气体及热力学定律复习
高考物理(命题热点提分)专题14 分子动理论 气体及热力学定律(2021年最新整理)
2017年高考物理(深化复习+命题热点提分)专题14 分子动理论气体及热力学定律编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年高考物理(深化复习+命题热点提分)专题14 分子动理论气体及热力学定律)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年高考物理(深化复习+命题热点提分)专题14 分子动理论气体及热力学定律的全部内容。
专题14 分子动理论气体及热力学定律1。
关于分子动理论和热力学定律,下列说法中正确的是()A.空气相对湿度越大时,水蒸发越快B。
物体的温度越高,分子平均动能越大C.第二类永动机不可能制成是因为它违反了热力学第一定律D。
两个分子间的距离由大于10-9m处逐渐减小到很难再靠近的过程中,分子间作用力先增大后减小到零,再增大E。
若一定量气体膨胀对外做功50J,内能增加80J,则气体一定从外界吸收130J的热量答案BDE2。
下列说法中正确的是( )A。
气体压强的大小和单位体积内的分子数及气体分子的平均动能都有关B。
布朗运动是液体分子的运动,说明液体分子永不停息地做无规则热运动C.热力学第二定律的开尔文表述:不可能从单一热库吸收热量,使之完全变成功,而不产生其他影响D。
水黾可以停在水面上是因为液体具有表面张力E。
温度升高,物体所有分子的动能都增大答案ACD解析气体压强的大小与单位体积内的分子数及气体分子的平均动能都有关。
故A正确;布朗运动指悬浮在液体中的固体颗粒所做的无规则运动,布朗运动反映的是液体分子的无规则运动,故B错误;热力学第二定律的开尔文表述:不可能从单一热库吸收热量,使之完全变成功,而不产生其他影响,C正确;因为液体表面张力的存在,水黾才能停在水面上,故D正确;温度是分子的平均动能的标志,温度升高,并不是物体所有分子的动能都增大,故E错误。
物理化学知识点总结(热力学第一定律)
热力学第一定律一、基本概念1.系统与环境敞开系统:与环境既有能量交换又有物质交换的系统。
封闭系统:与环境只有能量交换而无物质交换的系统。
(经典热力学主要研究的系统)孤立系统:不能以任何方式与环境发生相互作用的系统。
2.状态函数:用于宏观描述热力学系统的宏观参量,例如物质的量n、温度T、压强p、体积V等。
根据状态函数的特点,我们把状态函数分成:广度性质和强度性质两大类。
广度性质:广度性质的值与系统中所含物质的量成正比,如体积、质量、熵、热容等,这种性质的函数具有加和性,是数学函数中的一次函数,即物质的量扩大a倍,则相应的广度函数便扩大a倍。
强度性质:强度性质的值只与系统自身的特点有关,与物质的量无关,如温度,压力,密度,摩尔体积等。
注:状态函数仅取决于系统所处的平衡状态,而与此状态的历史过程无关,一旦系统的状态确定,其所有的状态函数便都有唯一确定的值。
二、热力学第一定律热力学第一定律的数学表达式:对于一个微小的变化状态为:dU=公式说明:dU表示微小过程的内能变化,而δQ和δW则分别为微小过程的热和功。
它们之所以采用不同的符号,是为了区别dU是全微分,而δQ和δW不是微分。
或者说dU与过程无关而δQ和δW却与过程有关。
这里的W既包括体积功也包括非体积功。
以上两个式子便是热力学第一定律的数学表达式。
它们只能适用在非敞开系统,因为敞开系统与环境可以交换物质,物质的进出和外出必然会伴随着能量的增减,我们说热和功是能量的两种传递形式,显然这种说法对于敞开系统没有意义。
三、体积功的计算1.如果系统与环境之间有界面,系统的体积变化时,便克服外力做功。
将一定量的气体装入一个带有理想活塞的容器中,活塞上部施加外压。
当气体膨胀微小体积为dV时,活塞便向上移动微小距离dl,此微小过程中气体克服外力所做的功等于作用在活塞上推力F与活塞上移距离dl的乘积因为我们假设活塞没有质量和摩擦,所以此活塞实际上只代表系统与环境之间可以自由移动的界面。
物理化学 热力学一定律、二定律复习
H nC p,m dT
T1
T2
H Qp
此式适用于W′=0、dp=0的封闭系统所进行的一切过程
理想气体恒温pVT 变化:
U 0
H 0
4. 化学反应热效应
由生成焓求反应焓 r H m B f H m B 由燃烧焓求反应焓 r H m B c H m B
2. 单纯pVT变化过程的熵变
V2 T2 S nR ln nCV ,m ln V1 T1 p1 T2 S nR ln nC p ,m ln p2 T1
将C p ,m、CV ,m看成定值
p2 V2 S nCV ,m ln nC p ,m R ln p1 V1
3. 相变化过程的熵变
U QV 适用于W ' 0, dV 0的封闭系统所进行的一切过程。
H U ( pV ),式中:( pV ) p2V2 pV1 1
此式适用于封闭系统的一切过程。
此式适用于n、Cp,m恒定的理想气体单纯pVT变化的一切过程; 或n、Cp,m恒定的任意单相纯物质的恒压变温过程。
熵判据
不可逆 自发 隔离系统:S 0 或 dS 0 可逆 平衡 自发 S隔离 S系统 S环境 0 平衡
V2 p1 nR ln 理想气体的恒温可逆和不可逆过程:T S nR ln V1 p2
纯物质的恒压变温可逆和不可逆过程: p S nC p ,m ln T2 T1 纯物质的恒容变温可逆和不可逆过程:V S nCV ,m ln T2 T1 理想气体pVT都变的可逆过程:
5. 理想气体的绝热可逆方程:
T2
T1
Cv ,m
高中 高考物理 气体和热力学定律
续表 玻意耳定律 查理定律 盖—吕萨克定律
适用 实际气体在压强不太大(相对于 1 标准气压)、 温度不太低(相 条件 对于常温)的情况遵守三个实验定律
4.理想气体的状态方程 (1)理想气体 ①宏观上讲, 理想气体是指在任何条件下始终遵守气体实验定律 的气体。实际气体在压强 不太大、温度 不太低 的条件下,可视为理 想气体。
(3)压强(p) ①定义:作用在器壁单位面积上的压力叫做气体压强。 ②产生原因: 由于大量气体分子无规则的运动而频繁碰撞 器壁,形成对器壁各处均匀、持续的压力。 ③决定气体压强大小的因素 宏观:决定于气体的 温度 和 体积 。 微观:决定于分子的 平均动能 和分子的 密集程度 (单位 体积内的分子数)。
解析:开始时由于活塞处于静止,由平衡条件可得 mg p0S+mg=p1S,则 p1=p0+ S 当气缸刚提离地面时气缸处于静止,气缸与地面间无 作用力,因此由平衡条件可得 p2S+Mg=p0S Mg 则 p2=p0- S 。 mg 答案:p0+ S Mg p0- S
2.[考查液柱封闭的气体压强]若已知大气压强 为 p0,在图中各装置均处于静止状态,图中液体密 度均为 ρ,求被封闭气体的压强。
解析:在图甲中,以高为 h 的液柱 为研究对象,由二力平衡知 p 气 S=-ρghS+p0S 所以 p 气=p0-ρgh
在图乙中,以 B 液面为研究对象,由平衡方程 F 上=F 下 有:p 气 S+ρghS=p0S p 气=p0-ρgh 在图丙中,以 B 液面为研究对象,有 3 p 气+ρghsin 60° =pB=p0,所以 p 气=p0- ρgh 2 在图丁中,以液面 A 为研究对象,由二力平衡得 p 气 S=(p0+ρgh1)S,所以 p 气=p0+ρgh1。 答案:甲:p0-ρgh 乙:p0-ρgh 3 丙:p0- ρgh 2 丁:p0+ρgh1
2022届高考物理二轮复习:专题12分子动理论、气体及热力学定律
2022届高考物理二轮复习专题12分子动理论、气体及热力学定律基础篇一、单选题,共10小题1.(2022·山东·模拟预测)如图甲,竖直放置导热性能良好的密闭矩形容器中,一活塞上下各封闭一定质量的理想气体A和B,它们的温度相同,活塞重力不可忽略并可在密闭容器中无摩擦滑动,此时活塞处于静止状态,理想气体A和B在体积不变下的-图像如图乙所示,则以下说法正确的是()p T-图像A.图乙中图线Ⅰ表示在体积不变下的理想气体A的p TB.封闭的理想气体A的体积一定大于理想气体B的体积C.若环境温度升高,活塞一定向上移动D.若环境温度升高,理想气体B一定释放热量2.(2022·重庆·模拟预测)下列说法正确的是()A.两个邻近的分子之间的作用力变大时,分子间距一定减小B.水蒸气的实际压强越大,空气的相对湿度就越大C.制作晶体管、集成电路只能用单晶体,不能用多晶体D.由于可以从单一热源吸收热量全部用来做功,所以热机效率可以达到100% 3.(2022·北京·一模)1827年,英国植物学家布朗首先在显微镜下研究了悬浮在液体中的小颗粒的运动。
某同学做了一个类似的实验,用显微镜观察炭粒的运动得到某个观测记录如图。
图中记录的是()A .某个分子无规则运动的情况B .某个微粒做布朗运动的轨迹C .某个微粒做布朗运动的速度—时间图线D .按相等时间间隔依次记录的某个运动微粒位置的连线4.(2022·河北·石家庄二中实验学校高二阶段练习)如图所示,一定量的理想气体从状态A 开始,经历两个过程,先后到达状态B 和C 。
有关A 、B 和C 三个状态温度A B T T 、和C T 的关系,正确的是( )A .AB BC T T T T ==,B .A B BC T T T T <<, C .A C B C T T T T =>,D .A C B C T T T T =<,5.(2022·全国·高三专题练习)分子力F 随分子间距离r 的变化如图所示。
1-3热力学定律复习
•化学热力学的理论基础是热力学第一定律和热力学第二定律.
