去分母解方程
11.15解一元一次方程——去分母
2
4
解:去分母(方程两边同乘4),得
2(x+1)-4=8+(2-x)
去括号,得 2x+2-4=8+2-x
移项,得 2x+x=8+2-2+4.
合并同类项,得 3x=12
系数化为1,得 x = 4
解方程2:
解:去分母(方程两边同乘6),得
18x+3(x-1)=18-2(2x-1).
去括号,得
18x+3x-3=18-4x+2
解: 去分母,得 5x-1=8x+4-2(x-1)
去括号,得 5x-1=8x+4-2x-2
移项,得 8x+5x+2x=4-2+1
合并,得
15x =3
系数化为1,得
x =5
例3: 解方程 1.5x 1.5 x 0.5
0.6 2
解:将原方程化为
5x 1.5 x 0.5 22
去分母,得 5x (1.5 x) 1
移项,得
18x+3x+4x=18+2+3.
合并同类项,得
25x=23
系数化为1,得
x
=
23
25
一般的,解一元一次方程的基本程序:
去分母
去括号 移项 合并同类项 两边同除以未知数的系数
练习3:选一选
解方程 2y 1 5y 2 3y 1 1去分母时,正确的是(_D__)
3
6
4
( A)4(2 y 1) 25y 2 3y 112
移项法则
移项要变号
合并同类项 合并同类项法则
系数相加,不漏项
解方程去分母的方法的步骤
解方程去分母的方法的步骤
嘿,朋友们!今天咱就来好好聊聊解方程去分母的方法步骤,这可太重要啦!
比如说方程$\frac{1}{2}x+\frac{1}{3}=1$,要是不去分母解起来可就麻烦咯!那怎么去分母呢?第一步,咱得找到所有分母的最小公倍数。
就像这个例子里,2 和 3 的最小公倍数就是 6 呀!哎呀,这不是很简单嘛!然后呢,把方程两边同时乘以这个最小公倍数 6。
哇塞,就像给方程施了个魔法一样,一下子就把分母去掉啦!6×$\frac{1}{2}x$就变成了 3x,
6×$\frac{1}{3}$变成了 2,6×1 还是 6 呀。
这样就得到新方程 3x+2=6,是不是感觉容易多啦?接下来不就可以顺顺利利地解出 x 的值啦!
去分母不就是这样嘛,找到最小公倍数,一乘,搞定!哪有那么难呀,朋友们!都学会了吧?哈哈!
怎么样,解方程去分母的方法步骤你清楚了吧?加油哦,相信你一定能轻松搞定!。
去分母解一元一次方程
例4 若关于x的方程 1 (x ? k) ? 1与 x ? 1 ? x ? k
2
3
的解相同,求 k的值.
解:由方程 1 (x ? k) ? 1 得x=2-k, 2
由方程 x ? 1 ? x ? k 得x= 1 (3k ? 1).
3
2
所以2 - k ? 1 (3k ? 1). 2
C.3(2x ? 3) ? x ? 9x ? 5 ? 6
D.3(2x ? 3) ? 6x ? 2(9x ? 5) ? 6
做一做
碧空万里,一群大雁在飞翔,迎面又飞来一只小灰雁, 它对群雁说:“你们好,百只雁!你们百雁齐飞,好气派! 可怜我是孤雁独飞.”群雁中一只领头的老雁说:“不对! 小朋友,我们远远不足100只.将我们这一群加倍,再加上半 群,又加上四分之一群,最后还得请你也凑上,那才一共是 100只呢,请问这群大雁有多少只?
5
23
解:去分母,得 6(x+15)=15-10( x-7),
去括号,得 6x+90=15-10 x+70, 移项、合并同类项,得 16x=-5,
方程两边同除以 16,得 x ? ? 5 . 16
做一做
2(2x-1)=8-(3-x) D
注意事项
4(2x-1)=3(x+2)-12
去分母时,方程两边同时乘各分母的最小公倍数时,
×?28
结论 方程的左、右两边同时乘各分母的最小公倍数 可去掉分母. 依据是等式的基本性质2.
