人教版-数学-八年级上册-多边形的问题

合集下载

八年级数学上册多边形训练题(含答案)

八年级数学上册多边形训练题(含答案)

八年级数学上册多边形训练题(含答案)一.选择题(共11小题)1.八边形的内角和为()A.180°B.360°C.1080°D.1440°2.已知一个正多边形的每个外角等于60°,则这个正多边形是()A.正五边形B.正六边形C.正七边形D.正八边形3.正n边形每个内角的大小都为108°,则n=()A.5 B.6C.7D.84.已知一个多边形的内角和等于它的外角和,则这个多边形的边数为()A.3 B.4C.5D.65.一个多边形除一个内角外其余内角的和为1510°,则这个多边形对角线的条数是()A.27 B.35 C.44 D.546.下列图形中,多边形有()A.1个B.2个C.3个D.4个7.七边形的对角线共有()A.10条B.15条C.21条D.14条8.从一个多边形的任何一个顶点出发都只有5条对角线,则它的边数是()A.6 B.7C.8D.99.在六边形内任取一点,把这个点与六边形的各顶点分别连接可以得到()A.4个三角形B.5个三角形C.6个三角形D.7个三角形10.过多边形某个顶点的所有对角线,将这个多边形分成7个三角形,这个多边形是()A.八边形B.九边形C.十边形D.十一边形11.如图,正四边形有2条对角线,正五边形有5条对角线,正六边形有9条对角线,则正十边形有()条对角线.A.27 B.35 C.40 D.44二.填空题(共8小题)12.十边形有个顶点,从一个顶点出发可画条对角线,它共有条对角线.13.若从一个多边形的一个顶点出发,最多可以引10条对角线,则它是边形.14.一个四边形截去一个角后变成.15.一个多边形的内角和是外角和的2倍,则这个多边形的边数为.16.如图是由射线AB,BC,CD,DE,EA组成的平面图形,则∠1+∠2+∠3+∠4+∠5= .17.如图所示,一个角60°的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2 = .18.若正多边形的一个内角等于140°,则这个正多边形的边数是.(16题图)(17题图)(19题图)19.如图,小明从A点出发,沿直线前进12米后向左转36°,再沿直线前进12米,又向左转36°…照这样走下去,他第一次回到出发地A点时,一共走了米.三.解答题(共6小题)20.如果一个多边形的各边都相邻,且各内角也都相等,那么这个多边形就叫做正多边形.如图,就是一组正多边形,观察每个正多边形中∠α的变化情况,解答下列问题:(1)将下面的表格补充完整:正多边形边数 3 4 5 6 …n∠α的度数60°45°…(2)根据规律,是否存在一个正多边形,其中的∠α=21°?若存在,请求出n的值,若不存在,请说明理由.21.在一个正多边形中,一个内角是它相邻的一个外角的3倍.(1)求这个多边形的每一个外角的度数.(2)求这个多边形的边数.22.观察下面图形,解答下列问题:(1)观察规律,把下表填写完整:边数三四五六七…n对角线条数0 2 5 …(2)若一个多边形的内角和为1440°,求这个多边形的边数和对角线的条数.23.如图,(1)在图1中,猜想:∠A1+∠B1+∠C1+∠A2+∠B2+∠C2=度.并试说明你猜想的理由.(2)如果把图1称为2环三角形,它的内角和为:∠A1+∠B1+∠C1+∠A2+∠B2+∠C2;图2称为2环四边形,它的内角和为∠A1+∠B1+∠C1+∠D1+∠A2+∠B2+∠C2+∠D2;图3称为2环5五边形,它的内角和为∠A1+∠B1+∠C1+∠D1+∠E1++∠A2+∠B2+∠C2+∠D2+∠E2请你猜一猜,2环n边形的内角和为度(只要求直接写出结论).24.(1)如图1,已知△ABC为直角三角形,∠A=90°,若沿图中虚线剪去∠A,则∠1+∠2等于A.90°B.135°C.270°D.315°(2)如图2,已知△ABC中,∠A=50°,剪去∠A后成四边形,则∠1+∠2= °.(3)如图2,根据(1)与(2)的求解过程,请你归纳猜想∠1+∠2与∠A的关系是.(4)如图3,若没有剪掉,而是把它折成如图3形状,试探究∠1+∠2与∠A的关系并说明理由.25.已知任意三角形的内角和为180°,试利用多边形中过某一顶点的对角线的条数,探求多边形内角和公式.(1)如图所示,一个四边形可以分成个三角形;于是四边形的内角和为;(2)一个五边形可以分成个三角形;于是五边形的内角和为;(3)按此规律,n(n≥3)边形可分成多少个三角形?n边形的内角和是多少度?人教版八年级数学上册第11章11.3.1多边形训练题参考答案一.选择题(共11小题)1.C 2.B 3.A 4.B 5.C 6.B 7.D 8.C9.C 10.B 11.B二.填空题(共8小题)12.10 7 35 13.13 14.三角形或四边形或五边形15.616.360°17.240°18.9 19.120三.解答题(共6小题)20.解:(1)观察上面每个正多边形中的∠α,填写下表:正多边形边数 3 4 5 6 …n∠α的度数60°45°36°30°…()°(3)不存在,理由如下:设存在正n边形使得∠α=21°,得∠α=21°=()°.解得:n=8,n是正整数,n=8(不符合题意要舍去),不存在正n边形使得∠α=21°.21.解:(1)设这个多边形的每一个外角的度数为x度.根据题意,得:3x+x=180,解得x=45.故这个多边形的每一个外角的度数为45°;(2)360°÷45°=8.故这个多边形的边数为8.22.解:(1)边数三四五六七…n对角线条数0 2 5 9 14 …(2)设多边形的边数为n.则(n﹣2)×180=1440,解得n=10.∴对角线的条数为:=35(条).故答案为9,14,.23.解:(1)连结B1B2,则∠A2+∠C1=∠B1B2A2+∠B2B1C1,∠A1+∠B1+∠C1+∠A2+∠B2+∠C2=∠A1+∠B1+∠B1B2A2+∠B2B1C1+∠B2+∠C2=360度;(2)如图,A1A2之间添加两条边,可得B2+∠C2+∠D2=∠EA1D+∠A1EA2+∠EA2B2则∠A1+∠B1+∠C1+∠D1+∠A2+∠B2+∠C 2+∠D2=∠A1+∠B1+∠C1+∠D1+∠A2+∠EA1D+∠A1EA2+∠EA2B2=720°;2环n边形添加(n﹣2)条边,2环n边形的内角和成为(2n﹣2)边形的内角和.其内角和为180(2n﹣4)=360(n﹣2)度.故答案为:(1)360;(2)360(n﹣2)24.解:(1)∵四边形的内角和为360°,直角三角形中两个锐角和为90°∴∠1+∠2=360°﹣(∠A+∠B)=360°﹣90°=270°.∴∠1+∠2等于270°.故选C;(2)∠1+∠2=180°+50°=230°.故答案是:230;(3)∠1+∠2与∠A的关系是:∠1+∠2=180°+∠A;故答案是:∠1+∠2=180°+∠A;(4)∵△EFP是由△EFA折叠得到的,∴∠AFE=∠PFE,∠AEF=∠PEF∴∠1=180°﹣2∠AFE,∠2=180°﹣2∠AEF∴∠1+∠2=360°﹣2(∠AFE+∠AEF)又∵∠AFE+∠AEF=180°﹣∠A,∴∠1+∠2=360°﹣2(180°﹣∠A)=2∠A,即∠1+∠2=2∠A.25.解:(1)∵四边形可分为两个三角形,∴四边形的内角和=180°×2=360°.故答案为:2,360°;(2))∵五边形可分为三个三角形,∴四边形的内角和=180°×3=540°.故答案为:3,540°;(3)由(1)﹨(2)可知,过n边形一个顶点的对角线将n边形可以分成(n﹣2)个三角形,于是n边形的内角和为(n﹣2)•180°.故答案为:n﹣2,(n﹣2)•180°.。

