠BPH .又∵AD ∥BC ,∴∠APB=∠PBC .∴∠APB=∠BPH .(2)△PHD 的周长不变,为定值 8.证明:过B 作BQ ⊥PH ,垂足为Q .由(1)知∠APB=∠BPH ,又∵∠A=∠BQP=90°,BP=BP ,∴△ABP ≌△QBP .∴AP=QP , AB=BQ .又∵ AB=BC ,∴BC = BQ .又∵∠C=∠BQH=90°,BH=BH ,∴△BCH ≌△BQH .∴CH=QH .∴△PHD 的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.(3)过F 作FM ⊥AB ,垂足为M ,则FM BC AB ==.又EF 为折痕,∴EF ⊥BP .∴90EFM MEF ABP BEF ∠+∠=∠+∠=︒,∴EFM ABP ∠=∠.又∵∠A=∠EMF=90°,∴△EFM ≌△BPA .∴EM AP ==x .∴在Rt △APE 中,222(4)BE x BE -+=. 解得,228x BE =+. ∴228x CF BE EM x =-=+-. 又四边形PEFG 与四边形BEFC 全等, ∴211()(4)4224x S BE CF BC x =+=+-⨯. 即:21282S x x =-+. 配方得,21(2)62S x =-+, ∴当x =2时,S 有最小值6.【总结升华】本题将函数和几何知识较好的综合起来,对能力的要求较高.本题考查了三角形全等、正方形的性质、勾股定理、梯形的面积公式、折叠的性质、二次函数等相关知识.难度较大,是一道很好的压轴题,通过此题能够反映出学生的思维能力及数学知识的掌握程度,解答本题要学会将题目中的已知量与待求量联系起来.此题的关键是证明几组三角形的全等,以及用x 来表示S .3.刘卫同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,∠B =90°,∠C =60°,∠A =30°,BC =6 cm ;图②中,∠D =90°,∠E =45°,DE =4 cm .图③是刘卫同学所做的一个实验:他将△DEF 的直角边DE 与△ABC 的斜边AC 重合在一起,并将△DEF 沿AC 方向移动.在移动过程中,D 、E 两点始终在AC 边上(移动开始时点D 与点A 重合).(1)在△DEF 沿AC 方向移动的过程中,刘卫同学发现:F 、C 两点间的距离逐渐________.(填“不变”、“变大”或“变小”)(2)刘卫同学经过进一步地研究,编制了如下问题:问题①:当△DEF 移动至什么位置,即AD 的长为多少时,F 、C 的连线与AB 平行?问题②:当△DEF 移动至什么位置,即AD 的长为多少时,以线段AD 、FC 、BC 的长度为三边长的三角形是直角三角形?问题③:在△DEF 的移动过程中,是否存在某个位置,使得∠FCD =15°?如果存在,求出AD 的长度;如果不存在,请说明理由.请你分别完成上述三个问题的解答过程.【思路点拨】本题以动三角形为背景,考查特殊角的三角函数值、勾股定理.【答案与解析】解:(1)变小.(2)问题①:∵∠B =90°,∠A =30°,BC =6,∴AC =12.∵∠FDE =90°,∠DEF =45°,DE =4,∴DF =4.连结FC ,设FC ∥AB ,∴∠FCD =∠A =30° ∴在Rt △FDC 中,DC =43.∴AD =AC -DC =1243-即AD =(1243)-cm 时,FC ∥AB .问题②:设AD =x ,在Rt △FDC 中,FC 2=DC 2+FD 2=(12-x)2+16.(i)当FC 为斜边时,由AD 2+BC 2=FC 2得2226(12)16x x +=-+,316x =.(ii)当AD 为斜边时,由222FC BC AD +=得22(12)16x x -+=,4986x =>(不符合题意,舍去). (iii)当BC 为斜边时,由222AD FC BC +=得222(12)166x x +-+=,212620x x -+=, △=144-248<0,∴方程无解.另解:BC 不能为斜边.∵FC >CD .∴FC+AD >12.∴FC 、AD 中至少有一条线段的长度大于6.∴BC 不能为斜边.∴由(i)、(ii)、(iii)得,当316x =cm 时,以线段AD 、FC 、BC 的长度为三边长的三角形是直角三角形.问题③:解法一:不存在这样的位置,使得∠FCD =15°.理由如下:假设∠FCD =15°.由∠FED =45°,得∠EFC =30°.作∠EFC 的平分线,交AC 于点P ,则∠EFP =∠CFP =∠FCP =15°,∴PF =PC .∠DFP =∠DFE+∠EFP =60°.∴PD =43,PC =PF =2FD =8.∴PC+PD =8+4312>.∴不存在这样的位置,使得∠FCD =15°.解法二:不存在这样的位置,使得∠FCD =15°.假设∠FCD =15°,设AD =x .由∠FED =45°,得∠EFC =30°.作EH ⊥FC ,垂足为H .∴HE =12EF =22,CE =AC -AD -DE =8-x , 且22(12)16FC x =-+.∵∠FDC =∠EHC =90°,∠DCF 为公共角,∴△CHE ∽△CDF .∴EC HE FC DF =. 又2222142HE DF ⎛⎫⎛⎫== ⎪ ⎪ ⎪⎝⎭⎝⎭,∴212EC FC ⎛⎫= ⎪⎝⎭. 整理后,得到方程22(8)1(12)162x x -=-+. ∴14430x =-<(不符合题意,舍去),24438x =+>(不符合题意,舍去).∴不存在这样的位置,使得∠FCD =15°.【总结升华】本题的突破点是将图形静止于所要求的特殊位置,根据题中条件得出相应的结论.本题涉及分类讨论思想、方程思想,有一定的难度.举一反三:【高清课堂:图形的设计与操作及运动变换型问题 例3 】【变式】如图,直角梯形OBCD 是某市将要筹建的高新技术开发区用地示意图,其中DC ∥OB ,OB=6,CD=BC=4,BC ⊥OB 于B,以O 为坐标原点,OB 所在直线为x 轴建立平面直角坐标系,开发区综合服务管理委员会(其占地面积不计)设在点P (4,2)处.为了方便驻区单位准备过点P 修一条笔直的道路(路宽不计),并且是这条路所在的直线将直角梯形OBCD 分成面积相等的两部分,你认为直线是否存在?若存在求出直线的解析式,若不存在,请说明理由.【答案】解:如图③,存在符合条件的直线,过点D作DA⊥OB于点A,则点P(4,2)为矩形ABCD的对称中心∴过点P的直线只要平分的面积即可.易知,在OD边上必存在点H,使得直线PH将面积平分,从而,直线PH平分梯形OBCD的面积.即直线PH为所求直线设直线PH的表达式为且过点∵直线OD的表达式为解之,得∴点H的坐标为∴PH与线段AD的交点F的坐标为∴ 解之,得∴直线l 的表达式为类型三、平移旋转型操作题4.两个全等的直角三角形ABC 和DEF 重叠在一起,其中∠A =60°,AC =1.固定△ABC 不动,将△DEF 进行如下操作:(1)如图所示,△DEF 沿线段AB 向右平移(即D 点在线段AB 内移动),连结DC 、CF 、FB ,四边形CDBF 的形状在不断地变化,但它的面积不变化,请求出其面积.(2)如图所示,当D 点移动到.AB 的中点时,请你猜想四边形CDBF 的形状,并说明理由.(3)如图所示,△DEF 的D 点固定在AB 的中点,然后绕D 点按顺时针方向旋转△DEF ,使DF 落在AB 边上,此时,点恰好与B 点重合,连结AE ,请你求出sin α的值.【思路点拨】平移时,CF AD ,AD =BE ,根据等底等高的特征,将求梯形面积转化为求ABC S △,旋转时需知道∠ABE =90°,BE =CB ,运用相似等知识解答.【答案与解析】【解析】(1)过C 点作CG ⊥AB 于G ,如图.在Rt △AGC 中,∵sin 60CG AC=°, ∴32CG =. ∵AB =2, ∴1332222ABC CDBF S S ==⨯⨯=△梯形. (2)菱形.∵CD ∥BF ,FC ∥BD ,∴四边形CDBF 是平行四边形∵DF ∥AC ,∠ACB =90°,∴CB ⊥DF ,∴四边形CDBF 是菱形.(3)解法一:过D 点作DH ⊥AE 于H ,如图,则11313222ADE S AD EB ==⨯⨯=△, 又1322ADE S AE DH ==△, 332177DH AE ⎛⎫== ⎪ ⎪⎝⎭或.∴在Rt△DHE中,321 sin1427DHDEα⎛⎫== ⎪⎪⎝⎭或.解法二:∵△ADH∽△AEB,∴DH ADBE DE=,即137DH=,∴37 DH=,∴321 sin1427DHDEα⎛⎫== ⎪⎪⎝⎭或.【总结升华】本题是平移和旋转类型的操作题,需知道平移和旋转的性质,这两种变换都是全等变换.类型四、动态数学问题5.(2015•石峰区模拟)如图,在平面直角坐标系中,点C的坐标为(0,4),动点A以每秒1个单位长的速度,从点O出发沿x轴的正方向运动,M是线段AC的中点.将线段AM以点A为中心,沿顺时针方向旋转90°,得到线段AB,过点B作x轴的垂线,垂足为E,过点C作y轴的垂线,交直线BE于点D,运动时间为t秒.(1)当点B与点D重合时,求t的值;(2)当t为何值时,S△BCD=?【思路点拨】(1)由于∠CAB=90°,易证得Rt△CAO∽Rt△ABE;当B、D重合时,BE的长已知(即OC长),根据AC、AB的比例关系,即可得到AO、BE的比例关系,由此求得t的值.(2)求△BCD的面积时,可以CD为底、BD为高来解,那么表示出BD的长是关键;Rt△CAO∽Rt△ABE,且知道AC、AB的比例关系,即可通过相似三角形的对应边成比例求出BE的长,进一步得到BD的长,在表达BD长时,应分两种情况考虑:①B在线段DE上,②B在ED的延长线上.