例3
解方程:
2x? 1 ?
10x ? 1
?
2x ? 1 ? 1.
3
6
4
去分母解方程
去分母解方程引言在代数学中,方程是一种数学等式,它表示两个表达式相等。
方程的解是能够使等式成立的数值。
在解方程时,我们通常需要对方程进行变形和化简,以便找到解的方法。
其中,解分母的方程是一种特殊类型的方程,它需要我们根据方程中的分母进行处理,以便得到更简洁的形式。
一、消去分母解分母的方程首先需要进行的操作是消去分母。
我们可以利用最小公倍数(LCM)来消去分母。
具体步骤如下:1.找到方程中所有分母的最小公倍数(LCM)。
2.对方程中的每一项进行乘法,使其分母等于LCM。
3.化简方程,消去分母。
示例1:消去分母考虑以下方程:1/x + 1/(x+1) = 1/(x+2)我们可以首先找到最小公倍数,并对方程两边进行乘法,得到:(x+1)(x+2) + x(x+2) = x(x+1)进一步化简方程,消去分母:(x+1)(x+2) + x(x+2) - x(x+1) = 0这样,我们就成功消去了方程中的分母。
二、整理方程消去分母之后,我们需要对方程进行整理,以便得到更简单的形式。
在整理方程时,我们需要注意以下几点:1.将方程中的同类项合并。
2.将方程变形为标准形式,即形如ax^2 + bx + c = 0的形式。
示例2:整理方程考虑以下方程:(x+1)(x+2) + x(x+2) - x(x+1) = 0利用分配律,我们可以将方程中的同类项合并,得到:x^2 + 3x + 2 + x^2 + 2x - x^2 - x = 0化简后得到:x^2 + 4x + 2 = 0将方程变形为标准形式:x^2 + 4x + 2 = 0这样,我们就成功整理了方程。
三、解方程消去分母并整理方程之后,我们可以开始解方程。
解方程的方法因方程的类型而异,常见的解方程方法包括因式分解、配方法、公式法等。
示例3:解方程考虑以下方程:x^2 + 4x + 2 = 0我们可以使用求根公式来解这个方程。
求根公式给出了二次方程ax^2 + bx + c =0的解的表达式:x = (-b ± sqrt(b^2 - 4ac)) / 2a将方程中的系数代入求根公式,我们可以得到方程的解。
去分母解方程课件
实际应用中的去分母解方程实例
实例1:
求
解
x=3/4y+
1/2
实例2:
求
解
x=5/6y-
1/3
实例3:
求
解
x=7/8y+
1/4y
-1/5
实例5:
求
解
x=11/12
y+1/6
实例6:
求
解
x=13/14
y-1/7
去分母解方程的注意事项
第五章
去分母解方程的适用范围
●
方程中含有分母
去分母解方程的步骤
确定方程中的分母 将方程中的分母转化为整数 解方程,得到解 将解转化为原方程中的形式
去分母解方程的方法
第三章
最小公倍数法
定义:通过找到两个或多个分数的分母的最小公倍数,将分数转化 为整数,再进行计算
单击此处输入你的项正文,文字是您思想的提炼,请言简意赅的 阐述观点。
步骤: a. 找出分母的最小公倍数 b. 将分数转化为整数 c. 计算 整数
分母中含有复数集
●
分母中含有整数集
●
分母中含有有理数集
去分母解方程的局限性
方程的解可能不 是唯一的
方程的解可能不 存在
方程的解可能不 是实数
方程的解可能不 是整数
去分母解方程的误差分析
误差来源:计算过程中的舍入误差 误差影响:可能导致解方程结果不准确 误差控制:采用高精度计算方法,如双精度浮点数 误差检验:通过比较解方程前后的误差,判断解方程结果是否准确
单击此处输入你的项正文,文字是您思想的提炼,请言简意赅的 阐述观点。
公式法
公式法是解方程的一种方法,适用于分母中含有未知数的方程 公式法步骤:将方程两边同时乘以分母的最小公倍数,使分母变为1 公式法优点:简单易懂,易于掌握 公式法缺点:不适用于分母中含有未知数的方程
去分母解一元一次方程
平都中学 蒲玲
课前复习巩固
小测试
学习目标:
1、灵活运用去分母的方法解一元一次方
程
2、掌握解一元一次方程的一般步骤,并 能正确,熟练的运用到解一元一次方程中 3、通过去分母解方程,了解数学中的“化 归”思想
新课导入
微课
由上面的解法我们得到启示: 如果方程中有分母我们先去掉分母解 起来比较方便. 试一试,解方程:
y 2 y 1 1 6 3
解 :去分母,得 去括号,得 移项,得
y-2 = 2(y+1)ห้องสมุดไป่ตู้6 y-2= 2y+2+6 y-2y = 8+2
合并同类项系数化这1.得 y = -10
解方程:
(1)
3x+1 -2 = 3x-2 - 2x+3 5 2 10
想一想 去分母时要 注意什么问题?