八年级数学上册《第十一章 多边形及其内角和》练习题及答案-人教版

八年级数学上册《第十一章 多边形及其内角和》练习题及答案-人教版

八年级数学上册《第十一章多边形及其内角和》练习题及答案-人教版一、选择题1.以下列图形:正三角形、正方形、正五边形、正六边形为“基本图案”可以进行密铺的有( )A.1种B.2种C.3种D.4种2.下列说法中,正确的是( )A.直线有两个端点B.射线有两个端点C.有六边相等的多边形叫做正六边形D.有公共端点的两条射线组成的图形叫做角3.从 7 边形的一个顶点作对角线,把这个 7 边形分成三角形的个数是( )A.7 个B.6 个C.5 个D.4 个4.若一个正多边形的一个外角是36°,则这个正多边形的边数是( )A.10B.9C.8D.65.一个多边形的内角和比它的外角和的3倍少1800,这个多边形的边数是 ( )A.5条B.6条C.7条D.8条6.若正多边形的内角和是540°,则该正多边形的一个外角为( )A.45°B.60°C.72°D.90°7.一个正多边形的外角与它相邻的内角之比为1:4,那么这个多边形的边数为( )A.8B.9C.10D.128.如果一个多边形的每个内角都相等,且内角和为1800°,那么这个多边形的一个外角是( )A.30°B.36°C.60°D.72°9.设四边形的内角和等于a,五边形的外角和等于b,则a与b的关系是( )A.a>bB.a=bC.a<bD.b=a+180°10.把一个多边形纸片沿一条直线截下一个三角形后,变成一个十八边形,则原多边形纸片的边数不可能是( )A.16B.17C.18D.19二、填空题11.形状、大小完全相同的三角形________(填“能”或“不能”)铺满地面;形状、大小完全相同的四边形________(填“能”或“不能”)铺满地面.12.从多边形的一个顶点出发,连接这个点和其他顶点,把多边形分割成16个三角形,则这个多边形的边数是________.13.若从一个多边形的一个顶点出发,最多可以引10条对角线,则它是边形.14.如果一个多边形的各个外角都是40°,那么这个多边形的内角和是.15.如图,已知正五边形ABCDE,AF∥CD,交DB的延长线于点F,则∠DFA=.16.如图,五边形ABCDE是正五边形,若l1平行l2,则∠1-∠2=_______.三、解答题17.求下列图形中x的值:18.我们知道把正三角形、正方形、正六边形合在一起可以铺满平面,若把正十边形、正八边形、正九边形合在一起,能不能铺满地面?为什么?19.一个多边形的内角和是外角和的2倍,则这个多边形是几边形?20.如图,以五边形的每个顶点为圆心,以1为半径画圆,求圆与五边形重合的面积.21.如图,求∠A+∠B+∠C+∠D+∠E+∠F的度数.22.探索问题:(1)如图①,你知道∠BOC=∠B+∠C+∠A的奥秘吗?请你用学过的知识予以证明;(2)如图②﹣1,则∠A+∠B+∠C+∠D+∠E=°;如图②﹣2,则∠A+∠B+∠C+∠D+∠E=°;如图②﹣3,则∠A+∠B+∠C+∠D+∠E=°;(3)如图③,下图是一个六角星,其中∠BOD=70°,则∠A+∠B+∠C+∠D+∠E+∠F=°.参考答案1.C2.D3.C4.A5.C6.C.7.C.8.A.9.B10.A.11.答案为:能,能.12.答案为:18;13.答案为:十三.14.答案为:1260°.15.答案为:36°.16.答案为:72°.17.解:(1)90+70+150+x=360.解得x=50.(2)90+73+82+(180﹣x)=360.解得x=65.(3)x+(x+30)+60+x+(x﹣10)=(5﹣2)×180.解得x=115.18.解:因为正十边形、正八边形、正九边形的一个内角分别为144°,135°,140°它们的和144°+135°+140°>360°所以正十边形、正八边形、正九边形合在一起不能铺满地面19.解:设这个多边形的边数为n∴(n﹣2)•180°=2×360°解得:n=6.故这个多边形是六边形.20.解:(5﹣2)×180°=540°540°÷360°π×12=32π.21.解:连接AF.∵在△AOF和△COD中,∠AOF=∠COD,∴∠C+∠D=∠OAF+∠AFD,∴∠A+∠B+∠C+∠D+∠E+∠F=∠OAF+∠OFA+∠CFE+∠OAB+∠E+∠F=∠BAF+∠AFE+∠E+∠B=360°.22.解:(1)如图①,∠BOC=∠B+∠C+∠A.(2)如图②,∠A+∠B+∠C+∠D+∠E=180°.如图③根据外角的性质,可得∠1=∠A+∠B,∠2=∠C+∠D∵∠1+∠2+∠E=180°∴x=∠A+∠B+∠C+∠D+∠E=180°.如图④,延长EA交CD于点F,EA和BC交于点G根据外角的性质,可得∠GFC=∠D+∠E,∠FGC=∠A+∠B ∵∠GFC+∠FGC+∠C=180°∴x=∠A+∠B+∠C+∠D+∠E=180°.(3)如图⑤,∵∠BOD=70°∴∠A+∠C+∠E=70°∴∠B+∠D+∠F=70°∴∠A+∠B+∠C+∠D+∠E+∠F=70°+70°=140°.。