【答案与解析】解:(1)∵∠CAO+∠BAE=90°,∠ABE+∠BAE=90°,∴∠CAO=∠ABE.∴Rt △CAO ∽Rt △ABE . ∴. ∴.∴t=8.(2)由Rt △CAO ∽Rt △ABE 可知:BE=t ,AE=2.当0<t <8时,S △BCD =CD •BD=(2+t )(4﹣)=. ∴t 1=t 2=3.当t >8时,S △BCD =CD •BD=(2+t )(﹣4)=. ∴,(为负数,舍去). 当t=3或3+5时,. 【总结升华】考查了二次函数综合题,该题是图形的动点问题,解决本题的关键在于找出相似三角形,得到关键线段的表达式,注意点在运动过程中未知数的取值范围问题.举一反三:【高清课堂:图形的设计与操作及运动变换型问题 例4 】【变式】如图,平行四边形ABCD 中,AB=10,AD=6,∠A=60°,点P 从点A 出发沿折线AB-BC 以每秒1个单位长的速度向点C 运动,当P 与C 重合时停止运动,过点P 作AB 的垂线PQ 交AD 或DC 于Q .设P 运动时间为t 秒,直线PQ 扫过平行四边形ABCD 的面积为S .求S 关于t 的函数解析式.【答案】解:(1)213S=3(03)22t t t t ∙∙=≤≤; (2)193S=-33333-(310)22t t t t +∙=()<≤;(3)116-t 3(16)S=1033-222t -⨯∙∙ 3=1033-16-8t ⨯2() 23-4323(1016)8t t t =+-<≤. 综上,S 关于t 的函数解析式为:223(03)29333-(310)23-4323(1016)8t t S t t t t t ⎧⎪⎪⎪⎪=⎨⎪⎪+-⎪⎪⎩≤≤<≤<≤。
中考数学“动手操作”专题训练试题[1]
中考数学“动手操作”专题训练试题江苏 文页一、选择题1,如图,CD 是Rt △ABC 斜边AB 上的高,将△BCD 沿CD 折叠,B 点恰好落在AB 的中点E 处,则∠A 等于( )A.25°B.30°C.45°D.60°2,如图,小亮拿一张矩形纸图(1),沿虚线对折一次得图(2),下将对角两顶点重合折叠得图(3).按图(4)沿折痕中点与重合顶点的连线剪开,得到三个图形,这三个图形分别是( )A .都是等腰梯形B .都是等边三角形C .两个直角三角形,一个等腰三角形3,Rt △ABC 中,斜边AB =4,∠B=60º,将△ABC 绕点B 旋转60º,顶点C 运动的路线长是( )A.3π B .3π2 C .π D .3π4 4,用一把带有刻度尺的直角尺, ①可以画出两条平行的直线a 和b, 如图(1); ②可以画出∠AOB 的平分线OP, 如图(2); ③可以检验工件的凹面是否为半圆, 如图(3); ④可以量出一个圆的半径, 如图(4). 这四种说法正确的有( )图(1) 图(2) 图(3) 图(4)A. 4个B. 3个C. 2个D. 1个5,如图1所示,将长为20cm ,宽为2cm 的长方形白纸条,折成图2所示的图形并在其一面着色,则着色部分的面积为( )A .234cmB .236cmC .238cmD .240cm6,当身边没有量角器时,怎样得到一些特定度数的角呢?动手操作有时可以解“燃眉之急”.如图,已知矩形ABCD ,我们按如下步骤操作可以得到一个特定的角:(1)以点A 所(4)(3)沿虚线剪开对角顶点重合折叠(2)(1)图1 图2A B CD在直线为折痕,折叠纸片,使点B 落在AD 上,折痕与BC 交于E ;(2)将纸片展平后,再一次折叠纸片,以E 所在直线为折痕,使点A 落在BC 上,折痕EF 交AD 于F .则∠AFE =( )A .60︒B .67.5︒C .72︒D .75︒7,如图,把矩形纸条ABCD 沿EF ,GH 同时折叠,B ,C 两点恰好落在AD 边的P 点处,若∠FPH =90°,PF =8,PH =6,则矩形ABCD 的边BC 长为( )A.20B.22C.248,如图,把边长为2的正方形的局部进行图①~图④的变换,拼成图⑤,则图⑤的面积是( )A.18B.16C.12D.89,把一张正方形纸片按如图.对折两次后,再挖去一个小圆孔,那么展开后的图形应为10,如图,将n 个边长都为1cm的正方形按如图所示摆放,点A 1、 A 2、…、A n分别是正方形的中心,则n 个这样的正方形重叠部分的面积和为( )A .41cm 2 B .4n cm 2 C .41-n cm 2D .n )41( cm 2 二、填空题11,在同一平面内,用两个边长为a 的等边三角形纸片(纸片不能裁剪)可以拼成的四边形是___.① ② ③ ④ ⑤A .B .C .D .12,如图,是用形状、大小完全相同的等腰提梯形密铺成的图案,则这个图案中的等腰梯形的底角(指锐角)是 度.13,用等腰直角三角板画∠AOB =45°,并将三角板沿OB 方向平移到如图所示的虚线处后绕点M 逆时针方向旋转22°,则三角板的斜边与射线OA 的夹角α为___°.14,如图,正方形ABCD 的边长为4,MN BC ∥分别交AB CD ,于点M N ,,在MN 上任取两点P Q ,,那么图中阴影部分的面积是 .15,如图,一宽为2cm 的刻度尺在圆上移动,当刻度尺的一边与圆相切时,另一边与圆两个交点处的读数恰好为“2”和“8”(单位:cm ),则该圆的半径为 cm.16,用一条宽相等的足够长的纸条,打一个结,如图(1)所示,然后轻轻拉紧、压平就可以得到如图(2)所示的正五边形ABCDE ,其中∠BAC = 度.17,如图所示为农村一古老的捣碎器,已知支撑柱AB 的高为 0.3米,踏板DE 长为1.6米,支撑点A 到踏脚D 的距离为0.6米,现在踏脚着地,则捣头点E 上升了 __米.A图 (2)图(1)DM N18,小华将一条直角边长为1的一个等腰直角三角形纸片(如图1),沿它的对称轴折叠1次后得到一个等腰直角三角形(如图2),再将图2的等腰直角三角形沿它的对称轴折叠后得到一个等腰直角三角形(如图3),则图3中的等腰直角三角形的一条腰长为_____________;同上操作,若小华连续将图1的等腰直角三角形折叠n 次后所得到的等腰直角三角形(如图n+1)的一条腰长为_________.三、解答题19,如图是一个食品包装盒的侧面展开图。
中考数学折叠剪切问题(含答案)
中考数学-----折叠剪切问题折叠剪切问题是考察学生的动手操作问题,学生应充分理解操作要求方可解答出此类问题.一.折叠后求度数【1】将一张长方形纸片按如图所示的方式折叠,BC 、BD 为折痕,则∠CBD 的度数为( )A .600B .750C .900D .950答案:C【2】如图,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D ′、C ′的位置,若∠EFB=65°,则∠AED ′等于( )A .50°B .55°C .60°D .65° 答案:A【3】 用一条宽相等的足够长的纸条,打一个结,如图(1)所示,然后轻轻拉紧、压平就可以得到如图(2)所示的正五边形ABCDE,其中∠BAC= 度.答案:36°二.折叠后求面积【4】如图,有一矩形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD 边落在AB 边上,折痕为AE ,再将△AED 以DE 为折痕向右折叠,AE 与BC 交于点F ,则△CEF 的面积为( ) A .4 B .6 C .8 D .10图(1)第3题图CDEBA图 (2)答案:C【5】如图,正方形硬纸片ABCD 的边长是4,点E 、F 分别是AB 、BC 的中点,若沿左图中的虚线剪开,拼成如下右图的一座“小别墅”,则图中阴影部分的面积是A .2B .4C .8 D.10答案:B【6】如图a ,ABCD 是一矩形纸片,AB =6cm ,AD =8cm ,E 是AD 上一点,且AE =6cm 。
操作:(1)将AB 向AE 折过去,使AB 与AE 重合,得折痕AF ,如图b ;(2)将△AFB 以BF 为折痕向右折过去,得图c 。
则△GFC 的面积是( )EAAABBBCCC GDDDFF F 图a图b图cA.1cm 2B.2 cm 2C.3 c m 2D.4 cm 2答案:B三.折叠后求长度【7】如图,已知边长为5的等边三角形ABC 纸片,点E 在AC 边上,点F 在AB 边上,沿着EF 折叠,使点A 落在BC 边上的点D 的位置,且E D B C ⊥,则CE 的长是( ) (A )10315- (B )1053- (C )535- (D)20103-答案:D 四.折叠后得图形【8】将一张矩形纸对折再对折(如图),然后沿着图中的虚线剪下,得到①、②两部分,将①展开后得到的平面图形是( )A .矩形B .三角形C .梯形D .菱形答案:D【9】在下列图形中,沿着虚线将长方形剪成两部分,那么由这两部分既能拼成平行四边形又能拼成三角形和梯形的是( )A. B. C. D.答案:D【10】小强拿了张正方形的纸如图(1),沿虚线对折一次如图(2),再对折一次得图(3),然后用剪刀沿图(3)中的虚线(虚线与底边平行)剪去一个角,再打开后的形状应是( )ABCDEF 第7题图第8题图第9题图答案:D【11】如图,把矩形ABCD 对折,折痕为MN (图甲),再把B 点叠在折痕MN 上的B '处。
中考总复习 数学动手操作题汇总
A. 6 C. 3
B. 5 D. 2
1 2 3
解析 根据骰子的变换规则,骰子每次变换后朝上一面的点数的变 化是这样的:3(开始)→5→6→3→5→6→3……这就是说,连续变换3次 后,朝上一面的点数就会重复出现,而 10÷3 = 3……1 ,所以 10 次变换 后骰子朝上一面的点数是5.故选B.
