高考数学压轴—数学归纳法(含解法)

合集下载

2021届高考数学一轮复习第七章数列数学归纳法第5节数学归纳法选用含解析

2021届高考数学一轮复习第七章数列数学归纳法第5节数学归纳法选用含解析

第5节数学归纳法(选用)考试要求 1.了解数学归纳法的原理;2.能用数学归纳法证明一些简单的数学命题.知识梳理1。

数学归纳法证明一个与正整数n有关的命题,可按下列步骤进行:(1)(归纳奠基)证明当n取第一个值n0(n0∈N*)时命题成立;(2)(归纳递推)假设n=k(k≥n0,k∈N*)时命题成立,证明当n =k+1时命题也成立。

只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立。

2。

数学归纳法的框图表示[常用结论与易错提醒]1。

数学归纳法证题时初始值n0不一定是1.2.推证n=k+1时一定要用上n=k时的假设,否则不是数学归纳法.诊断自测1。

判断下列说法的正误。

(1)用数学归纳法证明等式“1+2+22+…+2n+2=2n+3-1”,验证n=1时,左边式子应为1+2+22+23.()(2)所有与正整数有关的数学命题都必须用数学归纳法证明.()(3)用数学归纳法证明问题时,归纳假设可以不用.()(4)不论是等式还是不等式,用数学归纳法证明时,由n=k到n=k+1时,项数都增加了一项。

()解析对于(2),有些命题也可以直接证明;对于(3),数学归纳法必须用归纳假设;对于(4),由n=k到n=k+1,有可能增加不止一项.答案(1)√(2)×(3)×(4)×2。

(选修2-2P99B1改编)在应用数学归纳法证明凸n边形的对角线为错误!n(n-3)条时,第一步检验n等于()A.1B.2C。

3 D.4解析三角形是边数最少的凸多边形,故第一步应检验n=3。

答案C3。

已知f(n)=错误!+错误!+错误!+…+错误!,则()A.f(n)中共有n项,当n=2时,f(2)=错误!+错误!B.f(n)中共有n+1项,当n=2时,f(2)=错误!+错误!+错误!C.f(n)中共有n2-n项,当n=2时,f(2)=错误!+错误!D。

f(n)中共有n2-n+1项,当n=2时,f(2)=错误!+错误!+错误!解析f(n)共有n2-n+1项,当n=2时,错误!=错误!,错误!=错误!,故f(2)=错误!+错误!+错误!.答案D4.用数学归纳法证明1+错误!+错误!+…+错误!<n(n∈N,且n〉1),第一步要证的不等式是________。

高考数学总复习:第十二篇 第3讲 数学归纳法

高考数学总复习:第十二篇 第3讲 数学归纳法

(m∈N*)能被3整除.
证明 (1)当m=1时,a4m+1=a5=a4+a3=(a3+a2)+(a2+a1) =(a2+a1)+2a2+a1=3a2+2a1=3+0=3.
即当m=1时,第4m+1项能被3整除.故命题成立.
抓住2个考点
突破4个考向
揭秘3年高考
(2)假设当m=k时,a4k+1能被3整除,则当m=k+1时, a4(k+1)+1=a4k+5=a4k+4+a4k+3=2a4k+3+a4k+2 =2(a4k+2+a4k+1)+a4k+2=3a4k+2+2a4k+1.
(2)由假设n=k成立证n=k+1时,要推导详实,并且一定
要运用n=k成立的结论. (3)要注意n=k到n=k+1时增加的项数.
抓住2个考点
突破4个考向
揭秘3年高考
考点自测
1 1.在应用数学归纳法证明凸 n 边形的对角线为 n(n-3)条 2 时,第一步检验第一个值 n0 等于 ( ).
A.1 解析 答案 C
即Tk+1+12=-2ak+1+10bk+1.
因此n=k+1时等式也成立. 由①②可知,对任意n∈N*,Tn+12=-2an+10bn成立.
抓住2个考点
突破4个考向
揭秘3年高考
法二
由(1)得 Tn=2an+22an-1+23an-2+„+2na1,
① ②
2Tn=22an+23an-1+„+2nan+2n+1a1. ②-①,得
则当n=k+1时有
抓住2个考点 突破4个考向 揭秘3年高考
Tk+1=ak+1b1+akb2+ak-1b3+…+a1bk+1 =ak+1b1+q(akb1+ak-1b2+…+a1bk) =ak+1b1+qTk
=ak+1b1+q(-2ak+10bk-12)