新人教版数学八年级上册11.3.1多边形同步练习

新人教版数学八年级上册11.3.1多边形同步练习

初中数学试卷新人教版数学八年级上册11.3.1多边形同步练习一、选择题(共15题)1.下列结论正确的是()A.在平面内,有四条线段组成的图形叫做四边形B.由不在同一直线上的四条线段组成的图形叫做四边形C.在平面内,由不在同一直线上的四条线段组成的图形叫做四边形D.在平面内,由不在同一直线上的四条线段首尾顺次相接组成的图形叫做四边形答案:D知识点:四边形解析:解答:四边形的概念与三角形的概念类似,三角形的概念:在平面内,由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形;所以,D项的结论更准确.分析:此题考查多边形的定义:在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形;四边形也是多边形的一种.2.下列图形中,是正多边形的是()A.直角三角形B.等腰三角形C.长方形D.正方形答案:D知识点:正多边形和圆解析:解答:正方形的四条边相同,四个内角也相等,则正方形是正多边形.分析:此题考查正多边形的定义.3.一个四边形截去一个角后内角个数是()A.3B.4C.5D.3、4、5答案:B知识点:多边形的内角与外角解析:解答:如图可知,一个四边形截去一个角后变成三角形或四边形或五边形.分析:截去一个角,有多种截法,要注意分类讨论.4.若从一个多边形的一个顶点出发,最多可以引10条对角线,则它是()A.十三边形B.十二边形C.十一边形D.十边形答案:A知识点:多边形的对角线解析:解答:设这个多边形是n边形.依题意,得n-3=10,∴n=13.故这个多边形是十三边形.分析:根据多边形的对角线的定义可知,从n边形的一个顶点出发,可以引(n-3)条对角线,由此可得到答案.5.下列说法不正确的是()A.各边都相等的多边形是正多边形B.正多形的各边都相等C.正三角形就是等边三角形D.各内角相等的多边形不一定是正多边形答案:A知识点:正多边形和圆解析:解答:正多边形的定义:各个角都相等,各条边都相等的多边形叫做正多边形;各边都相等的多边形不一定是正多边形.分析:此题考查正多边形的定义,熟练掌握定义是解题的关键.6.下列属于正多边形的特征的有()(1)各边相等(2)各个内角相等(3)各个外角相等(4)各条对角线都相等(5)从一个顶点引出的对角线将正n边形分成面积相等的(n-2)个三角形A.2个B.3个C.4个D.5个答案:B知识点:正多边形和圆;多边形的对角线解析:分析:本题考查了多边形的对角线,n边形过一个顶点有(n-3)条对角线,它们把n边形分割成了(n-2)个三角形.10.从n边形的一个顶点出发作对角线,可以把这个n边形分成9个三角形,则n等于()A.9 B.10 C.11 D.12答案:C知识点:多边形的对角线解析:解答:n=9+2=11.分析:要熟练掌握正多边形的边数(n)、一个顶点可以作的对角线条数(n-3)和它们能分成的不重叠的三角形数(n-2)有关系.11.要使一个六边形的木架稳定,至少要钉()根木条A.3B.4C.6D.9答案:A知识点:多边形的对角线;三角形的稳定性解析:解答:根据三角形的稳定性,可将六边形木架分成几个三角形,则需要6-3=3根木条.分析:此题考查多边形的对角线及三角形的稳定性.12.一个正十边形的某一边长为8cm,其中一个内角的度数为144º,则这个正十边形的周长和内角和分别为()A.64cm,1440ºB.80cm,1620ºC.80cm,1440ºD.88cm,1620º答案:D知识点:正多边形和圆;多边形的内角与外角解析:解答:根据正多边形的性质可知每条边相等,每个内角都相等,则周长为10×8=80(cm),内角和为144º×10=1440º.分析:此题考查正多边形的性质.13.如图所示,四边形ABCD是凸四边形,AB=2,BC=4,CD=7,则线段AD的取值范围为()A.0<AD<7B.2<AD<7C.0<AD<13D.1<AD<13答案:D知识点:三角形三边关系解析:解答:连接AC.∵AB=2,BC=4,在△ABC中,根据三角形的三边关系,4-2<AC<2+4,即2<AC<6.∴-6<-AC<-2,1<CD-AC<5,9<CD+AC<13,在△ACD中,根据三角形的三边关系,得CD-AC<AD<CD+AC,∴1<AD<13.分析:本题综合考查了三角形的三边关系.连接AC,求出AC的取值范围是解题关键.14.下列图中不是凸多边形的是()答案:A知识点:多边形解析:解答:多边形可分为凸多边形和凹多边形,辨别凸多边形可用两种方法:①画多边形任何一边所在的直线整个多边形都在此直线的同一侧.②每个内角的度数均小于180°,通常所说的多边形指凸多边形.分析:此题考查多边形,关键是掌握凸多边形和凹多边形的区别.15.把一个多边形纸片沿一条直线截下一个三角形后,变成一个18边形,则原多边形纸片的ABCD边数不可能是()A.16 B.17 C.18 D.19答案:A知识点:多边形解析:解答:当剪去一个角后,剩下的部分是一个18边形,则这张纸片原来的形状可能是18边形或17边形或19边形,不可能是16边形.分析:此题主要考查了多边形,剪去一个角的方法可能有三种:经过两个相邻顶点,则少了一条边;经过一个顶点和一边,边数不变;经过两条邻边,边数增加一条.二、填空题(共5题)16.一个四边形它有条边,有个内角,有个外角,从一个顶点出发可以引条对角线,一共可以画条对角线.答案:4 4 4 1 2知识点:四边形;多边形的对角线解析:解答:根据四边形的特点填空即可.分析:根据四边形的特点.17.过m边形的一个顶点有7条对角线,n边形没有对角线,则n-m= .答案:-7知识点:多边形的对角线解析:解答:三角形没有对角线,则n=3;过m边形的一个顶点有7条对角线,则m=7+3=10,则n-m=3-10=-7.分析:此题考查多边形的一个顶点上的对角线数与边数之间的关系;即n边形的一个顶点可作(n-3)条对角线.18.正三角形、正方形、正六边形都是大家熟悉的特殊多边形,它们有很多共同特征,请写出其中的两点:答案:(1)每条边都相等(2)每个内角都相等知识点:正多边形和圆解析:解答:正三角形、正方形、正六边形都属于正多边形,正多边形的特征是每条边都相等,每个内角都相等.分析:本题主要考查正多边形的性质.19.如图,在正六边形ABCDEF内放入2008个点,若这2008个点连同正六边形的六个顶点无三点共线,则该正六边形被这些点分成互不重合的三角形共个.答案:4020知识点:正多边形和圆解析:解答:∵正六边形ABCDEF内放入2008个点,这2008个点连同正六边形的六个顶点无三点共线,∴共有2008+6=2014个点.∵在正六边形内放入1个点时,该正六边形被这个点分成互不重合的三角形共6个;即当n=1时,有6个;然后出现第2个点时,这个点必然存在于开始的6个中的某一个三角形内,然后此点将那个三角形又分成3个三角形,三角形数量便增加2个;又出现第3个点时,同理,必然出现在某个已存在的三角形内,然后又将此三角形1分为3,增加2个…,∴内部的点每增加1个,三角形个数便增加2个.于是我们得到规律:存在n个点时,三角形数有:6+2(n-1)=2n+4(n≥1).由题干知,2008个点的总数为2×2008+4=4020(个).分析:先求出点的个数,进一步求出互不重合的三角形的个数.20.如图所示,①中多边形(边数为12)是由正三角形“扩展”而来的,②中多边形是由正方形“扩展”而来的,…,依此类推,则由正n边形“扩展”而来的多边形的边数为 .答案:n(n+1)知识点:正多边形和圆;探索图形的规律解析:解答:∵①正三边形“扩展”而来的多边形的边数是12=3×4,②正四边形“扩展”而来的多边形的边数是20=4×5,③正五边形“扩展”而来的多边形的边数为30=5×6,④正六边形“扩展”而来的多边形的边数为42=6×7,∴正n边形“扩展”而来的多边形的边数为n(n+1).分析:首先要正确数出这几个图形的边数,从中找到规律,进一步推广.正n边形“扩展”而来的多边形的边数为n(n+1).三、解答题(共5题)21.(1)如图(1),O为四边形ABCD内一点,连接OA、OB、OC、OC可以得几个三角形?它与边数有何关系?(2)如图(2),O在五边形ABCDE的AB上,连接OC、OD、OE,可以得到几个三角形?它与边数有何关系?(3)如图(3),过A作六边形ABCDEF的对角线,可以得到几个三角形?它与边数有何关系?答案:(1)连接OA、OB、OC、OD可以得4个三角形,它与边数相等,(2)连接OC、OD、OE可以得4个三角形,它的个数比边数小1,(3)过点A作六边形ABCDEF的对角线,可以得到4个三角形,它的个数比边数小2.知识点:多边形的对角线;探索图形的规律解析:解答:观察图形,可得到每个图形分得的三角形数,与多边形的边数作比较即可.分析:此题考查了多边形的对角线,关键是观察图形,找出三角形的个数与多边形的边数之间的关系.22.把一个多边形沿着几条直线剪开,分割成若干个多边形.分割后的多边形的边数总和比原多边形的边数多13条,内角和是原多边形内角和的1.3倍.求:(多边形的内角和公式:(n-2)·180º)(1)原来的多边形是几边形?(2)把原来的多边形分割成了多少个多边形?答案:(2)12边形(2)分割成了6个小多边形论n 取任何大于2的正整数,a 与b 一定不相等.”你认为这种说法对吗?若不对,请求出不符合这一说法的n 的值.答案:(1)20 (2)知识点:正多边形和圆解析:解答:(1)a=20;(2)此说法不正确.理由如下:尽管当n=3、20、120时,a >b 或a <b ,但可令a=b ,得6077n n =+, ∴60n+420=67n ,解得n=60,经检验n=60是方程的根.∴当n=60时,a=b ,即不符合这一说法的n 的值为60.分析:(1)根据正多边形的每条边相等,可知边长=周长÷边数;(2)分别表示出a 和b 的代数式,让其相等,看是否有相应的值.25.如图,在五边形A 1A 2A 3A 4A 5中,B 1是A 1对边A 3A 4的中点,连接A 1B 1,我们称A 1B 1是这个五边形的一条中对线.如果五边形的每条中对线都将五边形的面积分成相等的两部分.求证:五边形的每条边都有一条对角线和它平行.答案:(1)70% (2)1170美元知识点:多边形的对角线;平行线的判定;三角形的面积解析:解答:证明:取A 1A 5中点B 3,连接A 3B 3、A 1A 3、A 1A 4、A 3A 5,∵A 3B 1=B 1A 4,∴131A A B S V =114A B A S V ,又∵四边形A 1A 2A 3B 1与四边形A 1B 1A 4A 5的面积相等,∴123A A A S V =145A A A S V ,-------------------------------------------------------------------奋斗没有终点任何时候都是一个起点-----------------------------------------------------信达 同理123A A A S V =345A A A S V ,∴145A A A S V =345A A A S V ,∴△A 3A 4A 5与△A 1A 4A 5边A 4A 5上的高相等,∴A 1A 3∥A 4A 5,同理可证A 1A 2∥A 3A 5,A 2A 3∥A 1A 4,A 3A 4∥A 2A 5,A 5A 1∥A 2A 4.分析:此题要能够根据面积相等得到两条直线间的距离相等,从而证明两条直线平行;可以再作五边形的一条中对线,根据它们分割成的两部分的面积相等,都是五边形的面积的一半,导出两个等底的三角形的面积相等,从而得到它们的高相等,则得到五边形的每条边都有一条对角线和它平行.。