8
热点看台
中考大一轮复习讲义◆ 数学
快速提升
点对点训练 2. 一只跳蚤在第一象限及 x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接 着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→„„],且每秒跳动一个单位, 那么第 35 秒时跳蚤所在位置的坐标是( B )
A. (4,0) C. (0,5)
点对点训练 1. 下列图形分别是桂林、湖南、甘肃、江苏电视台的台徽,其中为中心对称图形的是( C )
1 2
7
3
热点看台
中考大一轮复习讲义◆ 数学
快速提升
热点二 判断图案变换后的位置 热点搜索 这类中考题,题目提供一个图案,给出变换的条件,要求考生根据 心智操作活动来变换图案,并判断出图案的最终位置.这类题在中考试卷中通常是 以选择题和填空题的形式出现,属于中等题.
典例分析 1 下列图形中,既是轴对称图形又是中心对称图形的是( )
解析 根据轴对称图形和中心对称图形的定义可知,A项是轴对称图 形,但不是中心对称图形;B项和C项是中心对称图形,但不是轴对称图 形;D项既是轴对称图形,又是中心对称图形.因此本题选择D.1Biblioteka 263热点看台
中考大一轮复习讲义◆ 数学
快速提升
3. (2014·广东广州)如图,△ABC 中,AB=AC=4 5,cosC=
操作探究型问题例析
求— — 正 五 角 星 形. 仅 考 查 了正 五 边 形 、 腰 三 角 形 的 相 关 概 不 等 念 和 性 质 . 考 查 了 学 生 的 空 间 想 象 能 力. 纸 具 有 操 作 性 和 直 还 折
把剪 开的两部 分重 新拼接成不 重叠的图
形 , 列 选项 中不 能 拼 出的 图 形 是 ( 下 ) A. 四边 形 B矩 形 C等 腰梯 形 D直 角 梯形 平行 . . .
到 平 行 四 边 形. 果 不 通 过 动 手 操 作 . 凭 头 脑 想 象 . 认 为 可 如 仅 误 以拼 出直 角梯 形 而错 选其 他 项.
( 称为第一次操作 )再把剩下 的矩形 如图4J样折一下 , ; ] l  ̄ 剪下一 个边长等于此 时矩形宽 度的正方形 ( 称为第二次 操作 )如此反 ; 复操作下去. 若在第r / , 次操作后 , 剩下 的矩形为 正方 形 , 则操作终
(川)2 1四边形E | 1 _ , G、 7 w和四边形
解 : 一种 情况 , 图5A : F 。 ̄ C = H 1 fD : 一 第 如 ,B 曰 =, F C : -  ̄H 。 Z _5 脯 是正方形 , I2 H: N)D 2
十。毒 ・初 版 ? j 中 I : ?
手操 作 的 能力 和 图 形 变换 的 能 力 。 可通 过 旋 转 、 翻折 、 平移 这 三
三 、 多次操 作后 的边 长 求
例3 (0 1 山东 德州卷 ) 2 l年 长为 1 宽为n , 的矩 形纸 片(2< a 1 , 图4 < )如 那样折一下 , 剪下一个边长 等于矩形宽度 的正方形
止. = 时 ,的值为 当n 3 。
图2
二 、 用 剪 、 求 度 数 利 拼
2015届浙江中考数学精品ppt课件【专题3】方案设计与动手操作型问题
方案设计型问题是设置一个实际问题的情景 ,给出若干信 息,提出解决问题的要求,寻求恰当的解决方案,有时还给 出几个不同的解决方案,要求判断其中哪个方案最优.方案 设计型问题主要考查学生的动手操作能力和实践能力.方案 设计型问题,主要有以下几种类型: (1) 讨论材料 , 合理猜想--设置一段讨论材料 , 让考生 进行科学的判断、推理、证明; (2) 画图设计 , 动手操作--给出图形和若干信息 , 让考 生按要求对图形进行分割或设计美观的图案;
3.(2014·温州)如图,直线AB,CD被BC所截,若AB∥CD, ∠1=45°,∠2=35°,则∠3=__70__度. 4.(2012·嘉兴)已知△ABC中,∠B是∠A的2倍,∠C比∠A 大20°,则∠A等于( A ) A.40° B.60° C.80° D.90° 5.(2013·湖州)把15°30′化成度的形式,则15°30′=__15.5__ 度.
线段的计算
【例1】 如图,B,C两点把线段AD分成2∶3∶4三部分,M是 线段AD的中点,CD=16 cm.求:(1)MC的长;(2)AB∶BM的 值.
解:(1)解:设 AB=2x,BC=3x,则 CD=4x,由题意得 4x=16,∴x=4,∴AD=2×4+3×4+4×4=36(cm),∵M 1 1 为 AD 的中点,∴MD= AD= ×36=18(cm),∵MC=MD- 2 2 CD,∴MC=18-16=2(cm) (2)AB∶BM=(2×4)∶(3×4- 2)=4∶5
由特殊到一般、由简单到复杂的动手操作过程.
1.(2013·义乌)如图,已知∠B=∠C,添加一个条 件使△ABD≌△ACE(不标注新的字母,不添加新
的线段),你添加的条件是__AB=AC(答案不唯
2015届安徽中考数学总复习课件:聚焦中考专题3 方案设计与动手操作型问题
(2)根据(1)中的结果,请用统计的知识说明哪些方案 不适合作为这个同学演讲的最后得分. 因为方案 1 中的平均数受极端数值的影响 , 不能反 映这组数据的 “ 平均水平” , 所以方案 1 不适合作 为最后得分的方案;又因为方案 4 中的众数有两个 , 从而使众数失去了实际意义 , 所以方案 4 不适合 作为最后得分的方案.
艺设计师要求的有( ) C
A.2种
B.3种
C.4种
D.5种
4 . 小明家春天粉刷房间 , 雇用了 5个工人 , 每人每天
做8 小时 , 做了10 天完成.用了某种涂料 150 升, 费用
为4800元;粉刷的面积是150 m2.最后结算工钱时,有
以下几种方案:①按工算,每个工60元(1个工人干1天
是一个工);②按涂料费用算 ,涂料费用的 60%作为工
台灯灯罩,做好后发现上口太小了,于是他把纸灯
罩对齐压扁,剪去上面一截后,正好合适.以下裁
剪示意图中,正确的是(
) A
3.一位园艺设计师计划在一块形状为直角三角形且有一个内 角为 60°的绿化带上种植四种不同的花卉 , 要求种植的四种 花卉分别组成面积相等 ,形状完全相同的几何图形图案.某
同学为此提供了如图所示的五种设计方案.其中可以满足园
(1)讨论材料,合理猜想——设置一段讨论材料,让考
生进行科学的判断、推理、证明;
(2)画图设计,动手操作——给出图形和若干信息,让
考生按要求对图形进行分割或设计美观的图案;
要点梳理
(3)设计方案,比较择优——给出问题情境,提出要求
,让考生寻求最佳解决方案.