新教材高考数学第4章数列4数学归纳法含解析选修2

新教材高考数学第4章数列4数学归纳法含解析选修2

数学归纳法素养目标学科素养1.了解数学归纳法的原理.(重点、难点)2.掌握用数学归纳法证明问题的一般方法与步骤.(重点)3.能用数学归纳法证明一些数学命题.(难点)1.数学抽象;2.逻辑推理;3.数学运算情境导学往一匹健壮的骏马身上放一根稻草,马毫无反应;再添加一根稻草,马还是丝毫没有感觉;又添加一根……一直往马身上添稻草,当最后一根轻飘飘的稻草放到了马儿身上后,骏马竟不堪重负瘫倒在地.这在社会学里,取名为“稻草原理”.这其中蕴含着一种怎样的数学思想呢?1.数学归纳法的定义一般地,证明一个与正整数n有关的命题,可按下列步骤进行:(1)(归纳奠基)证明当n=n0(n0∈N*)时命题成立;(2)(归纳递推)以“当n=k(k∈N*,k≥n0)时命题成立”为条件,推出“当n=k+1时命题也成立”.只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立,这种证明方法称为数学归纳法.2.数学归纳法的框图表示判断(正确的打“√”,错误的打“×”).(1)与自然数n有关的问题都可以用数学归纳法来证明.(×)(2)在利用数学归纳法证明问题时,只要推理过程正确,也可以不用进行假设.(×)(3)用数学归纳法证明等式时,由n=k到n=k+1,等式的项数一定增加了一项.(×)1.式子1+k+k2+…+k n(n∈N*),当n=1时,式子的值为(B)A.1 B.1+kC.1+k+k2D.以上都不对2.用数学归纳法证明3n≥n3(n≥3,n∈N*)时,第一步验证( )A.n=1 B.n=2C.n=3 D.n=4C 解析:由题知,n的最小值为3,所以第一步验证n=3是否成立.3.用数学归纳法证明关于n的恒等式时,当n=k时,表达式为1×4+2×7+…+k(3k+1)=k(k+1)2,则当n=k+1时,表达式为___________________.1×4+2×7+…+k(3k+1)+(k+1)(3k+4)=(k+1)(k+2)2解析:把k更换为k+1.4.式子1+3+5+…+(2n+1)=(n+1)2,当n=1时,右边的式子为________.(1+1)2解析:当n=1时,式子变为“1+3=(1+1)2”,故右边的式子为(1+1)2.【例1】用数学归纳法证明:1+3×2+5×22+…+(2n -1)× 2n -1=2n (2n -3)+3(n ∈N *).证明:(1)当n =1时,左边=1,右边=2×(2-3)+3=1,左边=右边,所以等式成立. (2)假设当n =k (k ∈N *)时,等式成立,即1+3×2+5×22+…+(2k -1)×2k -1=2k(2k -3)+3.则当n =k +1时,1+3×2+5×22+…+(2k -1)×2k -1+(2k +1)×2k =2k(2k -3)+3+(2k+1)×2k=2k(4k -2)+3=2k +1[2(k +1)-3]+3,即当n =k +1时,等式也成立. 由(1)(2)知,等式对任何n ∈N *都成立.用数学归纳法证明等式时,一是弄清n 取第一个值n 0时等式两端项的情况;二是弄清从n =k 到n =k +1等式两端的项是如何变化的,即增加了哪些项,减少了哪些项;三是证明n =k +1时结论也成立,要设法将待证式与所作假设建立联系,并向n =k +1时证明目标的表达式进行变形.用数学归纳法证明:⎝ ⎛⎭⎪⎫1-13⎝ ⎛⎭⎪⎫1-14⎝ ⎛⎭⎪⎫1-15…⎝ ⎛⎭⎪⎫1-1n +2=2n +2(n ∈N *). 证明:(1)当n =1时,左边=1-13=23,右边=21+2=23,等式成立.(2)假设n =k (k ∈N *)时,等式成立, 即⎝ ⎛⎭⎪⎫1-13⎝ ⎛⎭⎪⎫1-14⎝ ⎛⎭⎪⎫1-15…⎝ ⎛⎭⎪⎫1-1k +2=2k +2. 在上式两边同时乘⎝⎛⎭⎪⎫1-1k +3得 ⎝ ⎛⎭⎪⎫1-13⎝ ⎛⎭⎪⎫1-14⎝ ⎛⎭⎪⎫1-15…⎝ ⎛⎭⎪⎫1-1k +2⎝ ⎛⎭⎪⎫1-1k +3=2k +2⎝ ⎛⎭⎪⎫1-1k +3=2k +2k +2k +3=2k +3=2k +1+2, 即当n =k +1时等式成立.由(1)(2)可知对任何n ∈N *,等式都成立.【例2】用数学归纳法证明:112+132+…+12n -12>1-12+13-14+…+12n -1-12n(n ∈N *).证明:(1)当n =1时,左边=1,右边=1-12=12,左边>右边,所以不等式成立.(2)假设当n =k (k ∈N *)时,不等式成立, 即112+132+…+12k -12>1-12+13-14+…+12k -1-12k.则当n =k +1时, 112+132+…+12k -12+12k +12>1-12+13-14+…+12k -1-12k +12k +12>1-12+13-14+…+12k -1-12k+12k +12k +2=1-12+13-14+…+12k -1-12k +12k +1-1-12k +1, 即当n =k +1时,不等式也成立. 由(1)(2)知,不等式对任何n ∈N *都成立.用数学归纳法证明不等式需要注意:1.在归纳递推证明过程中,方向不明确时,可采用分析法完成,经过分析找到推证的方向后,再用综合法、比较法等其他方法证明.2.在推证“n =k +1时不等式也成立”的过程中,常常要将表达式作适当放缩、变形,便于应用所作假设,变换出要证明的结论.用数学归纳法证明:1+12+13+…+12n -1>n 2(n ∈N *).证明:(1)当n =1时,左边=1,右边=12,不等式成立.(2)假设当n =k (k ∈N *)时不等式成立,即1+12+13+…+12k -1>k 2.则当n =k +1时,1+12+13+…+12k -1+12k -1+1+12k -1+2+…+12k >k 2+12k -1+1+12k -1+2+…+12k >k 2+12k +12k +…+12k =k 2+(2k -2k -1)12k =k +12.∴当n =k +1时,不等式成立.由(1)(2)可知,不等式对任何n ∈N *成立.【例3】求证:an +1+(a +1)2n -1能被a 2+a +1整除.(其中n ∈N *,a ∈R )证明:(1)当n =1时,a 2+(a +1)1=a 2+a +1,显然能被a 2+a +1整除,命题成立. (2)假设当n =k (k ∈N *)时,a k +1+(a +1)2k -1能被a 2+a +1整除.则当n =k +1时,a k +2+(a +1)2k +1=a ·a k +1+(a +1)2(a +1)2k -1=a [a k +1+(a +1)2k -1]+(a +1)2(a +1)2k -1-a (a +1)2k -1=a [a k +1+(a +1)2k -1]+(a 2+a +1)(a +1)2k -1.上式能被a 2+a +1整除, 即当n =k +1时,命题成立.由(1)(2)知,对一切n ∈N *,a ∈R ,命题都成立.证明整除问题的关键是凑项,即采取增项、减项、拆项和因式分解等手段,凑出n =k 时的情形,从而利用归纳递推使问题得以解决.用数学归纳法证明:若f (n )=3×52n +1+23n +1,则f (n )能被17整除.(n ∈N *)证明:(1)当n =1时,f (1)=3×53+24=17×23, ∴f (1)能被17整除,命题成立.(2)假设n =k (k ∈N *)时,f (k )=3×52k +1+23k +1能被17整除.则n =k +1时,f (k +1)=3×52k +3+23k +4=52×3×52k +1+23×23k +1=25×3×52k +1+8×23k +1=17×3×52k +1+8×(3×52k +1+23k +1)=17×3×52k +1+8f (k ).因为f (k )能被17整除,17×3×52k +1也能被17整除,所以f (k +1)能被17整除.由(1)(2)可知,对任意n ∈N *,f (n )都能被17整除.1.用数学归纳法证明等式1+2+3+…+(n +3)=n +3n +42(n ∈N *)时,第一步验证n =1时,左边应取的项是( ) A .1 B .1+2 C .1+2+3D .1+2+3+4D 解析:由数学归纳法的证明步骤可知:当n =1时,等式的左边是1+2+3+(1+3)=1+2+3+4.故选D .2.用数学归纳法证明f (n )=2n-n 2>0(n ≥5,n ∈N *)时,应先证明( ) A .f (1)>0 B .f (2)>0 C .f (4)>0D .f (5)>0D 解析:利用数学归纳法证明f (n )=2n-n 2>0(n ≥5,n ∈N *)时,第一步应该先证明n =5时命题成立,即f (5)=25-52>0.故选D .3.证明命题“凸n 边形内角和等于(n -2)·180°”时,n 可取的第一个值是( ) A .1 B .2 C .3D .4C 解析:n =3时,凸n 边形就是三角形,而三角形的三个内角和等于180°,所以命题成立.故选C .4.用数学归纳法证明:1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n ,第一步应验证的等式是____________;从“n =k ”到“n =k +1”左边需增加的等式是____________________.1-12=12 12k +1-1-12k +1 解析:当n =1时,应当验证的第一个式子是1-12=12,从“n =k ”到“n =k +1”左边需增加的等式是12k +1-1-12k +1. 5.在数列{a n }中,a 1=1且a n +1=a n +1nn +1. (1)求出a 2,a 3,a 4;(2)归纳出数列{a n }的通项公式,并用数学归纳法证明归纳出的结论. 解:(1)由a 1=1且a n +1=a n +1nn +1知: a 2=a 1+11×2=32,a 3=a 2+12×3=53,a 4=a 3+13×4=74. (2)猜想数列{a n }的通项公式为a n =2n -1n,证明如下:①当n =1时,左边=a 1=1,右边=2×1-11=1.∴左边=右边,即猜想成立;②假设当n =k 时,猜想成立,即有a k =2k -1k,那么当n =k +1时, a k +1=a k +1kk +1=2k -1k +1k k +1=2k +1k +1=2k +1-1k +1,从而猜想对n =k +1也成立.由①②可知,猜想对任意的n ∈N *都成立,所以数列{a n }的通项公式为a n =2n -1n.1.数学归纳法只能用来证明与正整数有关的命题,其原理类似于不等式的传递性. 2.要认识到用数学归纳法证题时,第一步是递推的基础,第二步是递推的依据,两者缺一不可.3.应用数学归纳法证题时,关键是证明n =k +1时的命题,要想证好这一步,需明确以下两点:一是要证什么,二是n =k +1时命题与所作假设的区别是什么.明确了这两点,也就明确了这一步的证明方向和基本方法.4.有关“和式”或“积式”,一定要“数清”是多少项的和或积,以准确确定n =1及由n =k 变化到n =k +1时“和”或“积”的情况.课时分层作业(十一)数学归纳法 (60分钟 100分) 基础对点练基础考点 分组训练知识点1 用数学归纳法证明等式1.(5分)用数学归纳法证明等式1+2+3+…+(n +3)=n +3n +42(n ∈N *)时,第一步验证n =1,左边应取的项是( ) A .1 B .1+2 C .1+2+3D .1+2+3+4D 解析:当n =1时,n +3=4,故左边应为1+2+3+4. 2.(5分)用数学归纳法证明1+2+3+…+n 2=n 4+n 22,则当n =k +1(n ∈N *)时,等式左边应在n =k 的基础上加上( ) A .k 2+1 B .(k +1)2C .k +14+k +122D .(k 2+1)+(k 2+2)+(k 2+3)+…+(k +1)2D 解析:当n =k 时,等式左边=1+2+…+k 2;当n =k +1时,等式左边=1+2+…+k 2+(k 2+1)+…+(k +1)2.故选D .3.(10分)用数学归纳法证明:1+3+…+(2n -1)=n 2(n ∈N *).证明:(1)当n =1时,左边=1,右边=1,等式成立.(2)假设当n =k (k ∈N *)时,等式成立,即1+3+…+(2k -1)=k 2, 那么,当n =k +1时,1+3+…+(2k -1)+[2(k +1)-1] =k 2+[2(k +1)-1]=k 2+2k +1=(k +1)2. 这就是说,当n =k +1时等式成立.根据(1)和(2)可知等式对任意正整数n 都成立. 知识点2 用数学归纳法证明不等式4.(5分)用数学归纳法证明:122+132+…+1n +12>12-1n +2,假设n =k 时,不等式成立,则当n =k +1时,应推证的目标不等式是___________________________. 122+132+…+1k +12+1k +22>12-1k +3解析:当n=k+1时,目标不等式为122+132+…+1k+12+1k+22>12-1k+3.5.(10分)证明不等式1+12+13+…+1n<2n(n∈N*).证明:(1)当n=1时,左边=1,右边=2,左边<右边,不等式成立.(2)假设当n=k(k∈N*)时,不等式成立,即1+12+13+…+1k<2k.当n=k+1时,1+12+13+…+1k+1k+1<2k+1k+1=2k k+1+1k+1<k2+k+12+1k+1=2k+1k+1=2k+1.所以当n=k+1时,不等式成立.由(1)(2)可知,原不等式对任意n∈N*都成立.知识点3 用数学归纳法证明整除问题6.(5分)用数学归纳法证明34n+2+52n+1能被14整除的过程中,当n=k+1时,34(k+1)+2+52(k+1)+1应变形为.25(34k+2+52k+1)+56×34k+2解析:当n=k+1时,34(k+1)+2+52(k+1)+1=81×34k+2+25×52k+1=25(34k+2+52k+1)+56×34k+2.7.(10分)用数学归纳法证明:n3+(n+1)3+(n+2)3能被9整除(n∈N*).证明:(1)当n=1时,13+23+33=36能被9整除,所以结论成立;(2)假设当n=k(k∈N*)时结论成立,即k3+(k+1)3+(k+2)3能被9整除.则当n=k+1时,(k+1)3+(k+2)3+(k+3)3=[k3+(k+1)3+(k+2)3]+[(k+3)3-k3]=[k3+(k+1)3+(k+2)3]+9k2+27k+27=[k3+(k+1)3+(k+2)3]+9(k2+3k+3).因为k3+(k+1)3+(k+2)3能被9整除,9(k2+3k+3)也能被9整除,所以(k +1)3+(k +2)3+(k +3)3也能被9整除,即n =k +1时结论也成立. 由(1)(2)知命题对一切n ∈N *都成立.能力提升练能力考点 适度提升8.(5分)用数学归纳法证明1+a +a 2+…+a n=1-a n +11-a(a ≠1,n ∈N *),在验证n =1时,左边计算所得的式子是(B) A .1 B .1+a C .1+a +a 2D .1+a +a 2+a 39.(5分)利用数学归纳法证明1n +1n +1+1n +2+…+12n <1(n ∈N *,且n ≥2),第二步由k 到 k+1时不等式左端的变化是( ) A .增加了12k +1这一项B .增加了12k +1和12k +2两项C .增加了12k +1和12k +2两项,减少了1k 这一项D .以上都不对C 解析:当n =k 时,左端为1k +1k +1+1k +2+…+12k ;当n =k +1时,左端为1k +1+1k +2+1k +3+…+12k +12k +1+12k +2, 对比可知,C 正确.10.(5分)用数学归纳法证明“当n 为正奇数时,x n +y n能被x +y 整除”,第二步归纳递推中的假设应写成( )A .假设n =2k +1(k ∈N *)时正确,再推n =2k +3时正确 B .假设n =2k -1(k ∈N *)时正确,再推n =2k +1时正确 C .假设n =k (k ∈N *)时正确,再推n =k +1时正确 D .假设n =k (k ∈N *)时正确,再推n =k +2时正确B 解析:∵n 为正奇数,∴在证明时,应假设n =2k -1(k ∈N *)时正确,再推出n =2k +1时正确.故选B .11.(5分)对于不等式n 2+n ≤n +1(n ∈N *),某学生的证明过程如下: (1)当n =1时,12+1≤1+1,不等式成立.(2)假设当n =k (k ∈N *)时,不等式成立,即k 2+k ≤k +1,则当n =k +1时,k +12+k +1=k 2+3k +2<k 2+3k +2+k +2=k +22=(k +1)+1,所以当n =k +1时,不等式成立. 上述证法( ) A .过程全都正确 B .n =1验证不正确 C .假设不正确D .从n =k 到n =k +1的推理不正确D 解析:n =1的验证及假设都正确,但从n =k 到n =k +1的推理中没有使用假设作为条件,而是通过不等式的放缩法直接证明,这不符合数学归纳法的证明要求.故选D .12.(5分)用数学归纳法证明12+22+…+(n -1)2+n 2+(n -1)2+…+22+12=n 2n 2+13时,由n =k 的假设到证明n =k +1时,等式左边应添加的式子是________________________________________________________________________. (k +1)2+k 2解析:当n =k 时,左边=12+22+…+(k -1)2+k 2+(k -1)2+…+22+12. 当n =k +1时,左边=12+22+…+k 2+(k +1)2+k 2+(k -1)2+…+22+12, 所以等式左边添加的式子为(k +1)2+k 2.13.(5分)用数学归纳法证明(n +1)·(n +2)·…·(n +n )=2n×1×3×…×(2n -1)(n ∈N *),“从k 到k +1”左端增乘的代数式为________. 2(2k +1) 解析:令f (n )=(n +1)(n +2)…(n +n ),则f (k )=(k +1)(k +2)…(k +k ),f (k +1)=(k +2)(k +3)…(k +k )(2k +1)(2k +2),所以f k +1f k =2k +12k +2k +1=2(2k +1).14.(5分)若存在正整数m ,使得f (n )=(2n +7)·3n+9(n ∈N *)能被m 整除,则m 的最大值为________.36 解析:f (1)=36,f (2)=36×3,f (3)=36×10,…,猜想m 的最大值为36.15.(15分)已知数列{a n }的前n 项和为S n ,其中a n =S n n 2n -1且a 1=13.(1)求a 2,a 3;(2)猜想数列{a n }的通项公式,并证明. 解:(1)a 2=S 22×2×2-1=a 1+a 26,a 1=13,则a 2=115,类似地求得a 3=135.(2)由a 1=11×3,a 2=13×5,a 3=15×7,…,猜想:a n =12n -12n +1.证明:①当n =1时,由(1)可知等式成立. ②假设当n =k 时猜想成立, 即a k =12k -12k +1,那么,当n =k +1时,由题设a n =S nn 2n -1,得a k =S k k 2k -1,a k +1=S k +1k +12k +1,所以S k =k (2k -1)a k =k (2k -1)12k -12k +1=k2k +1, S k +1=(k +1)(2k +1)a k +1, a k +1=S k +1-S k =(k +1)(2k +1)a k +1-k 2k +1. 因此,k (2k +3)a k +1=k2k +1.所以a k +1=12k +12k +3=1[2k +1-1][2k +1+1].这就证明了当n =k +1时命题成立. 由①②可知命题对任意n ∈N *都成立.第四章质量评估(时间:120分钟,分值:150分)一、单项选择题(本题共8小题,每小题5分,共40分) 1.在等差数列{a n }中,若a 2=4,a 4=2,则a 6=( ) A .-1 B .0 C .1D .6B 解析:在等差数列{a n }中,若a 2=4,a 4=2,则a 4=12(a 2+a 6)=12(4+a 6)=2,解得a 6=0.故选B .2.已知等比数列{a n }的公比为-2,且a 2+a 5=1,则a 4+a 7=( ) A .-8 B .8 C .-4D .4D 解析:由题意可知a 4+a 7=(a 2+a 5)×(-2)2=4.3.若S n 是等差数列{a n }的前n 项和,且S 10-S 3=14,则S 13的值为( ) A .12 B .18 C .22D .26D 解析:根据题意得S 10-S 3=a 4+a 5+a 6+a 7+a 8+a 9+a 10=7a 7=14,所以a 7=2,S 13=13a 1+a 132=13a 7=26.故选D .4.已知等比数列{a n }的前n 项和为S n ,且9S 3=S 6,a 2=1,则a 1=( ) A .12 B .22C . 2D .2A 解析:∵9S 3=S 6,∴9×a 11-q 31-q =a 11-q 61-q,∴9(1-q 3)=1-q 6,∴1+q 3=9,∴q =2.∴a 1=a 2q =12.5.在数列{a n }中,若a 1=1,a n +1=a n +2n,则a n 等于( ) A .2n-1 B .2n +1-3 C .2n -1D .2n -1-1A 解析:∵a n +1=a n +2n,∴a n +1-a n =2n.∴a 2-a 1=2,a 3-a 2=22,a 4-a 3=23,…,a n -a n -1=2n -1.相加得a n -a 1=2+22+23+…+2n -1=21-2n -11-2=2n-2.∴a n =2n-1.6.已知数列212,414,618,8116,…,则其前n 项和S n 为( )A .n 2+n +1-12nB .n 2+n -12nC .n 2+1-12n -1D .n 2+n +2-12n -1A 解析:∵a n =2n +12n ,∴S n =n2n +22+12⎝ ⎛⎭⎪⎫1-12n 1-12=n 2+n +1-12n . 7.已知数列{a n }是递增的等比数列,且a 4a 6-2a 24+a 2a 4=144,则a 5-a 3=( ) A .6 B .8 C .10D .12D 解析:∵{a n }是递增的等比数列,∴a 5-a 3>0.∵a 4a 6=a 25,a 24=a 3a 5,a 2a 4=a 23,∴a 4a 6-2a 24+a 2a 4=144可化为a 25-2a 3a 5+a 23=144,即(a 5-a 3)2=144,∴a 5-a 3=12.故选D .8.已知n 为正偶数,用数学归纳法证明1-12+13-14+…+1n -1-1n =2⎝ ⎛⎭⎪⎫1n +2+1n +4+…+12n 时,若已假设n =k (k ≥2且k 为偶数)时等式成立,则还需要再证( ) A .n =k +1时等式成立 B .n =k +2时等式成立 C .n =2k +2时等式成立 D .n =2(k +2)时等式成立B 解析:根据数学归纳法的步骤可知,n =k (k ≥2且k 为偶数)的下一个偶数为n =k +2.故选B .二、多项选择题(本题共4小题,每小题5分,共20分)9.已知等比数列{a n }的前n 项和为S n ,下列数列中一定是等比数列的有( ) A .{a 2n } B .{a n a n +1}C .{lg a n }D .S n ,S 2n -S n ,S 3n -S 2nAB 解析:由数列{a n }为等比数列可知,a n a n -1=q (q ≠0),对于A ,a 2n a 2n -1=q 2,故A 项中的数列是等比数列;对于B ,a n a n +1a n -1a n =a n +1a n -1=q 2≠0,故B 项中的数列是等比数列;对于C ,lg a nlg a n -1不一定为常数,即{lg a n }不一定为等比数列;对于D ,若a n =(-1)n,为等比数列,公比为-1,则S n 有可能为0,即S n ,S 2n -S n ,S 3n -S 2n 不一定成等比数列.故选AB .10.在等差数列{a n }中,a 66<0,a 67>0,且a 67>|a 66|,S n 为数列{a n }的前n 项和,则( ) A .公差d <0 B .a 66+a 67<0 C .S 131<0D .使S n >0的n 的最小值为132CD 解析:∵a 66<0,a 67>0,且a 67>|a 66|, ∴d >0,a 67>-a 66,即a 67+a 66>0, ∴S 132=66(a 1+a 132)=66(a 66+a 67)>0,S 131=131a 1+a 1312=131a 66<0,∴使S n >0的n 的最小值为132.11.已知两个等差数列{a n }和{b n }的前n 项和分别为S n 和T n ,且S n T n =3n +39n +3,则使得a nb n为整数的正整数n 的值为( ) A .2 B .3 C .4D .14ACD 解析:由题意可得S 2n -1T 2n -1=2n -1a 1+a 2n -122n -1b 1+b 2n -12=2n -1a n 2n -1b n =a n b n ,则a n b n =S 2n -1T 2n -1=32n -1+392n -1+3=3n +18n +1=3+15n +1.由于a n b n为整数,则n +1为15的正约数,则n +1的可能取值有3,5,15,因此,正整数n 的可能取值有2,4,14.故选ACD .12.对于数列{a n },若存在正整数k (k ≥2),使得a k <a k -1,a k <a k +1,则称a k 是数列{a n }的“谷值”,k 是数列{a n }的“谷值点”.在数列{a n }中,若a n =⎪⎪⎪⎪⎪⎪n +9n-8,下面不能作为数列{a n}的“谷值点”的是( ) A .3 B .2C .7D .5AD 解析:a n =⎪⎪⎪⎪⎪⎪n +9n -8,故a 1=2,a 2=32,a 3=2,a 4=74,a 5=65,a 6=12,a 7=27,a 8=98.故a 2<a 3,3不是“谷值点”;a 1>a 2,a 3>a 2,故2是“谷值点”;a 6>a 7,a 8>a 7,故7是“谷值点”;a 4<a 5,5不是“谷值点”.故选AD .三、填空题(本题共4小题,每小题5分,共20分)13.已知{a n }是各项都为正数的等比数列,其前n 项和为S n ,且S 2=3,S 4=15,则a 3=________. 4 解析:∵S 2=3,S 4=15, ∴a 1+a 2=3,a 3+a 4=S 4-S 2=12. ∴a 3+a 4a 1+a 2=4=q 2.∵a n >0,∴q =2. ∴a 1+a 1q =3a 1=3.∴a 1=1.∴a 3=a 1q 2=4.14.已知等差数列{a n }共有10项,其奇数项之和为10,偶数项之和为30,则公差是________.4 解析:∵S 偶-S 奇=5d =20,∴d =4.15.已知数列{a n }满足a n -a n +1=3a n a n +1(n ∈N *),数列{b n }满足b n =1a n,且b 1+b 2+…+b 9=90,则b 5=________,b 4b 6=________. 10 91 解析:由题意可得1a n +1-1a n=3,即数列{b n }是公差为3的等差数列,由b 1+b 2+…+b 9=90,得b 5=10,所以b 4=7,b 6=13,b 4b 6=91.16.在一个数列中,如果每一项与它的后一项的积为同一个常数,那么这个数列称为等积数列,这个常数称为该数列的公积.已知数列{a n }是等积数列,且a 1=-2,公积为5,那么这个数列的前41项的和为________.-92 解析:由题意可得,a 1=-2,a 2=-52,a 3=-2,a 4=-52,…,a 39=-2,a 40=-52,a 41=-2,∴S 41=21×(-2)+20×⎝ ⎛⎭⎪⎫-52=-92.四、解答题(本题共6小题,共70分)17.(10分)数列{a n }的前n 项和为S n ,已知a n =5S n -3(n ∈N *),求数列{a n }的通项公式.解:当n =1时,a 1=5S 1-3=5a 1-3,得a 1=34.当n ≥2时,由已知a n =5S n -3, 得a n -1=5S n -1-3.两式作差得a n -a n -1=5(S n -S n -1)=5a n , ∴a n =-14a n -1,∴数列{a n }是首项a 1=34,公比q =-14的等比数列.∴a n =a 1qn -1=34×⎝ ⎛⎭⎪⎫-14n -1. 18.(12分)已知S n 为等差数列{a n }的前n 项和,a 1=8,S 10=-10.(1)求a n ,S n ;(2)设T n =|a 1|+|a 2|+…+|a n |,求T n . 解:(1)∵S 10=10a 1+45d =80+45d =-10, ∴d =-2.∴a n =8-2(n -1)=10-2n ,S n =n 8+10-2n 2=9n -n 2.(2)令a n =0,得n =5. 当n ≤5时,T n =S n =9n -n 2;当n ≥6时,T n =-S n +2S 5=n 2-9n +40,∴T n =⎩⎪⎨⎪⎧9n -n 2,n ≤5,n 2-9n +40,n ≥6.19.(12分)已知数列{a n }满足2a n +1=1a n +1a n +2(n ∈N *),且a 3=15,a 2=3a 5. (1)求{a n }的通项公式;(2)若b n =3a n a n +1(n ∈N *),求数列{b n }的前n 项和S n . (1)解:由2a n +1=1a n +1a n +2(n ∈N *)可知数列⎩⎨⎧⎭⎬⎫1a n 为等差数列.由已知得1a 3=5,1a 2=13×1a 5. 设其公差为d ,则1a 1+2d =5,1a 1+d =13⎝ ⎛⎭⎪⎫1a 1+4d ,解得1a 1=1,d =2,于是1a n=1+2(n -1)=2n -1,整理得a n =12n -1.(2)由(1)得b n =3a n a n +1=32n -12n +1=32⎝ ⎛⎭⎪⎫12n -1-12n +1,所以S n =32⎝ ⎛⎭⎪⎫1-13+13-15+…+12n -1-12n +1=3n 2n +1. 20.(12分)某地区原有森林木材存量为a ,且每年增长率为25%.因生产建设的需要,每年年底要砍伐的木材量为b ,设a n 为n 年后该地区森林木材存量. (1)求{a n }的表达式.(2)为保护生态环境,防止水土流失,该地区每年的森林木材存量应不少于79a .如果b =1972a ,那么该地区今后会发生水土流失吗?若会,需要经过几年?(lg 2≈0.30) 解:(1)设第一年后的森林木材存量为a 1,第n 年后的森林木材存量为a n , ∴a 1=a ⎝ ⎛⎭⎪⎫1+14-b =54a -b ,a 2=54a 1-b =54⎝ ⎛⎭⎪⎫54a -b -b =⎝ ⎛⎭⎪⎫542a -⎝ ⎛⎭⎪⎫54+1b ,a 3=54a 2-b =⎝ ⎛⎭⎪⎫543a -⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫542+54+1b .由上面的a 1,a 2,a 3推测a n =⎝ ⎛⎭⎪⎫54n a -⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫54n -1+⎝ ⎛⎭⎪⎫54n -2+…+54+1b =⎝ ⎛⎭⎪⎫54n a -4⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫54n -1b (其中n ∈N *).证明如下:①当n =1时,a 1=54a -b ,结论成立.②假设当n =k 时,a k =⎝ ⎛⎭⎪⎫54k a -4⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫54k -1b 成立,则当n =k +1时,a k +1=54a k -b =54⎩⎨⎧⎭⎬⎫⎝ ⎛⎭⎪⎫54ka -4⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫54k -1b -b =⎝ ⎛⎭⎪⎫54k +1a -4⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫54k +1-1b . 也就是说,当n =k +1时,结论也成立.由①②可知,a n =⎝ ⎛⎭⎪⎫54n a -4⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫54n -1b 对一切n ∈N *成立.(2)当b =1972a 时,若该地区今后发生水土流失,则森林木材存量必须小于79a ,∴⎝ ⎛⎭⎪⎫54n a -4⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫54n -1×1972a <79a ,即⎝ ⎛⎭⎪⎫54n>5.两边取对数得nlg 54>lg 5,即n >lg 5lg 5-2lg 2=1-lg 21-3lg 2≈7.∴经过8年后该地区就会发生水土流失.21.(12分)已知数列{a n }的前n 项和S n =2a n -2n.(1)求a 1,a 2;(2)设c n =a n +1-2a n ,证明:数列{c n }是等比数列; (3)求数列⎩⎨⎧⎭⎬⎫n +12c n 的前n 项和T n . (1)解:∵a 1=S 1,2a 1=S 1+2,∴a 1=S 1=2. 由2a n =S n +2n ,知2a n +1=S n +1+2n +1=a n +1+S n +2n +1,∴a n +1=S n +2n +1,①∴a 2=S 1+22=2+22=6.(2)证明:由题设和①式知a n +1-2a n =(S n +2n +1)-(S n +2n )=2n +1-2n =2n ,即c n =2n,∴c n +1c n=2(常数).∵c 1=21=2,∴{c n }是首项为2,公比为2的等比数列. (3)解:∵c n =2n,∴n +12c n =n +12n +1. ∴数列⎩⎨⎧⎭⎬⎫n +12c n 的前n 项和T n =222+323+424+…+n +12n +1,12T n =223+324+…+n 2n +1+n +12n +2,两式相减,得12T n =222+123+124+125+…+12n +1-n +12n +2=12+123×⎝ ⎛⎭⎪⎫1-12n -11-12-n +12n +2=34-12n +1-n +12n +2=34-n +32n +2.∴T n =32-n +32n +1. 22.(12分)已知数列{a n }的前n 项和S n =a n +12n 2+32n -2(n ∈N *).(1)求数列{a n }的通项公式;(2)若b n=⎩⎪⎨⎪⎧1a n-1a n+1,n 为奇数,4×⎝ ⎛⎭⎪⎫12a n,n 为偶数,且数列{b n }的前n 项和为T n ,求T 2n .解:(1)由于S n =a n +12n 2+32n -2,所以当n ≥2时,S n -1=a n -1+12(n -1)2+32(n -1)-2,两式相减得a n =a n -a n -1+n +1,于是a n -1=n +1,所以a n =n +2. (2)由(1)得b n=⎩⎪⎨⎪⎧1n +1n +3,n 为奇数,⎝ ⎛⎭⎪⎫12n,n 为偶数,所以T 2n =b 1+b 2+b 3+…+b 2n =(b 1+b 3+…+b 2n -1)+(b 2+b 4+…+b 2n ). 因为b 1+b 3+…+b 2n -1=12×4+14×6+16×8+…+12n ×2n +2=14⎣⎢⎡⎦⎥⎤11×2+12×3+…+1n ×n +1 =14⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=n4n +1, b 2+b 4+…+b 2n =⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫124+…+⎝ ⎛⎭⎪⎫122n =14⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫14n 1-14=13⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫14n ,于是T 2n =n 4n +1+13⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫14n .。