人教版八年级数学上册 11.3.1多边形 随课练

人教版八年级数学上册  11.3.1多边形  随课练

11.3.1多边形提升练习一、选择题1. 若从一个多边形的一个顶点出发,最多可以引10条对角线,则它是( )A.十三边形B.十二边形C.十一边形D.十边形2.将一个四边形截去一个角后,它不可能是()A.六边形B.五边形C.四边形D.三角形3. 木工师傅从边长为90cm的正三角形木板上锯出一正六边形木块,那么正六边形木板的边长为()A. 34cm B. 32cmC. 3 0cm D. 28cm4.下列图形中是多边形的有( )A.1个B.2个C.3个D.4个5.过多边形的一个顶点可以引2018条对角线,则这个多边形的边数是()A.2021 B.2020C.2019 D.20186.下列多边形中,不是凸多边形的是()7.下列说法不正确的是( )A.正多边形的各边都相等B.正多边形的各角都相等C.各角都相等的多边形是正多边形D.各边都相等的多边形不一定是正多边形8.如图所示,要使一个六边形木架在同一平面内不变形,至少还要再钉上()根木条.A.1B.2C.3D.4 9.若从一个多边形的一个顶点出发,最多可以引10条对角线,则这是( )边形.A.13B.12C. 11D.10二、填空题10.过某个多边形一个顶点的所有对角线,将这个多边形分成7个三角形,这个多边形是_____边形.11.从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,若把这个多边形分割成6个三角形,则n=___.12.过九边形的一个顶点有______条对角线.13.若过n边形的一个顶点有2m条对角线,m边形没有对角线,k边形有k条对角线,则(n-k)m=_____.三、解答题14.已知:从n边形的一个顶点出发共有4条对角线;从m边形的一个顶点出发的所有对角线把m边形分成6个三角形;正t边形的边长为7,周长为63.求()t-的值.n m15. 用两个一样大小的含30°角的三角板可以拼成多少个形状不同的四边形?请画图说明.16.已知正n边形的周长为60,边长为a(1)当n=3时,请直接写出a的值;(2)把正n边形的周长与边数同时增加7后,假设得到的仍是正多边形,它的边数为n+7,周长为67,边长为b.有人分别取n等于3,20,120,再求出相应的a与b,然后断言:“无论n取任何大于2的正整数,a与b 一定不相等.”你认为这种说法对吗?若不对,请求出不符合这一说法的n 的值.17. 如图,在四边形ABCD中,对角线AC与BD相交于P,请添加一个条件,使四边形ABCD的面积为:S四边形ABCD=1AC•BD,并给予证明.218. 已知从n边形的一个顶点出发共有4条对角线,其周长为56,且各边长是连续的自然数,求这个多边形的各边之长.答案1. A2.A3. C4.C5.A6. B7.C8.C9. A10.九11.812.613. 1214. -115. 解:四个.如图所示:16. (1)20(2)不正确17. 解:添加的条件:AC ⊥BD ,理由:∵AC ⊥BD ,∴S △ACD =12AC·PD ,S △ABC==12AC·BP , ∴S 四边形ABCD =S △ACD +S △ACB =12AC·PD+12AC·BP =12AC (PD+PB) =12AC·BD . 18. 解:由题意知n =7,设最小边长为x ,则其余边长为x +1,x +2, x +3,x +4,x +5,x +6,可列方程x +x +1+x +2+x +3+x +4+x +5+x +6=56,解得x =5,∴x +1=6,x +2=7,x +3=8,x +4=9,x +5=10,x +6=11,即多边形的边长分别为5,6,7,8,9,10,11。