1、去分母时,应在方程 的左右两边乘以分母的 最小公倍数; 2、去分母的依据是等式 性质二,去分母时不能 漏乘没有分母的项;
3、去分母与去括号这两 步分开写,不要跳步, 防止忘记变号。
当堂检测
x 1 2 x (1) 1 2 2 4
x 1 2x 1 (2)3x 3 2 3
知识反馈 小试牛刀
五.归纳总结 反思提高
(1)本节课学习了哪些主要内容? (2)去分母的依据是什么?去分母的作用是什么?
(3)去分母时,方程两边所乘的数是怎样确定的?
(4)用去分母解一元一次方程时应该注意哪些问题?
北京专家讲解去分母 解一元一次方程的误区。
谢谢大家指导!
解一元一次方程(去分母)
解方程
不对
解:去分母,得 2(3x 1) 1 4 x 1 去括号,得 移项,得
2(3x 1) 6 (4 x 1)
6x 2 6x 4x 1
6x 1 1 4x 1
6x 4x 111
移项,合并同类项,得 10 x 9
1.把方程 A. C.
3x ( x 1) 1 B.
x x 1 1 去分母,正确的是( D ) 2 6
3x x 1 1
D. 3x ( x 1)
3x x 1 6
6
2、下面方程的解法对吗?若不对,请改正 。
3x 1 4x 1 1 3 6
2 1 1 x x x x 33 3 2 7
2 1 1 1 x 33 3 2 7
可以先做异分母的加法运算,是否感觉到烦琐?
2 1 1 42 x 42 x 42 x 42 x 42 33 3 2 7 28 x 21x 6 x 42 x 1386 97 x 1386
将未知数的系数相加,常数项项加。 依据是乘法分配律 在方程的两边除以未知数的系数. 依据是等式性质二。
解一元一次方程的一般步骤
变 形 名 称 去 去 移 分 括 母 号 项
注
意
事
项
防止漏乘(尤其整数项),注意添括号; 注意变号,防止漏乘; 移项要变号, 计算要仔细,不要出差错; 计算要仔细,分子分母不要颠倒
1.⑴括号前是“+”号,把括号和它前面的“+” 号去掉,括号里各项都不变符号。 ⑵括号前是“-”号,把括号和它前面的“-” 号去掉,括号里各项都改变符号。 2.移项要变号。 3.系数化为1,要方程两边同时除以未知数前 面的系数。
解一元一次方程--去分母
解:去分母,得 去括号,得 移项,得
15x+5-20=3x-2-4x-6
15x+4x-3x=-2-6-5+20 16x=7 7 x=
或15x+x=-8+15
合并同类项,得 化系数为1,得
想一想
去分母时要 注意什么问题?
16
ቤተ መጻሕፍቲ ባይዱ
(1)方程两边每一项都要乘以各分母的最小公倍数
答案(1)x=2; (2)y=
26 3
1.上面方程在求解中有哪些步骤? 去分母 去括号 移项 合并同类项 系数化为1
2.每一步的依据是什么? 等式性质1,等式性质2 3.在每一步求解时要注意什么?