操作型问题是指通过动手实验 ,获得数学结论的研
图形拼接类,关键是抓住需要拼接的图形与所给图形
中考数学专题复习(五)动手操作
五、动手操作问题第1课一、例题导引例1 将一张长为70㎝的长方形纸片ABCD ,沿对称轴EF 折叠成如图所示的形状,若折叠后,AB 与CD 间的距离为60㎝,则原纸片的宽AB 是 ㎝.例2 用三种不同方法将正三角形ABC 分割成四个等腰三角形。
例3 直角三角形通过剪切可以拼成一个与该直角三角形面积相等的矩形,方法如图1所示,请你用这种方法解决下列问题:(1)对任意三角形(如图2)设计一种方案,将它分成若干块,再拼成一个与原三角形面积相等的矩形。
(2)对任意四边形(如图3),设计一种方案,将它们分成若干块,再拼成一个与原四边形面积相等的矩形。
例4 蓝天希望学校正准备建一个多媒体教室,计划做长120㎝,宽30㎝的长条形桌面,现只有长80㎝,宽45㎝的木板,请你为该校设计不同的拼接方案,使拼起来的桌面符合要求。
(只要求画出裁剪、拼接图形,并标上尺寸)二、练习升华1、小亮拿着一张如图①所示的矩形纸,沿虚线对折一次得图②,再将对角两顶点重合折叠得图③,按图④沿折痕中点与重合顶点的连线剪开,〔 〕A 、都是等腰三角形B 、都是等边三角形C 、两个直角三角形,一个等腰三角形D 、两个直角三角形,一个等腰梯形2、将一张菱形纸片,按下图中①②的方式沿虚线依次对折后,再沿图③中的虚线裁剪,最后将图④中的纸片打开铺平,所得图案应该是〔 〕3、如图,把腰长为1的等腰直角三角形折叠两次后,得到一个小三角形的周长是. 4、小宇同学在一次手工制作活动中,先把一张矩形纸片按图1的方式进行折叠,使 折痕的左侧部分比右侧部分短1㎝;展开后按图2的方式再折叠一次,使第二次折痕的左侧部分比右侧部分长1 A B C D E F F E A B CD 例1图 例2图 ② ③ 中点 中点 ① ① ③ ② 图1 图2 图3 80㎝ 45㎝ 图①上折图② 图③ 图④ ③ ④A 左 右左 右 第一次折叠 图1图25、请将四个全等的直角梯形(如图所示)拼成一个平行四边形,并画出两种不同的拼法示意图(拼出的两个图形只要不全等不认为是不同的拼法).6、某地砖厂要制作一批正六边形的地砖,为适应市场多样化需求,要求在地砖上设计的图案结构把正六边形6等分,请设计等分图案。
2014年数学中考二轮专题复习课件:操作探究型问题
3、图形分割型动手操作题 图形分割型动手操作题就是按照要求把一个图形 先分割成若干块,然后再把它们拼合成一个符合条件 的图形. 4、作图型动手操作题 作图型动手操作题就是通过平移、对称、旋转或 位似等变换作出已知图形的变换图形.
题型分类 深度剖析
考点一 变换作图 例 1 、图①、图②是两张形状、大小完全相同的方
A. 12
B.24
C. 12 3
D. 16 3
解: 在矩形 ABCD 中, AD∥ BCB′=∠ EFB= 60° .根据翻折变换 的性质∠ FEA′=∠ AEF= 120°,∴∠A′EB′=∠FEA ′-∠ FEB′= 120°- 60°= 60°.在 Rt△A′EB′ 中,A′B′=EA′·tan∠ A′ EB′= 2× tan 60°=2 × 3= 2 3,∴AB= A′ B′= 2 3,因此,矩形 ABCD 的面积= AD· AB= (AE+ ED)· AB= (2+ 6)×2 3= 16 3. 故选 D.
2014年人教新课标版中考二轮复习
操作探究型问题
考点梳理
近年来,中考数学试题加强了对动手操作能力的 考查,这类试题能够有效地考查实践能力、创新意识 和直觉思维能力.解决这类问题需要通过观察、操作、 比较、猜想、分析、综合、抽象和概括等实践活动和 思维过程,灵活运用所学知识和生活经验,探索和发 现结论,从而解决问题.
格纸,方格纸中的每个小正方形的边长均为 1,点 A 和点
B 在小正方形的顶点上.
(1)在图①中画出△ ABC(点 C 在小正方形的顶点 上 ),使△ABC 为直角三角形 (画一个即可 ); (2)在图②中画出△ ABD(点 D 在小正方形的顶点 上 ),使△ABD 为等腰三角形 (画一个即可 ).
中考数学热点探究二 操作探究类问题的解题策略
中考数学热点探究二操作探究类问题的解题策略数学教育不能仅仅限于培养学生熟练的模仿能力和严密的推理能力,更应该注重培养学生观察分析、类比联想、归纳总结、应用创新的思维品质.由于课程标准对平面几何内容作了较大调整,在近几年的中考试题中,为了体现教育部关于中考命题改革的精神,出现了大量的动手操作类型的试题.动手操作题是让学生在通过实际操作的基础上设计有关的问题.这类题对学生的能力有更高的要求,有利于培养学生的创新能力和实践能力,体现新课程理念.操作型问题是指通过动手测量、作图、取值、计算等实验,猜想获得数学结论的探索研究性活动,这类活动完全模拟以动手为基础的手脑结合的科学研究形式,需要动手操作、合情猜想和验证,不但有助于实践能力和创新能力的培养,更有助于养成实验研究的习惯,符合课程标准特别强调的发现式学习、探究式学习和研究式学习的要求,鼓励学生进行“微科研”活动,提倡要积极引导学生从事实验活动和实践活动,培养学生乐于动手、勤于实践的意识和习惯,切实提高学生的动手能力、实践能力的指导思想.因此,实验操作问题将会继续成为今后中考的热点题型.热点呈现下面我们共同研究一下近几年河北省考查操作探究类试题的形式.一、在小题中的呈现1.(河北)扑克牌游戏小明背对小亮,让小亮按下列四个步骤操作:第一步分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌的张数相同;第二步从左边一堆拿出两张,放入中间一堆;第三步从右边一堆拿出一张,放入中间一堆;第四步左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆.这时,小明准确说出了中间一堆牌现有的张数.你认为中间一堆牌的张数是_________.分析:此题考查了动手操作能力.答案:52.(河北)法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.下面两个图框是用法国“小九九”计算7×8和8×9的两个示例.若用法国的“小九九”计算7×9,左、右手依次伸出手指的个数是()(A)2,3(B)3,3(C)2,4(D)3,4分析:此题考查了学生动手操作能力及计算能力.答案:(C).3.(河北非课改)一根绳子弯曲成如图1(1)所示的形状.当用剪刀像图1(2)那样沿虚线a把绳子剪断时,绳子被剪为5段;当用剪刀像图1(3)那样沿虚线b(b a∥)把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a,b之间把绳子再剪(2)n-次(剪刀的方向与a平行),这样一共剪n次时绳子的段数是()(A)41n+n+(D)45n+(B)42n+(C)43分析:此题考查了学生的探索研究、归纳猜想能力.答案:(A).4.(河北统考)小宇同学在一次手工制作活动中,先把一张矩形纸片按图2(1)的方式进行折叠,使折痕的左侧部分比右侧部分短1cm;展开后按图2(2)的方式再折叠一次,使第二次折痕的左侧部分比右侧部分长1cm,再展开后,在纸上形成的两条折痕之间的距离是()(A)0.5cm(B)1cm(C)1.5cm(D)2cm5.(河北课改)将一正方形纸片按图3中3(1)、3(2)的方式依次对折后,再沿3(3)中的虚线裁剪,最后将3(4)中的纸片打开铺平,所得图案应该是下面图案中的()分析:两题均以折纸为背景考查学生对轴对称等有关知识的掌握及空间观念的发展情况,在问题解决过程中,既可以从具体的动手操作中寻找答案,也可以通过空间想象活动寻找答案.答案分别为(B )和(B ).二、在大题中的呈现1.( 河北)我们知道:由于圆是中心对称图形,所以过圆心的任何一条直线都可以将圆分割成面积相等的两部分(如图4(1)).探索下列问题:(1)在图4(2)给出的四个正方形中,各画出一条直线(依次是:水平方向的直线、竖直方向的直线、与水平方向成45°角的直线和任意的直线),将每个正方形都分割成面积相等的两部分;(2)一条竖直方向的直线m 以及任意的直线n ,在由左向右平移的过程中,将正六边形分成左右两部分,其面积分别记为1S 和2S .①请你在图4(3)中相应图形下方的横线上分别填写1S 与2S 的数量关系式(用“<”,“=”,“>”连接);②请你在图4(4)中分别画出反映1S 与2S 三种大小关系的直线n ,并在相应图形下方的横线上分别填写1S 与2S 的数量关系式(用“<”,“=”,“>”连接).(3)是否存在一条直线,将一个任意的平面图形(如图4(5))分割成面积相等的两部分?请简略说出理由.分析:此类题目涉及到画图、测量、猜想证明、归纳等问题,考查学生探究知识形成过程的能力,领会研究问题的方法.解:(1)(2)①12S S <,12S S =,12S S >.②(3)存在. 对于任意一条直线l ,在直线l 从平面图形的一侧向另一侧平移的过程中,当图形被直线l 分割后,直线l 两侧图形的面积分别为1S ,2S .