人教版八年级数学上册多边形及其内角和测试题

人教版八年级数学上册多边形及其内角和测试题

11.3多边形及其内角和专题一根据正多边形的内角或外角求值1.若一个正多边形的每个内角为150°,则这个正多边形的边数是()A.12 B.11 C.10 D.92.一个多边形的每一个外角都等于36°,则该多边形的内角和等于________°.3.已知一个多边形的每一个内角都相等,且每个内角都等于与它相邻的外角的9倍,求这个多边形的边数.专题二求多个角的和4.如图为某公司的产品标志图案,图中∠A+∠B+∠C+∠D+∠E+∠F+∠G=()A.360°B.540°C.630°D.720°5.如图,∠A+∠ABC+∠C+∠D+∠E+∠F=_________°.6.如图,求:∠A+∠B+∠C+∠D+∠E+∠F的度数.【知识要点】1.多边形及相关概念多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.2.多边形的内角和与外角和内角和:n边形的内角和等于(n-2)·180°.外角和:多边形的外角和等于360°.【温馨提示】1.从n边形的一个顶点出发,可以做(n-3)条对角线,它们将n边形分为(n-2)个三角形.对角线的条数与分成的三角形的个数不要弄错.2.多边形的外角和等于360°,而不是180°.【方法技巧】1.连接多边形的对角线,将多边形转化为多个三角形,将多边形问题转化为三角形问题来解决.2.多边形的内角和随边数的变化而变化,但外角和不变,都等于360°,可利用多边形的外角和不变求多边形的边数等.1.A 解析:∵每个内角为150°,∴每个外角等于30°.∵多边形的外角和是360°,360°÷30°=12,∴这个正多边形的边数为12.故选A.2.1440 解析:∵多边形的边数为360°÷36°=10,多边形的内角为180°-36°=144°,∴多边形的内角和等于144°×10=1440°.3.解:设多边形的边数为n,根据题意,得(n-2)·180°=9×360°,解得n=20.所以这个多边形的边数为20.4.B 解析:∵∠1=∠C+∠D,∠2=∠E+∠F,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=∠A+∠B+∠1+∠2+∠G=540°.故选B.5.360°解析:在四边形BEFG中,∵∠EBG=∠C+∠D,∠BGF=∠A+∠ABC,∴∠A+∠ABC+∠C+∠D+∠E+∠F=∠EBG+∠BGF+∠E+∠F=360°.6.解:∵∠POA是△OEF的外角,∴∠POA=∠E+∠F.同理:∠BPO=∠D+∠C.∵∠A+∠B+∠BPO+∠POA=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.人教版七年级上册期末测试卷一、选择题(每题3分,共30分)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是() A.-3℃B.8℃C.-8℃D.11℃2.下列立体图形中,从上面看能得到正方形的是()3.下列方程是一元一次方程的是()A.x-y=6 B.x-2=xC.x2+3x=1 D.1+x=34.今年某市约有108 000名应届初中毕业生参加中考,108 000用科学记数法表示为()A.0.108×106B.10.8×104C.1.08×106D.1.08×1055.下列计算正确的是()A.3x2-x2=3 B.3a2+2a3=5a5C.3+x=3x D.-0.25ab+14ba=06.已知ax=ay,下列各式中一定成立的是()A.x=y B.ax+1=ay-1C.ax=-ay D.3-ax=3-ay7.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为()A.100元B.105元C.110元D.120元8.如果一个角的余角是50°,那么这个角的补角的度数是() A.130°B.40°C.90°D.140°9.如图,C,D是线段AB上的两点,点E是AC的中点,点F是BD的中点,EF=m,CD=n,则AB的长是()A.m-n B.m+nC.2m-n D.2m+n10.下列结论:①若a +b +c =0,且abc ≠0,则a +c 2b =-12;②若a +b +c =0,且a ≠0,则x =1一定是方程ax +b +c =0的解; ③若a +b +c =0,且abc ≠0,则abc >0; ④若|a |>|b |,则a -ba +b>0. 其中正确的结论是( ) A .①②③ B .①②④ C .②③④D .①②③④二、填空题(每题3分,共24分)11.-⎪⎪⎪⎪⎪⎪-23的相反数是________,-15的倒数的绝对值是________.12.若-13xy 3与2x m -2y n +5是同类项,则n m =________.13.若关于x 的方程2x +a =1与方程3x -1=2x +2的解相同,则a 的值为________.14.一个角的余角为70°28′47″,那么这个角等于____________.15.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC =12∠AOB ,则射线OC 是∠AOB 的平分线;④连接两点之间的线段叫做这两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上,其中正确的有________个.16.在某月的月历上,用一个正方形圈出2×2个数,若所圈4个数的和为44,则这4个日期中左上角的日期数值为________.17.规定一种新运算:a △b =a ·b -2a -b +1,如3△4=3×4-2×3-4+1=3.请比较大小:(-3)△4________4△(-3)(填“>”“=”或“<”).18.如图是小明用火柴棒搭的1条“金鱼”、2条“金鱼”、3条“金鱼”……则搭n条“金鱼”需要火柴棒__________根.三、解答题(19,20题每题8分,21~23题每题6分,26题12分,其余每题10分,共66分) 19.计算:(1)-4+2×|-3|-(-5);(2)-3×(-4)+(-2)3÷(-2)2-(-1)2 018.20.解方程:(1)4-3(2-x)=5x;(2)x-22-1=x+13-x+86.21.先化简,再求值:2(x2y+xy)-3(x2y-xy)-4x2y,其中x=1,y=-1. 22.有理数b在数轴上对应点的位置如图所示,试化简|1-3b|+2|2+b|-|3b-2|.23.如图①是一些小正方体所搭立体图形从上面看得到的图形,方格中的数字表示该位置的小正方体的个数.请在如图②所示的方格纸中分别画出这个立体图形从正面看和从左面看得到的图形.24.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.(1)当点C,E,F在直线AB的同侧时(如图①所示),试说明∠BOE=2∠COF.(2)当点C与点E,F在直线AB的两侧时(如图②所示),(1)中的结论是否仍然成立?请给出你的结论,并说明理由.25.为鼓励居民节约用电,某市电力公司规定了电费分段计算的方法:每月用电不超过100度,按每度电0.50元计算;每月用电超过100度,超出部分按每度电0.65元计算.设每月用电x度.(1)当0≤x≤100时,电费为________元;当x>100时,电费为____________元.(用含x的整式表示)(2)某用户为了解日用电量,记录了9月前几天的电表读数.该用户9月的电费约为多少元?(3)该用户采取了节电措施后,10月平均每度电费0.55元,那么该用户10月用电多少度?26.如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.(1)A,B两点间的距离是________.(2)若点C也是数轴上的点,点C到点B的距离是点C到原点O的距离的3倍,求点C表示的数.(3)若电子蚂蚁P从点B出发,以6个单位长度/s的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向左运动,设两只电子蚂蚁同时运动到了数轴上的点D,那么点D表示的数是多少?(4)若电子蚂蚁P从点B出发,以8个单位长度/s的速度向右运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向右运动.设数轴上的点N到原点O的距离等于点P到原点O的距离的一半(点N在原点右侧),有下面两个结论:①ON+AQ的值不变;②ON-AQ的值不变,请判断哪个结论正确,并求出正确结论的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.D 6.D7.A8.D9.C10.B二、11.23;512.-813.-514.19°31′13″15.316.717.>18.(6n+2)三、19.解:(1)原式=-4+2×3+5=-4+6+5=7;(2)原式=12+(-8)÷4-1=12-2-1=9.20.解:(1)去括号,得4-6+3x=5x.移项、合并同类项,得-2x=2.系数化为1,得x=-1.(2)去分母,得3(x-2)-6=2(x+1)-(x+8).去括号,得3x-6-6=2x+2-x-8.移项、合并同类项,得2x=6.系数化为1,得x=3.21.解:原式=2x2y+2xy-3x2y+3xy-4x2y=(2x2y-3x2y-4x2y)+(2xy+3xy)=-5x2y+5xy.当x=1,y=-1时,原式=-5x2y+5xy=-5×12×(-1)+5×1×(-1)=5-5=0.22.解:由题图可知-3<b<-2.所以1-3b>0,2+b<0,3b-2<0.所以原式=1-3b-2(2+b)+(3b-2)=1-3b-4-2b+3b-2=-2b-5.23.解:如图所示.24.解:(1)设∠COF=α,则∠EOF=90°-α.因为OF是∠AOE的平分线,所以∠AOE=2∠EOF=2(90°-α)=180°-2α.所以∠BOE=180°-∠AOE=180°-(180°-2α)=2α.所以∠BOE=2∠COF.(2)∠BOE=2∠COF仍成立.理由:设∠AOC=β,则∠AOE=90°-β,又因为OF是∠AOE的平分线,所以∠AOF=90°-β2.