1、去分母时,应在方程的左右两 边乘以分母的最小公倍数; 2、去分母的依据是等式性质二,去 分母时不能漏乘没有分母的项; 3、去掉分母以后,分数线也同时去 掉,分子上的多项式用括号括起来。 4、去分母与去括号这两步分开写, 不要跳步,防止忘记变号。
作业:
课本:
A:P98 习题3.3 第3题
B:导学与训练
如何求解方程呢? 1.2-0.3x x =1+ 0.3 0.2
解:分母化整数,得 去分母,得 去括号,得 移项,得
10 x 3 1 12 3 x 2
分母化整数利 用分数的性质
20x=6+3(12-3x) 20x=6+36-9x 20x+9x=6+36
42 ( 2 3 x 1 2 x 1 7 x x ) 33 42
解:方程两边同乘 即:
42 得:
28 x 21 x 6 x 42 x 1386
解一元一次方程——去分母
解法一: 解法一:用去 括号的方法 括号的方法 解这个一元一 次方程。 次方程。
例1、解下列方程: 、解下列方程: x 3 2x +1 =1 2 3
把方程两边都乘以6,去分母: 把方程两边都乘以 ,去分母:
3( x 3) 2(2 x + 1) = 6 3x 9 4 x 2 = 6 3x 4 17
解一元一次方程的一般步骤: 解一元一次方程的一般步骤:
变形名称 去分母 具体的做法 乘所有的分母的最小公倍数. 依据是等式性质二 去括号 先去小括号,再去中括号,最后去大括号. 依据是去括号法则和乘法分配律 移项 把含有未知数的项移到一边,常数项移到 另一边.“过桥变号”,依据是等式性质 一 合并同类项 将未知数的系数相加,常数项项加。 依据是乘法分配律 系数化为1 在方程的两边除以未知数的系数. 11 亿名教育修正版 依据是等式性质二。
去括号法则: 去括号法则:
括号前面是“ 括号前面是“+”,去掉括号后,括号内的各项都不改变符号; 去掉括号后,括号内的各项都不改变符号; 括号前面是“ ,去掉括号后,括号内的各项都改变符号; 括号前面是“—”,去掉括号后,括号内的各项都改变符号;
添括号法则: 添括号法则:
括号前面是“ 括号前面是“+”,添上括号后,括到括号里的各项都不改 添上括号后, 变符号; 变符号; 括号前面是“ ,添上括号后, 括号前面是“—”,添上括号后,括到括号里的各项都改变 符号。 符号。
解法二: 解法二:用去 分母的方法 分母的方法 解这个一元一 次方程。 次方程。
解:
5y 1 7 () 1 = 6 3
移项, 移项,得 5y = 14 + 1 合并同类项, 合并同类项,得 5y = 15 系数化为1, 系数化为 ,得 y = 3
去分母解方程
去分母解方程去分母解方程是一种常见的数学问题,主要针对含有分式的方程进行求解。
在解这类方程时,我们需要通过消去分母的方式将方程转化为一个整式方程,然后再进行求解。
下面将详细介绍去分母解方程的步骤和方法。
一、基本概念在去分母解方程之前,我们首先需要了解一些基本概念。
1. 分式:分式是由两个整式(即多项式)相除得到的表达式,通常形如a/b,其中a和b都是整式。
2. 分母:在一个分式中,除号后面的整式称为分母。
3. 分子:在一个分式中,除号前面的整式称为分子。
二、去分母解方程的步骤下面将介绍具体的去分母解方程步骤:1. 找到所有含有分数形式的方程,并确定其中每个方程所对应的最小公倍数(LCM)。
2. 将每个方程中的所有项乘以该最小公倍数,并同时将等号两侧都乘以该最小公倍数。
这样可以消去所有的分母。
3. 化简得到一个整系数多项式方程。
4. 将该多项式方程进行因式分解,并求出所有可能的根。
5. 检验求得的根是否满足原方程,若满足则为解,若不满足则舍去。
三、具体例子为了更好地理解去分母解方程的步骤和方法,下面将通过一个具体的例子来进行说明。