•在气液固三种聚集状态中, 气体最容易用分子模型进行研究. 一,气体的pVT关系
理想气体 理想气体状态方程: pV = nRT 真实气体 范德华方程 二,热力学第一定律 • 热力学第一定律本质是能量守恒. U = Q + W • 基本概念和术语
数据包括标准热容、标准相变焓、标准生成焓和标准燃烧焓 等.
8
二 热力学第一定律--系统与环境,过程与途径
系统
所研究的 物质对象
敞开系统 封闭系统 隔离系统
物质进出 能量得失
√
√
√
系统的宏观性质: • 广延性质 n, V, U, H, S, G, A, …, 有空间上的加和性.
• 强度性质 T, p, Vm , Um , , …, 无空间上的加和性.
理想气体:在任何温度/ 压力下均服从理想气体状态方程的气体. 两个特征: (1)分子本身必定不占有体积; (2)分子间无相互作用.
3
一 气体的 p V T 关系—理想气体
分压力pB: 无论是理想气体还是真实气体, 混合气中任一组分B的 摩尔分数yB与总压力p 的乘积定义为该组分的分压力:
pB = yB p
功的符号: 系统得功, W > 0 ;系统作功, W <0 .
体积功的一般计算式:
W
V2 V1
pambdV
热(Q): 因系统与环境间未达到热平衡而传递的能量. 热的符号: 系统吸热, Q > 0 ;系统放热, Q < 0. 热的类型: 物质变温过程的热; 相变热; 化学反应热等.
• 故功和热不是系统性质, 不是状态函数!
【复习题】热力学第一定律复习题1310
【关键字】复习题第二章热力学第一定律1. 当理想气体冲入一真空绝热容器后,其温度将(a) 升高(b) 降低(c) 不变(d) 难以确定(答案) c (△U=Q+W, ∵p外=0 , ∴W=0 ,又∵绝热,∴Q=0,所以△U=0)因为是真空故不做功,又因为是绝热故无热交换,故△U=0。
温度不变。
2. 当热力学第一定律写成dU = δQ – pdV时,它适用于(a). 理想气体的可逆过程(b). 封闭体系的任一过程(c). 封闭体系只做体积功过程(d). 封闭体系的定压过程(答案) c (W=W体+W非,当W非=0时,W体= -pdV)3.对热力学可逆过程,下列说法中正确的是(a) 过程进行的速度无限慢(b) 没有功的损失(c) 系统和环境可同时复原(d) 不需环境做功(答案)c可逆过程:体系经过某一过程从状态(1)变到状态(2)之后,如果能够使体系和环境都恢复到原来的状态而未留下任何永久性的变化,则该过程称为热力学可逆过程。
否则为不可逆过程特征:①状态变化时推动力与阻力相差无限小,体系与环境始终无限接近于平衡态;②过程中的任何一个中间态都可以从正、逆两个方向到达;③体系变化一个循环后,体系和环境均恢复原态,变化过程中无任何耗散效应;④等温可逆过程中,体系对环境作最大功,环境对体系作最小功。
⑤在可逆过程中,由于状态变化时推动力与阻力相差无限小,所以完成过程所需的时间为无限长。
4.对于封闭体系来说,当过程的始态与终态确定后,下列各项中哪一个无确定值(a) Q (b) Q + W(c) W (当Q = 0时) (d) Q (当W = 0时)(答案) a (△U=Q+W)5.对于孤立体系中发生的实际过程,下列关系中不正确的是(a) W = 0 (b) Q = 0(c) ΔU= 0 (d) ΔH = 0(答案) d (孤立体系?△U=Q+W)6.对于内能是体系状态的单值函数概念,错误理解是(a) 体系处于一定的状态,具有一定的内能(b) 对应于某一状态,内能只能有一数值不能有两个以上的数值(c) 状态发生变化,内能也一定跟着变化(d) 对应于一个内能值,可以有多个状态(答案) c (理想气体等温过程,△U,即内能不变;绝热可逆过程△S=0)7.凡是在孤立体系中进行的变化,其ΔU和ΔH的值一定是(a) ΔU > 0 , ΔH > 0 (b) ΔU = 0 , ΔH = 0(c) ΔU < 0 , ΔH < 0(d) ΔU = 0 , ΔH大于、小于或等于零谬误定(答案) d8. 封闭体系从A 态变为B 态,可以沿两条等温途径:甲)可逆途径;乙)不可逆途径,则下列关系式⑴ ΔU 可逆> ΔU 不可逆 ⑵ W 可逆 > W 不可逆⑶ Q 可逆 Q 不可逆 ⑷ ( Q 可逆 - W 可逆) > ( Q 不可逆 - W 不可逆)正确的是(a) (1),(2) (b) (2),(3) (c) (3),(4) (d) (1),(4)(答案) b (④等温可逆过程中,体系对环境作最大功,环境对体系作最小功。
大学物理气体动理论热力学基础复习题及答案详解
第12章 气体动理论一、填空题:1、一打足气的自行车内胎,若在7℃时轮胎中空气压强为×510pa .则在温度变为37℃,轮胎内空气的压强是 ;设内胎容积不变2、在湖面下50.0m 深处温度为4.0℃,有一个体积为531.010m -⨯的空气泡升到水面上来,若湖面的温度为17.0℃,则气泡到达湖面的体积是 ;取大气压强为50 1.01310p pa =⨯3、一容器内储有氧气,其压强为50 1.0110p pa =⨯,温度为27.0℃,则气体分子的数密度为 ;氧气的密度为 ;分子的平均平动动能为 ;分子间的平均距离为 ;设分子均匀等距排列4、星际空间温度可达,则氢分子的平均速率为 ,方均根速率为 ,最概然速率为 ;5、在压强为51.0110pa ⨯下,氮气分子的平均自由程为66.010cm -⨯,当温度不变时,压强为 ,则其平均自由程为1.0mm;6、若氖气分子的有效直径为82.5910cm -⨯,则在温度为600k,压强为21.3310pa ⨯时,氖分子1s 内的平均碰撞次数为 ;7、如图12-1所示两条曲线1和2,分别定性的表示一定量的某种理想气体不同温度下的速率分布曲线,对应温度高的曲线 是 .若图中两条曲线定性的表示相同温度下的氢气和氧气的速率分布曲线,则表示氧气速率分布曲线的是 .8、试说明下列各量的物理物理意义: 112kT , 232kT , 32i kT , 42i RT , 532RT , 62M i RT Mmol ; 参考答案:1、54.4310pa ⨯ 2、536.1110m -⨯ 3、25332192.4410 1.30 6.2110 3.4510m kg m J m ----⨯⋅⨯⨯ 4、2121121.6910 1.8310 1.5010m sm s m s ---⨯⋅⨯⋅⨯⋅ 图12-15、6.06pa6、613.8110s -⨯ 7、2 ,28、略二、选择题:教材习题12-1,12-2,12-3,12-4. 见课本p207~208参考答案:12-1~12-4 C, C, B, B. 第十三章热力学基础一、选择题1、有两个相同的容器,容积不变,一个盛有氦气,另一个盛有氢气均可看成刚性分子它们的压强和温度都相等,现将 5 J 的热量传给氢气,使氢气温度升高,如果使氦气也升高同样的温度,则应向氦气传递的热量是A 6 JB 5 JC 3 JD 2 J2、一定量理想气体,经历某过程后,它的温度升高了,则根据热力学定理可以断定:1该理想气体系统在此过程中作了功;2在此过程中外界对该理想气体系统作了正功;3该理想气体系统的内能增加了;4在此过程中理想气体系统既从外界吸了热,又对外作了正功;以上正确的是:A 1,3B 2,3C 3D 3,43、摩尔数相等的三种理想气体H e 、N 2和CO 2,若从同一初态,经等压加热,且在加热过程中三种气体吸收的热量相等,则体积增量最大的气体是:AH e BN 2CCO 2 D 三种气体的体积增量相同4、如图所示,一定量理想气体从体积为V 1膨胀到V 2,AB,AC为等温过程AD 为绝热过程;则吸热最多的是: A AB 过程 B AC 过程 C AD 过程 D 不能确定 5、卡诺热机的循环曲线所包围的面积从图中abcda 增大为ab’c’da ,那么循环abcda 与ab’c’da 所作的净功和热机效率的变化情况是:A 净功增大,效率提高;B 净功增大,效率降低;C 净功和效率都不变;D 净功增大,效率不变;6、根据热力学第二定律判断下列哪种说法是正确的是:A 热量能从高温物体传到低温物体,但不能从低温物体传到高温物体;B 功可以全部变为热,但热不能全部变为功;C 气体能够自由膨胀,但不能自由压缩;D 有规则运动的能量能够变为无规则运动的能量,但无规则运动的能量不能够变为有规则运动的能量;7、 理想气体向真空作绝热膨胀A 膨胀后,温度不变,压强减小.VB 膨胀后,温度降低,压强减小.C 膨胀后,温度升高,压强减小.D 膨胀后,温度不变,压强不变.8、1mol 的单原子分子理想气体从状态A 变为状态B ,如果不知是什么气体,变化过程也不知道,但A 、B两态的压强、体积和温度都知道,则可求出:A 气体所作的功.B 气体内能的变化.C 气体传给外界的热量.D 气体的质量.9、 有人设计一台卡诺热机可逆的.每循环一次可从 400 K 的高温热源吸热1800 J,向 300 K 的低温热源放热 800 J .同时对外作功1000 J,这样的设计是A 可以的,符合热力学第一定律.B 可以的,符合热力学第二定律.C 不行的,卡诺循环所作的功不能大于向低温热源放出的热量.D 不行的,这个热机的效率超过理论值.10、 一绝热容器被隔板分成两半,一半是真空,另一半是理想气体.若把隔板抽出,气体将进行自由膨胀,达到平衡后A 温度不变,熵增加.B 温度升高,熵增加.C 温度降低,熵增加.D 温度不变,熵不变.