所以∠BOE=180°-∠AOE=180°-(90°-β)=90°+β,∠COF=∠AOF+∠AOC=90°-β2+β=12(90°+β).所以∠BOE=2∠COF.25.解:(1)0.5x;(0.65x-15)(2)(165-123)÷6×30=210(度),210×0.65-15=121.5(元).答:该用户9月的电费约为121.5元.(3)设10月的用电量为a度.根据题意,得0.65a-15=0.55a,解得a=150.答:该用户10月用电150度.26.解:(1)130(2)若点C在原点右边,则点C表示的数为100÷(3+1)=25;若点C在原点左边,则点C表示的数为-[100÷(3-1)]=-50.故点C表示的数为-50或25.(3)设从出发到同时运动到点D经过的时间为t s,则6t-4t=130,解得t=65.65×4=260,260+30=290,所以点D表示的数为-290.(4)ON-AQ的值不变.设运动时间为m s,则PO=100+8m,AQ=4m. 由题意知N为PO的中点,得ON=12PO=50+4m,所以ON+AQ=50+4m+4m=50+8m,ON-AQ=50+4m-4m=50.故ON-AQ的值不变,这个值为50.人教版七年级上册期末测试卷一、选择题(每题3分,共30分)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是() A.-3℃B.8℃C.-8℃D.11℃2.下列立体图形中,从上面看能得到正方形的是()3.下列方程是一元一次方程的是()A.x-y=6 B.x-2=xC.x2+3x=1 D.1+x=34.今年某市约有108 000名应届初中毕业生参加中考,108 000用科学记数法表示为()A.0.108×106B.10.8×104C.1.08×106D.1.08×1055.下列计算正确的是()A.3x2-x2=3 B.3a2+2a3=5a5C.3+x=3x D.-0.25ab+14ba=06.已知ax =ay ,下列各式中一定成立的是( )A .x =yB .ax +1=ay -1C .ax =-ayD .3-ax =3-ay7.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为( )A .100元B .105元C .110元D .120元8.如果一个角的余角是50°,那么这个角的补角的度数是( )A .130°B .40°C .90°D .140°9.如图,C ,D 是线段AB 上的两点,点E 是AC 的中点,点F 是BD 的中点,EF =m ,CD =n ,则AB 的长是( )A .m -nB .m +nC .2m -nD .2m +n 10.下列结论:①若a +b +c =0,且abc ≠0,则a +c 2b =-12;②若a +b +c =0,且a ≠0,则x =1一定是方程ax +b +c =0的解;③若a +b +c =0,且abc ≠0,则abc >0;④若|a |>|b |,则a -b a +b>0. 其中正确的结论是( )A .①②③B .①②④C .②③④D .①②③④ 二、填空题(每题3分,共24分)11.-⎪⎪⎪⎪⎪⎪-23的相反数是________,-15的倒数的绝对值是________. 12.若-13xy 3与2x m -2y n +5是同类项,则n m =________.13.若关于x 的方程2x +a =1与方程3x -1=2x +2的解相同,则a 的值为________.14.一个角的余角为70°28′47″,那么这个角等于____________.15.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC=1 2∠AOB,则射线OC是∠AOB的平分线;④连接两点之间的线段叫做这两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上,其中正确的有________个.16.在某月的月历上,用一个正方形圈出2×2个数,若所圈4个数的和为44,则这4个日期中左上角的日期数值为________.17.规定一种新运算:a△b=a·b-2a-b+1,如3△4=3×4-2×3-4+1=3.请比较大小:(-3)△4________4△(-3)(填“>”“=”或“<”).18.如图是小明用火柴棒搭的1条“金鱼”、2条“金鱼”、3条“金鱼”……则搭n 条“金鱼”需要火柴棒__________根.三、解答题(19,20题每题8分,21~23题每题6分,26题12分,其余每题10分,共66分)19.计算:(1)-4+2×|-3|-(-5);(2)-3×(-4)+(-2)3÷(-2)2-(-1)2 018.20.解方程:(1)4-3(2-x)=5x;(2)x-22-1=x+13-x+86.21.先化简,再求值:2(x2y+xy)-3(x2y-xy)-4x2y,其中x=1,y=-1. 22.有理数b在数轴上对应点的位置如图所示,试化简|1-3b|+2|2+b|-|3b-2|.23.如图①是一些小正方体所搭立体图形从上面看得到的图形,方格中的数字表示该位置的小正方体的个数.请在如图②所示的方格纸中分别画出这个立体图形从正面看和从左面看得到的图形.24.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.(1)当点C,E,F在直线AB的同侧时(如图①所示),试说明∠BOE=2∠COF.(2)当点C与点E,F在直线AB的两侧时(如图②所示),(1)中的结论是否仍然成立?请给出你的结论,并说明理由.25.为鼓励居民节约用电,某市电力公司规定了电费分段计算的方法:每月用电不超过100度,按每度电0.50元计算;每月用电超过100度,超出部分按每度电0.65元计算.设每月用电x度.(1)当0≤x≤100时,电费为________元;当x>100时,电费为____________元.(用含x的整式表示)(2)某用户为了解日用电量,记录了9月前几天的电表读数.日期9月1日9月2日9月3日9月4日9月5日9月6日9月7日电表读123130137145153159165 数/度该用户9月的电费约为多少元?(3)该用户采取了节电措施后,10月平均每度电费0.55元,那么该用户10月用电多少度?26.如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.(1)A,B两点间的距离是________.(2)若点C也是数轴上的点,点C到点B的距离是点C到原点O的距离的3倍,求点C表示的数.(3)若电子蚂蚁P从点B出发,以6个单位长度/s的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向左运动,设两只电子蚂蚁同时运动到了数轴上的点D,那么点D表示的数是多少?(4)若电子蚂蚁P从点B出发,以8个单位长度/s的速度向右运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向右运动.设数轴上的点N到原点O的距离等于点P到原点O的距离的一半(点N在原点右侧),有下面两个结论:①ON+AQ的值不变;②ON-AQ的值不变,请判断哪个结论正确,并求出正确结论的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.D 6.D7.A8.D9.C10.B二、11.23;512.-813.-514.19°31′13″15.316.717.>18.(6n+2)三、19.解:(1)原式=-4+2×3+5=-4+6+5=7;(2)原式=12+(-8)÷4-1=12-2-1=9.20.解:(1)去括号,得4-6+3x=5x.移项、合并同类项,得-2x=2.系数化为1,得x=-1.(2)去分母,得3(x-2)-6=2(x+1)-(x+8).去括号,得3x-6-6=2x+2-x-8.移项、合并同类项,得2x=6.系数化为1,得x=3.21.解:原式=2x2y+2xy-3x2y+3xy-4x2y=(2x2y-3x2y-4x2y)+(2xy+3xy)=-5x2y+5xy.当x=1,y=-1时,原式=-5x2y+5xy=-5×12×(-1)+5×1×(-1)=5-5=0.22.解:由题图可知-3<b<-2.所以1-3b>0,2+b<0,3b-2<0.所以原式=1-3b-2(2+b)+(3b-2)=1-3b-4-2b+3b-2=-2b-5.23.解:如图所示.24.解:(1)设∠COF=α,则∠EOF=90°-α.因为OF是∠AOE的平分线,所以∠AOE=2∠EOF=2(90°-α)=180°-2α.所以∠BOE=180°-∠AOE=180°-(180°-2α)=2α.所以∠BOE=2∠COF.(2)∠BOE=2∠COF仍成立.理由:设∠AOC=β,则∠AOE=90°-β,又因为OF是∠AOE的平分线,所以∠AOF=90°-β2.所以∠BOE=180°-∠AOE=180°-(90°-β)=90°+β,∠COF=∠AOF+∠AOC=90°-β2+β=12(90°+β).所以∠BOE=2∠COF.25.解:(1)0.5x;(0.65x-15)(2)(165-123)÷6×30=210(度),210×0.65-15=121.5(元).答:该用户9月的电费约为121.5元.(3)设10月的用电量为a度.根据题意,得0.65a-15=0.55a,解得a=150.答:该用户10月用电150度.26.解:(1)130(2)若点C在原点右边,则点C表示的数为100÷(3+1)=25;若点C在原点左边,则点C表示的数为-[100÷(3-1)]=-50.故点C表示的数为-50或25.(3)设从出发到同时运动到点D经过的时间为t s,则6t-4t=130,解得t=65.65×4=260,260+30=290,所以点D表示的数为-290.(4)ON-AQ的值不变.设运动时间为m s,则PO=100+8m,AQ=4m. 由题意知N为PO的中点,得ON=12PO=50+4m,所以ON+AQ=50+4m+4m=50+8m,ON-AQ=50+4m-4m=50.故ON-AQ的值不变,这个值为50.。