两侧图形的面积由12S S <(或12S S >)的情形,逐渐变为12S S >(或12S S <)的情形,在这个平移过程中,一定会存在12S S =的时刻.因此,一定存在一条直线,将一个任意的平面图形分割成面积相等的两部分.2.( 河北)操作示例:对于边长均为a 的两个正方形ABCD 和EFGH ,按图5(1)所示的方式摆放,再沿虚线BD ,EG 剪开后,可以按图中所示的移动方式拼接为图5(1)中的四边形BNED .从拼接的过程容易得到结论:①四边形BNED 是正方形;②ABC D EFG H BN ED S S S +=正方形正方形正方形.实践与探究(1)对于边长分别为a b ,(a b >)的两个正方形ABCD 和EFGH ,按图5(2)所示的方式摆放,连接DE ,过点D 作DM ⊥DE ,交AB 于点M ,过点M 作MN ⊥DM ,过点E 作EN ⊥DE ,MN 与EN 相交于点N .①证明四边形MNED 是正方形,并用含a b ,的代数式表示正方形MNED 的面积;②在图5(2)中,将正方形ABCD 和正方形EFGH 沿虚线剪开后,能够拼接为正方形MNED .请简略说明你的拼接方法(类比图5(1),用数字表示对应的图形).(2)对于n (n 是大于2的自然数)个任意的正方形,能否通过若干次拼接,将其拼接为一个正方形?请简要说明你的理由.分析:此题通过正方形的“剪与拼”,创设一幅图形(正方形)的动态情境,本题以学生熟悉的、感兴趣的图形为背景提供观察和操作的机会,让学生通过动手操作,亲自探索发现结果的准确性,在思想上和行动上逐步消除理论和实践的脱节,本题的第(1)小题是将两个正方形剪拼成一个大正方形,渗透了勾股定理的证明方法;第(2)小题是在第(1)小题的基础上考查归纳推理的方法.解:(1)① 证明:由作图的过程可知四边形MNED 是矩形.在R t A D M △与R t C D E △中,∵AD C D =,又90ADM MDC CDE MDC ∠+∠=∠+∠= ,∴AD M C D E ∠=∠.∴R t R t A D M C D E △≌△.∴D M D E =.∴四边形MNED 是正方形.∵22222DE CD CE a b =+=+,∴正方形MNED 的面积为22a b +;②过点N 作NP ⊥BE ,垂足为P ,如图6.可以证明图中6与5位置的两个直角三角形全等,4与3位置的两个直角三角形全等,2与1位置的两个直角三角形也全等.所以将6放到5的位置,4放到3的位置,2放到1的位置,恰好拼接为正方形MNED .(2)答:能.理由:由上述的拼接过程可以看出:对于任意的两个正方形都可以拼接为一个正方形,而拼接出的这个正方形可以与第三个正方形再拼接为一个正方形,…… 依此类推.由此可知:对于n 个任意的正方形,可以通过(1)n -次拼接,得到一个正方形.3.( 河北课改)探索:在如图7(1)~图7(3)中,A B C △的面积为a .(1)如图7(1),延长A B C △的边B C 到点D ,使CD BC =,连接DA .若ACD △的面积为1S ,则1S =_____(用含a 的代数式表示);(2)如图7(2),延长A B C △的边BC 到点D ,延长边CA 到点E ,使C D B C =,A E C A =,连接DE .若DEC △的面积为2S ,则2S =__________(用含a 的代数式表示),并写出理由;(3)在图7(2)的基础上延长AB 到点F ,使BF =AB ,连接FD ,FE ,得到D EF △(如图7(3)).若阴影部分的面积为3S ,则3S =________(用含a 的代数式表示).发现:像上面那样,将A B C △各边均顺次延长一倍,连接所得端点,得到D E F △(如图7(3)),此时,我们称A B C △向外扩展了一次.可以发现,扩展一次后得到的D E F △的面积是原来A B C △面积的______倍.应用:去年在面积为210m 的A B C △空地上栽种了某种花卉.今年准备扩大种植规模,把A B C △向外进行两次扩展,第一次由A B C △扩展成D E F △,第二次由D EF △扩展成M G H △(如图7(4)).求这两次扩展的区域(即阴影部分)面积共为多少2m ? 分析:本题由简单的图形入手,从最基本的数学问题“中线平分三角形面积”开始,让学生观察、分析,从中发现问题,总结规律:扩展一次后得到的D E F △的面积是原来A B C △的7倍.最后应用发现的规律解决问题,考查了学生解决问题的能力.整道题构成了一个有机联系的问题链,实质上展示了数学思考的过程和方法.作为一道中考试题,本题既考查了学生的数学基础知识,也是对学生数学思维的考查和训练.解:探索(1)a ;(2)2a ;理由:连接AD ,∵C D B C =,A E C A =,∴D AC D AE ABC S S S a ===△△△,∴22S a =.(3)6a ;发现:7;应用:拓展区域的面积:2(71)10480-⨯=(2m ).4.( 河北)在图8(1)~图8(5)中,正方形ABCD 的边长为a ,等腰直角三角形FAE 的斜边2A E b =,且边AD 和AE 在同一直线上.操作示例当2b a <时,如图8(1),在BA 上选取点G ,使B G b =,连接FG 和CG ,裁掉F A G△和C G B △并分别拼接到FEH △和C H D △的位置构成四边形FGCH .思考发现小明在操作后发现:该剪拼方法就是先将F A G △绕点F 逆时针旋转90°到FEH △的位置,易知E H与A D在同一直线上.连接C H,由剪拼方法可得D H B G=,故△的位置.这样,△绕点C顺时针旋转90°到C H D△≌△,从而又可将C G BC HD C G B对于剪拼得到的四边形F G C H(如图8(1)),过点F作FM⊥AE于点M(图略),利用SAS 公理可判断H FM C H D===,∠FHC=90°.进而根据正△≌△,易得F H H C C G F G方形的判定方法,可以判断出四边形F G C H是正方形.实践探究:(1)正方形F G C H的面积是______;(用含a,b的式子表示)(2)类比图8(1)的剪拼方法,请你就图8(2)~图8(4)的三种情形分别画出剪拼成一个新正方形的示意图.联想拓展小明通过探究后发现:当b a≤时,此类图形都能剪拼成正方形,且所选取的点G的位置在BA方向上随着b的增大不断上移.当b a>时,如图8(5)的图形能否剪拼成一个正方形?若能,请你在图中画出剪拼的示意图;若不能,简要说明理由.分析:本题是在给出大量的阅读材料的基础上进行图形的分割与拼接,重在考查学生数学探究能力.本题的核心是将面积为2b的等腰直角三角形和面积为2a的正方形拼成一个大正方形,大正方形边长易知,相应的拼接方法也随之而得.解:实践探究(1)22+;a b(2)剪拼方法如图9(1)~图9(3).联想拓展:能;剪拼方法如图9(4)(图中B G D H b==).热点预测操作探究类试题,能够较好地考查学生动手操作、进行探究的能力,是考查学生分析、思考、发现、猜想、归纳等思维活动过程的极好载体,也是当前实施素质教育中的一个重要层面.在近几年的河北中考试题中对操作探究类试题的考查,已经成为河北必考的重要内容,可以说年年都有新思路,预计2008年河北的中考试题会继续在此类型试题上有所创新、有所突破,估计会在问题情境、探究方式和思维含量方面加大力度.模拟练习1.( 长春)一根单线从钮扣的4个孔中穿过(每个孔只穿过一次),其正面情形如图10所示,下面4个图形中可能是其背面情形的是( )2.动手折一折:将一张正方形纸片按下列图示对折3次得到图11(4),在A C 边上取点D,使AD AB =,沿虚线BD 剪开,展开ABD △所在部分得到一个多边形.则这个多边形的一个内角的度数是__________.3.如图12,将边长为2cm 的正方形ABCD 沿其对角线AC 剪开,再把A B C △沿着AD 方向平移,得到A B C '''△,若两个三角形重叠部分的面积是21cm ,则它移动的距离A A '等于____________cm .4.( 襄樊)如图13,将一个正方形纸片分割成四个面积相等的小正方形纸片,然后将其中一个小正方形再分割成四个面积相等的小正方形纸片,如此分割下去.第6次分割后,共有正方形纸片_______个.5.今有一机器人接到指令:在44⨯的正方形(每个小正方形边长均为1)网格的格点上跳跃,每次跳跃的距离只能为1或2或2或5,机器人从A 点出发连续跳跃4次恰好跳回A 点,且跳跃的路线(A B C D A →→→→)所成的封闭图形为多边形.例如图14(1)机器人跳跃四次的路线图形是四边形.仿照图14(1)操作:(1)请你在网格图14(2)中画出机器人跳跃的路线图形是直角梯形 (只画一个图即可);(2)请在网格图14(3)中画出机器人跳跃的路线图形是面积为2的平行四边形 (只画一个图即可).6.将两块全等的含30 角的三角尺如图15摆放在一起,设较短直角边为1.(1)四边形A B C D 是平行四边形吗?说出你的结论和理由:___________.(2)如图16,将R t B C D △沿射线BD 方向平移到111R t B C D △的位置,四边形11ABC D 是平行四边形吗?说出你的结论和理由:__________________.(3)在R t B C D △沿射线BD 方向平移的过程中,当点B 的移动距离为_______时,四边形11ABC D 为矩形,其理由是__________________;当点B 的移动距离为________时,四边形11ABC D 为菱形,其理由是___________.(图17、图18用于探究)7.(1)已知A B C △中,90A ∠= ,67.5b ∠=,请画一条直线,把这个三角形分割成两个等腰三角形.(请你选用下面给出的备用图,把所有不同的分割方法都画出来.只需画图,不必说明理由,但要在图中标出相等两角的度数)△中,C∠是其最小的内角,过顶点B的一条直线把这个三角形分割成了两个等腰三角形,请探求A B C∠与C∠之间的关系.。