二、 填充题1、要使一热力学系统的内能变化,可以通过 或 两种方式,或者两种方式兼用来完成;热力学系统的状态发生变化时,其内能的改变量只决定于 ,而与 无关;2、将热量Q 传给一定质量的理想气体;1若体积不变,热量转化为 ;2若温度不变,热量转化为 ;3、卡诺循环是由两个 过程和两个 过程组成的循环过程;卡诺循环的效率只与 有关,卡诺循环的效率总是 大于、小于、等于1;4、一定量理想气体沿a →b →c 变化时作功abc W =615J,气体在b 、c 两状态的内能差J E E c b 500=-;那么气体循环一周,所作净功=WJ ,向外界放热为=Q J ,等温过程中气体作功=ab WJ ;5、常温常压下,一定量的某种理想气体可视为刚性双原子分子,在等压过程中吸热为Q,对外作功为W,内能增加为E ∆,则W Q =_ _,E Q∆=_________; 6、p V -图上封闭曲线所包围的面积表示 物理量,若循环过程为逆时针方向,则该物理量为 ;填正或负7、一卡诺热机低温热源的温度为27C,效率为40% ,高温热源的温度T 1 = .8、设一台电冰箱的工作循环为卡诺循环,在夏天工作,环境温度在35C,冰箱内的温度为0C,这台电冰箱的理想制冷系数为e = .9、一循环过程如图所示,该气体在循环过程中吸热和放热的情ab coVT况是a →b 过程 ,b →c 过程 ,c →a 过程 ;10、将1kg 温度为010C 的水置于020C 的恒温热源内,最后水的温度与热源的温度相同,则水的熵变为 ,热源的熵变为 ;水的比热容为34.1810ln1.03530.035J kg K ⨯⋅=,参考答案:一、1、C 2、C 3、A 4、A 5、D6、C7、A8、B9、D 10、A二、1、作功,传热,始末状态,过程 2、理想气体的内能,对外作功 3、绝热,等温, 4、115J ,500J ,615J 5、27,576、功,负7、 500K8、9、吸热,放热,吸热 10、11146.3,142.7J K J K --⋅-⋅自测题5一、选择题1、一定量某理想气体按2pV =恒量的规律膨胀,则膨胀后理想气体的温度 A 将升高 B 将降低 C 不变 D 不能确定;2、若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻尔兹曼常量,R 为摩尔气体常量,则该理想气体的分子数为 A pV m B ()pV kT C ()pV RT D ()pV mT3、如题5.1.1图所示,两个大小不同的容器用均匀的细管相连,管中有一水银作活塞,大容器装有氧气,小容器装有氢气,当温度相同时,水银滴静止于细管中央,试问此时这两种气体的密度哪个大 A 氧气的密度大; B 氢气的密度大; C 密度一样大; D 无法判断;4、若室内生起炉子后温度从015C 升高到027C ,而室内气压不变,则此时室内的分子数减少了A 0.5%B 4%C 9%D 21%5、一定量的理想气体,在容积不变的条件下,当温度升高时,分子的平均碰撞次数Z 和平均自由程λ的变化情况是 A Z 增大,λ不变; B Z 不变,λ增大; C Z 和λ都增大; D Z 和λ都不变;6、一定量的理想气体,从a 态出发经过①或②过程到达b 态,acb 为等温线如题5.1.2图所示,则①,②两过程中外界对系统传递的热量12,Q Q 是A 120,0Q Q >> B 120,0Q Q << C 120,0Q Q >< D 120,0Q Q <>7、如题5.1.3图,一定量的理想气体经历acb 过程时吸热200J ;则经历acbda 过程时,吸热为 A 1200J - B 1000J - C 700J - D 1000J8、一定量的理想气体,分别进行如题5.1.4图所示的两个卡诺循环abcda 和a b c d a ''''';若在P V -图上这两个循环曲线所围面积相等,则可以由此得知这两个循环 A 效率相等; B 由高温热源处吸收的热量相等;C 在低温热源处放出的热量相等;D 在每次循环中对外做的净功相等;9、“理想气体和单一热源接触作等温膨胀时,吸收的热量全部用来对外做功;”对此说法,有如下几种评论,哪种是正确的A 不违反热力学第一定律,但违反热力学第二定律;B 不违反热力学第二定律,但违反热力学第一定律;C 不违反热力学第一定律,也不违反热力学第二定律;D 违反热力学第一定律,也违反热力学第二定律;10、一定量的理想气体向真空作绝热自由膨胀,体积由1V 增至2V ,在此过程中气体的A 内能不变,熵增加;B 内能不变,熵减少;C 内能不变,熵不变;D 内能增加,熵增加;二、填空题:1、在推导理想气体压强公式中,体现统计意义的两条假设是1 ;2 ;2、在定压下加热一定量的理想气体;若使其温度升高1K 时,它的体积增加了倍,则气体原来的温度是 ;3、在相同的温度和压强下,各为单位体积的氢气视为刚性双原子分子气体与氦气的内能之比为 ;4、分子物理学是研究 的学科,它应用的基本方法是 方法;①②题5.1.2图 1 41 4 题5.1.3图o 题5.1.4图5、解释名词:自由度 ;准静态过程 ;6、用总分子数N ,气体分子速率v 和速率分布函数()f v 表示下列各量:1速率大于0v 的分子数= ;2速率大于0v 的那些分子的平均速率= ;3多次观察某一分子的速率,发现其速率大于0v 的概率= ;7、常温常压下,一定量的某种理想气体可视为刚性分子、自由度为i ,在等压过程中吸热为Q ,对外做功为A ,内能增加为E ∆,则A Q = ;8、有一卡诺热机,用29kg 空气为工作物质,工作在027C 的高温热源与073C -的低温热源之间,此热机的效率η= ;若在等温膨胀过程中气缸体积增大倍,则此热机每一循环所做的功为 ;空气的摩尔质量为312910kg mol--⨯⋅ 自测题5参考答案一、选择题1、B2、B3、A4、B5、A6、A7、B8、D9、C 10、A二、填空题1、1沿空间各方向运动的分子数目相等; 2222x y z v v v ==;2、200K3、53;1034、物质热现象和热运动规律; 统计;5、确定一个物体在空间的位置所需要的独立坐标的数目;系统所经历的所有中间状态都无限接近于平衡状态的过程;6、0000()()/()()v v v v Nf v dv vf v dv f v dv f v dv ∝∝∝∝⎰⎰⎰⎰ 7、2;22i i i ++ 8、533.3%;8.3110J ⨯;另外添加的题目:一、选择题:1、双原子理想气体,做等压膨胀,若气体膨胀过程从热源吸收热量J 700,则该气体对外做功为 DA J 350B J 300C J 250D J 2002、在V P -图图1中,mol 1理想气体从状态A 沿直线到达B ,B A V V =2,则此过程系统的功能和内能变化的情况为 CA 0,0>∆>E AB 0,0<∆<E AC 0,0=∆>E AD 0,0>∆<E A3、某理想气体分别经历如图2所示的两个卡诺循环:)(abcd I 和)(d c b a ''''I I ,且两条循环曲线所围面积相等;设循环I 的效率为η,每次循环在高温热源处吸收的热量为Q ,循环II 的效率为η',每次循环在高温Q ',则BA Q Q '<'<,ηη;B Q Q '>'<,ηη;C Q Q '<'>,ηη;D Q Q '>'>,ηη4、一热机在两热源12400,300T K T K ==之间工作,一循环过程吸收1800J ,放热800J ,作功1000J ,此循环可能实现吗 BA 可能;B 不可能;C 无法判断;5、有两个相同的容器,容积不变,一个盛有氦气,另一个盛有氢气均可看成刚性分子它们的压强和温度都相等,现将5J 的热量传给氢气,使氢气温度升高,如果使氦气也升高相同的温度,则应向氦气传递的热量是CA 6JB 5JC 3JD 2J6、一定量理想气体,经历某过程后,它的温度升高了,则根据热力学定理可以断定:1该理想气体系统在此过程中作了功;2在此过程中外界对该理想气体系统作了功;3该理想气体系统的内能增加了;4在此过程中理想气体系统既从外界吸了热,又对外作了正功;以上正确的是 CA 1,3B 2,3C 3 D3,4 E47、对于理想气体系统来说,在下列过程中,哪个过程系统所吸收的热量、内能的增量和对外作的功三者均为负值: DA 等容降压过程B 等温膨胀过程C 绝热膨胀过程D 等压压缩过程8、对于室温下的双原子分子理想气体,在等压膨胀的情况下,系统对外所作的功与从外界吸收的热量之比/A Q 等于: DA 1/3B 1/4C 2/5D 2/79、摩尔数相等的三种理想气体e H 、2N 和2CO ,若从同一初态,经等压加热,且在加热过程中三种气体吸收的热量相等,则体积增量最大的气体是: AA e HB 2NC 2COD 三种气体的体积增量相同10、如图所示,一定量理想气体从体积为1V 膨胀到2V ,AB 为等压过程,AC 为等温过程,AD 为绝热过程,则吸热最多的是:AA AB 过程 B AC 过程 C AD 过程 D 不能确定11、根据热力学第二定律判断下列哪种说法是正确的是:CA 热量能从高温物体传到低温物体,但不能从低温物体传到高温物体;B 功可以全部变为热,但热不能全部变为功;C 气体能够自由膨胀,但不能自由压缩;D 有规则运动的能量能够变为无规则运动的能量,但无规则运动的能量不能够变为有规则运动的能量;12、汽缸内盛有一定的理想气体,当温度不变,压强增大一倍时,该分子的平均碰撞频率和平均自由程的变化情况是:C A Z 和λ都增大一倍; B Z 和λ都减为原来的一半; C Z 增大一倍而λ减为原来的一半;D Z 减为原来的一半而λ增大一倍;13、在恒定不变的压强下,气体分子的平均碰撞频率Z 与气体的热力学温度T 的关系为CA Z 与T 无关;B Z 与T 成正比;C Z 与T 成反比;D Z 与T 成正比;14、一瓶氦气和一瓶氮气密度相同,分子平均平动动能相同,而且都处于平衡状态,则它们: CA 温度相同、压强相同;B 温度、压强相同;C 温度相同,但氦气的压强大于氮气的压强;D 温度相同,但氦气的压强小于氮气的压强;15、已知氢气与氧气的温度相同,请判断下列说法哪个正确A 氧分子的质量比氢分子大,所以氧气的压强一定大于氢气的压强;B 氧分子的质量比氢分子大,所以氧气密度一定大于氢气的密度;C 