2021届高考数学专题突破数学归纳法(解析版)

2021届高考数学专题突破数学归纳法(解析版)

2020年高考数学数列与不等式突破性讲练12数学归纳法一、 考点传真:1.了解数学归纳法的原理;2.能用数学归纳法证明一些简单的数学命题. 二、知识点梳理 1.数学归纳法一般地,证明一个与正整数n 有关的命题,可按下列步骤进行: (1)(归纳奠基)证明当n 取第一个值n 0(n 0∈N *)时命题成立;(2)(归纳递推)假设n =k (k ≥n 0,k ∈N *)时命题成立,证明当n =k +1时命题也成立.只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立.上述证明方法叫做数学归纳法.2.数学归纳法的框图表示三、例题:例1. (2017浙江)已知数列{}n x 满足:11x =,11ln(1)n n n x x x ++=++()n ∈*N .证明:当n ∈*N 时 (Ⅰ)10n n x x +<<; (Ⅱ)1122n n n n x x x x ++-≤; (Ⅲ)121122n n n x --≤≤.【解析】(Ⅰ)用数学归纳法证明:0n x >当1n =时,110x => 假设n k =时,0k x >,那么1n k =+时,若10k x +≤,则110ln(1)0k k k x x x ++<=++≤,矛盾,故10k x +>.因此0n x >()n ∈*N所以111ln(1)n n n n x x x x +++=++>因此10n n x x +<<()n ∈*N(Ⅱ)由111ln(1)n n n n x x x x +++=++>得2111111422(2)ln(1)n n n n n n n n x x x x x x x x ++++++-+=-+++记函数2()2(2)ln(1)(0)f x x x x x x =-+++≥函数()f x 在[0,)+∞上单调递增,所以()(0)f x f ≥=0,因此 2111112(2)ln(1)()0n n n n n x x x x f x +++++-+++=≥故112(N )2n n n n x x x x n *++-∈≤ (Ⅲ)因为11111ln(1)2n n n n n n x x x x x x +++++=+++=≤所以112n n x -≥得 由1122n n n n x x x x ++-≥得 111112()022n n x x +-->≥ 所以12111111112()2()2222n n n n x x x -----⋅⋅⋅-=≥≥≥ 故212n n x -≤综上,1211(N )22n n n x n *--∈≤≤ .例2. (2015湖北) 已知数列{}n a 的各项均为正数,1(1)()n n n b n a n n+=+∈N ,e 为自然对数的底数.(Ⅰ)求函数()1e x f x x =+-的单调区间,并比较1(1)n n+与e 的大小;(Ⅱ)计算11b a ,1212b ba a ,123123b b b a a a ,由此推测计算1212nnb b b a a a 的公式,并给出证明;(Ⅲ)令112()nn n c a a a =,数列{}n a ,{}n c 的前n 项和分别记为n S ,n T , 证明:e n n T S <.【解析】(Ⅰ)()f x 的定义域为(,)-∞+∞,()1e x f x '=-.当()0f x '>,即0x <时,()f x 单调递增; 当()0f x '<,即0x >时,()f x 单调递减.故()f x 的单调递增区间为(,0)-∞,单调递减区间为(0,)+∞. 当0x >时,()(0)0f x f <=,即1e x x +<.令1x n=,得111e n n +<,即1(1)e n n +<. ①(Ⅱ)11111(1)1121b a =⋅+=+=;22212121212122(1)(21)32b b b b a a a a =⋅=⋅+=+=; 2333123312123123133(1)(31)43b b b b b b a a a a a a =⋅=⋅+=+=. 由此推测:1212(1)n nnb b b n a a a =+. ② 下面用数学归纳法证明②.(1)当1n =时,左边=右边2=,②成立. (2)假设当n k =时,②成立,即1212(1)k kkb b b k a a a =+. 当1n k =+时,1111(1)(1)1k k k b k a k +++=+++,由归纳假设可得 111211211211211(1)(1)(1)(2)1k k k k k k k k k k k b b b b b b b b k k k a a a a a a a a k ++++++=⋅=+++=++. 所以当1n k =+时,②也成立.根据(1)(2),可知②对一切正整数n 都成立.(Ⅲ)由n c 的定义,②,算术-几何平均不等式,n b 的定义及①得 123n n T c c c c =++++=111131211212312()()()()nn a a a a a a a a a ++++111131212312112()()()()2341nn b b b b b b b b b n =+++++12312112122334(1)nb b b b b b b b b n n ++++++≤++++⨯⨯⨯+121111111[][]1223(1)2334(1)(1)n b b b n n n n n n =+++++++++⋅⨯⨯+⨯⨯++1211111(1)()()1211n b b b n n n n =-+-++-+++1212n b b b n <+++1212111(1)(1)(1)12n n a a a n=++++++12e e e n a a a <+++=e n S ,即e n n T S <.例3.(2014安徽)设实数,整数,. (Ⅰ)证明:当且时,; (Ⅱ)数列满足,, 证明:.【解析】(Ⅰ)证:用数学归纳法证明(1)当2p =时,22(1)1212x x x x +=++>+,原不等式成立。

2024年高考数学(新高考压轴卷)(全解全析)

2024年高考数学(新高考压轴卷)(全解全析)

2024年高考压轴卷【新高考卷】数学·全解全析一、单选题1.已知集合105x A x x ⎧⎫+=≥⎨⎬-⎩⎭,(){}22log 16B x y x ==-,则()R A B ⋂=ð()A .()1,4-B .[]1,4-C .(]1,5-D .()4,52.宋代是中国瓷器的黄金时代,涌现出了五大名窑:汝窑、官窑、哥窑、钧窑、定窑.其中汝窑被认为是五大名窑之首.如图1,这是汝窑双耳罐,该汝窑双耳罐可近似看成由两个圆台拼接而成,其直观图如图2所示.已知该汝窑双耳罐下底面圆的直径是12厘米,中间圆的直径是20厘米,上底面圆的直径是8厘米,高是14厘米,且上、下两圆台的高之比是3:4,则该汝窑双耳罐的体积是()A .1784π3B .1884π3C .2304π3D .2504π33.如图,左车道有2辆汽车,右车道有3辆汽车等待合流,则合流结束时汽车通过顺序共有()种.A .10B .20C .60D .120【答案】A【分析】合流结束时5辆车需要5个位置,第一步从5个位置选2个位置安排左边的2辆汽车,第二步剩下3个位置安排右边的3辆汽车,从而由分步乘法计数原理可得结果.【详解】设左车辆汽车依次为12,A A ,右车辆汽车依次为123,,B B B ,则通过顺序的种数等价于将12,A A 安排在5个顺序中的某两个位置(保持12,A A 前后顺序不变),123,,B B B 安排在其余3个位置(保持123,,B B B 前后顺序不变),123,,B B B ,所以,合流结束时汽车通过顺序共有2353C C 10=.故选:A.4.已知等比数列{}n a 的各项均为负数,记其前n 项和为n S ,若6467813,8S S a a a -=-=-,则2a =()A .-8B .-16C .-32D .-485.已知圆C :22()1x y m +-=,直线l :()1210m x y m ++++=,则直线l 与圆C 有公共点的必要不充分条件是()A .11m -≤≤B .112m -≤≤C .10m -≤≤D .102m ≤≤6.已知函数2()log f x x =,则对任意实数,a b ,“0a b +≤”是“()()0f a f b +≤”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件故选:C.7.已知0.50.2a =,cos2b =,lg15c =,则()A .a b c <<B .c a b <<C .b c a <<D .b a c<<8.从椭圆22:1(0)x y C a b a b+=>>外一点()00,P x y 向椭圆引两条切线,切点分别为,A B ,则直线AB 称作点P关于椭圆C 的极线,其方程为00221x x y ya b+=.现有如图所示的两个椭圆12,C C ,离心率分别为12,e e ,2C 内含于1C ,椭圆1C 上的任意一点M 关于2C 的极线为l ,若原点O 到直线l 的距离为1,则2212e e -的最大值为()A .12B .13C .15D .14二、多选题9.已知非零复数1z ,2z 在复平面内对应的点分别为1Z ,2Z ,O 为坐标原点,则下列说法正确的是()A .若1211z z -=-,则12=z z B .若1212z z z z +=-,则120OZ OZ ⋅=C .若1212z z z z +=-,则120z z ⋅=D .若1212z z z z +=+,则存在实数t ,使得21z tz =10.已知四面体ABCD的一个平面展开图如图所示,其中四边形AEFD是边长为B,C分别为AE,FD的中点,BD=)⊥A.BE CDB.BE与平面DCE所成角的余弦值为15C.四面体ABCD的内切球半径为30D.四面体ABCD的外接球表面积为8π【点睛】11.对于数列{}n a (N n a +∈),定义k b 为1a ,2a ,…,k a 中最大值(1,2,,k n =⋅⋅⋅)(N n +∈),把数列{}n b 称为数列{}n a 的“M 值数列”.如数列2,2,3,7,6的“M 值数列”为2,2,3,7,7,则()A .若数列{}n a 是递减数列,则{}n b 为常数列B .若数列{}n a 是递增数列,则有n na b =C .满足{}n b 为2,3,3,5,5的所有数列{}n a 的个数为8D .若()1()2N n n a n -+=-∈,记n S 为{}n b 的前n 项和,则1001002(21)3S =-三、填空题12.已知向量()1,1,4a b == ,且b 在a 上的投影向量的坐标为()2,2--,则a 与b的夹角为.13.已知公比q 大于1的等比数列{}n a 满足135a a +=,22a =.设22log 7n n b a =-,则当5n ≥时,数列{}n b 的前n 项和n S =.14.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,过点2F 且斜率为34-的直线与C 交于,A B两点.若112AF F F ⊥,则C 的离心率为;线段AB 的垂直平分线与x 轴交于点D ,则22BF DF =.5.【点睛】方法点睛:椭圆求离心率或者范围关键是找到关于,a c 的齐次式求得.四、解答题15.如图,在平面四边形ABCD ,已知1BC =,3cos 5BCD ∠=-.(1)若AC 平分BCD ∠,且2AB =,求AC 的长;(2)若45CBD ∠=︒,求CD 的长.16.如图,在三棱柱111ABC A B C -中,ABC △是边长为2的正三角形,侧面11BB C C 是矩形,11AA A B =.(1)求证:三棱锥1A ABC -是正三棱锥;(2)若三棱柱111ABC A B C -的体积为221AC 与平面11AA B B 所成角的正弦值.【答案】(1)证明见解析(2)23【分析】(1)根据线面垂直的判定定理及性质定理,证明1A O ⊥平面ABC 即可;(2)建立空间直角坐标系,利用向量法求线面角正弦即可.【详解】(1)分别取AB ,BC 中点D ,E ,连接CD ,AE 交于点O ,则点O 为正三角形ABC 的中心.因为11AA A B CA CB ==,得1CD AB AD AB ⊥⊥,,又11,,A D CD D A D CD =⊂ 平面1A CD ,所以AB ⊥平面1A CD ,又1A O ⊂平面1A CD ,则1AB A O ⊥;取11B C 中点1E ,连接111A E E E ,,则四边形11AA E E 是平行四边形,因为侧面11BB C C 是矩形,所以1BC EE ⊥,又BC AE ⊥,又11,,EE AE E EE AE =⊂ 平面11AA E E ,所以BC ⊥平面11AA E E ,又1A O ⊂平面11AA E E ,则1BC A O ⊥;又AB BC B ⋂=,,AB BC ⊂平面ABC ,所以1A O ⊥平面ABC ,所以三棱锥1A ABC -是正三棱锥.17.某学校为了解本学期学生参加公益劳动的情况,从学校内随机抽取了500名高中学生进行在线调查,收集了他们参加公益劳动时间(单位:小时)分配情况等数据,并将样本数据分成[0,2],(2,4],(4,6],(6,8],(8,10],(10,12],(12,14],(14,16],(16,18]九组,绘制成如图所示的频率分布直方图.(1)为进一步了解这500名学生参加公益劳动时间的分配情况,从参加公益劳动时间在(12,14],(14,16],(16,18]三组内的学生中,采用分层抽样的方法抽取了10人,现从这10人中随机抽取3人.记参加公益劳动时间在(14,16]内的学生人数为X ,求X 的分布列和期望;(2)以调查结果的频率估计概率,从该学校所有高中学生中随机抽取20名学生,用“20()P k ”表示这20名学生中恰有k 名学生参加公益劳动时间在(10,12](单位:小时)内的概率,其中0,1,2,,20k = .当20()P k 最大时,写出k 的值.18.已知双曲线(22:10,0x y C a b a b-=>>)的左右焦点分别为12,F F ,C 的右顶点到直线2:a l x c =的距离为1,双曲线右支上的点到1F 的最短距离为3(1)求双曲线C 的方程;(2)过2F 的直线与C 交于M 、N 两点,连接1MF 交l 于点Q ,证明:直线QN 过x 轴上一定点.【点睛】方法点睛:求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明(2)“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;(3)求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.19.函数()e xf x a x=-图像与x 轴的两交点为()()()1221,0,0A x B x x x >,(1)令()()ln h x f x x x =-+,若()h x 有两个零点,求实数a 的取值范围;(2)证明:121x x <;(3)证明:当5a ≥时,以AB 为直径的圆与直线)1y x =+恒有公共点.(参考数据:0.25 2.5e 1.3e 12.2≈≈,)。