2022中考数学专项五-动手操作
2022中考数学专项五-动手操作1.(2011四川省乐山市)7、如图(4),直角三角板ABC 的斜边AB=12㎝,∠A=30°,将三角板ABC 绕C 顺时针旋转90°至三角板A B C '''的位置后,再沿CB方向向左平移, 使点B '落在原三角板ABC 的斜边AB 上, 则三角板A B C '''平移的距离为( )(A) 6㎝ (B) 4㎝ (C ) (6-23 )㎝ (D )(436-)㎝解:C2.(2011广东省广州市)如图所示,将矩形纸片先沿虚线AB 按箭头方向向右..对折,接着对折后的纸片沿虚线CD 向下..对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是( )考点:剪纸问题。
分析:严格按照图中的方法亲自动手操作一下,即可专门直观地出现出来,也可认真观看图形特点,利用对称性与排除法求解. 解答:解:∵第三个图形是三角形, ∴将第三个图形展开,可得,即可排除答案A ,∵再展开可知两个短边正对着, ∴选择答案D ,排除B 与C . 故选D .点评:本题要紧考查学生的动手能力及空间想象能力.关于此类问题,学生只要亲自动手操作,答案就会专门直观地出现.3..(2011黑龙江省鸡西市)如图,在Rt △ABC 中,AB=CB ,BO ⊥AC ,把△ABC 折叠,使AB落在AC 上,点B 与AC 上的点E 重合,展开后,折痕AD 交BO 于点F ,连结DE 、EF.下列结论:①tan ∠ADB=2 ②图中有4对全 等三角形 ③若将△DEF 沿EF 折叠,则点D 不一定落在AC 上④BD=BF ⑤S 四边形DFOE =S △AOF ,上述结论中正确的个数是( ) A 1个 B 2个 C 3个 D 4个30°BA B'A'考点:翻折变换(折叠问题);全等三角形的判定与性质;锐角三角函数的定义。
中考数学专题复习——动手操作题
初三数学 共2页 第1页中考数学专题复习——动手操作题实验观察1.如图小强拿一张正方形的纸如图①,沿虚线对折一次得图②再对折一次得图③,然后用剪刀沿图③中的虚线去一个角再打开后的形状是( )2.将一张矩形对折再对折如图所示,然后沿图中虚线剪下得到①、②两部分,将①展示后得到的平面图形是( )A 、矩形B 、三角形C 、梯形D 、菱形 3.将一长方形纸片按如图方式折叠,BC 、BD 为折痕,折叠后 AB,BE 在一条线上.则∠CBD 的度数为( )A 、60°B 、75°C 、90°D 、95° 小试牛刀:1.将一正方形纸片按图5中(1)、(2)的方式依次对折后,再沿(3)中的虚线裁剪,最后将(4)中的纸片打开铺平,所得图案应该是下面图案中的( )③②①ABCD①②D EB初三数学 共2页 第2页2.如图,平面直角坐标系中,△ABC 为等边三角形,其中点A 、B 、C 的坐标分别为(-3,-1)、(-3,-3)、(-1,-2). 现以y 轴为对称轴作△ABC 的对称图形,得△A 1B 1C 1,再以x 轴为对称轴作△A 1B 1C 1的对称图形,得△A 2B 2C 2 . ⑴求点C 1、C 2的坐标;⑵能否通过一次旋转将△ABC 旋转到△A 2B 2C 2的位置?你若认为能,请作出肯定的回答,并直接写出所旋转的度数;你若认为不能,请作出否定的回答(不必说明理由);设计思考:1.如图所示两个正方形的花坛,准备把每个花坛都分成形状相同的四块,种不同的花草,下面左边两个图案是设计示例,请你再设计两个不同的图案。
2.某地板厂要制作一批正六边形的地板砖,为适应市场多样化的需要,要求在地板砖上设计图案能够把正六边形6等分,请你帮助他们设计等分方案(至少设计两种)。
初三数学 共2页 第3页3.现有一块形如母子正方形的板材ABCDEF ,木工师傅想先把它分割成几块,然后适当拼接成某种特殊形状的板面(要求板材不能有剩余,拼接时不重叠无空隙),请按下面要求帮助木工师傅分别设计一种方案。
2020年中考数学热点冲刺5 操作探究问题(含答案解析)
热点专题5 操作探究问题实践操作性问题以趣味性强、思维含量高为特点,在具体的实践操作中主要有以下类型:(1)裁剪、折叠、拼图等问题,往往与面积与对称性相联系;(2)画图、测量、猜想、证明等探究性问题,往往要求答题者在给定的操作规则下,进行探索研究、大胆猜想、发现结论,进而提高个人的创新能力与实践能力.在2019年的中考中,操作性行问题主要包含几何体的展开与折叠,图案设计、程序框输入,尺规作图、几何图形的探究等题型,分值不一,难度不等.考向1几何体的展开与折叠1.(2019·济宁)如图,一个几何体上半部为正四校锥,下半部为立方体,且有一个面涂有颜色,该几何体的表面展开图是()A B C D【答案】B【解析】选项A和C带图案的一个面是底面,不能折叠成原几何体的形式;选项B能折叠成原几何体的形式;选项D折叠后下面带三角形的面与原几何体中的位置不同.2.(2019·山西)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与"点"字所在面相对的面上的汉字是( )A.青B.春C.梦D.想【答案】B【解析】根据正方体的展开与折叠中面的关系,可知与"点"字所在面相对的面上的汉字是春,故选B . 考向2 图案设计与几何变换1.(2019·烟台)小明将一张正方形纸片按如图所示的顺序折叠成纸飞机,当机翼展开在同一平面时(机翼间无缝隙),AOB ∠的度数是 .【答案】22.5︒【解析】在解本题的过程中,可以找一张正方形的纸片进行如题操作,通过测量,来得到答案,也可以利用图形的轴对称的性质,直接得到AOB ∠的度数是22.5︒.2.(2019·南充)如图,正方形MNCB 在宽为2的矩形纸片一端,对折正方形MNCB 得到折痕AE ,再翻折纸片,使AB 与AD 重合,以下结论错误的是( )A .210AB =+B .CD BC C .2BC CD EH =g D .sin AHD ∠【答案】A【解析】在Rt AEB ∆中,AB == //AB DH Q ,//BH AD ,∴四边形ABHD 是平行四边形,AB AD =Q ,∴四边形ABHD 是菱形,AD AB ∴=1CD AD AD ∴===,∴CD BC =,故选项B 正确,24BC =Q ,1)4CD EH ==g ,2BC CD EH ∴=g ,故选项C 正确, Q 四边形ABHD 是菱形,AHD AHB ∴∠=∠,sin sin AE AHD AHB AH ∴∠=∠==D 正确,故选:A . 3.(2019 · 北京)已知30AOB ∠=︒,H 为射线OA 上一定点,1OH =,P 为射线OB 上一点,M 为线段OH 上一动点,连接PM ,满足OMP ∠为钝角,以点P 为中心,将线段PM 顺时针旋转150︒,得到线段PN ,连接ON .(1)依题意补全图1;(2)求证:OMP OPN ∠=∠;(3)点M 关于点H 的对称点为Q ,连接QP .写出一个OP 的值,使得对于任意的点M 总有ON=QP ,并证明.解:(1)见下图(2)证明:∵30AOB ∠=︒,∴在△OPM 中,=180150OMP POM OPM OPM ︒-∠-∠=︒-∠∠, 又∵150MPN ∠=︒,∴150OPN MPN OPM OPM ∠=∠-∠=︒-∠,∴OMP OPN ∠=∠. (3)如下图,过点P 作PK ⊥OA 于K ,过点N 作NF ⊥OB 于F∵∠OMP=∠OPN ,∴∠PMK=∠NPF , 在△NPF 和△PMK 中,90NPF PMKNFO PKM PN PM ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△NPF ≌△PMK (AAS ),∴PF=MK ,∠PNF=∠MPK ,NF=PK , 又∵ON=PQ ,在Rt △NOF 和Rt △PKQ 中,ON PQ NF PK =⎧⎨=⎩,∴Rt △NOF ≌Rt △PKQ (HL ),∴KQ=OF ,备用图图1A设,MK y PK x ==,∵∠POA=30°,PK ⊥OQ ,∴2OP x =,∴,OK OM y ==-,∴2OF OP PF x y =+=+,)1MH OH OM y =-=--,1KH OH OK =-.