氧分子的质量比氢分子大,所以氢分子的速率一定比氧分子的速率大;D 氧分子的质量比氢分子大,所以氢分子的方均根速率一定比氧分子的方均根速率大;16、按2PV =恒量规律膨胀的理想气体,膨胀后的温度为: CA 升高;B 不变;C 降低;D 无法确定17、下列各式中哪一种式表示气体分子的平均平动动能式中M 为气体的质量,m 为气体分子的质量,N 为气体分子总数目,n 为气体分子密度,0N 为阿伏加德罗常数,mol M 为摩尔质量;A 32m PV M ;B 32mol M PV M ;C 32nPV ;D 032mol M N PV M18、一定量的理想气体可以:DA 保持压强和温度不变同时减小体积;B 保持体积和温度不变同时增大压强;C 保持体积不变同时增大压强降低温度;D 保持温度不变同时增大体积降低压强;19、设某理想气体体积为V ,压强为P ,温度为T ,每个分子的质量为μ,玻尔兹曼常数为k ,则该气体的分子总数可以表示为:C A PV k μ B PT V μ C PV kT D PT kV19、关于温度的意义,有下列几种说法:1气体的温度是分子平均平动动能的量度;2气体的温度是大量气体分子热运动的集体表现,具有统计意义;3温度的高低反映物质内部分子运动剧烈程度的不同;4从微观上看,气体的温度表示每个气体分子的冷热程度;上述说法中正确的是:BA1,2,4 B1,2,3 C2,3,4 D1,3,420、设某种气体的分子速率分布函数为()f v ,则速率在12v v →区间内的分子平均速率为:CA 21()v v vf v dv ⎰B 21()v v v vf v dv ⎰ C 2121()()v v v v vf v dv f v dv ⎰⎰ D 210()()v v vf v dv f v dv∝⎰⎰ 21、两容积不等的容器内分别盛有可视为理想气体的氦气和氮气,如果它们温度和压强相同,则两气体:CA 单位体积内的分子数必相同;B 单位体积内的质量必相同;C 单位体积内分子的平均动能必相同:D 单位体积内气体的内能必相同;22、在标准状态下,体积比为1:2的氧气和氦气均视为理想气体相混合,混合气体中氧气和氦气的内能之比为:CA 1:2B 5:3C 5:6D 10:3填空题:1、要使一热力学系统的内能增加,可以通过传热或作功两种方式,或者两种方式兼用来完成;热力学系统的状态发生变化时,其内能的改变量只决定于初末状态,而与过程无关;2、16g 氧气在400K 温度下等温压缩,气体放出的热量为1152J ,则被压缩后的气体的体积为原体积的12倍,而压强为原来压强的2倍;3、一热机从温度为727o C 的高温热源吸热,向温度为527oC 的低温热量放热,若热机在最大效率下工作,且每一循环吸热2000J ,则此热机每一循环作功为400J ;4、一卡诺热机在每次循环中都要从温度为400K 的高温热源吸热418J ,向低温热源放热334.4J ,低温热源的温度为320K ;5、汽缸内有单原子理想气体,若绝热压缩使体积减半,问气体分子的平均速率变为原来速率的 倍若为双原子理想气体又为 倍6、下面给出理想气体状态方程的几种微分形式,指出它们各表示什么过程; 1()mol PdV M M RdT =表示等压过程; 2()mol VdP M M RdT =表示等容或者等体过程;30PdV VdP +=表示等温过程;7、容积为10升的容器中储有10克的氧气;1600m s -=⋅,则此气体的温度T =462K ;压强P = 51.210⨯ Pa ;8、在室温27o C 下,1mol 氢气和1mol 氧气的内能比为1:1;1g 氢气和1g 氧气的内能比为16:19、理想气体的内能是温度的单值函数; 2i kT 表示分子的平均动能; 2i RT 表示1mol 气体分子的内能 2m i RT M 表示m 千克气体分子的内能 10、氮气在标准状态下的分子平均碰撞次数为311.310s -⨯,分子平均自由程为6610cm -⨯,若温度不变,气压降为0.1atm ,则分子平均碰撞次数变为211.310s -⨯;分子平均自由程变为5610cm -⨯。
大学物理复习7-9 温度 气体动理论 热力学第一定律
平衡态——
在不受外界影响条件下, 在不受外界影响条件下,系统的宏观性质不随时间 宏观性质:体积、压强、温度、 变化的状态 称为 平衡态 。(宏观性质:体积、压强、温度、内能)
不受外界影响: 外界对系统既不做功,又不传热。 不受外界影响: 外界对系统既不做功,又不传热。 平衡态: 平衡态: 理想概念 ,动态平衡 ( 宏观性质不变 ,但微观粒子不断运动 )。
理想气体的热力学能
1.定义 气体的热力学能是指它所包含的所有分子的 气体的热力学能是指它所包含的所有分子的 热力学能 动能和分子间因相互作用而具有的势能的总和. 动能和分子间因相互作用而具有的势能的总和. 2.理想气体的热力学能 对于理想气体, 对于理想气体,由于分子间的相互作用力可 以忽略不计,所以,其热力学能就是它的所有分 以忽略不计,所以,其热力学能就是它的所有分 子的动能之和. 子的动能之和. 设某种气体分子的自由度为 i ,则一个分子 i 的平均动能为 kT 2
理想气体温标: 理想气体温标:
玻意耳定律:一定质量的气体,在一定温度下,其压强 P 和 玻意耳定律:一定质量的气体,在一定温度下, 的乘积是一个常数。 体积 V 的乘积是一个常数。
pV = C (常数)
(温度不变) 温度不变)
对不同的温度, 这一常量数值不同。各种气体都近似遵守这一定律, 对不同的温度, 这一常量数值不同。各种气体都近似遵守这一定律, 并且压强越小,符合得越好。 并且压强越小,符合得越好。
已知 p1=8.5×104Pa , p2=4.2×106Pa, T1=273K+47K=320K × ×
pV p2V 1 1 2 = T T 1 2
V 1 2 , = V 17 1`
pV T ∴ 2 = 2 2 T = 930K pV 1 1 1
2021高三物理复习专题练专题92气体状态变化和热力学定律含解析
2021高三物理人教版一轮复习专题练:专题92气体状态变化和热力学定律含解析专题92气体状态变化和热力学定律1.[2020·江南十校联考](多选)对分子动理论的认识,下列说法正确的有()A.布朗运动就是液体分子的无规则热运动B.摩尔数相同且视为理想气体的氧气和氦气,如果升高相同的温度,内能增加量相同C.当一个物体加速运动时,其内能不一定增加D.随着高科技的发展,第二类永动机可能被发明,因为这不违背能的转化及守恒定律E.当两个分子间的分子力减小时,分子势能可能减少也可能增加2.[2020·唐山模拟](多选)缸内封闭着一定质量的理想气体,以下说法正确的是()A.外界向气体发生热传递,气体的内能一定增加B.不可能把热从低温气体传到高温气体而不产生其他影响C.如果保持气体温度不变,当压强增大时,气体的密度一定增大D.若气体体积不变,温度升高,单位时间内撞击单位面积器壁的气体分子数增多E.该气缸做加速运动时,气缸内气体温度一定升高3.[2020·绵阳月考](多选)关于热力学知识,下列说法正确的是()A.无论用什么方式都不可能使热量从低温物体向高温物体传递B.一定质量的理想气体做绝热膨胀,则气体的内能减少C.温度降低,物体内所有分子运动速率一定减小D.扩散现象是分子热运动的表现E.气体对容器的压强是由大量分子对容器不断碰撞而产生的4.[2020·江西重点中学摸底](多选)下列有关自然现象说法正确的是()A.荷叶上的露珠几乎呈球形是由于表面张力的作用B.温度相同的氢气和氧气,它们分子的平均速率不同C.空气泡从恒温水中升起,应该放出热量D.空调制冷说明热量可以自发地由低温物体传向高温物体E.由同种元素构成的固体,可能会由于原子的排列方式不同而成为不同的晶体5.[2020·石家庄质检](多选)下列说法正确的是()A.第二类永动机违反了热力学第二定律,但不违反能量守恒定律B.被踩扁的乒乓球(表面没有开裂)放在热水里浸泡,恢复原状的过程中,球内气体对外做正功的同时会从外界吸收热量C.由于液体表面分子间距离小于液体内部分子间的距离,液面分子间表现为引力,所以液体表面具有收缩的趋势D.两个分子间分子势能减小的过程中,两分子间的相互作用力可能减小E.布朗运动是指在显微镜下观察到的组成悬浮颗粒的固体分子的无规则运动6.[2020·深圳市调研](多选)下列说法中正确的是()A.液晶具有流动性,其光学性质表现为各向异性B.太空舱中的液滴呈球状是由于完全失重情况下液体表面张力的作用C.用打气筒的活塞压缩气体很费力,说明分子间有斥力D.第二类永动机是不可能制造出来的,因为它违反了能量守恒定律E.在合适的条件下,某些晶体可以转变为非晶体,某些非晶体也可以转变为晶体7.[2020·武汉市调研](多选)关于热现象,下列说法正确的是()A.在“用油膜法估测分子的大小”的实验中,油酸分子的直径(也就是单层油酸分子组成的油膜的厚度)等于一小滴溶液中纯油酸的体积与它在水面上摊开的面积之比B.两个邻近的分子之间同时存在着引力和斥力,它们都随距离的增大而减小,当两个分子的距离为r0时,引力与斥力大小相等,分子势能最小C.物质是晶体还是非晶体,比较可靠的方法是从各向异性或各向同性来判断D.如果用Q表示物体吸收的能量,用W表示物体对外界所做的功,ΔU表示物体内能的增加,那么热力学第一定律可以表达为Q=ΔU+WE.如果没有漏气、没有摩擦,也没有机体热量的损失,这样的热机的效率可以达到100%8.[2020·大连测试](多选)下面说法中正确的是()A.悬浮在液体中的颗粒越大,受周围液体分子撞击的机会越多,布朗运动越明显B.热量、功和内能三者的单位相同,所以它们的物理意义也相同C.封闭系统中,气体的扩散运动总是沿着分子热运动的无序性增大的方向进行D.电冰箱工作时既不违反热力学第一定律,也不违反热力学第二定律E.水的饱和汽压会随温度的升高而增大9.[情境创新](多选)如图所示,一演示用的“永动机”转轮由5根轻杆和转轴构成,轻杆的末端装有用形状记忆合金制成的叶片,轻推转轮后,进入热水的叶片因伸展面“划水",推动转轮转动.离开热水后,叶片形状迅速恢复,转轮因此能较长时间转动.下列说法正确的是()A.转轮依靠自身惯性转动,不需要消耗外界能量B.转轮转动所需能量来自形状记忆合金从热水中吸收的热量C.转动的叶片不断搅动热水,水温升高D.叶片在热水中吸收的热量一定大于在空气中释放的热量E.叶片在热水中吸收的热量一定大于水和转轮获得的动能10.(多选)如图,一定质量的理想气体从状态a开始,经历过程①、②、③、④到达状态e。