专题11.5多边形-重难点题型(教师版含解析)2022年八年级数学上册举一反三系列(人教版)

专题11.5多边形-重难点题型(教师版含解析)2022年八年级数学上册举一反三系列(人教版)

专题11.5多边形-重难点题型【人教版】【知识点1多边形的概念】平面内,由一些线段首尾顺次相接所组成的封闭图形,叫做多边形.【题型1多边形的概念】【例1】(2020秋•太康县期末)下列图形中,多边形有()A.1个B.2个C.3个D.4个【分析】根据多边形的定义:平面内不在一条直线上的线段首尾顺次相接组成的图形叫多边形.【解答】解:由多边形的概念可知第四个、第五个是多边形共2个.故选:B.【点评】本题考查了认识平面图形.注意,多边形是由3条或3条以上的线段首尾顺次连接而成的图形,故多边形中没有曲线.【变式1-1】如图所示的图形中,属于多边形的有个.【分析】根据多边形的定义:平面内不在同一条直线上的几条线段首尾顺次相接组成的图形叫多边形.显然只有第一个、第二个、第五个.【解答】解:所示的图形中,属于多边形的有第一个、第二个、第五个,共有3个.故答案是:3.【点评】本题主要考查了多边形的定义,理解多边形的定义,根据定义进行正确判断.【变式1-2】如图,下列图形是多边形的有(填序号).【分析】根据多边形的定义,可得答案.【解答】解:下列图形是多边形的有③④,故答案为:③④.【点评】本题考查了多边形,各边都相等,各角都相等的多边形是正多边形,一个n边形(n>3)有n 条边,n个内角,oK3)2条对角线.【变式1-3】如图,图中有个四边形.【分析】在平面内,由4条线段首尾顺次相接组成的图形叫做四边形,然后再依次数出四边形的个数即可.【解答】解:四边形ABMS,四边形SMNZ,四边形ZNHY,四边形ABNZ,四边形SMHY,四边形ABHY,四边形ACDS,四边形BCDM,四边形LSZP,四边形LPNM,四边形LPED,四边形MNDE,四边形SZED,四边形ZVFE,四边形NHFE,四边形BCNE,四边形MDFH,共17个,故答案为:17.【点评】此题主要考查了多边形,关键是在数数的过程中,要细心,做到不重不漏.【知识点2多边形的不稳定性】多边形具有不稳定性.【题型2多边形的不稳定性】【例2】(2020秋•德州校级月考)要使一个五边形具有稳定性,则需至少添加()条对角线.A.1B.2C.3D.4【分析】根据三角形具有稳定性,过一个顶点作出所有对角线即可得解.【解答】解:如图需至少添加2条对角线.故选:B.【点评】本题考查了三角形具有稳定性的应用,作出图形更形象直观.【变式2-1】(2020春•费县期末)下列图形中具有稳定性有()A.2个B.3个C.4个D.5个【分析】根据三角形具有稳定性,只要图形分割成了三角形,则具有稳定性.【解答】解:根据三角形具有稳定性,只要图形分割成了三角形,则具有稳定性.显然(2)、(4)、(5)三个.故选B.【点评】注意根据三角形的稳定性进行判断.【变式2-2】(2020春•浦东新区校级月考)以线段a=7,b=8,c=9,d=10为边作四边形,可以作()A.1个B.2个C.3个D.无数个【分析】根据四边形具有不稳定性,可知四条线段组成的四边形可有无数种变化.【解答】解:四条线段组成的四边形可有无数种变化.故选:D.【点评】本题主要考查四边形的不稳定性,理清题意,熟记四边形的不稳定性是解答本题的关键.【变式2-3】如图所示,要使一个六边形木架在同一平面内不变形,至少还要再钉上几根木条?要使一个n 边形(n≥4)木架在同一平面内不变形,至少还要再钉上几根木条?【分析】从一个多边形的一个顶点出发,能做(n﹣3)条对角线,把三角形分成(n﹣2)个三角形.【解答】解:根据三角形的稳定性,要使六边形木架不变形,至少再钉上3根木条;要使一个n边形木架不变形,至少再钉上(n﹣3)根木条.【点评】本题考查了多边形以及三角形的稳定性;掌握从一个顶点把多边形分成三角形的对角线条数是n﹣3.【题型3多边形的截角问题】【例3】(2020秋•巴州区期末)若一个多边形截去一个角后,变成十四边形,则原来的多边形的边数可能为()A.14或15B.13或14C.13或14或15D.14或15或16【分析】根据不同的截法,找出前后的多边形的边数之间的关系得出答案.【解答】解:如图,n边形,A1A2A3…A n,若沿着直线A1A3截去一个角,所得到的多边形,比原来的多边形的边数少1,若沿着直线A1M截去一个角,所得到的多边形,与原来的多边形的边数相等,若沿着直线MN截去一个角,所得到的多边形,比原来的多边形的边数多1,因此将一个多边形截去一个角后,变成十四边形,则原来的多边形的边数为13或14或15,故选:C.【点评】考查多边形的意义,根据截线的不同位置得出不同的答案,是解决问题的关键.【变式3-1】(2020秋•海淀区期末)如图,将五边形ABCDE沿虚线裁去一个角得到六边形ABCDGF,则该六边形的周长一定比原五边形的周长(填:大或小),理由为.【分析】利用“两点之间,线段最短”可以得出结论.【解答】解:将五边形ABCDE沿虚线裁去一个角得到六边形ABCDGF,则该六边形的周长一定比原五边形的周长小,理由是两点之间,线段最短.故答案为:小;两点之间,线段最短.【点评】本题主要考查了多边形,熟知“两点之间,线段最短”是解答本题的关键.【变式3-2】(2020春•文登区期末)将一个多边形纸片沿一条直线剪下一个三角形后,变成一个六边形,则原多边形纸片的边数不可能是()A.5B.6C.7D.8【分析】实际画图,动手操作一下,可知六边形可以是五边形、六边形、七边形截去一个角后得到.【解答】解:如图可知,原来多边形的边数可能是5,6,7.不可能是8.故选:D.【点评】此题主要考查了多边形,此类问题要从多方面考虑,注意不能漏掉其中的任何一种情况.【变式3-3】(2020秋•肇源县期末)把一个多边形纸片沿一条直线截下一个三角形后,变成一个18边形,则原多边形纸片的边数不可能是()A.16B.17C.18D.19【分析】一个n边形剪去一个角后,剩下的形状可能是n边形或(n+1)边形或(n﹣1)边形.【解答】解:当剪去一个角后,剩下的部分是一个18边形,则这张纸片原来的形状可能是18边形或17边形或19边形,不可能是16边形.故选:A.【点评】此题主要考查了多边形,剪去一个角的方法可能有三种:经过两个相邻顶点,则少了一条边;经过一个顶点和一边,边数不变;经过两条邻边,边数增加一条.【题型4多边形的对角线】【例4】分别画出下列各多边形的对角线,并观察图形完成下列问题:(1)试写出用n边形的边数n表示对角线总条数S的式子:.(2)从十五边形的一个顶点可以引出条对角线,十五边形共有条对角线:(3)如果一个多边形对角线的条数与它的边数相等,求这个多边形的边数.【分析】(1)根据多边形对角线的条数的公式即可求解;(2)根据多边形对角线的条数的公式代值计算即可求解;(3)根据等量关系:一个多边形对角线的条数与它的边数相等,列出方程计算即可求解.