∵M 与Q 关于H 对称,∴MH=HQ ,∴11y -++=2y -+,又∵KQ=OF ,∴22y x y -+=+,∴(22x =+,∴1x =,即PK=1, 又∵30POA ∠=︒,∴OP=2. 考向3 程序输入与规律探究1.(2019·重庆A 卷)按如图所示的运算程序,能使输出y 值为1的是 ( ) A .m=1,n=1 B .m=1,n=0 C .m=1,n=2D .m=2,n=1【答案】D .【解析】∵m=1,n=1,∴y=2m +1=3;∵m=1,n=0,∴y=2n -1=-1;∵m=1,n=2,∴y=2m +1=3;∵m=2,n=1,∴y=2n -1=1.故选D .18.(2019·东营)如图,在平面直角坐标系中,函数x y 33=和x y 3-=的图象分别为直线1l ,2l ,过1l 上的点A 1(1,33)作x 轴的垂线交2l 于点A 2,过点A 2作y 轴的垂线交1l 于点A 3,过点A 3作x 轴的垂线交2l 于点A 4…,一次进行下去,则点2019A 的横坐标为 .【答案】:-31009【解析】:本题考查坐标里的点规律探究题,观察发现规律:A 1(1,33),A 2(1,3-),A 3(-3,3-),A 4(-3,33),A 5(9,33),A 6(9,39-),A 7(-27,39-),……A 2n+1[(-3)n ,3×(-3)n ](n 为自然数),2019=1009×2+1,所以A 2019的横坐标为:(-3)1009=-31009. 考向4 尺规作图1.(2019·长沙)如图,Rt △ABC 中,∠C=90°,∠B=30°,分别以点A 和点B 为圆心,大于12AB 的长为半径作弧,两弧相交于M 、N 两点,作直线MN ,交BC 于点D ,连接AD ,则∠CAD 的度数是( )A .20°B .30°C .45°D .60°【答案】B【解析】在△ABC 中,∵∠B=30°,∠C=90°,∴∠BAC=180°-∠B -∠C=60°,由作图可知MN 为AB 的中垂线,∴DA=DB ,∴∠DAB=∠B=30°,∴∠CAD=∠BAC -∠DAB=30°,故本题选:B .2.(2019·兰州)如图,矩形ABCD ,∠BAC=60°,以点A 为圆心,以任意长为半径作弧分别交AB ,AC 于点M ,N 两点,再分别以点M ,N 为圆心,以大于21MN 的长作半径作弧交于点P ,作射线AP 交BC 于点E ,若BE=1,则矩形ABCD 的面积等于 .【答案】【解析】在矩形ABCD 中,∠BAC=60°,∴∠B=90°,∠BCA=30°,∵AE 平分∠BAC ,∴∠BAE=∠EAC=30°∵在Rt △ABE 中,BE=1,∴AE=1sin30︒=2,AB=1tan30=︒EAC=∠ECA=30°,∴EC=AE=2,∴S矩形ABCD=AB ⋅BC=3.(2019·济宁)如图,点M 和点N 在∠AOB 内部.(1)请你作出点P ,使点P 到点M 和点N 的距离相等,且到∠AOB 两边的距离也相等(保留作图痕迹,不写作法);(2)请说明作图理由.解:(1)画出∠AOB 的角平分线,画出线段MN 的垂直平分线,两者的交点就得到P 点.(2)作图的理由:点P 在∠AOB 的角平分线上,又在线段MN 的垂直平分线上,∠AOB 的角平分线和线段MN 的垂直平分线的交点即为所求.4. (2019·长春)图①、图②、图③处均是6×6的正方形网格,每个小正方形的顶点称为格点,小正方形的边长为1,点A、B、C、D、E、F均在格点上.在图①、图②、图③中,只用无刻度的直尺,在给定的网格中按要求画图,所画图形的顶点均在格点上,不要求写出画法.(1)在图①中以线段AB为边画一个△ABM,使其面积为6.(2)在图②中以线段CD为边画一个△CDN,使其面积为6.(3)在图③中以线段EF为边画一个四边形EFGH,使其面积为9,且∠EFG=90°.解:(1)如图所示;(2)如图所示;(3)如图所示.考向5 几何探究1.(2019·武汉)问题背景:如图1,将△ABC绕点A逆时针旋转60°得到△ADE,DE与BC交于点P,可推出结论:PA+PC=PE.问题解决:如图2,在△MNG中,MN=6,∠M=75°,MG=24.点O是△MNG内一点,则点O到△MNG 三个顶点的距离和的最小值是___________.【答案】【解析】由题构造等边△MFN,△MHO,图中2个彩色三角形全等(△MFH≌△MNO(SAS))∴OM+ON+OG=HO+HF+OG,∴距离和最小值为(Rt△FQG勾股定理)2.(2019·山西)综合与实践动手操作:第一步:如图1,正方形纸片ABCD沿对角线AC所在的直线折叠,展开铺平,再沿过点C的直线折叠,使点B,点D都落在对角线AC上.此时,点B与点D重合,记为点N,且点E,点N,点F三点在同一条直线上,折痕分别为CE,CF.如图2.第二步:再沿AC所在的直线折叠,△ACE与△ACF重合,得到图3.第三步:在图3的基础上继续折叠,使点C与点F重合,得到图4,展开铺平,连接EF,FG,GM,ME,如图5.图中的虚线为折痕.问题解决:(1)在图5中,∠BEC的度数是_____,AEBE的值是_____;(2)在图5中,请判断四边形EMGF的形状,并说明理由;(3)在不增加字母的条件下,请你以图5中的字母表示的点为顶点,动手画出....一个菱形(正方形除外),并写出这个菱形:_______.【解题过程】(1)∵正方形ABCD,∴∠ACB=45°,由折叠知:∠1=∠2=22.5°,∠BEC=∠CEN,BE=EN,∴∠BEC=90°-∠1=67.5°,∴∠AEN=180°-∠BEC-∠CEN=45°,∴cos45°=ENAE=,AEEN=,AE AEBE EN=(2)四边形EMGF是矩形.理由如下:∵四边形ABCD是正方形,∴∠B=∠BCD=∠D=90°,由折叠可知:∠1=∠2=∠3=∠4,CM=CG,∠BEC=∠NEC=∠NFC=∠DFC,∴∠1=∠2=∠3=∠4=°904=22.5°,∴∠BEC=∠NEC=∠NFC=∠DFC=67.5°,由折叠知:MH,GH分别垂直平分EC,FC,∴MC=ME,GC=GF.∴∠5=∠1=22.5°,∠6=∠4=22.5°,∴∠MEF=∠GFE=90°.∵∠MCG=90°,CM=CG,∴∠CMG=45°,又∵∠BME=4图2F∠1+∠5=45°,∴∠EMG=180°-∠CMG -∠BME=90°,∴四边形EMGF 是矩形; (3)答案不唯一,画出正确的图形(一个即可).菱形FGCH (或菱形EMCH )3.(2019·淮安)如图①,在△ABC 中,AB=AC=3,∠BAC=100°,D 是BC 的中点.小明对图①进行了如下探究:在线段AD 上任取一点P ,连接PB .将线段PB 绕点P 按逆时针方向旋转80°,点B 的对应点是点E ,连接BE ,得到△BPE.小明发现,随着点P 在线段AD 上位置的变化,点E 的位置也在变化,点E 可能在直线AD 的左侧,也可能在直线AD 上,还可能在直线AD 的右侧. 请你帮助小明继续探究,并解答下列问题:(1)当点E 在直线AD 上时,如图②所示.①∠BEP= °; ②连接CE ,直线CE 与直线AB 的位置关系是 .(2)请在图③中画出△BPE ,使点E 在直线AD 的右侧,连接CE.试判断直线CE 与直线AB 的位置关系,并说明理由.(3)当点P 在线段AD 上运动时,求AE 的最小值.【解题过程】(1)①由题意得,PE=PB ,∠BPE=80°,∴∠BEP=︒=︒-︒50280180; ②如图所示,∵AB=AC ,D 是BC 的中点,∠BAC=100°,∴∠ABC=︒=︒-︒402100180,∵∠BEP=50°,∴∠BCE=∠CBE=40°,∴∠ABC=∠BCE ,∴CE ∥AB .答案:①50°;②平行 (2)在DA 延长线上取点F ,使∠BFA=∠CFA=40°,总有△BPE ∽△BFC . 又∵△BPF ∽△BEC ,∴∠BCE=∠BFP=40°,∴∠BCE=∠ABC=40°,∴CE ∥AB .(3)当点P 在线段AD 上运动时,由题意得PB=PE=PC , ∴点B 、E 、C 在以P 为圆心、PB 为半径的圆上,如图所示:∴AE 的最小值为AC=3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0
C
x
(3)如果题设中的条件“BE=2CE”改为:若
点E从点B开始在射线BC上运动。设BE=t, △ABE翻折后与正方形ABCO的重叠y 部分面
积为y,试写出y与t的函数关系式。A
B
并求出当y=12时,BE的值。
B1
0
Cx
E
y
A
B
M 0
E
B1
N C
图1
图2
请解答以下问题:
(3)设矩形ABCD的边AB=2,BC=4,并建立如图3所示的直角坐标系. 设直线BM/为
y=kx,当∠M/BC=60°时,求k的值.此时,将△ABM′沿BM′折叠,点A是否落在EF上( E、F分别为AB、CD中点)?为什么?