热力学第一第二定律复习
热力学第二定律 一、重要概念 卡诺循环,热机效率,热力学第二定律,克劳修斯不等式 熵,规定熵,标准熵,标准摩尔反应熵,亥姆霍兹函数 ,吉布斯函数 二、主要公式与定义式 1. 可逆热机效率:η = -W / Q1 =(Q1+Q2)/ Q1 = 1 - T2 / T1 (T2 , T1 分别为低温,高温热源) 2.卡诺定理:任何循环的热温熵小于或等于0
(3) 对于凝聚相,状态函数通常近似认为只与温度有关, 而与压力或体积无关,即 d U≈d H= n Cp,m d T
(5) 相变过程 可逆相变:在温度T对应的饱和蒸气压下的相变,如水 在常压下的0℃ 结冰或冰溶解,100 ℃ 时的汽化或凝结等 过程。 由温度T1下的相变焓计算另一温度下的相变焓T T2 q q D Hm (T2)= D Hm (T1)+ D C dT
三、ΔS、ΔA、ΔG的计算 1.ΔS的计算(重点) 特例:恒温过程: ΔS = nRln(V2/V1) 恒容过程: ΔS =nCV,mln(T2/T1) 恒压过程: ΔS =nCp,mln(T2/T1) (2) 相变过程:可逆相变 ΔS =Δ H/T ; 非可逆相变 需设计路径计算 (3) 标准摩尔反应熵的计算 Δ rSmθ = ∑ vB Smθ (B,T) 2.Δ G的计算 (1) 平衡相变或反应达到平衡:Δ G=0 (2) 恒温过程:ΔG=Δ H-TΔS (3) 非恒温过程:Δ G=Δ H- ΔT S =Δ H -(T 2S2-T1S1) 注:题目若要计算Δ G,一般是恒温过程;若不是恒温, 题目必然会给出绝对熵。
(1) Δ S(隔离)>0,自发(不可逆); Δ S(隔离)=0,平衡(可逆)。 (2)恒T、恒p、W ’=0过程(最常用): dG<0,自发(不可逆);dG=0,平衡(可逆)。 (3) 恒T、恒V、W ’=0过程: dA<0,自发(不可逆); dA=0,平衡(可逆)。
热力学定律复习笔记
《大物笔记》第10章 热力学基础1. Q = A + ∆Ed Q = d A + d E (dQ 和dA 是过程量, dE 是状态量) Q>0,从外界吸热A>0,对外界做功 ∆E>0,内能增加2. 准静态过程 :做功过程缓慢;热传导∆T 无限小3. 内能:E =i2NkT热量:Q =∫dQ a|b 功:A =∫pdV a|b 4. 热容量 c =dQdTν∫CdT T1T2=∫pdV +V2V1∆E 对于理想气体 E =i2νRT 所以 C V,m =i2R C p,m =C V,m +1ν(d (pV )dT)P = C V,m +R =i+22R热容比 γ =C p,mCV,m=1+2i5. 等容过程 Q = νC V,m ∆T等压过程 Q = νC p,m ∆T绝热过程 dp p + γdVV =0 (γ=C V,m +R C V,m) 所以{pV γ=C 1TV γ−1=C 2p γ−1T −γ=C 3例、氢气P=4×106Pa 不变,T 1=0℃,T 2=50℃,吸收Q=6×104J求(1)氢气摩尔数 (2)∆E (3)A (4)若体积不变,温度同样变化,Q=?解:(1)Q =i+22νR∆T 所以ν=2Q7R∆T =41.26mol(2)∆E =νi2R∆T =27Q =4.28×104J(3)A =Q −∆E =27Q =1.72×104J (4)Q =i2νR∆T =∆E =4.28×104J6. ①理想气体向真空自由膨胀的过程是一个绝热过程,且非准静态过程 ②过程方程只适用于准静态过程 ③pV n =恒量(理想气体)n=1时等温过程 n=0时等压过程 n →∞等容过程 n=γ时绝热过程例、设一理想气体在某过程中压强与体积之间满足关系pV 2=常量,求相应的气体摩尔热容量解:C n,m =dQνdT =1νdE+pdVdT=1ννC V,m dT+pdVdT对pV 2=常量微分得 V 2dp +2pVdV =0 所以 Vdp +2pdV =0再对 pV =νRT 微分得 Vdp +pdV =νRdT 所以 pdV =−νRdT 所以 C n,m =C V,m −R④由绝热过程p 1V 1γ=p 2V 2γ得到A =∫pdV V2V1=p 2V 2−p 1V 11−γ=−∆E =−νC V,m ∆T7. 热机和循环过程 热机的效率 η=AQ 1=Q 1−Q 2Q 1=1−Q2Q 1Q 2为向低温热源放热 Q 1为从高温热源吸热8.卡诺循环ηc =1−Q 2Q 1=1−T 2lnV 3V 4T 1ln V 2V 1绝热方程{T 1V 1γ−1=T 2V 4γ−1T 1V 2γ−1=T 2V 3γ−1→V 3V 4=V2V 1ηc =1−T 2T 19.制冷机 制冷系数 w =Q 2A=Q 2Q1−Q 2=T2T 1−T 2(如果是卡诺循环)10. 热力学第二定律不可逆过程:要使自发过程逆向进行,一定要借助外界的变化,在外界留下痕迹 可逆过程:(理想化)系统改变无穷小,过程可以反向进行,做功无摩擦的准静态过程{开尔文:不可能制成这样一种循环动作的热机,只从单一热源吸收热量并使之完全变为有用的功克劳修斯:热量不可能自动的从低温物体传向高温物体实质:自然界中自发的热力学演化过程的方向性或单向性基本内容:自然界中凡牵涉热现象的自发过程都是不可逆的熵11.卡诺定理:η≤1−T2T112.熵:对于可逆循环η可=1+Q2Q1=1−T2T1(Q2表示从低温热源吸收热量,所以是“+”) 所以Q2T2+Q1T1=0对于不可逆过程Q2T2+Q1T1<0∮dQT=0(克劳修斯公式)dS=dQT克劳修斯公式(可逆过程)S≥dQT克劳修斯不等式对于绝热系统dQ=0 所以dS≥0,熵增加原理13.计算dS=1T (dE+pdV) ∆S=∫dQT21(等温热交换时T为定值;温度改变时可认为为无穷个等温过程,T为变量)14.温熵图可逆绝热过程(可逆等熵过程)在温熵图中为垂直线段可逆等温过程为平行线段对任意准静态过程对应的曲线,曲线下的面积表示相应过程系统吸收的热量∮TdS=∮pdV15.孤立的热力学系统自发的演化过程总是从热力学概率小的宏观状态趋于热力学概率大的宏观状态。
热力学理想气体和理想气体定律
热力学理想气体和理想气体定律热力学理想气体是基于理想气体定律的一个概念。
理想气体是指在一定的温度、压强和体积条件下,分子之间的相互作用可以忽略不计的气体。
在热力学中,理想气体是一个重要的研究对象,而理想气体定律则是描述理想气体行为的基本规律。
一、热力学理想气体热力学理想气体是指在一定的温度范围内,其分子之间的相互作用可以忽略不计,且分子具有无限的自由度。
热力学理想气体的行为符合理想气体定律,包括玻意耳定律、查理定律和盖-吕萨克定律等。
1. 理想气体定律理想气体定律是描述理想气体行为的基本规律。
根据理想气体定律,当温度恒定时,理想气体的压强与体积成反比;当压强恒定时,理想气体的体积与温度成正比;当体积恒定时,理想气体的压强与温度成正比。
2. 重要性热力学理想气体的研究对于理解和应用热力学原理具有重要意义。
理想气体的行为规律可以用来解释和预测气体在不同条件下的性质和行为,例如气体的压强、体积和温度之间的关系。
热力学理想气体的研究也为其他领域的应用提供了基础,如工程热力学、化学工程等。
二、理想气体定律理想气体定律是描述理想气体行为规律的数学表达式。
理想气体定律包括玻意耳定律、查理定律和盖-吕萨克定律。
1. 玻意耳定律玻意耳定律是最基本的理想气体定律之一。
根据玻意耳定律,当温度恒定时,理想气体的压强与体积成反比,即P∝1/V。
这个关系可以用以下的数学表达式表示:P × V = n × R × T其中,P表示气体的压强,V表示气体的体积,n表示气体的摩尔数,R表示气体常数,T表示气体的绝对温度。
2. 查理定律查理定律是描述理想气体在恒定压强下体积与温度之间关系的定律。
根据查理定律,当压强恒定时,理想气体的体积与温度成正比,即V∝T。
这个关系可以用以下的数学表达式表示:V = α × T其中,V表示气体的体积,T表示气体的绝对温度,α表示查理常数。
3. 盖-吕萨克定律盖-吕萨克定律是描述理想气体在恒定体积下压强与温度之间关系的定律。
物理化学复习要点
R:独立的化学平衡数 R’:同一相中不同物种组成之间的独立关系数(浓度 限制条件), 一相中各物质的摩尔分数之和为1这个 关系除外
2. 相律: f +Φ=C + 2 (重点)
(只适用于平衡体系)
式中“2”是指影响体系的外界因素只有T和P 两个因素。
Φ = C +2 – f f = 0, Φ最多
三、毛细现象
在一定温度下,毛细管越细, 液体的密度越小,液体对管壁 润湿越好,那么液体在毛细管 内上升越高
h 2 cos 液 gR
当 9 ,0 co s 0 ,h 0液体能润湿管壁,
形成凹液面,管内液体将上升。
当 9 ,0 co 0 s,h 0 液体不能润湿管壁,
凝固点降低(析出固态纯溶剂)
ΔT = k b b B
nB mA
f
fB
沸点升高
mol
kg
ΔT 1
b
=
kbbB
bB
nB mA
mol kg 1
渗透压 πV=nBRT , π=CBRT 浓度一样是否意味着变化量一致?