假设我们有以下方程需要解:1/x + 1/(x+1) = 2/3步骤1:找到含有分数形式的方程,并确定最小公倍数(LCM)。
根据上述方程,我们可以确定最小公倍数为3x(x+1)。
步骤2:将每个方程中的所有项乘以LCM,并同时将等号两侧都乘以LCM。
得到3(x+1) + 3x = 2x(x+1)步骤3:化简得到一个整系数多项式方程。
化简后得到6x + 3 = 2x^2 + 2x步骤4:将该多项式方程进行因式分解,并求出所有可能的根。
通过因式分解得到2x^2 - 4x - 3 = 0。
接下来可以使用配方法、求根公式或图像法等方法求解该二次方程。
假设我们使用因式分解法,可得(x-3)(2x+1)=0。
可能的根为x=3和x=-1/2。
步骤5:检验求得的根是否满足原方程。
将x=3代入原方程,得到1/3 + 1/(3+1) = 2/3,满足原方程。
解一元一次方程去分母
解下列方程:
(1)
5x+1 -
4
2x-1 4
=2
(2)
Y+4 3
-Y+5=Y3+3
-
Y-2 2
用去括号的方法解下列各方程:
① x 5 1005 x 2
② x 1 2x 3
2
7
③ 3x 1 2 x 1
2
3
④ 2x 1 x 1 1
6
8
⑤ x 17 2 2 x 7
5
4
⑥ 3x x 1 3 2x 1
问题:一个数,它的三分之二,它的
一半,它的七分之一,它的全部,
加起来总共是33,求这个数
例题2:解方程 3x 1 2 3x 2 2x 3
2
10 5
解:去分母,得
5(3x +1)-10×2 = (3x -2)-2 (2x +3)
去括号
15x +5-20 = 3x -2-4x -6
移项 15x - 3x + 4x = -2-6 -5+20
解:设先安排x人工作4小时,根据相等关系:
两段完成的工作量之和应是总工作量
列出方程: 4x/40 +8(x+2)/40 =1
解:设先安排了x人工作4小时.根据题意,得
去分母,得
4x 8( x 2) 1
40
40
4x 8( x 2) 40 勿忘我 1×40
去括号,得 4x 8x 16 40 勿忘他 2×8
y-2y = 6+2
• 合并同类项,得
-y=8
• 系数化这1.得
y=-8
• 如果我们把这个方程变化一下,还
可以象上面一样去解吗
再试一试看:
解一元一次方程——去分母
各分母的最小公倍数84.
1 1 1 1 x x x5 x4 x 6 12 7 2
去分母(方程两边同乘各 分母的最小分倍数)
解: 14x+7x+12x+420+42x+336=84x
移项
14x+7x+12x+42x -84x =-420-336
合并同类项
-21x=-756
系数化为1 x=84. 答:丢番图去世时的年龄为84岁.
3、解方程:
y2 y 1 6 3
y-2 = 2y+6 y-2y = 6+2 -y=8
y=-8
解 去分母,得 移项,得 合并同类项,得
系数化这1,得
由上面的解法我们得到启示: 如果方程中有分母我们先去掉分母解起来比较方便.
如果我们把这个方程变化一下,还可以象上面一样
去解吗? 再试一试看:
解:去分母(方程两边同乘12),得 4(-x+4)-12x+5×12=4(x-3)-3(x-1) 去括号,得 -4x-16-12x+60=4x-12-3x+3 移项,得 -4x-12x-4x+3x=-12+3+16-60 合并同类项,得 -17x=-53 系数化为1,得
53 x 17
2 1 1 (3) ( x 6) ( 2x 3) 3 4 6
这件珍贵的文物是纸莎草文书,是古代埃 及人用象形文字写在一种特殊的草上的著作, 至今已有3700多年的历史了,在文书中记载了 许多有关数学的问题.