高考数学难点31数学归纳法解题

高考数学难点31数学归纳法解题

⾼考数学难点31数学归纳法解题⾼中数学难点31 数学归纳法解题数学归纳法是⾼考考查的重点内容之⼀.类⽐与猜想是应⽤数学归纳法所体现的⽐较突出的思想,抽象与概括,从特殊到⼀般是应⽤的⼀种主要思想⽅法.●难点磁场(★★★★)是否存在a 、b 、c 使得等式1·22+2·32+…+n (n +1)2=12)1(+n n (an 2+bn +c ). ●案例探究[例1]试证明:不论正数a 、b 、c 是等差数列还是等⽐数列,当n >1,n ∈N *且a 、b 、c 互不相等时,均有:a n +c n >2b n .命题意图:本题主要考查数学归纳法证明不等式,属★★★★级题⽬.知识依托:等差数列、等⽐数列的性质及数学归纳法证明不等式的⼀般步骤.错解分析:应分别证明不等式对等⽐数列或等差数列均成⽴,不应只证明⼀种情况.技巧与⽅法:本题中使⽤到结论:(a k -c k)(a -c )>0恒成⽴(a 、b 、c 为正数),从⽽a k +1+c k +1>a k ·c +c k ·a .证明:(1)设a 、b 、c 为等⽐数列,a =qb,c =bq (q >0且q ≠1)∴a n+c n=n n qb +b n q n =b n (n q 1+q n )>2b n(2)设a 、b 、c 为等差数列,则2b =a +c 猜想2n n c a +>(2c a +)n (n ≥2且n ∈N *)下⾯⽤数学归纳法证明:①当n =2时,由2(a 2+c 2)>(a +c )2,∴22)2(2c a c a +>+ ②设n =k 时成⽴,即,)2(2kk k c a c a +>+ 则当n =k +1时,41211=+++k k c a (a k +1+c k +1+a k +1+c k +1) >41(a k +1+c k +1+a k ·c +c k·a )=41(a k +c k )(a +c ) >(2c a +)k ·(2c a +)=(2c a +)k +1[例2]在数列{a n }中,a 1=1,当n ≥2时,a n ,S n ,S n -21成等⽐数列.(1)求a 2,a 3,a 4,并推出a n 的表达式; (2)⽤数学归纳法证明所得的结论; (3)求数列{a n }所有项的和.命题意图:本题考查了数列、数学归纳法、数列极限等基础知识.知识依托:等⽐数列的性质及数学归纳法的⼀般步骤.采⽤的⽅法是归纳、猜想、证明.错解分析:(2)中,S k =-321-k 应舍去,这⼀点往往容易被忽视.技巧与⽅法:求通项可证明{n S 1}是以{11S }为⾸项,21为公差的等差数列,进⽽求得通项公式.解:∵a n ,S n ,S n -21成等⽐数列,∴S n 2=a n ·(S n -21)(n ≥2) (*) (1)由a 1=1,S 2=a 1+a 2=1+a 2,代⼊(*)式得:a 2=-32由a 1=1,a 2=-32,S 3=31+a 3代⼊(*)式得:a 3=-152同理可得:a 4=-352,由此可推出:a n =??)1( 1n n n n (2)①当n =1,2,3,4时,由(*)知猜想成⽴.②假设n =k (k ≥2)时,a k =-)12)(32(2--k k 成⽴故S k 2=-)12)(32(2--k k ·(S k -21)∴(2k -3)(2k -1)S k 2+2S k -1=0∴S k =321,121--=-k S k k (舍) 由S k +12=a k +1·(S k +1-21),得(S k +a k +1)2 =a k +1(a k +1+S k -21).1,]1)1(2][3)1(2[22112122)12(1111211212命题也成⽴即+=-+-+-=?--+=-++-?++++++k n k k a a k a a k a a k k k k k k k由①②知,a n =??≥---=)2()12)(32(2)1(1n n n n 对⼀切n ∈N 成⽴. (3)由(2)得数列前n 项和S n = 121-n ,∴S =lim ∞→n S n =0.●锦囊妙记(1)数学归纳法的基本形式2°假设P (k )成⽴(k ≥n 0),可以推出P (k +1)成⽴(归纳),则P (n )对⼀切⼤于等于n 0的⾃然数n 都成⽴.(2)数学归纳法的应⽤具体常⽤数学归纳法证明:恒等式,不等式,数的整除性,⼏何中计算问题,数列的通项与和等.●歼灭难点训练⼀、选择题1.(★★★★★)已知f (n )=(2n +7)·3n+9,存在⾃然数m ,使得对任意n ∈N ,都能使m 整除f (n ),则最⼤的m 的值为( )A.30B.26C.36D.62.(★★★★)⽤数学归纳法证明3k ≥n 3(n ≥3,n ∈N )第⼀步应验证( ) A.n =1 B.n =2 C.n =3 D.n =4 ⼆、填空题3.(★★★★★)观察下列式⼦:474131211,3531211,2321122222<+++<++<+…则可归纳出_________.4.(★★★★)已知a 1=21,a n +1=33+n n a a ,则a 2,a 3,a 4,a 5的值分别为_________,由此猜想a n =_________.三、解答题5.(★★★★)⽤数学归纳法证明412+n +3n +2能被13整除,其中n ∈N *.6.(★★★★)若n 为⼤于1的⾃然数,求证:2413212111>+++++n n n . 7.(★★★★★)已知数列{b n }是等差数列,b 1=1,b 1+b 2+…+b 10=145. (1)求数列{b n }的通项公式b n ;(2)设数列{a n }的通项a n =log a (1+nb 1)(其中a >0且a ≠1)记S n 是数列{a n }的前n 项和,试⽐较S n 与3log a b n +1的⼤⼩,并证明你的结论. 8.(★★★★★)设实数q 满⾜|q |<1,数列{a n }满⾜:a 1=2,a 2≠0,a n ·a n +1=-q n ,求a n 表达式,⼜如果lim ∞→n S 2n <3,求q 的取值范围.参考答案难点磁场解:假设存在a 、b 、c 使题设的等式成⽴,这时令n =1,2,3,有===∴++=++=++=101133970)24(2122)(614c b a cb ac b a c b a 于是,对n =1,2,3下⾯等式成⽴ 1·22+2·32+…+n (n +1)2=)10113(12)1(2+++n n n n 记S n =1·22+2·32+…+n (n +1)2设n =k 时上式成⽴,即S k =12)1(+k k (3k 2+11k +10)那么S k +1=S k +(k +1)(k +2)2=2)1(+k k (k +2)(3k +5)+(k +1)(k +2)2=12)2)(1(++k k (3k 2+5k +12k +24))2)(1(++k k [3(k +1)2+11(k +1)+10]也就是说,等式对n =k +1也成⽴.综上所述,当a =3,b =11,c =10时,题设对⼀切⾃然数n 均成⽴.歼灭难点训练⼀、1.解析:∵f (1)=36,f (2)=108=3×36,f (3)=360=10×36 ∴f (1),f (2),f (3)能被36整除,猜想f (n )能被36整除. 证明:n =1,2时,由上得证,设n =k (k ≥2)时, f (k )=(2k +7)·3k +9能被36整除,则n =k +1时, f (k +1)-f (k )=(2k +9)·3k +1 -(2k +7)·3k=(6k +27)·3k -(2k +7)·3k=(4k +20)·3k =36(k +5)·3k -2(k ≥2) ?f (k +1)能被36整除∵f (1)不能被⼤于36的数整除,∴所求最⼤的m 值等于36. 答案:C2.解析:由题意知n ≥3,∴应验证n =3. 答案:C ⼆、3.解析:11112)11(112321122++?<++<+即12122)12(1)11(11,35312112222++?<++++<++即 112)1(131211222++<+++++n n n 归纳为(n ∈N *) 112)1(131211:222++<+++++n n n 答案(n ∈N *)53,553103,54393,5338333,5237332121333:.454223112+=+==+==+==+=+==+?=+=n a a a a a a a a a n 猜想同理解析 73:答案、83、93、10353(2)假设当n =k 时,42k +1+3k +2能被13整除,则当n =k +1时,42(k +1)+1+3k +3=42k +1·42+3k +2·3-42k +1·3+42k +1·3=42k +1·13+3·(42k +1+3k +2) ∵42k +1·13能被13整除,42k +1+3k +2能被13整除∴当n =k +1时也成⽴.由①②知,当n ∈N *时,42n +1+3n +2能被13整除.6.证明:(1)当n =2时,2413127221121>=+++ (2)假设当n =k 时成⽴,即2413212111>+++++k k k 2413)1)(12(21241322112124131122112124131111221121213121,1>+++=+-++=+-++++>+-++++++++++++=k k k k k k k k k k k k k k k n 时则当 7.(1)解:设数列{b n }的公差为d ,由题意得===-+=311452)110(10101111d b d b b ,∴b n =3n -2(2)证明:由b n =3n -2知S n =log a (1+1)+log a (1+41)+…+log a (1+231=l og a [(1+1)(1+41)…(1+ 231-n )]⽽31log a b n +1=log a 313+n ,于是,⽐较S n 与31l og a b n +1 的⼤⼩?⽐较(1+1)(1+41)…(1+2 31-n )与313+n 的⼤⼩.取n =1,有(1+1)=33311348+?=> 取n =2,有(1+1)(1+33312378)41+?=>> 推测:(1+1)(1+41)…(1+231-n )>313+n (*) ①当n =1时,已验证(*)式成⽴.②假设n =k (k ≥1)时(*)式成⽴,即(1+1)(1+41)…(1+231-k )>313+k 则当n =k +1时,)1311(13)2)1(311)(2311()411)(11(3+++>-++-+++k k k k 3131323+++=k k k333222333331)1(343)23(13130)13(49)13()13)(43()23()43()131323(++=+>+++∴>++=+++-+=+-+++k k k k k k k k k k k k k k k31)1(3)1311)(2311()411)(11(++>-+-+++k k k 从⽽,即当n =k +1时,(*)式成⽴由①②知,(*于是,当a >1时,S n >31log a b n +1 ,当 0<a <1时,S n <31log a b n +18.解:∵a 1·a 2=-q ,a 1=2,a 2≠0,∴q ≠0,a 2=-29,∵a n ·a n +1=-q n ,a n +1·a n +2=-q n +1两式相除,得qa a n n 12=+,即a n +2=q ·a n 于是,a 1=2,a 3=2·q ,a 5=2·q n…猜想:a 2n +1=-21q n(n =1,2,3,…) 综合①②,猜想通项公式为a n =∈=-∈-=?-)(2 21)(12 21N N k k n q k k n q k k 时时下证:(1)当n =1,2时猜想成⽴(2)设n =2k -1时,a 2k -1=2·q k -1则n =2k +1时,由于a 2k +1=q ·a 2k -1∴a 2k +1=2·q k即n =2k -1成⽴. 可推知n =2k +1也成⽴. 设n =2k 时,a 2k =-21q k,则n =2k +2时,由于a 2k +2=q ·a 2k , 所以a 2k +2=-21q k+1,这说明n =2k 成⽴,可推知n =2k +2也成⽴. 综上所述,对⼀切⾃然数n ,猜想都成⽴.这样所求通项公式为a n =∈=-∈-=?-)(221)(12 21N N k k n q k k n q k k 时当时当S 2n =(a 1+a 3…+a 2n -1)+(a 2+a 4+…+a 2n )=2(1+q +q 2+…+q n -1 )-21 (q +q 2+…+q n)4)(11()1()1(211)1(2q q q q q q q q n n n ---=--?---=由于|q |<1,∴n n nn S q 2lim ,0lim ∞→∞→=故=)24)(11(qq q n --- 依题意知)1(24q q --<3,并注意1-q >0,|q |<1解得-1<q <0或0<q <5 2。

高考数学(人教a版,理科)题库:数学归纳法(含答案)

高考数学(人教a版,理科)题库:数学归纳法(含答案)

第3讲数学归纳法一、选择题1. 利用数学归纳法证明“1+a+a2+…+a n+1=1-a n+21-a(a≠1,n∈N*)”时,在验证n=1成立时,左边应该是( )A 1B 1+aC 1+a+a2D 1+a+a2+a3解析当n=1时,左边=1+a+a2,故选C.答案 C2.用数学归纳法证明命题“当n是正奇数时,x n+y n能被x+y整除”,在第二步时,正确的证法是().A.假设n=k(k∈N+),证明n=k+1命题成立B.假设n=k(k是正奇数),证明n=k+1命题成立C.假设n=2k+1(k∈N+),证明n=k+1命题成立D.假设n=k(k是正奇数),证明n=k+2命题成立解析A、B、C中,k+1不一定表示奇数,只有D中k为奇数,k+2为奇数.答案 D3.用数学归纳法证明1-12+13-14+…+12n-1-12n=1n+1+1n+2+…+12n,则当n=k+1时,左端应在n=k的基础上加上().A.12k+2B.-12k+2C.12k+1-12k+2D.12k+1+12k+2解析∵当n=k时,左侧=1-12+13-14+…+12k-1-12k,当n=k+1时,左侧=1-12+13-14+…+12k-1-12k+12k+1-12k+2.答案 C4.对于不等式n2+n<n+1(n∈N*),某同学用数学归纳法的证明过程如下:(1)当n=1时,12+1<1+1,不等式成立.(2)假设当n=k(k∈N*且k≥1)时,不等式成立,即k2+k<k+1,则当n=k+1时,(k+1)2+(k+1)=k2+3k+2<(k2+3k+2)+(k+2)=(k+2)2=(k+1)+1,所以当n=k+1时,不等式成立,则上述证法().A.过程全部正确B.n=1验得不正确C.归纳假设不正确D.从n=k到n=k+1的推理不正确解析在n=k+1时,没有应用n=k时的假设,故推理错误.答案 D5.下列代数式(其中k∈N*)能被9整除的是( )A.6+6·7k B.2+7k-1C.2(2+7k+1) D.3(2+7k)解析 (1)当k=1时,显然只有3(2+7k)能被9整除.(2)假设当k=n(n∈N*)时,命题成立,即3(2+7n)能被9整除,那么3(2+7n+1)=21(2+7n)-36.这就是说,k=n+1时命题也成立.由(1)(2)可知,命题对任何k∈N*都成立.答案 D6.已知1+2×3+3×32+4+33+…+n×3n-1=3n(na-b)+c对一切n∈N*都成立,则a、b、c的值为().A.a=12,b=c=14B.a=b=c=14C.a=0,b=c=14D.不存在这样的a、b、c解析∵等式对一切n∈N*均成立,∴n=1,2,3时等式成立,即⎩⎨⎧1=3(a -b )+c ,1+2×3=32(2a -b )+c ,1+2×3+3×32=33(3a -b )+c ,整理得⎩⎨⎧3a -3b +c =1,18a -9b +c =7,81a -27b +c =34,解得a =12,b =c =14. 答案 A 二、填空题7.用数学归纳法证明不等式1n +1+1n +2+…+1n +n>1324的过程中,由n =k 推导n =k +1时,不等式的左边增加的式子是________. 解析 不等式的左边增加的式子是12k +1+12k +2-1k +1=1(2k +1)(2k +2),故填1(2k +1)(2k +2).答案 1(2k +1)(2k +2)8. 用数学归纳法证明:121×3+223×5+…+n 2(2n -1)(2n +1)=n(n +1)2(2n +1);当推证当n =k +1等式也成立时,用上归纳假设后需要证明的等式是 . 解析 当n =k +1时,121×3+223×5+…+k 2(2k -1)(2k +1)+(k +1)2(2k +1)(2k +3) =k(k +1)2(2k +1)+(k +1)2(2k +1)(2k +3)故只需证明k(k +1)2(2k +1)+(k +1)2(2k +1)(2k +3)=(k +1)(k +2)2(2k +3)即可.答案k(k+1)2(2k+1)+(k+1)2(2k+1)(2k+3)=(k+1)(k+2)2(2k+3)9.已知整数对的序列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…,则第60个数对是________.解析本题规律:2=1+1;3=1+2=2+1;4=1+3=2+2=3+1;5=1+4=2+3=3+2=4+1;…;一个整数n所拥有数对为(n-1)对.设1+2+3+…+(n-1)=60,∴(n-1)n2=60,∴n=11时还多5对数,且这5对数和都为12,12=1+11=2+10=3+9=4+8=5+7,∴第60个数对为(5,7).答案(5,7)10.在数列{a n}中,a1=13且S n=n(2n-1)a n,通过计算a2,a3,a4,猜想a n的表达式是________.解析当n=2时,a1+a2=6a2,即a2=15a1=115;当n=3时,a1+a2+a3=15a3,即a3=114(a1+a2)=135;当n=4时,a1+a2+a3+a4=28a4,即a4=127(a1+a2+a3)=163.∴a1=13=11×3,a2=115=13×5,a3=135=15×7,a4=17×9,故猜想a n=1n-n+.答案a n=1n-n+三、解答题11.已知S n =1+12+13+…+1n (n >1,n ∈N *),求证:S 2n >1+n2(n ≥2,n ∈N *). 证明 (1)当n =2时,S 2n =S 4=1+12+13+14=2512>1+22,即n =2时命题成立; (2)假设当n =k (k ≥2,k ∈N *)时命题成立,即S 2k =1+12+13+…+12k >1+k 2, 则当n =k +1时,S 2k +1=1+12+13+…+12k +12k +1+…+12k +1>1+k 2+12k +1+12k +2+…+12k +1>1+k 2+2k 2k +2k =1+k 2+12=1+k +12, 故当n =k +1时,命题成立.由(1)和(2)可知,对n ≥2,n ∈N *.不等式S 2n >1+n2都成立.12.已知数列{a n }:a 1=1,a 2=2,a 3=r ,a n +3=a n +2(n ∈N *),与数列{b n }:b 1=1,b 2=0,b 3=-1,b 4=0,b n +4=b n (n ∈N *).记T n =b 1a 1+b 2a 2+b 3a 3+…+b n a n .(1)若a 1+a 2+a 3+…+a 12=64,求r 的值; (2)求证:T 12n =-4n (n ∈N *).(1)解 a 1+a 2+a 3+…+a 12=1+2+r +3+4+(r +2)+5+6+(r +4)+7+8+(r +6)=48+4r . ∵48+4r =64,∴r =4.(2)证明 用数学归纳法证明:当n ∈N *时,T 12n =-4n .①当n =1时,T 12=a 1-a 3+a 5-a 7+a 9-a 11=-4,故等式成立. ②假设n =k 时等式成立,即T 12k =-4k ,那么当n =k +1时,T 12(k +1)=T 12k +a 12k +1-a 12k +3+a 12k +5-a 12k +7+a 12k +9-a 12k +11=-4k +(8k +1)-(8k +r )+(8k +4)-(8k +5)+(8k +r +4)-(8k +8)=-4k -4=-4(k +1),等式也成立.根据①和②可以断定:当n ∈N *时,T 12n =-4n .13.设数列{a n }满足a 1=3,a n +1=a 2n -2na n +2,n =1,2,3,…(1)求a 2,a 3,a 4的值,并猜想数列{a n }的通项公式(不需证明);(2)记S n 为数列{a n }的前n 项和,试求使得S n <2n 成立的最小正整数n ,并给出证明.解(1)a2=5,a3=7,a4=9,猜想a n=2n+1.(2)S n=n(3+2n+1)2=n2+2n,使得Sn<2n成立的最小正整数n=6.下证:n≥6(n∈N*)时都有2n>n2+2n.①n=6时,26>62+2×6,即64>48成立;②假设n=k(k≥6,k∈N*)时,2k>k2+2k成立,那么2k+1=2·2k>2(k2+2k)=k2+2k+k2+2k>k2+2k+3+2k=(k+1)2+2(k+1),即n=k+1时,不等式成立;由①、②可得,对于所有的n≥6(n∈N*)都有2n>n2+2n成立.14.数列{x n}满足x1=0,x n+1=-x2n+x n+c(n∈N*).(1)证明:{x n}是递减数列的充分必要条件是c<0;(2)求c的取值范围,使{x n}是递增数列.(1)证明先证充分性,若c<0,由于x n+1=-x2n+x n+c≤x n+c<x n,故{x n}是递减数列;再证必要性,若{x n}是递减数列,则由x2<x1可得c<0.(2)解①假设{x n}是递增数列.由x1=0,得x2=c,x3=-c2+2c.由x1<x2<x3,得0<c<1.由x n<x n+1=-x2n+x n+c知,对任意n≥1都有x n<c,①注意到c-x n+1=x2n-x n-c+c=(1-c-x n)(c-x n),②由①式和②式可得1-c-x n>0,即x n<1-c.由②式和x n≥0还可得,对任意n≥1都有c-x n+1≤(1-c)(c-x n).③反复运用③式,得c-x n≤(1-c)n-1(c-x1)<(1-c)n-1,x n<1-c和c-x n<(1-c)n-1两式相加,知2c-1<(1-c)n-1对任意n≥1成立.根据指数函数y=(1-c)n的性质,得2c-1≤0,c≤14,故0<c≤14.②若0<c ≤14,要证数列{x n }为递增数列,即x n +1-x n =-x 2n +c >0,即证x n <c 对任意n ≥1成立.下面用数学归纳法证明当0<c ≤14时,x n <c 对任意n ≥1成立. (i)当n =1时,x 1=0<c ≤12,结论成立. (ii)假设当n =k (k ∈N *)时,结论成立,即x n <c .因为函数f (x )=-x 2+x +c 在区间⎝ ⎛⎦⎥⎤-∞,12内单调递增,所以x k +1=f (x k )<f (c )=c ,这就是说当n =k +1时,结论也成立. 故x n <c 对任意n ≥1成立.因此,x n +1=x n -x 2n +c >x n ,即{x n }是递增数列.由①②知,使得数列{x n }单调递增的c 的范围是⎝ ⎛⎦⎥⎤0,14.。