第六章 相平衡
一、相律(重点)
1.明确相、相数Φ、独立组分数 C 、自由度
f 等的含义及如何确定它们的数值
★等容过程: W=0, Qv =ΔU=CV(T2-T1) ΔH=CP(T2-T1)
★等压过程: W=-P外(V2﹣V1), ΔU=CV(T2-T1) QP=ΔH=CP(T2-T1)
2.等温等压相变(重点)
等温等压可逆相变: W= -P(V2﹣V1), QP=Δ相变H=nΔ相变Hm, ΔU=QP﹣W 等温等压不可逆相变----一般设计一个可逆过程计算
等温等压可逆相变 ΔS=Δ相变H/T ΔG=0
高考物理二轮复习:分子动理论、气体及热力学定律(含答案解析)
分子动理论 气体及热力学定律热点视角备考对策本讲考查的重点和热点:①分子大小的估算;②对分子动理论内容的理解;③物态变化中的能量问题;④气体实验定律的理解和简单计算;⑤固、液、气三态的微观解释;⑥热力学定律的理解和简单计算;⑦用油膜法估测分子大小.命题形式基本上都是小题的拼盘. 由于本讲内容琐碎,考查点多,因此在复习中应注意抓好四大块知识:一是分子动理论;二是从微观角度分析固体、液体、气体的性质;三是气体实验三定律;四是热力学定律.以四块知识为主干,梳理出知识点,进行理解性记忆.`一、分子动理论 1.分子的大小(1)阿伏加德罗常数N A =×1023 mol -1.(2)分子体积:V 0=V molN A (占有空间的体积).(3)分子质量:m 0=M molN A.(4)油膜法估测分子的直径:d =VS . (5)估算微观量的两种分子模型 【①球体模型:直径为d =36V 0π.②立方体模型:边长为d =3V 0. 2.分子热运动的实验基础(1)扩散现象特点:温度越高,扩散越快.(2)布朗运动特点:液体内固体小颗粒永不停息、无规则的运动,颗粒越小、温度越高,运动越剧烈.3.分子间的相互作用力和分子势能(1)分子力:分子间引力与斥力的合力.分子间距离增大,引力和斥力均减小;分子间距离减小,引力和斥力均增大,但斥力总比引力变化得快.(2)分子势能:分子力做正功,分子势能减小;分子力做负功,分子势能增加;当分子间距为r 0时,分子势能最小. —二、固体、液体和气体1.晶体、非晶体分子结构不同,表现出的物理性质不同.其中单晶体表现出各向异性,多晶体和非晶体表现出各向同性.2.液晶是一种特殊的物质,既可以流动,又可以表现出单晶体的分子排列特点,在光学、电学物理性质上表现出各向异性.3.液体的表面张力使液体表面有收缩到最小的趋势,表面张力的方向跟液面相切. 4.气体实验定律:气体的状态由热力学温度、体积和压强三个物理量决定. (1)等温变化:pV =C 或p 1V 1=p 2V 2.(2)等容变化:p T =C 或p 1T 1=p 2T 2.(3)等压变化:V T =C 或V 1T 1=V 2T 2.*(4)理想气体状态方程:pV T =C 或p 1V 1T 1=p 2V 2T 2.三、热力学定律 1.物体的内能 (1)内能变化温度变化引起分子平均动能的变化;体积变化,分子间的分子力做功,引起分子势能的变化. (2)物体内能的决定因素2.热力学第一定律 #(1)公式:ΔU =W +Q .(2)符号规定:外界对系统做功,W >0,系统对外界做功,W <0;系统从外界吸收热量,Q >0,系统向外界放出热量,Q <0.系统内能增加,ΔU >0,系统内能减少,ΔU <0. 3.热力学第二定律(1)表述一:热量不能自发地从低温物体传到高温物体.(2)表述二:不可能从单一热库吸收热量,使之完全变成功,而不产生其他影响.(3)揭示了自然界中进行的涉及热现象的宏观过程都具有方向性,说明了第二类永动机不能制造成功.热点一 微观量的估算?命题规律:微观量的估算问题在近几年高考中出现的较少,但在2015年高考中出现的概率较大,主要以选择题的形式考查下列两个方面: (1)宏观量与微观量的关系;(2)估算固、液体分子大小,气体分子所占空间大小和分子数目的多少.1.若以μ表示水的摩尔质量,V 表示在标准状态下水蒸气的摩尔体积,ρ为在标准状态下水蒸气的密度,N A 为阿伏加德罗常数,m 、Δ分别表示每个水分子的质量和体积,下面五个关系式中正确的是( )A .N A =VρmB .ρ=μN A ΔC .m =μN AD .Δ=V N AE .ρ=μV^[解析] 由N A =μm =ρVm ,故A 、C 对;因水蒸气为气体,水分子间的空隙体积远大于分子本身体积,即V ≫N A ·Δ,D 不对,而ρ=μV ≪μN A·Δ,B 不对,E 对.[答案] ACE2.某同学在进行“用油膜法估测分子的大小”的实验前,查阅数据手册得知:油酸的摩尔质量M =0.283 kg·mol -1,密度ρ=×103 kg·m -3.若100滴油酸的体积为1 mL ,则1滴油酸所能形成的单分子油膜的面积约是多少(取N A =×1023 mol -1,球的体积V 与直径D 的关系为V =16πD 3,结果保留一位有效数字)[解析] 一个油酸分子的体积V =MρN A分子直径D =36M πρN A最大面积S =V 油D代入数据得:S =1×101 m 2. [答案] 1×101 m 2 $3.(2014·潍坊二模)空调在制冷过程中,室内空气中的水蒸气接触蒸发器(铜管)液化成水,经排水管排走,空气中水分越来越少,人会感觉干燥,若有一空调工作一段时间后,排出液化水的体积V =×103 cm 3.已知水的密度ρ=×103 kg/m 3、摩尔质量M =×10-2 kg/mol ,阿伏加德罗常数N A =×1023 mol -1.试求:(结果均保留一位有效数字) (1)该液化水中含有水分子的总数N ; (2)一个水分子的直径d .[解析] 水是液体,故水分子可以视为球体,一个水分子的体积公式为V ′0=16πd 3.(1)水的摩尔体积为V 0=Mρ①该液化水中含有水分子的物质的量n =VV 0②水分子总数N =nN A ③由①②③得N =ρVN AM `=错误!≈3×1025(个).(2)建立水分子的球模型有:V 0N A=16πd 3得水分子直径d =36V 0πN A= 36××10-5××1023m≈4×10-10m. [答案] (1)3×1025个 (2)4×10-10 m[方法技巧] 解决估算类问题的三点注意1固体、液体分子可认为紧靠在一起,可看成球体或立方体;气体分子只能按立方体模型计算所占的空间.2状态变化时分子数不变. ^3阿伏加德罗常数是宏观与微观的联系桥梁,计算时要注意抓住与其有关的三个量:摩尔质量、摩尔体积和物质的量.)热点二 分子动理论和内能命题规律:分子动理论和内能是近几年高考的热点,题型为选择题.分析近几年高考命题,主要考查以下几点:(1)布朗运动、分子热运动与温度的关系.(2)分子力、分子势能与分子间距离的关系及分子势能与分子力做功的关系. :1.(2014·唐山一模)如图为两分子系统的势能E p 与两分子间距离r 的关系曲线.下列说法正确的是( )A .当r 大于r 1时,分子间的作用力表现为引力B.当r小于r1时,分子间的作用力表现为斥力C.当r等于r1时,分子间势能E p最小D.当r由r1变到r2的过程中,分子间的作用力做正功E.当r等于r2时,分子间势能E p最小[解析]由图象知:r=r2时分子势能最小,E对,C错;平衡距离为r2,r<r2时分子力表现为斥力,A错,B对;r由r1变到r2的过程中,分子势能逐渐减小,分子力做正功,D对.[答案]BDE,2.(2014·长沙二模)下列叙述中正确的是()A.布朗运动是固体小颗粒的运动,是液体分子的热运动的反映B.分子间距离越大,分子势能越大;分子间距离越小,分子势能也越小C.两个铅块压紧后能粘在一起,说明分子间有引力D.用打气筒向篮球充气时需用力,说明气体分子间有斥力E.温度升高,物体的内能却不一定增大[解析]布朗运动不是液体分子的运动,而是悬浮在液体中的小颗粒的运动,它反映了液体分子的运动,A正确;若取两分子相距无穷远时的分子势能为零,则当两分子间距离大于r0时,分子力表现为引力,分子势能随间距的减小而减小(此时分子力做正功),当分子间距离小于r0时,分子力表现为斥力,分子势能随间距的减小而增大(此时分子力做负功),故B错误;将两个铅块用刀刮平压紧后便能粘在一起,说明分子间存在引力,C正确;用打气筒向篮球充气时需用力,是由于篮球内压强在增大,不能说明分子间有斥力,D错误;物体的内能取决于温度、体积及物体的质量,温度升高,内能不一定增大,E正确.