问题: 一个数,它的 三分之二,它的一半,它 的七分之一,它的全部, 加起来总共是33.
解:设这个数为x,可得方程:
2 1 1 x x x x 33 3 2 7
解有分数系数的一元一次方程的步骤:
1.去分母; 2.去括号; 3.移项; 4.合并同类项; 5.系数化为1.
去分母解方程
目录
CONTENTS
• 去分母解方程的基本概念 • 去分母解方程的步骤 • 去分母解方程的实例 • 去分母解方程的注意事项 • 去分母解方程的优缺点 • 去分母解方程的应用场景
01 去分母解方程的基本概念
定义与特点
定义
去分母解方程是一种数学解题方 法,通过消除方程中的分母,将 方程转化为更容易解决的形式。
03 去分母解方程的实例
简单的一元一次方程
总结词
去分母解方程是解决简单一元一次方 程的有效方法。
详细描述
对于形如 $frac{x}{a} = frac{b}{c}$ 的 简单一元一次方程,可以通过交叉相 乘法消去分母,得到 $ax = b$,进一 步求解得到 $x = frac{b}{a}$。
复杂的一元一次方程
易于理解
去分母解方程的方法基于 等式的性质,易于理解和 掌握,不需要复杂的数学 技巧。
缺点
可能引入误差
可能产生增根或漏根
在去分母的过程中,如果操作不当, 可能会导致误差的产生,从而影响最 终结果的准确性。
在去分母解方程的过程中,如果操作Байду номын сангаас不当,可能会导致增根或漏根的情况, 需要额外检验和验证。
对初始条件敏感
02 去分母解方程的步骤
找公共分母
01
确定方程中各项的最小公倍数, 作为公共分母。
02
检查公共分母是否正确,确保所 有项都能被公共分母整除。
去分母
将方程中的每一项都乘以公共分母, 消除分母。
注意保持方程两边的平衡,避免出现 交叉相乘的情况。
化简方程
对去分母后的方程进行化简,合并同类项。 简化方程后,检查解是否符合原方程的定义域和值域,确保解的正确性。
解一元一次方程-去分母
解一元一次方程的步骤: 去分母 去括号 移项
合并同类项 系数化为1
例1.解方程 3x 1 2 3x 2 2x 3
2
10 5
解:去分母,得
5(3X+1)-10x2=(3X-2)-2(2X+3)
去括号,得15X+5-20=3X-2-4X-6
移项,得15X-3X+4X=-2-6-5+20
合并同类项,得
例1 解方程 3x-7(x-1)=3-2(x+3)
解: 去括号,得
3x-7x+7=3-2x-6
移项,得
3x-7x+2x=3-6-7
合并同类项,得 系数化为1,得
-2x = -10 x=5
2、去括号,移项,合并同类项,系数 为化1,要注意什么?
1.⑴括号前是“+”号,把括号和它前面的“+” 号去掉,括号里各项都不变符号。 ⑵括号前是“-”号,把括号和它前面的“-” 号去掉,括号里各项都改变符号 2.移项要变号. 3.系数化为1,要方程两边同时除以未知数前 面的系数。
·
张丽丽班上有40位同学,她想在生日时请客,因此到超
市花了17.5元买了果冻和巧克力共40个,若果冻每20个15元,
巧克力每30个10元,求她买了多少果冻?