高考数学热点问题专题解析——数学归纳法

高考数学热点问题专题解析——数学归纳法

数学归纳法一、基础知识:1、数学归纳法适用的范围:关于正整数n 的命题(例如数列,不等式,整除问题等),则可以考虑使用数学归纳法进行证明2、第一数学归纳法:通过假设n k =成立,再结合其它条件去证1n k =+成立即可。

证明的步骤如下:(1)归纳验证:验证0n n =(0n 是满足条件的最小整数)时,命题成立 (2)归纳假设:假设()0,n k k n n N =≥∈成立,证明当1n k =+时,命题也成立 (3)归纳结论:得到结论:0,n n n N ≥∈时,命题均成立 3、第一归纳法要注意的地方:(1)数学归纳法所证命题不一定从1n =开始成立,可从任意一个正整数0n 开始,此时归纳验证从0n n =开始(2)归纳假设中,要注意0k n ≥,保证递推的连续性(3)归纳假设中的n k =,命题成立,是证明1n k =+命题成立的重要条件。

在证明的过程中要注意寻找1n k =+与n k =的联系4、第二数学归纳法:在第一数学归纳法中有一个细节,就是在假设n k =命题成立时,可用的条件只有n k =,而不能默认其它n k ≤的时依然成立。

第二数学归纳法是对第一归纳法的补充,将归纳假设扩充为假设n k ≤,命题均成立,然后证明1n k =+命题成立。

可使用的条件要比第一归纳法多,证明的步骤如下: (1)归纳验证:验证0n n =(0n 是满足条件的最小整数)时,命题成立 (2)归纳假设:假设()0,n k k n n N ≤≥∈成立,证明当1n k =+时,命题也成立 (3)归纳结论:得到结论:0,n n n N ≥∈时,命题均成立二、典型例题例1:已知等比数列{}n a 的首项12a =,公比3q =,设n S 是它的前n 项和,求证:131n n S n S n++≤ 思路:根据等比数列求和公式可化简所证不等式:321n n ≥+,n k =时,不等式为321k k ≥+;当1n k =+时,所证不等式为1323k k +≥+,可明显看到n k =与1n k =+中,两个不等式的联系,从而想到利用数学归纳法进行证明 证明:()11311n nn a q S q -==--,所证不等式为:1313131n n n n+-+≤-()()()1313131n n n n +∴-≤+- 1133331n n n n n n n ++⇔⋅-≤⋅+-- 321n n ⇔≥+,下面用数学归纳法证明: (1)验证:1n =时,左边=右边,不等式成立(2)假设()1,n k k k N =≥∈时,不等式成立,则1n k =+时,()()133332163211k k k k k +=⋅≥+=+>++ 所以1n k =+时,不等式成立n N *∴∀∈,均有131n n S n S n++≤ 小炼有话说:数学归纳法的证明过程,关键的地方在于寻找所证1n k =+与条件n k =之间的联系,一旦找到联系,则数学归纳法即可使用例2(2015,和平模拟):已知数列{}n a 满足0n a >,其前n 项和1n S >,且()()112,6n n n S a a n N *=++∈ (1)求数列{}n a 的通项公式(2)设21log 1n n b a ⎛⎫=+ ⎪⎝⎭,并记n T 为数列{}n b 的前n 项和,求证:233log ,2n n a T n N *+⎛⎫>∈ ⎪⎝⎭解:(1)2632n nn S a a =++ ① ()21116322,n n n S a a n n N *---=++≥∈ ②①-②可得:()222211116333n n n n n n n n n a a a a a a a a a ----=-+-⇒+=-0n a > 所以两边同除以1n n a a -+可得:13n n a a --={}n a ∴是公差为3的等差数列()131n a a n ∴=+-,在2632n nn S a a =++中令1n =可得: 211116321S a a a =++⇒=(舍)或12a =31n a n ∴=-(2)思路:利用(1)可求出n b 和n T ,从而简化不等式可得:33633225312n n n +⎛⎫⋅⋅⋅> ⎪-⎝⎭,若直接证明则需要进行放缩,难度较大。

高中数学专题复习数学归纳法的解题应用知识点例题精讲

高中数学专题复习数学归纳法的解题应用知识点例题精讲

数学归纳法的解题运用【高考能力要求】数学归纳法是证明与自然数有关的问题,在近年的高考题中,一般不作单独的考题,而是以应用为主,且常与数列、函数、不等式、导数等结合起来进行考查,主要考查归纳、猜想、证明的数学思想方法,若出现在押轴题中则往往难度较大,分值为7分左右。

涉及的主要解题方法是先求出它的前几项,找出其规律、归纳出其共有形式(如问题的一般规律、结构特征等),才能作出正确的猜想,然后用数学归纳法加以证明.其解题模式是:归纳⇒猜想⇒证明。

在用数学归纳法证明时,要注意正确掌握数学归纳法原理和证明步骤,特别在证明不等式时要注意结合不等式证明的放缩法、分析法等方法。

【例题精讲】【例1】已知函数)(x f 满足1)1(),0,,()()(=≠∈+=f b R b a b x af x xf ,且使x x f =)(成立的实数x 是唯一的。

(1) 求函数)(x f 的解析式、定义域、值域; (2) 如果数列{}n a 的前n 项和为n S ,且12)(++=n a f nS n n ,试求此数列的通项公式。

分析:(1)由1)1(=f 及x x f =)(有唯一解建立关于b a ,的方程组,解出b a ,即可;(2)利用n n n S S a -=++11将已知条件转化为1+n a 与n a 的递推关系式,从而猜想出n a 的表达式并用数学归纳法加以证明。

解:(1)ax bx f -=)(,∵ b a f =-⇒=11)1( ① 由x x f =)(得 02=--b ax x 有唯一解,∴ 042=+=∆b b ② 由①②得 1,2-==b a ,∴xx f -=21)(,其定义域为{}2|≠x x ,值域为{}0|≠y y(2)∵ 12)(++=n a f n S n n ,xx f -=21)(,∴n n n na n n a n S -+=++-=)14(12)2(,当1=n 时,255111=⇒-=a a S 。

高考数学压轴题大全

高考数学压轴题大全

高考数学压轴题大全高考数学压轴题大全1.(本小题满分14分)如图,设抛物线的焦点为F,动点P在直线上运动,过P作抛物线C 的两条切线PA、PB,且与抛物线C分别相切于A、B两点.(1)求△APB的重心G的轨迹方程.(2)证明PFA=PFB.解:(1)设切点A、B坐标分别为,切线AP的方程为:切线BP的方程为:解得P点的坐标为:因此△APB的重心G的坐标为,因此,由点P在直线l上运动,从而得到重心G的轨迹方程为:(2)方法1:因为由于P点在抛物线外,则同理有AFP=PFB.方法2:①当因此P点坐标为,则P点到直线AF的距离为:即因此P点到直线BF的距离为:因此d1=d2,即得AFP=PFB.②当时,直线AF的方程:直线BF的方程:因此P点到直线AF的距离为:,同理可得到P点到直线BF的距离,因此由d1=d2,可得到AFP=PF B.2.(本小题满分12分)设A、B是椭圆上的两点,点N(1,3)是线段AB的中点,线段AB的垂直平分线与椭圆相交于C、D两点.(Ⅰ)确定的取值范畴,并求直线AB的方程;(Ⅱ)试判定是否存在如此的,使得A、B、C、D四点在同一个圆上?并说明理由.(此题不要求在答题卡上画图)本小题要紧考查直线、圆和椭圆等平面解析几何的基础知识以及推理运算能力和综合解决问题的能力.(Ⅰ)解法1:依题意,可设直线AB的方程为,整理得①设是方程①的两个不同的根,且由N(1,3)是线段AB的中点,得解得k=-1,代入②得,的取值范畴是(12,+).因此,直线AB的方程为解法2:设则有依题意,∵N(1,3)是AB的中点,又由N(1,3)在椭圆内,的取值范畴是(12,+).直线AB的方程为y-3=-(x-1),即x+y-4=0.(Ⅱ)解法1:∵CD垂直平分AB,直线CD的方程为y-3=x-1,即x-y+ 2=0,代入椭圆方程,整理得又设CD的中点为是方程③的两根,因此由弦长公式可得④将直线AB的方程x+y-4=0,代入椭圆方程得⑤同理可得⑥∵当时,假设存在12,使得A、B、C、D四点共圆,则CD必为圆的直径,点M为圆心.点M到直线AB的距离为⑦因此,由④、⑥、⑦式和勾股定理可得故当12时,A、B、C、D四点匀在以M为圆心,为半径的圆上.(注:上述解法中最后一步可按如下解法获得:)A、B、C、D共圆△ACD为直角三角形,A为直角|AN|2=|CN||DN|,即⑧由⑥式知,⑧式左边由④和⑦知,⑧式右边⑧式成立,即A、B、C、D四点共圆.解法2:由(Ⅱ)解法1及12,∵CD垂直平分AB,直线CD方程为,代入椭圆方程,整理得将直线AB的方程x+y-4=0,代入椭圆方程,整理得解③和⑤式可得不妨设运算可得,A在以CD为直径的圆上.又B为A关于CD的对称点,A、B、C、D四点共圆.(注:也可用勾股定理证明ACAD)3.(本小题满分14分)已知不等式为大于2的整数,表示不超过的最大整数. 设数列的各项为正,且满足(Ⅰ)证明(Ⅱ)推测数列是否有极限?假如有,写出极限的值(不必证明);(Ⅲ)试确定一个正整数N,使得当时,对任意b0,都有本小题要紧考查数列、极限及不等式的综合应用以及归纳递推的思想.(Ⅰ)证法1:∵当即因此有所有不等式两边相加可得由已知不等式知,当n3时有,证法2:设,第一利用数学归纳法证不等式(i)当n=3时,由知不等式成立.(ii)假设当n=k(k3)时,不等式成立,即则即当n=k+1时,不等式也成立.由(i)、(ii)知,又由已知不等式得(Ⅱ)有极限,且则有故取N=1024,可使当nN时,都有4.如图,已知椭圆的中心在坐标原点,焦点F1,F2在x轴上,长轴A 1A2的长为4,左准线l与x轴的交点为M,|MA1|∶|A1F1|=2∶1.(Ⅰ)求椭圆的方程;(Ⅱ)若点P为l上的动点,求F1PF2最大值.本题要紧考查椭圆的几何性质、椭圆方程、两条直线的夹角等基础知识,考查解析几何的差不多思想方法和综合解题能力.满分14分.解:(Ⅰ)设椭圆方程为,半焦距为,则5.已知函数和的图象关于原点对称,且.(Ⅰ)求函数的解析式;(Ⅱ)解不等式;(Ⅲ)若在上是增函数,求实数的取值范畴.本题要紧考查函数图象的对称、二次函数的差不多性质与不等式的应用等基础知识,以及综合运用所学知识分析和解决问题的能力.满分14分.解:(Ⅰ)设函数的图象上任意一点关于原点的对称点为,则∵点在函数的图象上(Ⅱ)由当时,,现在不等式无解.当时,,解得.因此,原不等式的解集为.6.(本题满分16分)本题共有3个小题,第1小题满分4分, 第2小题满分6分, 第3小题满分6分.对定义域分别是Df、Dg的函数y=f(x) 、y=g(x),f(x)g(x) 当xDf且xDg规定: 函数h(x)= f(x) 当xDf且xDgg(x) 当xDf且xDg若函数f(x)=,g(x)=x2,xR,写出函数h(x)的解析式;求问题(1)中函数h(x)的值域;(3)若g(x)=f(x+), 其中是常数,且[0,],请设计一个定义域为R的函数y=f (x),及一个的值,使得h(x)=cos4x,并予以证明.[解] (1)h(x)= x(-,1)(1,+)1 x=1(2) 当x1时, h(x)= =x-1++2,若x1时, 则h(x)4,其中等号当x=2时成立若x1时, 则h(x) 0,其中等号当x=0时成立函数h(x)的值域是(-,0] {1}[4,+)(3)令f(x)=sin2x+cos2x,=则g(x)=f(x+)= sin2(x+)+cos2(x+)=cos2x-sin2x,因此h(x)= f(x)f(x+)= (sin2x+co2sx)( cos2x-sin2x)=cos4x.另解令f(x)=1+sin2x, =,g(x)=f(x+)= 1+sin2(x+)=1-sin2x,因此h(x)= f(x)f(x+)= (1+sin2x)( 1-sin2x)=cos4x..(本题满分18分)本题共有3个小题,第1小题满分4分, 第2小题满分8分, 第3小题满分6分.在直角坐标平面中,已知点P1(1,2),P2(2,22),,Pn(n,2n),其中n是正整数.对平面上任一点A0,记A1为A0关于点P1的对称点, A2为A1关于点P2的对称点, , AN为AN-1关于点PN的对称点.(1)求向量的坐标;(2)当点A0在曲线C上移动时, 点A2的轨迹是函数y=f(x)的图象,其中f(x)是以3为周期的周期函数,且当x(0,3]时,f(x)=lgx.求以曲线C为图象的函数在(1,4]上的解析式;(3)对任意偶数n,用n表示向量的坐标.[解](1)设点A0(x,y), A0为P1关于点的对称点A0的坐标为(2-x,4-y), A1为P2关于点的对称点A2的坐标为(2+x,4+y),={2,4}.(2) ∵={2,4},f(x)的图象由曲线C向右平移2个单位,再向上平移4个单位得到.因此, 曲线C是函数y=g(x)的图象,其中g(x)是以3为周期的周期函数,且当x(-2,1]时,g(x)=lg(x+2)-4.因此,当x(1,4]时,g(x)=lg(x-1)-4.另解设点A0(x,y), A2(x2,y2),因此x2-x=2,y2-y=4,若36,则0 x2-33,因此f(x2)=f(x2-3)=lg(x2-3).当14时, 则36,y+4=lg(x-1).当x(1,4]时,g(x)=lg(x-1)-4.(3) =,由于,得13分)如图,已知双曲线C:的右准线与一条渐近线交于点M,F是双曲线C 的右焦点,O为坐标原点.(I)求证:;(II)若且双曲线C的离心率,求双曲线C的方程;(III)在(II)的条件下,直线过点A(0,1)与双曲线C右支交于不同的两点P、Q且P在A、Q之间,满足,试判定的范畴,并用代数方法给出证明.解:(I)右准线,渐近线3分(II)双曲线C的方程为:7分(III)由题意可得8分证明:设,点由得与双曲线C右支交于不同的两点P、Q11分,得的取值范畴是(0,1)13分2.(本小题满分13分)已知函数,数列满足(I)求数列的通项公式;(II)设x轴、直线与函数的图象所围成的封闭图形的面积为,求;(III)在集合,且中,是否存在正整数N,使得不等式对一切恒成立?若存在,则如此的正整数N共有多少个?并求出满足条件的最小的正整数N;若不存在,请说明理由.(IV)请构造一个与有关的数列,使得存在,并求出那个极限值.解:(I)1分将这n个式子相加,得3分(II)为一直角梯形(时为直角三角形)的面积,该梯形的两底边的长分别为,高为16分(III)设满足条件的正整数N存在,则又均满足条件它们构成首项为2021,公差为2的等差数列.设共有m个满足条件的正整数N,则,解得中满足条件的正整数N存在,共有495个,9分(IV)设,即则明显,其极限存在,同时10分注:(c为非零常数),等都能使存在.19. (本小题满分14分)设双曲线的两个焦点分别为,离心率为2.(I)求此双曲线的渐近线的方程;(II)若A、B分别为上的点,且,求线段AB的中点M的轨迹方程,并说明轨迹是什么曲线;(III)过点能否作出直线,使与双曲线交于P、Q两点,且.若存在,求出直线的方程;若不存在,说明理由.解:(I),渐近线方程为4分(II)设,AB的中点则M的轨迹是中心在原点,焦点在x轴上,长轴长为,短轴长为的椭圆.(9分)(III)假设存在满足条件的直线设由(i)(ii)得k不存在,即不存在满足条件的直线.14分3. (本小题满分13分)已知数列的前n项和为,且对任意自然数都成立,其中m为常数,且.(I)求证数列是等比数列;(II)设数列的公比,数列满足:,试问当m为何值时,成立?解:(I)由已知(2)由得:,即对任意都成立事实上,任何一门学科都离不开死记硬背,关键是经历有技巧,“死记”之后会“活用”。