[答案]ACE¥3.对一定量的气体,下列说法正确的是()A.气体的体积是所有气体分子的体积之和B.气体的体积大于所有气体分子的体积之和C.气体分子的热运动越剧烈,气体温度就越高D.气体对器壁的压强是由大量气体分子对器壁不断碰撞产生的E.当气体膨胀时,气体分子之间的势能减小,因而气体的内能减小[解析]气体分子间的距离远大于分子直径,所以气体的体积远大于所有气体分子体积之和,A项错,B项对;温度是物体分子平均动能大小的标志,是表示分子热运动剧烈程度的物理量,C项对;气体压强是由大量气体分子频繁撞击器壁产生的,D项对;气体膨胀,说明气体对外做功,但不能确定吸、放热情况,故不能确定内能变化情况,E项错误.[答案]BCD;[方法技巧]1分子力做正功,分子势能减小,分子力做负功,分子势能增大,两分子为平衡距离时,分子势能最小.2注意区分分子力曲线和分子势能曲线.)热点三热力学定律的综合应用命题规律:热力学定律的综合应用是近几年高考的热点,分析近三年高考,命题规律有以下几点:(1)结合热学图象考查内能变化与做功、热传递的关系,题型为选择题或填空题.(2)以计算题形式与气体性质结合进行考查.(3)对固体、液体的考查比较简单,备考中熟记基础知识即可.】1.(2014·南昌一模)下列叙述和热力学定律相关,其中正确的是()A.第一类永动机不可能制成,是因为违背了能量守恒定律B.能量耗散过程中能量不守恒C.电冰箱的制冷系统能够不断地把冰箱内的热量传到外界,违背了热力学第二定律D.能量耗散是从能量转化的角度反映出自然界中的宏观过程具有方向性E .物体从单一热源吸收的热量可全部用于做功[解析] 由热力学第一定律知A 正确;能量耗散是指能量品质降低,反映能量转化的方向性仍遵守能量守恒定律,B 错误,D 正确;电冰箱的热量传递不是自发,不违背热力学第二定律,C 错误;在有外界影响的情况下,从单一热源吸收的热量可以全部用于做功,E 正确. 。
热力学复习大纲
复习大纲绪论重点:了解工程热力学的主要内容及研究方法第一章基本概念及定义重点:工质热力系统、边界、热力系统的类型工质的热力学状态、参数 6个基本状态参数状态方程、坐标图平衡状态、准平衡(静态)过程过程功和热量、热力循环第二章热力学第一定律重点:实质热力学能、总能、推动功流动功、焓第一定律的基本能量方程热量的符号、功量的符号开、闭口系统能量方程第三章气体和蒸气的性质重点:理想气体状态方程比热容、热力学能、焓和熵水蒸汽1点2线3区 5态第四章气体和蒸气的基本热力过程重点:可逆多变过程、定温、定压、定容、定熵过程综合分析第五章热力学第二定律重点:表述卡诺循环克劳休斯积分熵方程孤立系统熵增原理火用第六章实际气体的性质及热力学一般关系式一般了解:范德瓦尔方程对应态原理通用压缩因子图麦克斯韦关系热系数热力学能、焓和熵、比热容的一般关系式第七章气体与蒸气的流动重点:稳定流动的基本方程:连续性方程、能量方程、过程方程、声速方程滞止参数的意义及其计算促使流速改变的条件:力学条件几何条件喷管形状的确定及计算临界压力比背压变化对喷管流动、出口参数的影响第八章压气机的热力过程重点:余隙容积产生、影响多级压缩、中间冷却第九章气体动力循环重点:混合加热理想循环热效率定压、定容加热理想循环热效率比较及分析燃气轮机装置循环热效率提高燃气轮机循环热效率的措施第十章蒸汽动力装置循环重点:朗肯循环由来热效率分析再热循环热效率回热循环热效率第十一章制冷循环重点:压缩空气制冷循环组成、设备、制冷系数压缩蒸汽制冷循环组成、设备、制冷系数两种循环的异同热泵循环第十二章理想气体混合物及湿空气重点:混合气体分压力、分体积定律成分:质量分数、摩尔分数、体积分数,三者的关系湿空气、干空气饱和、不饱和、露点相对湿度、含湿量干、湿球温度h-d图及其应用复习题(题中涉及的有关水蒸汽的数据,考试时均会给出,不用自己查表。
复习题中所需要的数据,需要自己找相关图表查数)习题:课本上的例题、课后思考题、留的作业题第一章基本概念及定义1、热力平衡状态2、准静态过程3、热力系统4、功量与热量第二章热力学第一定律1、热力学第一定律2、技术功3、课后思考题2-4、2-5.(P56)4、一蒸汽锅炉每小时生产P1 = 20 bar , t1= 350℃的蒸汽10吨,设锅炉给水温度t2= 40℃,锅炉效率ηK = 0.78,煤的发热值QL= 29700 KJ/Kg,求锅炉的耗煤量。
第二章热力学第一定律复习题(最新整理)
热力学第一定律一、选择题1、有理想气体,温度由T 1变到T 2,压力由P 1变到P 2,则:( )a.;b.;T nC Hm p ∆=∆,T nC Q m p ∆=,c.;d.T nC Q m V ∆=,TnC T nC W m V m p ∆-∆=,,2、,式中W 代表:( )W Q U +=∆a.体积功; b.非体积功c.体积功和非体积功的和;d.体积功和非体积功的差。
3、对W 的规定是:( )a.环境对体系做功W 为正;b. 环境对体系做功W 为负c. 体系对环境做功W 为正;d. W 总为正4、焓的定义式是:( )a.; b. pV U H +=∆pV U H -=c. ;d. pV U H +=pV U H ∆+∆=∆5、反应 H 2(g) + 1/2O 2(g) = H 2O(l) 的 是:( )θm r H ∆a.H 2O(l)的标准生成焓; b.H 2(g)的标准燃烧焓;c.既是H 2O(l)的标准生成焓又是H 2(g)的标准燃烧焓;d.以上三种说法都对。
6、理想气体的 ( ),,/p m V m C C a.大于1; b.小于1;c.等于1;d.以上三者皆有可能。
7、某化学反应的,该化学反应的反应热:( )0=∆p r C a.不随温度而变; b.随温度升高而增大; c.随温度升高而减小; d.随温度降低而降低。
8、封闭物系 ( )a.不与环境交换功;b.不与环境交换热;c.不与环境交换物质;d.物系内物质种类不改变9、用公式 计算某反应在温度T 的反应焓变,要求:⎰∆+∆=∆Tp dT C H T H 298)298()(( )a.反应恒容;b.T >298K ;c.△C P ≠0;d. 298~T 间反应物和产物无相变10、气体标准态规定为 ( )a.298.15K ,100KPa 状态;b.100KPa ,298.15K 纯理想气体状态;c.100KPa 纯理想气体状态;d.298.15K ,101.325KPa 理想气体状态。
2021高考物理复习课件: 专题7 第1讲 分子动理论 气体及热力学定律
3.能量守恒定律 (1)内容:能量既不会凭空产生,也不会凭空消失,它只能从一 种形式转化为另一种形式,或者是从一个物体转移到别的物体,在 转化或转移的过程中,能量的总量保持不变。 (2)条件性:能量守恒定律是自然界的普遍规律,某一种形式的 能量是否守恒是有条件的。 (3)第一类永动机是不可能制成的,它违背了能量守恒定律。
ABD [浸润和不浸润是分子力作用的表现,A 正确;相对湿度 为 100%,说明在当时的温度下,空气中所含水蒸气的实际压强已达 到饱和汽压,B 正确;温度一定时,同种液体的饱和汽压与饱和汽的 体积无关,C 错误;干湿泡湿度计的干泡与湿泡的示数差越小,空 气越潮湿,相对湿度越大,D 正确;水在涂有油脂的玻璃板上能形 成水珠,这是不浸润的结果,而在干净的玻璃板上不能形成水珠, 这是浸润的结果,E 错误。]
专题复习篇
专题七 选考部分 第1讲 分子动理论 气体及热
力学定律
物理
栏目导航
考点1
01
考点2
02
03 考点3 04 考点4 05 专题限时集训
[析考情·明策略] 高考选考部分命题由“选择题+计算题”形式向“填空题+计 算题”形式转变,从近几年命题角度来看,选择题和填空题主要 考查对物理概念和物理规律的理解以及简单的应用;计算题往往 考情 以玻璃管或汽缸等为载体,考查气体实验定律、理想气体状态方 分析 程及图象问题。考虑命题的延续性,今年仍可能以“填空题+计 算题”形式考查,填空题的综合性可能会略微增强,尤其是综合 图象问题的题目更能体现对物理学科核心素养的考查。
(3)液体的表面张力使液体表面具有收缩到最小的趋势,表面张 力的方向跟液面相切。
2.饱和汽压的特点 液体的饱和汽压与温度有关,温度越高,饱和汽压越大,且饱 和汽压与饱和汽的体积无关。 3.相对湿度 某温度时空气中水蒸气的实际压强与同温度水的饱和汽压的百 分比。即:B=pps×100%。