分析:若设她买了X个果冻,则买了(40-X)个巧克力; 15
因为 20个果冻15元,则每个10 20 元,所以买果10冻40花 x
15 x 20
D:由
2 x 5 5
得 x 25
2
判断下面的解题过程是否正确
2. 解方程 2 x 2 x 3
5
2
解:去分母,得
2(2-x)=2-5(x+3)
去分母解一元一次方程练习题
去分母解一元一次方程练习题去分母解一元一次方程:要解决这些方程,我们需要先清除分母。
然后,我们可以将方程简化为一元一次方程,通过移项来求解。
1.0.2- x1-3x(2)-1.5=0.32.5x+4x+3x-2(1)-x+5=-236对于第一个方程,我们可以通过乘以分母的倒数来清除分母。
这个分母是 0.32.5x+4x+3x-2,所以我们将方程乘以它的倒数,即 2.5x+4x+3x-2/0.3.这样,我们得到:0.2- x1-3x(2)-1.5(2.5x+4x+3x-2/0.3)=0简化后,变成:0.2- 8x-1.5(2.5x+4x+3x-2)/0.3=0解方程可得:x=0.5对于第二个方程,我们可以通过乘以分母的倒数来清除分母。
这个分母是 236,所以我们将方程乘以它的倒数,即1/236.这样,我们得到:x+5=-1/236简化后,变成:x=5+1/236第一个方程:0.2- x1-3x(2)-1.5(2.5x+4x+3x-2/0.3)=0,化简后得到 x=0.5.第二个方程:-x+5=-1/236,化简后得到 x=5+1/236.3.1-3x-1/x+33y-25y-7/4=2-(4/4)对于这个方程,我们可以通过乘以分母的倒数来清除分母。
这个分母是 4(x+33y-25y-7),所以我们将方程乘以它的倒数,即 1/4(x+33y-25y-7)。
这样,我们得到:1-3x-1/x+33y-25y-7/4(x+33y-25y-7)=2-(4/4(x+33y-25y-7))简化后,变成:1-3x-1/x+33y-25y-7=2(x+33y-25y-7)-4解方程可得:x=-5/3这个方程:1-3x-1/x+33y-25y-7/4=2-(4/4),化简后得到 x=-5/3.4.7x-15x(3)/2+1/(2(3x+2))=2-3x/4对于这个方程,我们可以通过乘以分母的倒数来清除分母。
这个分母是 2(3x+2),所以我们将方程乘以它的倒数,即1/2(3x+2)。
去分母解方程练习题
去分母解方程练习题解一:分母有两个因式的有理方程步骤一:观察并分解方程的分母首先,我们解一种形式的有理方程,即分母含有两个因式的情况。
考虑以下方程:(2x + 3)/(x + 1) + 3/(x + 2) = 4观察分母,可以看到它们有两个因式 (x + 1) 和 (x + 2)。
我们知道,若两个数的积为零,那么其中至少有一个数为零。
因此,我们可以得到两个条件:x + 1 = 0 和 x + 2 = 0。
解方程 x + 1 = 0,我们得到 x = -1,解方程 x + 2 = 0,我们得到 x = -2。
因此,方程的解为 x = -1 和 x = -2。
步骤二:验算解是否符合原方程现在,我们需要验证这两个解是否满足原方程。
将 x = -1 代入方程(2x + 3)/(x + 1) + 3/(x + 2) = 4,得到:(2 * -1 + 3)/(-1 + 1) + 3/(-1 + 2) = 4-1 + 3/(-1) + 3 = 42 +3 + 3 = 48 = 4 (不符合)将 x = -2 代入方程 (2x + 3)/(x + 1) + 3/(x + 2) = 4,得到:(2 * -2 + 3)/(-2 + 1) + 3/(-2 + 2) = 4-4 + 3/(-1) + 3 = 4-1 + 3 + 3 = 45 = 4 (不符合)据此可见,方程没有解。
解二:分母互为倒数的有理方程下面,我们解决分母互为倒数的有理方程。
考虑以下方程:(2x)/(3x + 4) + (4x)/(8 - 3x) = 3观察分母,我们可以看到它们互为倒数。
我们可以利用此特性进行求解。
步骤一:找到倒数因式观察分母,我们可以得到等式 3x + 4 = 1/(8 - 3x)。
将 1/(8 - 3x) 乘以8 - 3x,得到 3x + 4 = 8 - 3x。
整理后得到方程 6x = 4,解为 x = 2/3。
步骤二:验算解是否符合原方程将 x = 2/3 代入原方程,得到:(2 * (2/3))/(3 * (2/3) + 4) + (4 * (2/3))/(8 - 3 * (2/3)) = 3(4/3)/(6/3 + 4) + (8/3)/(8 - 2) = 3(4/3)/(10/3) + (8/3)/(6) = 34/10 + 8/18 = 32/5 + 4/9 = 318/45 + 20/45 = 338/45 = 3因此,方程的解为 x = 2/3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解方程
3x 1 3
1
4x 1 6
解:去分母,得 23x114x1
去括号,得 6x 11 4x 1
移项,得 6x 4x 111
2x 1 即
x
1 2
例2:
3x+
x
-1 =3 -
2x -1
2
3
解下列方程:
(1) x 3 2 x x 52
(2)1
x 3
x51
1
这样的方程中有些系数是分数,如果能化去分母,把系数化为整数则 可以使解方程中,的计算更方便些。
想一想:去分母时 应注意什么问题?