图3
(3)M BC 600 ,ABM 900 600 300
B
FD
图1
C
A
D
F
B
E
C
图2
(3)操作3:在平面直角坐标系中,正方形ABCO的边长为6,两
边OA、OC分别落在坐标轴上,点E在射线BC上,且BE=2CE,
将△ABE沿直线AE翻转,点B落在点B1处。
y
(1)请在图中作出点B1及翻转后图形. 两种情况
A
B
(2)对于图3,若E在BC上,求点B1的坐标 。 利用相似,列出方程求解
一、知识网络梳理
在近几年的中考试题中,为了体现教育部关于中考命题改革 的精神,出现了动手操作题.动手操作题是让学生在通过实际操作 的基础上设计有关的问题.这类题对学生的能力有更高的要求,有 利于培养学生的创新能力和实践能力,体现新课程理念.
操作型问题是指通过动手测量、作图(象)、取值、计算等 实验,猜想获得数学结论的探索研究性活动,这类活动完全模拟以 动手为基础的手脑结合的科学研究形式,需要动手操作、合情猜想 和验证,不但有助于实践能力和创新能力的培养,更有助于养成实 验研究的习惯,符合新课程标准特别强调的发现式学习、探究式学 习和研究式学习,鼓励学生进行“微科研”活动,提倡要积极引导 学生从事实验活动和实践活动,培养学生乐于动手、勤于实践的意 识和习惯,切实提高学生的动手能力、实践能力的指导思想.因此 .实验操作问题将成为今后中考的热点题型.
(图3)
(图5
)
(2)将图3中的△ABF绕点F顺时针方向旋转30°到图5的位
置,A1F交DE于点G,请你求出线段FG的长度;
解:(2) A1FA 300,GFD 600,D 300, FGD 900。
在RtEFD中,ED 10cm, FD 5 3,FG 5 3 cm. 2
(图3)
(图5)
在RtABM A中,tan ABM AM , AM 2 • tan 300 AB
2 3 , M ( 2 3 ,2)。代入y kx中,得k 3.
3
3
设ABM 沿BM 折叠后,点A落在矩形ABCD内的点为A,
过A作AH BC,交BC于H。
ABH ABM ,ABM ABM 300,AB AB 2
A A'
B
C
2、如图,把边长为2的正方形的局部进行图①~图④的变换, 拼成图⑤,则图⑤的面积是( B )
(1)
(2)
A、18 , B、 16 ,
(3)
(4)
C、12 ,
(5)
D、8
3、(1)操作1:将矩形ABCD沿对角线AC折叠(如图1),猜想
重叠部分是什么图形?并验证你的猜想。
E
连结BE与AC有什么位置关系? (2)操作2:折叠矩形ABCD,让点B落在 A 对角线AC上(如图2),若AD=4,AB=3, 请求出线段CE的长度。
例6、在我们学习过的数学教科书中,有一个数学活动,其具体操作过程是: 第一步:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开(如图1); 第二步:再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得 到线段BN(如图2).
p
图1
图2
请解答以下问题:
(2)在图2中,若AB=a,BC=b,a、b满足什么关系,才能在矩形纸片ABCD上剪出 符合(1)中结论的三角形纸片BMP ?
请解答以下问题: (1)如图2,若延长MN交BC于P,△BMP是什么三角形?请证明你的结论.
(1)△BMP是等边三角形.
证明:连结AN, ∵EF垂直平分AB ∴AN = BN.由折叠知 :AB = BN ∴AN = AB = BN ∴△ABN为等边三角形 ∴∠ABN =60° ∴∠PBN =30° 又∵∠ABM =∠NBM =30°,∠BNM = ∠A =90° ∴∠BPN =60°,∠MBP =∠MBN +∠PBN =60° ∴∠BMP =60°∴∠MBP =∠BMP =∠BPM =60°∴△BMP为等边三角形 .
AH DH
(三)探索性问题
例6、在我们学习过的数学教科书中,有一个数学活动,其具体操作过程是: 第一步:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开(如图1); 第二步:再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得 到线段BN(如图2).出等边BMP,则BC BP
在RtBNP中,BN BA a, PBN 300,
BP
a cos 300
,b
a cos 300
, a
3 b, 2
当a 3 b时,在矩形上能剪出这样的等边BMP。 2
例6、在我们学习过的数学教科书中,有一个数学活动,其具体操作过程是: 第一步:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开(如图1); 第二步:再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得 到线段BN(如图2).
A.85° B.90° C.95° D.100°
例3、如图(1)所示,用形状相同、大小不等的三块直角三 角形木板,恰好能拼成如图(2)所示的四边形ABCD,若AE
=4,CE=3BE, 那么这个四边形的面积是___1_6___3____
(二)证明问题
例4、如图1,小明将一张矩形纸片沿对角线剪开,得到两张三角 形纸片(如图2),量得他们的斜边长为10cm,较小锐角为30°, 再将这两张三角纸片摆成如图3的形状,但点B、C、F、D在同一条 直线上,且点C与点F重合(在图3至图6中统一用F表示)
纳等问题,它与初中代数、几何均有联系.此类题目 对于考查学生注重知识形成的过程,领会研究问题的 方法有一定的作用,也符合新课改的教育理论。
二、知识运用举例
(一)动手问题 例1.将正方形纸片两次对折,并剪出一个菱形小洞后展开铺 平, 得到的图形是( C )
(第1题)
例2.把一张长方形的纸片按如图所示的方式折叠,EM 、FM为折痕,折叠后的C点落在B′M或B′M的延长线上 ,那么∠EMF的度数是( )B
(3)将图3中的△ABF沿直线AF翻折到图6的位置,AB1交DE于 点H,请证明:AH﹦DH
(3)证明:AHE与DHB1中,FAB1 EDF 300, FD FA,EF FB FB1, FD FB1 FA FE,即AE DB1 又AHE DHB1,AHE DHB(1 AAS)
ABH MBH ABM 300
在RtABH中,AH 1 AB 1,BH 3, 2
A( 3,1), A落在EF上。
A/
H
三、知识巩固训练
1、如图,将ABC绕着点C按顺时针方向旋转200, B点落在B位置,A点落在A位置,若AC AB, 则BAC的度数是( C) A、500 ,B、600,C、700 ,D、800 。 B'
题型1 动手问题 此类题目考查学生动手操作能力,它包括裁剪、
折叠、拼图,它既考查学生的动手能力,又考查学生 的想象能力,往往与面积、对称性质联系在一起.
题型2 证明问题 动手操作的证明问题,既体现此类题型的动手能
力,又能利用几何图形的性质进行全等、相似等证明 .
题型3 探索性问题 此类题目常涉及到画图、测量、猜想证明、归
(图1)
(图2)
(图3)
(图4)
小明在对这两张三角形纸片进行如下操作时遇到了三个问题,
请你帮助解决.
(1)将图3中的△ABF沿BD向右平移到图4的位置,使点B与点F
重合,请你求出平移的距离;
解:(1)图形平移的距离就是线段BC的长, 又∵在Rt△ABC中,斜边长为10cm,∠BAC=300,∴BC=5cm, ∴平移的距离为5cm。