高考数学压轴题精编精解100题(解答)

高考数学压轴题精编精解100题(解答)

以往高考数学压轴题汇总详细解答1.解:(I )()()1,1211,23ax x g x a x x -≤≤⎧=⎨--<≤⎩(1)当0a <时,函数()g x 是[]1,3增函数,此时,()()max 323g x g a ==-,()()min 11g x g a ==-,所以()12h a a =-;(2)当1a >时,函数()g x 是[]1,3减函数,此时,()()min 323g x g a ==-,()()max 11g x g a ==-,所以()21h a a =-;————4分(3)当01a ≤≤时,若[]1,2x ∈,则()1g x ax =-,有()()()21g g x g ≤≤; 若[]2,3x ∈,则()()11g x a x =--,有()()()23g g x g ≤≤; 因此,()()min 212g x g a ==-,————6分 而()()()()3123112g g a a a -=---=-, 故当102a ≤≤时,()()max 323g x g a ==-,有()1h a a =-;当112a <≤时,()()max 11g x g a ==-,有()h a a =;————8分 综上所述:()12,011,021,1221,1a a a a h a a a a a -<⎧⎪⎪-≤≤⎪=⎨⎪<≤⎪⎪->⎩。

————10分(II )画出()y h x =的图象,如右图。

————12分数形结合,可得()min 1122h x h ⎛⎫==⎪⎝⎭。

————14分2.解: (Ⅰ)先用数学归纳法证明01n a <<,*n N ∈. (1)当n=1时,由已知得结论成立;(2)假设当n=k 时,结论成立,即01k a <<.则当n=k+1时,因为0<x<1时,1()1011x f x x x '=-=>++,所以f(x)在(0,1)上是增函数. 又f(x)在[]0,1上连续,所以f(0)<f(k a )<f(1),即0<11ln 21k a +<-<.故当n=k+1时,结论也成立. 即01n a <<对于一切正整数都成立.————4分 又由01n a <<, 得()1ln 1ln(1)0n n n n n n a a a a a a +-=-+-=-+<,从而1n n a a +<.综上可知10 1.n n a a +<<<————6分(Ⅱ)构造函数g(x)=22x -f(x)= 2ln(1)2x x x ++-, 0<x<1, 由2()01x g x x'=>+,知g(x)在(0,1)上增函数.又g(x)在[]0,1上连续,所以g(x)>g(0)=0. 因为01n a <<,所以()0n g a >,即()22n n a f a ->0,从而21.2n n a a +<————10分 (Ⅲ) 因为 1111,(1)22n n b b n b +=≥+,所以0n b >,1n n b b +12n +≥ ,所以1211211!2n n n n n n b b b b b n b b b ---=⋅⋅≥⋅ ————① , ————12分 由(Ⅱ)21,2n n a a +<知:12n n n a a a +<, 所以1n a a =31212121222n n n a a a a a aa a a --⋅< ,因为1a =, n≥2, 10 1.n n a a +<<< 所以 n a 1121222n a a a a -<⋅<112n n a -<2122n a ⋅=12n ————② . ————14分由①② 两式可知: !n n b a n >⋅.————16分3.(Ⅰ)在21212122()()2()cos 24sin f x x f x x f x x a x ++-=+中,分别令120x x x =⎧⎨=⎩;1244x x x ππ⎧=+⎪⎪⎨⎪=⎪⎩;1244x x xππ⎧=⎪⎪⎨⎪=+⎪⎩得22()()2cos 24sin , (+)()2 2(+)()2cos 2)4sin 224f x f x x a x f x f x a f x f x x a x ππππ⎧⎪+-=+⎪⎪+=⎨⎪⎪+-+⎪⎩,=(+(+)①②③由①+②-③,得1cos 2()1cos 242()22cos 22cos(2)44222x x f x a x x a a ππ-+-=+-++[]-[] =22(cos 2sin 2)2(cos 2sin 2)a x x a x x ++-+∴())sin(2)4f xa a x π=+-+(Ⅱ)当0,4x π∈[]时,sin(2)4x π+∈2. (1)∵()f x ≤2,当a <1时,12[)]2a a =+-≤()f x ≤)aa -≤2.即1(1a ≤2 ≤a ≤1.(2)∵()f x ≤2,当a ≥1时,- 2≤a a )≤()f x ≤1.即1≤a ≤4+.故满足条件a 的取值范围[,4+.4.(1)3.223,1.2222==⇒=-====e a a b a a c e b b 椭圆的方程为1422=+x y (2分) (2)设AB 的方程为3+=kx y由41,4320132)4(1432212212222+-=+-=+=-++⇒⎪⎩⎪⎨⎧=++=k x x k k x x kx x k x y kx y (4分)由已知43)(43)41()3)(3(410212122121221221++++=+++=+=x x k x x k kx kx x x ay y b x x±=++-⋅++-+=k k k k k k 解得,4343243)41(44222 2 (7分)(3)当A 为顶点时,B 必为顶点.S △AOB =1 (8分)当A ,B 不为顶点时,设AB 的方程为y=kx+b42042)4(1422122222+-=+=-+++⇒⎪⎩⎪⎨⎧=++=k kb x x b kbx x k x y bkx y 得到442221+-=k b x x :04))((0421212121代入整理得=+++⇔==b kx b kx x x y y x x 4222=+k b (11分)41644|||4)(||21||||212222122121++-=-+=--=k b k b x x x x b x x b S 1||242==b k 所以三角形的面积为定值.(12分)5(1)12(101)10(101)99n n n n a =-⋅+⋅- ……………………………… (2分 ) 1(101)(102)9n n=-⋅+101101()(1)33n n --=⋅+…………………………………(4分) 记:A =1013n - , 则A=333n⋅⋅⋅⋅⋅⋅为整数 ∴ n a = A (A+1) , 得证 ……( 6分)(2) 21121010999n n n a =+-………………………………………………… (8分)2422112(101010)(101010)999n n n S n =++⋅⋅⋅⋅⋅⋅++++⋅⋅⋅⋅⋅⋅- 2211(101110198210)891n n n ++=+⋅--……………………………………………(12分) 6、解:(Ⅰ)易知)0,1(),0,1(,1,2,521F F c b a -=∴===设P (x ,y ),则1),1(),1(2221-+=--⋅---=⋅y x y x y x PF .3511544222+=--+x x x ]5,5[-∈x ,0=∴x 当,即点P 为椭圆短轴端点时,21PF PF ⋅有最小值3; 当5±=x ,即点P 为椭圆长轴端点时,21PF PF ⋅有最大值4(Ⅱ)假设存在满足条件的直线l 易知点A (5,0)在椭圆的外部,当直线l 的斜率不存在时,直线l 与椭圆无交点,所在直线l 斜率存在,设为k. 直线l 的方程为)5(-=x k y由方程组2222221(54)5012520054(5)x y k x k x k y k x ⎧+=⎪+-+-=⎨⎪=-⎩,得 依题意220(1680)0k k ∆=-><<,得 当5555<<-k 时,设交点C ),(),(2211y x D y x 、,CD 的中点为R ),(00y x , 则45252,4550222102221+=+=+=+k k x x x k k x x .4520)54525()5(22200+-=-+=-=∴k k k k k x k y 又|F 2C|=|F 2D|122-=⋅⇔⊥⇔R F k k l R F 12042045251)4520(0222222-=-=+-+--⋅=⋅∴k k k k k kk k k R F ∴20k 2=20k 2-4,而20k 2=20k 2-4不成立, 所以不存在直线l ,使得|F 2C|=|F 2D| 综上所述,不存在直线l ,使得|F 2C|=|F 2D|7、解:(1)依题意,曲线M 是以点P 为焦点,直线l 为准线的抛物线,所以曲线M 的方程为y 2=4x.个:y x4y )1x (3y )1x (3y :AB ,)i )(2(2得消去由的方程为直线由题意得⎩⎨⎧=--=--=.3162x x |AB |),32,3(B ),332,31(A .3x ,31x ,03x 10x 321212=++=-===+-所以解得假设存在点C (-1,y ),使△ABC 为正三角形,则|BC|=|AB|且|AC|=|AB|,即),(9314y ,)332y ()34()32y (4:)316()32y ()131(,)316()32y ()13(2222222222舍不符解得相减得-=-+=++⎪⎩⎪⎨⎧=-++=+++ 因此,直线l 上不存在点C ,使得△ABC 是正三角形.(ii )解法一:设C (-1,y )使△ABC 成钝角三角形, .32y ,C ,B ,A ,32y 1x )1x (3y ≠=⎩⎨⎧-=--=故三点共线此时得由,9256)316(|AB |,y 3y 34928)332y ()311(|AC |222222==+-=-+--=又,,392y ,9256y y 334928y y 3428,|AB ||AC ||BC |22222时即即当>++->+++>∠CAB 为钝角. 9256y y 3428y y 334928,|AB ||BC ||AC |22222+++>+-+>即当,.CBA 3310y 为钝角时∠-<22222y y 3428y 3y 349289256,|BC ||AC ||AB |++++->+>即又0)32y (,034y 334y :22<+<++即.该不等式无解,所以∠ACB 不可能为钝角.因此,当△ABC 为钝角三角形时,点C 的纵坐标y 的取值范围是:)32(9323310≠>-<y y y 或.解法二: 以AB 为直径的圆的方程为:38 1x :L )332,35()38()332y ()35x (222的距离为到直线圆心-=-=++-. ).332,1(G L AB ,--相切于点为直径的圆与直线以所以当直线l 上的C 点与G 重合时,∠ACB 为直角,当C 与G 点不重合,且A , B ,C 三点不共线时, ∠ACB 为锐角,即△ABC 中∠ACB 不可能是钝角. 因此,要使△ABC 为钝角三角形,只可能是∠CAB 或∠CBA 为钝角.932y 1x ).31x (33332y :AB A =-=-=-得令垂直的直线为且与过点. 3310y 1x ),3x (3332y :AB B -=-=-=+得令垂直的直线为且与过点.,)32,1(C ,,32y 1x )1x (3y 时的坐标为当点所以解得又由-=⎩⎨⎧-=--=A ,B ,C 三点共 线,不构成三角形.因此,当△ABC 为钝角三角形时,点C 的纵坐标y 的取值范围是:).32(9323310≠>-<y y y 或8、解:(1)令a=b=0,则f(0)=[f(0)]2∵ f(0)≠0 ∴ f(0)=1(2)令a=x ,b=-x 则 f(0)=f(x)f(-x) ∴ )x (f 1)x (f =-由已知x>0时,f(x)>1>0,当x<0时,-x>0,f(-x)>0∴ 0)x (f 1)x (f >-=又x=0时,f(0)=1>0 ∴ 对任意x ∈R ,f(x)>0 (3)任取x 2>x 1,则f(x 2)>0,f(x 1)>0,x 2-x 1>0 ∴1)x x (f )x (f )x (f )x (f )x (f 121212>-=-⋅= ∴ f(x 2)>f(x 1) ∴ f(x)在R 上是增函数(4)f(x)·f(2x-x 2)=f[x+(2x-x 2)]=f(-x 2+3x) 又1=f(0),f(x)在R 上递增 ∴ 由f(3x-x 2)>f(0)得:x-x 2>0 ∴ 0<x<3 9、解:(1)由题意知021)1(=++=c b f ,∴b c 21--=记1)12()12()()(22--++=++++=++=b x b x c b x b x b x x f x g 则075)3(>-=-b g 051)2(<-=-b g 7551<<⇒b01)0(<--=b g 即)75,51(∈b01)1(>+=b g(2)令u=)(x f 。

高考数学总复习:数学归纳法(讲义+解题技巧+真题+详细解答)

高考数学总复习:数学归纳法(讲义+解题技巧+真题+详细解答)
二、数学归纳法的证明步骤
1.证明:当 n 取第一个值 n0(如 n0=1 或 2 等)命题正确; 2.假设当 n=k(k∈N*,且 k≥n0)时命题成立,以此为前提,证明当 n=k+1 时命题也成立. 根据步骤 1,2 可以断定命题对于一切从 n0 开始的所有正整数 n 都成立. 其中第一步是命题成立的基础,称为“归纳基础”(或称特殊性),第二步是递推的证 据,解决的是延续性问题(又称传递性问题)。 注意: (1)不要弄错起始 n0:n0 不一定恒为 1,也可能为其它自然数(即起点问题). (2)项数要估算正确:特别是当寻找 n=k 与 n=k+1 的关系时,项数的变化易出现错误 (即跨度问题). (3)必须利用归纳假设:归纳假设是必须要用的,假设是起桥梁作用的,桥梁断了就过
由归纳假设,凸
k
边形
A1A2A3…Ak
的对角线的条数为
1 2
k(k-3);对角线
A1Ak
是一条;而顶点 Ak+1 与另外(k-2)个顶点 A2、A3、…、Ak-1 可画出(k-2)条对角线,
所以凸(k+1)边形的对角线的条数是: 1 k(k-3)+1+(k-2)= 1 (k+1)(k-2)= 1
2
2
2.原理 数学归纳法首先证明在某个起点值时命题成立,然后证明从一个值到下一个值的过程有
效。当这两点都已经证明,那么任意值都可以通过反复使用这个方法推导出来。把这个方法 想成多米诺效应也许更容易理解一些。例如:你有一列很长的直立着的多米诺骨牌,如果你 可以:
① 证明第一张骨牌会倒。 ② 证明只要任意一张骨牌倒了,那么与其相邻的下一张骨牌也会倒。 ③ 那么便可以下结论:所有的骨牌都会倒下。
【解析】

【高考数学二轮复习压轴题微专题】第20讲 数学归纳法-原卷版

【高考数学二轮复习压轴题微专题】第20讲 数学归纳法-原卷版

第20讲 数学归纳法归纳法是指通过对特殊的、具体的事物的分析、认识、研究,从而导出一般性结论的方向,它是一种由个别到一般、从特殊到普遍、从经验事实到事物内在规律性的认识手段和模式.归纳法分类:⎧⎪⎧⎨⎨⎪⎩⎩不完全归纳法归纳法枚举归纳法完全归纳法数学归纳法1.不完全归纳法不完全归纳法是指通过对某类事物中的一部分对象或一部分子类的考察而概括出该类事物的一般性结论的方法,前提和结论之间未必有必然的联系,由不完全归纳法得出的结论只有或然的性质,结论不一定正确,还需要经过严格的逻辑论证和实践的检验.2.完全归纳法完全归纳法是指通过对某类事物中的每一个对象或每一个子类的情况的研究而概括出关于事物的一般性结论的方法,正确的前提必然能得出正确的结论,所以完全归纳法可以作为数学中严格证明的工具,在数学解题中有广泛的应用.完全归纳法包括枚举归纳法和数学归纳法等.(1)枚举归纳法:将所涉及的研究对象一一列举出来进行研究的方法.这种方法主要适用于研究对象的范畴较小的情况,如整数问题中只需按奇偶数两种情况研究,三角形问题中对形状只需分锐角、直角、钝角3种情况讨论.(2)数学归纳法:一种证明与正整数n 有关的数学命题的重要方法.华罗庚先生说:“把数学归纳法学好了,对进一步学好高等数学有帮助,甚至对认识数学的性质,也会有所裨益."数学归纳法可以用“多米诺骨牌现象”进行形象地说明:推倒头一块“骨牌”,它会带倒第二块,再带倒第三块…...直到所有“骨牌”全部倒下,把骨牌想象为一系列无穷多个编了$了号的命题:123,,,,P P P 假定能㶴证明:(奠基)最初的一个命题正确;(过渡)由每一个命题的正确性可以推出它的下一个命题的正确性,那么我们便证明了这一列命题的正确性.事实上,我们已会“推倒头一块骨牌",即证明最初的一个命题成立(所谓“奠基"),而“过渡”则意味着“每一块骨牌在倒下时都将带倒下一块骨牌”,这样一来,并不需要特别强调应推倒哪一块骨牌,事实上,只要头一块一旦倒下,那么这一列中的任何一块骨牌都或迟或早必然倒下.因此可得数学归纳法的基本形式:第一数学归纳法:设()P n 是一个关于正整数n 的命题,如果(i)(1)P 成立;(ii)假设()P k 成立,则(1)P k +也成立,那么,()P n 对任意正整数n 都成立.第二数学归纳法:设()P n 是一个关于正整数n 的命题,如果(i)P (1)成立;(ii)假设()P n 对所有适合n k <的正整数成立,则()P k 成立,那么,()P n 对任意正整数n 都成立.归纳法帮你猜想解题思路,归纳与猜想对数学解题是一件锐利的武器,但也是一件危险的武器,所作的猜想仅仅对有限种情况进行了验证,根据有限种情况作出的猜想未必都正确,所以需要用数学归纳法证明猜想的正确性,于是有了“归纳一猜想一证明”类题型.正如G ・波利亚所说:“先猜,后证一一这是大多数的发现之道."同样,数学问题也需要猜想,甚至是“大胆猜想”,尽管由归纳推理所得的猜想未必可靠,还需进一步检验,但它由特殊到一般,由具体到抽象的认识功能,对于科学的发现都是十分有用的,观察、实验,对有限的资料作归纳整理,提出猜想,乃是科学研究的最基本的方法之一.猜想应尽量猜之有据,归纳则是形成猜想的有效途径之一.正如G ・波利亚指出的:“数学归纳法是一种论证方法,通常用来证明数学上的猜想,而这种猜想是我们用某种归纳方法所获得的.”典型例题【例1】若数列{}n a 的通项公式为()()1*22,2log 1n n n n a b a n -==+∈N .证明:对任意的*n ∈N ,不等式1212111n nb b b b b b +++⋅⋅>.【例2】已知函数()f x 与函数0)y a =>的图像关于直线y x =对称.(1)在数列{}n a 中,11a =,当2n 时,1n a a >,在数列{}n b 中,12,b =12n n S b b b =+++,若点()*,n n n S P a n N n ⎛⎫∈ ⎪⎝⎭在函数()f x 的图像上,求a 的值; (2)在(1)的条件下,过点n P 作倾斜角为4π的直线n l ,若n l 在y 轴上的截距为()113n b +,求数列{}n a 的通项公式.【例3】函数()223f x x x =--,定义数列{}n x 如下:112,n x x +=是过两点()4,5P ,()(),n n n Q x f x 的直线n PQ 与x 轴交点的横坐标.试证明1:23n n x x +<<.【例4】对于锐角θ,定义数列{}n a :()0111,1cos 1.n n n a a a n a θ--=⎧⎪+⎨=⎪⎩求证:对一切正整数n ,均有1n a >.【例5】证明:对于一切自然数1n 都有222n n +>.【例6】设数列{}n a 的前n 项和为n S ,满足2*1234,n n S na n n n +=--∈N ,且315S =.(1)求123,,a a a 的值;(2)求数列{}n a 的通项公式.强化训练1.已知函数()232f x ax x =-的最大值不大于16,又当11,42x ⎡⎤∈⎢⎥⎣⎦时,()18f x . (1)求a 的值;(2)设()*1110,,2n n a a f a n +<<=∈N ,证明1:1n a n <+.2.设0a 为常数,且()1132n n n a a n -+-=-∈Z .(1)证明:对任意1011,3(1)2(1)25n n n n n n n a a -⎡⎤=+-⋅+-⋅⎣⎦; (2)假设对任意1n ,都有1n n a a ->,求0a 的取值范围.。