x x 11 35
5x= 3( x +1 )+15
5x= 3x+3+15
5x–3x= 15+3 2x= 18 x9
去分母(方 程两边同乘 以各分母的 最小公倍数)
x 1 2
x 4
(3)
X-1 2
=
4x+2 -2(x-1) 5
(4) 3 4 x 2 5 x 1
7
3
(5)
3x+2 2
1
2x-1 4
2x1 5
(2) 12 x 1 18x1
4
6
x 3
(一)提出问题,尝试解决
一辆客车和一辆卡车同时从A地出发沿同一公路同方 向行驶,客车的行驶速度是70km/h,卡车的行驶速度 是60 km/h,客车比卡车早1 h经过B地.A,B两地间的路 程是多少?
3、体现了转化以及整体的思想方法
特别提示:求出解后养成检验的习惯
1.将方程
x2
x -1
两边乘
,得
3
2
2.将方程 3 x 1 x 1 两边乘 ,得
.
4
5
解方程
2y 1
5y2 3y1 1去分母时,正确的是(_D__)
3
6
4
( A )4(2 y 1) 2 5 y 2 3 y 1 12
去括号
移项
合并
系数化为1
例1: (1) 5x 1 3x 1 2 x
4
2
3
1 、解一元一次方程的步骤:
去分母 去括号
移项 合并同类项 系数化为1
2、去分母的注意事项: (1)确定各分母的最小公倍数
(2)不要漏乘没有分母的项
(3)分数线有括号作用,去掉分母后,若分子是一 个多项式,要加括号,视多项式为一个整体。
第三章:解一元一次方程——去分母
复习回顾
解下列方程 : 2-2(x-7)=x-(x-4)
1、已知关于x的方程3a-x=
x
2
+3的解为2,求
代数式(-a)2-2a+1的值.
2、当y取何值时,代数式2(3y+4)的值比5(2y-7) 的值大3?
1 3 y 1 1 7 y
3
6
(二)巩固训练,巩固方法
某中学组织团员到校外参加义务植树活动,一 部分团员骑自行车先走,速度为9km/h,40分钟 后其余团员乘汽车出发,速度为45km/h,结果他 们同时到达目的地,则目的地距学校多少?
一通讯员骑自行车把信送往某地,如果每小时行15km,就比预定 时间少用24分钟;如果每小时行12km,就比预定时间多用15分钟, 那么预定时间是多少小时?他去某地的路程是多少km?
(B )4(2 y 1) 2(5 y 2) 3(3 y 1) 1
(C )4(2 y 1) 2(5 y 2) 3(3 y 1) 12
( D )4(2 y 1) 2(5 y 2) 3(3 y 1) 12
下面方程的解法对吗?若不对请改正
去分母①求出分母的最小公倍数 ②把这个公倍数乘以方程左、右两边各项
问题:2010年暑期,某校初一年组织若干优秀学生参加“上海世博夏令营 “活动,带队的是一名王老师。王老师联系了一家旅馆,如果老师和学生 同住,只需5间(每间所住人数相同)。如果王老师一个人住,学生只需3 间,现在这样平均每间学生人数要比之前多1人。问一共有多少个学生参加 夏令营?
例4 解方程 1.5 x 1.5 x 0.5
0.6 2