第3章热力学第二定律
P199复习题1、指出下列公式的适用范围:(1)∑-=∆BB B mix x n R S ln :理想气体或理想溶液的等温、等压混合过程。
(2)22,,121121ln ln T T p m V mT T nC nC p V S nR dT nR dT p T V T ⎛⎫⎛⎫∆=+=+ ⎪ ⎪⎝⎭⎝⎭⎰⎰:理想气体的物质的量一定从T 1,p 1,V 1到T 2,p 2,V 2的过程。
(3)dU=TdS -pdV :单组分均相封闭系统只做体积功的过程。
(4)G Vdp ∆=⎰:单组分均相封闭系统只做体积功的等温过程。
(5)S ∆、A ∆、G ∆作为判据时必须满足的条件:熵判据:用于隔离系统或绝热系统:dS U ,V ,Wf =0≥0。
亥姆霍兹自由能判据:在等温容下不作其它功的条件下,过程总是沿着A 降低的方向进行,直到A 不再改变,即dA =0时便达到该条件下的平衡态。
吉布斯自由能判据:等温等压下不作其它功的条件下,过程总是沿着G 降低的方向进行,直到G 不再改变,即dG =0时便达到该条件下的平衡态。
2、判断下列说法是否正确,并说明原因:(1)不可逆过程一定是自发的,而自发过程一定是不可逆的。
答:前半句错。
自发过程一定是不可逆的,而并不是所有的不可逆过程都是自发的。
对有些不可逆过程通过对其做功,可使它自发进行。
(2)凡是熵增加的过程都是自发过程。
答:错。
熵判据用于隔离系统或绝热系统:dS U ,V ,Wf =0≥0。
(3)不可逆过程的熵永不减少。
答:错。
对于隔离系统或绝热系统中发生的不可逆过程的熵永不减少。
(4)系统达到平衡时,熵值最大,Gibbs 自由能最小。
答:错。
在隔离系统或绝热系统中,系统达到平衡时,熵值最大。
在等温等压下不作其它功的系统中,系统达到平衡时,Gibbs 自由能最小。
(5)当某系统的热力学能和体积恒定时,0S ∆<的过程不可能发生。
答:错。
对于隔离系统或绝热系统热力学能和体积恒定时,0S ∆<的过程不可能发生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
②分子势能:
a.分子力做正功,分子势能_____;
b.分子力做负功,分子势能_减__小__; c.当分子间距为r0时,分子势增能大_____, 但不一定是零。
最小
2.固体、液体和气体: (1)晶体和非晶体。
比较
晶体
单晶体
多晶体
形状 _规__则__
_不__规__则__
熔点 _____
_____
【解析】选B。当r=r0时引力与斥力的合力为零,即分子力为 零,A、D错;当分子间的距离大于或小于r0时,分子力做负 功,分子势能增加,r=r0时分子势能最小,B对,C错。
2.(2013·福建高考)某自行车轮胎的容积为V,里面已有压强 为p0的空气,现在要使轮胎内的气压增大到p,设充气过程为 等温过程,空气可看作理想气体,轮胎容积保持不变,则还要 向轮胎内充入温度相同,压强也是p0,体积为( )的空气。
【有A 解 p.p p 00 析(V V】+V选′B )C=.。p p p0 设VV ,解将得要C V充.(′p p 入=0( 的1 )气-V 1体)V的,D 体.故(p p 积选0 为C1 ) 。VV ′,据玻意耳定律
p p0
3.(2012·福建高考)关于热力学定律和分子动理论,下列说 法正确的是( ) A.一定量气体吸收热量,其内能一定增大 B.不可能使热量由低温物体传递到高温物体 C.若两分子间距离增大,分子势能一定增大 D.若两分子间距离减小,分子间引力和斥力都增大 【解析】选D。据热力学第一定律ΔU=W+Q可知,气体吸收 热量对外做功,内能不一定增大,A错;热量可以由低温物体 传递到高温物体但要引起其他变化,B错;两分子间距离减小, 分子间引力和斥力都增大,D对;当分子间作用力表现为斥力 时,距离增大,分子势能减小,C错。
7.(2013·新课标全国卷Ⅰ改编)两个相距较远的分子仅在分 子力作用下由静止开始运动,直至不再靠近。在此过程中,下 列说法正确的是( ) A.分子力先增大,后一直减小 B.分子力先做负功,后做正功 C.分子势能先增大,后减小 D.分子势能和动能之和不变
【解析】选D。两分子从相距较远处仅在分子力作用下由静止 开始运动,直至不再靠近的过程中,分子力先表现为分子引力 后表现为分子斥力,分子间距离r>r0时分子力表现为引力,随 着距离r的减小,分子力先增大后减小,分子间距离r<r0时分 子力表现为斥力,分子力一直增大至最大,故选项A错误;在 两分子靠近的过程中,分子力先做正功,后做负功,分子势能 先减小后增大,所以选项B、C错误;分子仅在分子力作用下 运动,只有分子力做功,分子势能和动能之和不变,选项D正 确。
5.(2011·福建高考)如图所示,曲线M、N分别表示晶体和非 晶体在一定压强下的熔化过程,图中横轴表示时间t,纵轴表 示温度T,从图中可以确定的是( ) A.晶体和非晶体均存在固定的熔点T0 B.曲线M的bc段表示固液共存状态 C.曲线M的ab段、曲线N的ef段均表示固态 D.曲线M的cd段、曲线N的fg段均表示液态
NA=______________。
球体模型:对固体、液体、气体均适用,认为分子为一个
球体,直径为d=___3 _6 _V_0 __。 ②立方体模型:一般适 用于气体,认为一个分子占据的空间
为一个立方体,边长为d=________。
(3)说明分子永不停息地做3 无V 0 规则热运动的两个实例。
①扩散现象的特点:温度越高,_________。
②布朗运动的特点:永不停息、_______运动;颗粒越小,运 扩散越快
动越_____;温度越高,运动越_____;运动轨迹不确定。 无规则
剧烈
剧烈
(4)分子间的相互作用力和分子势能。
①分子力:分子间同时存在引力和斥力,分子
间距增大,引力和斥力均_____,且_____比引 减小 斥力
8.(2013·山东高考)下列关于热现象的描述正确的一项是 ()
A.根据热力学定律,热机的效率可以达到100% B.做功和热传递都是通过能量转化的方式改变系统内能的 C.温度是描述热运动的物理量,一个系统与另一个系统达到热 平衡时两系统温度相同 D.物体由大量分子组成,其单个分子的运动是无规则的,大量 分子的运动也是无规律的
4.(2012·福建高考)空气压缩机的储气罐中储有1.0 atm的
空气6.0 L,现再充入1.0 atm的空气9.0 L。设充气过程为等
温过程,空气可看作理想气体,则充气后储气罐中气体压强为
()
A.2.5 atm
B.2.0 atm
C.1.5 atm
D.1.0 atm
【解析】选A。依题可知p1=1 atm,V1=15.0 L,V2=6 L,据 p1V1=p2V2得p2=2.5 atm,故选A。
特性 ___固__定____ ___固__定____
(2)理想气体状各态向方异程性:___各__向__同__性。
p1V1 p2V2 T1 T2
非晶体
_不__规__则__ _______ __不__固__定___ 各向同性
1.(2013·福建高考)下列四幅图中,能正确反映分子间作用 力f和分子势能Ep随分子间距离r变化关系的图线是( )
【解析】选B。由图像可知曲线M表示晶体,bc段表示晶体熔 化过程,处于固液共存状态,B对;N表示非晶体,没有固定 的熔点,A错;由于非晶体没有一定的熔点而是逐步熔化,因 此C、D错。
6.(2011·福建高考)一定量的理想气体在某一过程中,从外 界吸收热量2.5×104J,气体对外界做功1.0×104J,则该理想 气体的( ) A.温度降低,密度增大 B.温度降低,密度减小 C.温度升高,密度增大 D.温度升高,密度减小 【解析】选D。由热力学第一定律ΔE=W+Q,Q=2.5×104J, W= -1.0×104J可知ΔE大于零,气体内能增加,温度升高,A、B 错;气体对外做功,体积增大,密度减小,C错,D对。
选考部分 专题八 分子动理论 气体及热力学定律
1.分子动理论: (1)分子的大小。 ①分子很小,其直径的数量级为______。
10-10m ②如果用V表示一滴酒精油酸溶液中纯油酸的体积,用S表示
单分子油膜的面积,用D表示分子的直径,则D=__V __。 ③阿伏伽德罗常数表示1mol任何物质中含有相同的S 微粒个数