高考数学难点突破-难点31--数学归纳法解题Word版

高考数学难点突破-难点31--数学归纳法解题Word版

难点31 数学归纳法解题数学归纳法是高考考查的重点内容之一.类比与猜想是应用数学归纳法所体现的比较突出的思想,抽象与概括,从特殊到一般是应用的一种主要思想方法.●难点磁场(★★★★)是否存在a 、b 、c 使得等式1·22+2·32+…+n (n +1)2=12)1(+n n (an 2+bn +c ). ●案例探究[例1]试证明:不论正数a 、b 、c 是等差数列还是等比数列,当n >1,n ∈N *且a 、b 、c 互不相等时,均有:a n +c n >2b n .命题意图:本题主要考查数学归纳法证明不等式,属★★★★级题目.知识依托:等差数列、等比数列的性质及数学归纳法证明不等式的一般步骤.错解分析:应分别证明不等式对等比数列或等差数列均成立,不应只证明一种情况.技巧与方法:本题中使用到结论:(a k -c k)(a -c )>0恒成立(a 、b 、c 为正数),从而a k +1+c k +1>a k ·c +c k ·a .证明:(1)设a 、b 、c 为等比数列,a =qb,c =bq (q >0且q ≠1)∴a n+c n=n n q b +b n q n =b n (n q1+q n )>2b n(2)设a 、b 、c 为等差数列,则2b =a +c 猜想2n n c a +>(2c a +)n (n ≥2且n ∈N *)下面用数学归纳法证明:①当n =2时,由2(a 2+c 2)>(a +c )2,∴222)2(2c a c a +>+②设n =k 时成立,即,)2(2kk k c a c a +>+则当n =k +1时,41211=+++k k c a (a k +1+c k +1+a k +1+c k +1)>41(a k +1+c k +1+a k ·c +c k·a )=41(a k +c k )(a +c ) >(2c a +)k ·(2c a +)=(2c a +)k +1[例2]在数列{a n }中,a 1=1,当n ≥2时,a n ,S n ,S n -21成等比数列.(1)求a 2,a 3,a 4,并推出a n 的表达式; (2)用数学归纳法证明所得的结论; (3)求数列{a n }所有项的和.命题意图:本题考查了数列、数学归纳法、数列极限等基础知识.知识依托:等比数列的性质及数学归纳法的一般步骤.采用的方法是归纳、猜想、证明.错解分析:(2)中,S k =-321-k 应舍去,这一点往往容易被忽视.技巧与方法:求通项可证明{n S 1}是以{11S }为首项,21为公差的等差数列,进而求得通项公式.解:∵a n ,S n ,S n -21成等比数列,∴S n 2=a n ·(S n -21)(n ≥2) (*) (1)由a 1=1,S 2=a 1+a 2=1+a 2,代入(*)式得:a 2=-32由a 1=1,a 2=-32,S 3=31+a 3代入(*)式得:a 3=-152同理可得:a 4=-352,由此可推出:a n =⎪⎩⎪⎨⎧>---=)1( )12)(32(2)1( 1n n n n (2)①当n =1,2,3,4时,由(*)知猜想成立.②假设n =k (k ≥2)时,a k =-)12)(32(2--k k 成立故S k 2=-)12)(32(2--k k ·(S k -21)∴(2k -3)(2k -1)S k 2+2S k -1=0∴S k =321,121--=-k S k k (舍) 由S k +12=a k +1·(S k +1-21),得(S k +a k +1)2=a k +1(a k +1+S k -21).1,]1)1(2][3)1(2[22112122)12(1111211212命题也成立即+=-+-+-=⇒--+=-++-⇒++++++k n k k a a k a a k a a k k k k k k k由①②知,a n =⎪⎩⎪⎨⎧≥---=)2()12)(32(2)1(1n n n n 对一切n ∈N 成立. (3)由(2)得数列前n 项和S n =121-n ,∴S =lim ∞→n S n =0.●锦囊妙记(1)数学归纳法的基本形式设P (n )是关于自然数n 的命题,若 1°P (n 0)成立(奠基)2°假设P (k )成立(k ≥n 0),可以推出P (k +1)成立(归纳),则P (n )对一切大于等于n 0的自然数n 都成立.(2)数学归纳法的应用具体常用数学归纳法证明:恒等式,不等式,数的整除性,几何中计算问题,数列的通项与和等.●歼灭难点训练 一、选择题1.(★★★★★)已知f (n )=(2n +7)·3n+9,存在自然数m ,使得对任意n ∈N ,都能使m 整除f (n ),则最大的m 的值为( )A.30B.26C.36D.62.(★★★★)用数学归纳法证明3k ≥n 3(n ≥3,n ∈N )第一步应验证( ) A.n =1 B.n =2 C.n =3 D.n =4 二、填空题3.(★★★★★)观察下列式子:474131211,3531211,2321122222<+++<++<+…则可归纳出_________.4.(★★★★)已知a 1=21,a n +1=33+n n a a ,则a 2,a 3,a 4,a 5的值分别为_________,由此猜想a n =_________.三、解答题5.(★★★★)用数学归纳法证明412+n +3n +2能被13整除,其中n ∈N *.6.(★★★★)若n 为大于1的自然数,求证:2413212111>+++++n n n . 7.(★★★★★)已知数列{b n }是等差数列,b 1=1,b 1+b 2+…+b 10=145. (1)求数列{b n }的通项公式b n ;(2)设数列{a n }的通项a n =log a (1+nb 1)(其中a >0且a ≠1)记S n 是数列{a n }的前n 项和,试比较S n 与31log a b n +1的大小,并证明你的结论. 8.(★★★★★)设实数q 满足|q |<1,数列{a n }满足:a 1=2,a 2≠0,a n ·a n +1=-q n,求a n 表达式,又如果lim ∞→n S 2n <3,求q 的取值范围.参考答案难点磁场解:假设存在a 、b 、c 使题设的等式成立,这时令n =1,2,3,有⎪⎩⎪⎨⎧===∴⎪⎪⎪⎩⎪⎪⎪⎨⎧++=++=++=10113 3970)24(2122)(614c b a c b a c b a c b a于是,对n =1,2,3下面等式成立1·22+2·32+…+n (n +1)2=)10113(12)1(2+++n n n n记S n =1·22+2·32+…+n (n +1)2设n =k 时上式成立,即S k =12)1(+k k (3k 2+11k +10) 那么S k +1=S k +(k +1)(k +2)2=2)1(+k k (k +2)(3k +5)+(k +1)(k +2)2=12)2)(1(++k k (3k 2+5k +12k +24)=12)2)(1(++k k [3(k +1)2+11(k +1)+10]也就是说,等式对n =k +1也成立.综上所述,当a =3,b =11,c =10时,题设对一切自然数n 均成立. 歼灭难点训练一、1.解析:∵f (1)=36,f (2)=108=3×36,f (3)=360=10×36 ∴f (1),f (2),f (3)能被36整除,猜想f (n )能被36整除. 证明:n =1,2时,由上得证,设n =k (k ≥2)时, f (k )=(2k +7)·3k +9能被36整除,则n =k +1时, f (k +1)-f (k )=(2k +9)·3k +1-(2k +7)·3k=(6k +27)·3k -(2k +7)·3k=(4k +20)·3k =36(k +5)·3k -2(k ≥2) ⇒f (k +1)能被36整除∵f (1)不能被大于36的数整除,∴所求最大的m 值等于36. 答案:C2.解析:由题意知n ≥3,∴应验证n =3. 答案:C二、3.解析:11112)11(112321122++⨯<++<+即 12122)12(1)11(11,35312112222++⨯<++++<++即 112)1(131211222++<+++++n n n 归纳为(n ∈N *) 112)1(131211:222++<+++++n n n 答案(n ∈N *) 53,553103,54393,5338333,5237332121333:.454223112+=+==+==+==+=+==+⨯=+=n a a a a a a a a a n 猜想同理解析 73:答案、83、93、10353=n三、5.证明:(1)当n =1时,42×1+1+31+2=91能被13整除(2)假设当n =k 时,42k +1+3k +2能被13整除,则当n =k +1时, 42(k +1)+1+3k +3=42k +1·42+3k +2·3-42k +1·3+42k +1·3 =42k +1·13+3·(42k +1+3k +2) ∵42k +1·13能被13整除,42k +1+3k +2能被13整除 ∴当n =k +1时也成立.由①②知,当n ∈N *时,42n +1+3n +2能被13整除.6.证明:(1)当n =2时,2413127221121>=+++ (2)假设当n =k 时成立,即2413212111>+++++k k k 2413)1)(12(21241322112124131122112124131111221121213121,1>+++=+-++=+-++++>+-++++++++++++=k k k k k k k k k k k k k k k n 时则当 7.(1)解:设数列{b n }的公差为d ,由题意得⎩⎨⎧==⇒⎪⎩⎪⎨⎧=-+=311452)110(10101111d b d b b ,∴b n =3n -2(2)证明:由b n =3n -2知S n =log a (1+1)+log a (1+41)+…+log a (1+231-n )=log a [(1+1)(1+41)…(1+ 231-n )]而31log a b n +1=log a 313+n ,于是,比较S n 与31log a b n +1的大小⇔比较(1+1)(1+41)…(1+231-n )与313+n 的大小.取n =1,有(1+1)=33311348+⋅=> 取n =2,有(1+1)(1+33312378)41+⨯=>>推测:(1+1)(1+41)…(1+231-n )>313+n (*) ①当n =1时,已验证(*)式成立.②假设n =k (k ≥1)时(*)式成立,即(1+1)(1+41)…(1+231-k )>313+k则当n =k +1时,)1311(13)2)1(311)(2311()411)(11(3+++>-++-+++k k k k 3131323+++=k k k333222333331)1(343)23(13130)13(49)13()13)(43()23()43()131323(++=+>+++∴>++=+++-+=+-+++k k k k k k k k k k k k k k k31)1(3)1311)(2311()411)(11(++>-+-+++k k k 从而,即当n =k +1时,(*)式成立由①②知,(*)式对任意正整数n 都成立.于是,当a >1时,S n >31log a b n +1,当 0<a <1时,S n <31log a b n +18.解:∵a 1·a 2=-q ,a 1=2,a 2≠0,∴q ≠0,a 2=-29,∵a n ·a n +1=-q n ,a n +1·a n +2=-q n +1两式相除,得qa a n n 12=+,即a n +2=q ·a n 于是,a 1=2,a 3=2·q ,a 5=2·q n…猜想:a 2n +1=-21q n(n =1,2,3,…) 综合①②,猜想通项公式为a n =⎪⎩⎪⎨⎧∈=-∈-=⋅-)(2 21)(12 21N N k k n q k k n q k k 时时下证:(1)当n =1,2时猜想成立(2)设n =2k -1时,a 2k -1=2·q k -1则n =2k +1时,由于a 2k +1=q ·a 2k -1∴a 2k +1=2·q k即n =2k -1成立. 可推知n =2k +1也成立. 设n =2k 时,a 2k =-21q k,则n =2k +2时,由于a 2k +2=q ·a 2k ,所以a 2k +2=-21q k+1,这说明n =2k 成立,可推知n =2k +2也成立. 综上所述,对一切自然数n ,猜想都成立.这样所求通项公式为a n =⎪⎩⎪⎨⎧∈=-∈-=⋅-)(2 21)(12 21N N k k n q k k n q k k 时当时当S 2n =(a 1+a 3…+a 2n -1)+(a 2+a 4+…+a 2n )=2(1+q +q 2+…+q n -1)-21 (q +q 2+…+q n))24)(11()1()1(211)1(2q q q q q q q q n n n ---=--⋅---=由于|q |<1,∴n n nn S q 2lim ,0lim ∞→∞→=故=)24)(11(qq q n --- 依题意知)1(24q q --<3,并注意1-q >0,|q |<1解得-1<q <0或0<q <52(注:可编辑下载,若有不当之处,请指正,谢谢!)。

高考数学热点难点全面突破专题-数学归纳法与极限(解析版)【2020年最新】

高考数学热点难点全面突破专题-数学归纳法与极限(解析版)【2020年最新】
2n- 5, n>5.
例题剖析
【例 1】已知数列 { an} 满足: nan 2 1007( n 1)an 1 2018( n 1)an( n N * ) ,且 a1 1 ,
a2
2 ,若 lim an 1
n
an
A ,则 A

【答案】 1009
【解析】 nan 2 1007( n 1)an 1 2018(n 1)an , a1 1, a2 2 ,
高考数学热点难点全面突破专题 -数学归纳法与极限 (解析版)
专题点拨
1.数学归纳法证明问题有两个步骤:先证当
ห้องสมุดไป่ตู้
n 取第一个值 n0 时命题成立,然后假设当 n=
k(k∈N*, k≥n0)时命题成立,并利用假设证明当 n= k+ 1 时命题也成立,这两步缺一不可,
要完整地书写.
用数学归纳法证明的问题有:可以证明一些与正整数有关的命题,如数列求和公式, 整除性和平面几何问题等.
an 0 , n 1 时, nan 2
1007 2018(n 1)an ,
( n 1)an 1
(n 1)an 1
lim an 1
n
an
A 0 ,对于上式两边取极限可得:
2018
A 1007

A
化为: ( A 1009)( A 2) 0 ,解得 A 1009.
故答案为: 1009 .
【例 2】 在无穷等比数列 { an} 中, lim( a1 a2 n
22
【例 3】观察下列式子:
13 1+ 22<2,
1+
212+
1 32<
5 3

1+
212+
312+

高考数学压轴题常用解题方式

高考数学压轴题常用解题方式

高考数学压轴题常用解题方式九种题型1线段、角的计算与证明问题中考的解答题一般是分两到三部分的。

第一部分基本上都是一些简单题或者中档题,目的在于考察基础。

第二部分往往就是开始拉分的中难题了。

对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。

线段与角的计算和证明,一般来说难度不会很大,只要找到关键“题眼”,后面的路子自己就“通”了。

2图形位置关系中学数学当中,图形位置关系主要包括点、线、三角形、矩形/正方形以及圆这么几类图形之间的关系。

在中考中会包含在函数,坐标系以及几何问题当中,但主要还是通过圆与其他图形的关系来考察,这其中最重要的就是圆与三角形的各种问题。

3 动态几何从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的。

动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。

另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。

所以说,动态问题是中考数学当中的重中之重,只有完全掌握,才有机会拼高分。

4一元二次方程与二次函数在这一类问题当中,尤以涉及的动态几何问题最为艰难。

几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。

相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求。

中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。

一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的方式考察。

但是在后面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合5多种函数交叉综合问题初中数学所涉及的函数就一次函数,反比例函数以及二次函数。

这类题目本身并不会太难,很少作为压轴题出现,一般都是作为一道中档次题目来考察考生对于一次函数以及反比例函数的掌握。

2019版高考数学理一轮课时达标38数学归纳法 含解析 精

2019版高考数学理一轮课时达标38数学归纳法 含解析 精

课时达标 第38讲[解密考纲]在高考中,数学归纳法常在压轴题中使用,考查利用数学归纳法证明不等式.一、选择题1.用数学归纳法证明:“(n +1)·(n +2)·…·(n +n )=2n ·1·3·…·(2n -1)”,从“k 到k +1”左端需增乘的代数式为( B )A .2k +1B .2(2k +1)C .2k +1k +1D .2k +3k +1解析 当n =k 时,有(k +1)·(k +2)·…·(k +k )=2k ·1·3·…·(2k -1),则当n =k +1时,有(k+2)(k +3)·…·(2k +1)(2k +2)显然增乘的(2k +1)(2k +2)k +1=2(2k +1). 2.用数学归纳法证明“2n >n 2+1对于n ≥n 0的正整数n 都成立”时,第一步证明中的起始值n 0应取( C )A .2B .3C .5D .6解析 n =4时,24<42+1;n =5时,25>52+1,故n 0=5.3.已知f (n )=12+22+32+…+(2n )2,则f (k +1)与f (k )的关系是( A )A .f (k +1)=f (k )+(2k +1)2+(2k +2)2B .f (k +1)=f (k )+(k +1)2C .f (k +1)=f (k )+(2k +2)2D .f (k +1)=f (k )+(2k +1)2解析 f (k +1)=12+22+32+…+(2k )2+(2k +1)2+[2(k +1)]2=f (k )+(2k +1)2+(2k +2)2,故选A .4.(2018.安徽黄山模拟)已知n 为正偶数,用数学归纳法证明1-12+13-14+ (1)=2⎝⎛⎭⎫1n +2+1n +4+…+12n 时,若已假设n =k (k ≥2且k 为偶数)时命题为真,则还需要用归纳假设再证( B )A .n =k +1时等式成立B .n =k +2时等式成立C .n =2k +2时等式成立D .n =2(k +2)时等式成立解析 根据数学归纳法步骤可知,要证n 为正偶数对原式成立,已知假设n =k (k ≥2且k 为偶然)时,命题为真,则下一步需证下一个正偶数即n =k +2时命题为真,故选B .5.设f (x )是定义在正整数集上的函数,且f (x )满足:“当f (k )≥k 2成立时,总可推出f (k +1)≥(k +1)2成立”.那么,下列命题总成立的是( D )A .若f (1)<1成立,则f (10)<100成立B .若f (2)<4成立,则f (1)≥1成立C .若f (3)≥9成立,则当k ≥1时,均有f (k )≥k 2成立D .若f (4)≥16成立,则当k ≥4时,均有f (k )≥k 2成立解析 A ,B 项与题设中不等方向不同,故A ,B 项错;C 项中,应该是k ≥3时,均有f (k )≥k 2成立;D 项符合题意.6.对于不等式n 2+n <n +1(n ∈N *),某同学用数学归纳法的证明过程如下:(1)当n =1时,12+1<1+1,不等式成立.(2)假设当n =k (k ∈N *)时,不等式成立,即k 2+k <k +1,则当n =k +1时,(k +1)2+(k +1)=k 2+3k +2<(k 2+3k +2)+(k +2)=(k +2)2=(k +1)+1,所以当n =k +1时,不等式成立.( D )A .过程全部正确B .n =1验证不正确C .归纳假设不正确D .从n =k 到n =k +1推理不正确解析 在n =k +1时,没有应用n =k 时的假设,即从n =k 到n =k +1的推理不正确,故选D .二、填空题7.用数学归纳法证明1+12+13+…+12n -1<n (n ∈N *,n >1)时,第一步应验证的不等式是__1+12+13<2__. 解析 由n ∈N *,n >1知,n 取第一个值n 0=2,当n =2时,不等式为1+12+13<2. 8.设数列{a n }的前n 项和为S n ,且对任意的自然数n 都有(S n -1)2=a n S n ,通过计算S 1,S 2,S 3,猜想S n =__n n +1__. 解析 由(S 1-1)2=S 21,得:S 1=12; 由(S 2-1)2=(S 2-S 1)S 2,得:S 2=23; 由(S 3-1)2=(S 3-S 2)S 3,得:S 3=34.猜想S n =n n +1. 9.设平面上n 个圆周最多把平面分成f (n )个平面区域,则f (2)=__4__,f (n )=__n 2-n +2__(n ≥1,n ∈N *).解析 易知2个圆周最多把平面分成4片;n 个圆周最多把平面分成f (n )片,再放入第n+1个圆周,为使得到尽可能多的平面区域,第n +1个应与前面n 个都相交且交点均不同,有n 条公共弦,其端点把第n +1个圆周分成2n 段,每段都把已知的某一片划分成2片,即f (n +1)=f (n )+2n (n ≥1),所以f (n )-f (1)=n (n -1),而f (1)=2,从而f (n )=n 2-n +2.三、解答题10.求证:1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n (n ∈N *). 证明 ①当n =1时,左边=1-12=12, 右边=11+1=12,左边=右边,等式成立. ②假设n =k (k ∈N *)时等式成立,即1-12+13-14+…+12k -1-12k =1k +1+1k +2+…+12k , 则当n =k +1时,⎝⎛⎭⎫1-12+13-14+…+12k -1-12k +⎝⎛⎭⎫12k +1-12k +2 =⎝⎛⎭⎫1k +1+1k +2+…+12k +⎝⎛⎭⎫12k +1-12k +2 =1k +2+1k +3+…+12k +1+12k +2. 即当n =k +1时,等式也成立.综合①,②可知,对一切n ∈N *等式成立.11.用数学归纳法证明1+122+132+…+1n 2<2-1n(n ∈N *,n ≥2). 证明 ①当n =2时,1+122=54<2-12=32,命题成立. ②假设n =k (k ≥2,且k ∈N *)时命题成立,即1+122+132+…+1k 2<2-1k. 当n =k +1时,1+122+132+…+1k 2+1(k +1)2<2-1k +1(k +1)2<2-1k +1k (k +1)=2-1k +1k-1k +1=2-1k +1,命题成立. 由①,②知原不等式在n ∈N *,n ≥2时均成立.12.已知函数f (x )=13x 3-x ,数列{a n }满足条件:a 1≥1,a n +1≥f ′(a n +1),试比较11+a 1+11+a 2+11+a 3+…+11+a n与1的大小,并说明理由. 解析 ∵f ′(x )=x 2-1,且a n +1≥f ′(a n +1),∴a n +1≥(a n +1)2-1.∵函数g (x )=(x +1)2-1在[1,+∞)上是增函数,于是由a 1≥1,得a 2≥(a 1+1)2-1≥22-1,进而a 3≥(a 2+1)2-1≥24-1>23-1,由此猜想:a n ≥2n -1. 下面用数学归纳法证明这个猜想:①当n =1时,a 1≥21-1=1,结论成立;②假设n =k (k ≥1且k ∈N *)时结论成立,即a k ≥2k -1.当n =k +1时,由g (x )=(x +1)2-1在区间[1,+∞)上是增函数知a k +1≥(a k +1)2-1≥22k -1≥2k +1-1, 即n =k +1时,结论也成立.由①②知,对任意n ∈N *,都有a n ≥2n -1.即1+a n ≥2n ,∴11+a n ≤12n , ∴11+a 1+11+a 2+11+a 3+…+11+a n ≤12+122+123+…+12n =1-⎝⎛⎭⎫12n <1.。

高考数学冲刺复习数学归纳法考点解析

高考数学冲刺复习数学归纳法考点解析

高考数学冲刺复习数学归纳法考点解析在高考数学的复习冲刺阶段,数学归纳法是一个重要的考点。

掌握好数学归纳法,对于解决一些与自然数相关的数学问题有着关键的作用。

接下来,咱们就一起来深入了解一下这个考点。

一、数学归纳法的基本概念数学归纳法是一种用于证明与自然数有关的命题的方法。

它的基本步骤包括:1、基础步骤:证明当 n 取第一个值 n₀(通常是 1 或 0)时,命题成立。

2、归纳假设:假设当 n = k(k ≥ n₀,k 为自然数)时命题成立。

3、归纳递推:证明当 n = k + 1 时命题也成立。

通过这三个步骤,就可以证明对于从 n₀开始的所有自然数 n,命题都成立。

二、数学归纳法的应用场景数学归纳法常用于证明数列的通项公式、不等式、整除性问题等。

例如,证明等差数列的通项公式 an = a1 +(n 1)d 时,就可以使用数学归纳法。

首先,当 n = 1 时,a1 = a1 +(1 1)d = a1,命题成立。

假设当 n = k 时,ak = a1 +(k 1)d 成立。

那么当 n = k + 1 时,ak+1 = ak + d = a1 +(k 1)d + d = a1 +(k + 1) 1d ,命题也成立。

所以,对于任意自然数 n,等差数列的通项公式 an = a1 +(n 1)d 都成立。

三、数学归纳法的解题步骤与技巧1、明确命题:首先要清楚所要证明的命题的具体内容。

2、基础步骤:这一步要小心计算,确保当 n = n₀时,命题确实成立。

3、归纳假设:假设要清晰明确,为后面的递推做好铺垫。

4、归纳递推:这是关键的一步,要善于利用归纳假设,通过合理的变形和推理,证明当 n = k + 1 时命题成立。

在解题过程中,还需要注意一些技巧:1、变形的灵活性:根据命题的特点,灵活运用代数变形、不等式的放缩等技巧。

2、关注条件:充分利用题目中给出的条件和已知的数学结论。

四、常见错误与注意事项1、基础步骤不扎实:在基础步骤中,计算错误或者没有清晰地证明命题成立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学压轴—数学归纳法(含解法)运用数学归纳法证明问题时,关键是n =k +1时命题成立的推证,此步证明要具有目标意识,注意与最终要达到的解题目标进行分析比较,以此确定和调控解题的方向,使差异逐步减小,最终实现目标完成解题。

运用数学归纳法,可以证明下列问题:与自然数n 有关的恒等式、代数不等式、三角不等式、数列问题、几何问题、整除性问题等等。

Ⅰ、再现性题组:1. 用数学归纳法证明(n +1)(n +2)…(n +n)=2n ·1·2…(2n -1) (n ∈N ),从“k 到k +1”,左端需乘的代数式为_____。

A. 2k +1B. 2(2k +1)C.211k k ++ D. 231k k ++ 2. 用数学归纳法证明1+12+13+…+121n -<n (n>1)时,由n =k (k>1)不等式成立,推证n =k +1时,左边应增加的代数式的个数是_____。

A. 2k -1 B. 2k -1 C. 2k D. 2k +13. 某个命题与自然数n 有关,若n =k (k ∈N)时该命题成立,那么可推得n =k +1时该命题也成立。

现已知当n =5时该命题不成立,那么可推得______。

(94年上海高考)A.当n =6时该命题不成立B.当n =6时该命题成立C.当n =4时该命题不成立D.当n =4时该命题成立4. 数列{a n }中,已知a 1=1,当n ≥2时a n =a n -1+2n -1,依次计算a 2、a 3、a 4后,猜想a n 的表达式是_____。

A. 3n -2B. n 2C. 3n -1 D. 4n -3 5. 用数学归纳法证明342n ++521n + (n ∈N)能被14整除,当n =k +1时对于式子3412()k +++5211()k ++应变形为_______________________。

6. 设k 棱柱有f(k)个对角面,则k +1棱柱对角面的个数为f(k+1)=f(k)+_________。

【简解】1小题:n =k 时,左端的代数式是(k +1)(k +2)…(k +k),n =k +1时,左端的代数式是(k +2)(k +3)…(2k +1)(2k +2),所以应乘的代数式为()()21221k k k +++,选B ; 2小题:(2k +1-1)-(2k -1)=2k,选C ; 3小题:原命题与逆否命题等价,若n =k +1时命题不成立,则n =k 命题不成立,选C 。

4小题:计算出a 1=1、a 2=4、a 3=9、a 4=16再猜想a n ,选B ;5小题:答案(342k ++521k +)3k +521k +(52-34); 6小题:答案k -1。

Ⅱ、示范性题组:例1. 已知数列811322··,得,…,8212122··nn n()()-+,…。

Sn为其前n项和,求S1、S 2、S3、S4,推测Sn公式,并用数学归纳法证明。

(93年全国理)【解】计算得S1=89,S2=2425,S3=4849,S4=8081,猜测Sn=()()2112122nn+-+(n∈N)。

当n=1时,等式显然成立;假设当n=k时等式成立,即:Sk=()()2112122kk+-+,当n=k+1时,Sk+1=Sk+81212322··()()()kk k+++=()()2112122kk+-++81212322··()()()kk k+++=()()()()()()21232381212322222k k k kk k+⋅+-+++++··=()()()()()212321212322222k k kk k+⋅+--++·=()()2312322kk+-+,由此可知,当n=k+1时等式也成立。

综上所述,等式对任何n∈N都成立。

【注】把要证的等式Sk+1=()()2312322kk+-+作为目标,先通分使分母含有(2k+3)2,再考虑要约分,而将分子变形,并注意约分后得到(2k+3)2-1。

这样证题过程中简洁一些,有效地确定了证题的方向。

本题的思路是从试验、观察出发,用不完全归纳法作出归纳猜想,再用数学归纳法进行严格证明,这是关于探索性问题的常见证法,在数列问题中经常见到。

假如猜想后不用数学归纳法证明,结论不一定正确,即使正确,解答过程也不严密。

必须要进行三步:试值→猜想→证明。

【另解】用裂项相消法求和:由an =8212122··nn n()()-+=1212()n--1212()n+得,S n =(1-132)+(132-152)+……+1212()n--1212()n+=1-1212()n+=()()2112122n n +-+。

此种解法与用试值猜想证明相比,过程十分简单,但要求发现8212122··nn n ()()-+=1212()n --1212()n +的裂项公式。

可以说,用试值猜想证明三步解题,具有一般性。

例2. 设a n =12×+23×+…+n n ()+1 (n ∈N),证明:12n(n +1)<a n <12(n +1)2 。

【分析】与自然数n 有关,考虑用数学归纳法证明。

n =1时容易证得,n =k +1时,因为a k +1=a k +()()k k ++12,所以在假设n =k 成立得到的不等式中同时加上()()k k ++12,再与目标比较而进行适当的放缩求解。

【解】 当n =1时,a n =2,12n(n+1)=12,12(n+1)2=2 , ∴ n =1时不等式成立。

假设当n =k 时不等式成立,即:12k(k +1)<a k <12(k +1)2 , 当n =k +1时,12k(k +1)+()()k k ++12<a k +1<12(k +1)2+()()k k ++12, 12k(k +1)+()()k k ++12>12k(k +1)+(k +1)=12(k +1)(k +3)>12(k +1)(k +2), 12(k +1)2+()()k k ++12=12(k +1)2+k k 232++<12(k +1)2+(k +32)=12(k +2)2, 所以12(k +1)(k +2) <a k <12(k +2)2,即n =k +1时不等式也成立。

综上所述,对所有的n ∈N ,不等式12n(n +1)<a n <12(n +1)2恒成立。

【注】 用数学归纳法解决与自然数有关的不等式问题,注意适当选用放缩法。

本题中分别将()()k k ++12缩小成(k +1)、将()()k k ++12放大成(k +32)的两步放缩是证n =k +1时不等式成立的关键。

为什么这样放缩,而不放大成(k +2),这是与目标比较后的要求,也是遵循放缩要适当的原则。

本题另一种解题思路是直接采用放缩法进行证明。

主要是抓住对n n ()+1的分析,注意与目标比较后,进行适当的放大和缩小。

解法如下:由n n ()+1>n 可得,a n >1+2+3+…+n=12n(n+1);由n n()+1<n+12可得,an<1+2+3+…+n+12×n=12n(n+1)+12n=12(n2+2n)<12(n+1)2。

所以12n(n+1)<an<12(n+1)2。

例3. 设数列{an }的前n项和为Sn,若对于所有的自然数n,都有Sn=n a an()12+,证明{an}是等差数列。

(94年全国文)【分析】要证明{an}是等差数列,可以证明其通项符合等差数列的通项公式的形式,即证:an =a1+(n-1)d 。

命题与n有关,考虑是否可以用数学归纳法进行证明。

【解】设a2-a1=d,猜测an=a1+(n-1)d当n=1时,an =a1,∴当n=1时猜测正确。

当n=2时,a1+(2-1)d=a1+d=a2,∴当n=2时猜测正确。

假设当n=k(k≥2)时,猜测正确,即:ak =a1+(k-1)d ,当n=k+1时,ak+1=Sk+1-Sk=()()k a ak+++1211-k a ak()12+,将ak =a1+(k-1)d代入上式,得到2ak+1=(k+1)(a1+ak+1)-2ka1-k(k-1)d,整理得(k-1)ak+1=(k-1)a1+k(k-1)d,因为k≥2,所以ak+1=a1+kd,即n=k+1时猜测正确。

综上所述,对所有的自然数n,都有an =a1+(n-1)d,从而{an}是等差数列。

【注】将证明等差数列的问题转化成证明数学恒等式关于自然数n成立的问题。

在证明过程中ak+1的得出是本题解答的关键,利用了已知的等式Sn=n a an()12+、数列中通项与前n项和的关系ak+1=Sk+1-Sk建立含ak+1的方程,代入假设成立的式子ak=a1+(k-1)d解出来ak+1。

另外本题注意的一点是不能忽视验证n=1、n=2的正确性,用数学归纳法证明时递推的基础是n=2时等式成立,因为由(k-1)ak+1=(k-1)a1+k(k-1)d得到ak+1=a1+kd的条件是k≥2。

【另解】 可证a n +1 -a n = a n - a n -1对于任意n ≥2都成立:当n ≥2时,a n =S n -S n -1=n a a n ()12+-()()n a a n -+-1211;同理有a n +1=S n +1-S n =()()n a a n +++1211-n a a n ()12+;从而a n +1-a n =()()n a a n +++1211-n(a 1+a n )+()()n a a n -+-1211,整理得a n +1 -a n = a n - a n -1,从而{a n }是等差数列。

一般地,在数列问题中含有a n 与S n 时,我们可以考虑运用a n =S n -S n -1的关系,并注意只对n ≥2时关系成立,象已知数列的S n 求a n 一类型题应用此关系最多。

Ⅲ、巩固性题组:1. 用数学归纳法证明:621n -+1 (n ∈N)能被7整除。

2. 用数学归纳法证明: 1×4+2×7+3×10+…+n(3n +1)=n(n +1)2 (n ∈N)。

3. n ∈N ,试比较2n 与(n +1)2的大小,并用证明你的结论。

4. 用数学归纳法证明等式:cos x 2·cos x22·cos x 23·…·cos x n 2=sin sin x xn n 22· (81年全国高考)5. 用数学归纳法证明: |sinnx|≤n|sinx| (n ∈N )。

相关文档
最新文档