【解答】解:如图所示:(1)用n边形的边数n表示对角线总条数S的式子:S=12n(n﹣3);(2)十五边形从一个顶点可引出对角线:15﹣3=12(条),共有对角线:12×15×(15﹣3)=90(条);(3)设多边形有n条边,则12n(n﹣3)=n,解得n=5或n=0(应舍去).故这个多边形的边数是5.故答案为:S=12n(n﹣3);12,90.【点评】本题主要考查了多边形对角线的条数的公式总结,熟记公式对今后的解题大有帮助.【变式4-1】(2020春•杜尔伯特县期末)一个边数为2n的多边形内所有对角线的条数是边数为n的多边形内所有对角线条数的6倍,求这两个多边形的边数.【分析】根据多边形的对角线公式12n(n﹣3)进行计算即可得解.【解答】解:依题意有12×2n(2n﹣3)=6×12n(n﹣3),解得n=6,2n=12.故这两个多边形的边数是6,12.【点评】本题考查了多边形的对角线,熟记对角线公式是解题的关键.【变式4-2】(2020春•福清市校级期末)阅读下列内容,并答题:我们知道计算n边形的对角线条数公式为oK3)2,如果有一个n边形的对角线一共有20条,则可以得到方程oK3)2=20,去分母得n(n﹣3)=40;∵n为大于等于3的整数,且n比n﹣3的值大3,∴满足积为40且相差3的因数只有8和5,符合方程n(n﹣3)=40的整数n=8,即多边形是八边形.根据以上内容,问:(1)若有一个多边形的对角线一共有14条,求这个多边形的边数;(2)A同学说:“我求得一个多边形的对角线一共有30条.”你认为A同学说地正确吗?为什么?【分析】(1)由题意得oK3)2=14,进而可得n(n﹣3)=28,然后再找出满足积为28且相差3的因数即可;(2)由题意得oK3)2=30,进而可得n(n﹣3)=60,然后再找出满足积为60且相差3的因数,发现没有这样的两个数,因此A同学说法是不正确的.【解答】(1)解:方程oK3)2=14,去分母得:n(n﹣3)=28;∵n为大于等于3的整数,且n比n﹣3的值大3,∴满足积为28且相差3的因数只有7和4,符合方程的整数n=7,即多边形是七边形.(2)解:A同学说法是不正确的,∵方程oK3)2=30,去分母得n(n﹣3)=60;符合方程n(n﹣3)=60的正整数n不存在,即多边形的对角线不可能有30条.【点评】此题主要考查了多边形的对角线,关键是正确理解题意,掌握n边形的对角线条数公式为oK3)2.【变式4-3】(2020秋•东湖区校级月考)如图,先研究下面三角形、四边形、五边形、六边形…多边形的边数n及其对角线条数t的关系,再完成下面问题:(1)若一个多边形是七边形,它的对角线条数为,n边形的对角线条数为t=(用n表示).(2)求正好65条对角线的多边形是几边形.【分析】(1)根据图形用类比方法求解即可.(2)根据多边形有65条对角线,列出方程求解即可.【解答】解:(1)若一个多边形是七边形,它的对角线条数为7×(7−3)2=14,n边形的对角线条数为t=oK3)2(用n表示).(2)设正好65条对角线的多边形是x边形,依题意有oK3)2=65,解得x1=13,x2=﹣10.故正好65条对角线的多边形是13边形.故答案为:14,oK3)2.【点评】考查了多边形的对角线,本题需注意:重复一次要想算出准确结果,重复的结果应除以2.【知识点4正多边形的概念】各个角都相等,各条边都相等的多边形,叫做正多边形.【题型5正多边形的概念】【例5】下列图形为正多边形的是()A.B.C.D.【分析】根据正多边形的定义;各个角都相等,各条边都相等的多边形叫做正多边形可得答案.【解答】解:正五边形五个角相等,五条边都相等,故选:D.【点评】此题主要考查了正多边形,关键是掌握正多边形的定义.【变式5-1】如图,若集合A表示四边形,集合B表示正多边形,则阴影部分表示.【分析】直接利用多边形的定义分析得出答案.【解答】解:由题意可得:四边形中正多边形只有正方形.故答案为:正方形.【点评】此题主要考查了多边形,正确把握相关定义是解题关键.【变式5-2】如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是.【分析】第1个图形是2×3﹣3,第2个图形是3×4﹣4,第3个图形是4×5﹣5,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是(n+1)(n+2)﹣(n+2)=n2+2n.【解答】解:第一个是1×3,第二个是2×4,第三个是3×5,…第n个是n•(n+2)=n2+2n故答案为:n2+2n.【点评】首先计算几个特殊图形,发现:数出每边上的个数,乘以边数,但各个顶点的重复了一次,应再减去.【变式5-3】如图所示,①中多边形(边数为12)是由正三角形“扩展”而来的,②中多边形是由正方形“扩展”而来的,…,依此类推,则由正n边形“扩展”而来的多边形的边数为.【分析】①边数是12=3×4,②边数是20=4×5,依此类推,则由正n边形“扩展”而来的多边形的边数为n(n+1).【解答】解:∵①正三边形“扩展”而来的多边形的边数是12=3×4,②正四边形“扩展”而来的多边形的边数是20=4×5,③正五边形“扩展”而来的多边形的边数为30=5×6,④正六边形“扩展”而来的多边形的边数为42=6×7,∴正n边形“扩展”而来的多边形的边数为n(n+1).故答案为:n(n+1).【点评】首先要正确数出这几个图形的边数,从中找到规律,进一步推广.正n边形“扩展”而来的多边形的边数为n(n+1).【题型6多边形的计算】【例6】如下图,多边形任意相邻两边互相垂直,则这个多边形的周长为.【分析】观察图形,可以把水平的线段平移到下边计算,把铅垂的线段平移到一起整体计算.它的周长=2m+2n.【解答】解:这个多边形的周长为2m+2n.【点评】此题只需把线段进行平移,水平线即是2n,铅垂线即是2m.【变式6-1】(2020秋•日照期末)已知:从n边形的一个顶点出发共有4条对角线;从m边形的一个顶点出发的所有对角线把m边形分成6个三角形;正t边形的边长为7,周长为63.求(n﹣m)t的值.【分析】根据题意,由多边形的性质,分析可得答案.【解答】解:依题意有n=4+3=7,m=6+2=8,t=63÷7=9则(n﹣m)t=(7﹣8)9=﹣1.【点评】本题考查正多边形的性质,从n边形的一个顶点出发,能引出(n﹣3)条对角线,一共有oK3)2条对角线,经过多边形的一个顶点的所有对角线把多边形分成(n﹣2)个三角形.这些规律需要学生牢记.【变式6-2】一个四边形的周长是46cm,已知第一条边长是acm,第二条边长比第一条边长的三倍还少5cm,第三条边长等于第一、第二条边长的和.(1)写出表示第四条边长的式子;(2)当a=7cm还能得到四边形吗?为什么?此时的图形是什么形状?【分析】(1)根据题意分别运用代数式表示其它各边,再根据周长进行计算;(2)注意根据(1)中的式子代入进行计算分析.【解答】解:(1)根据题意得:第二条边是3a﹣5,第三条边是a+3a﹣5=4a﹣5,则第四条边是46﹣a﹣(3a﹣5)﹣(4a﹣5)=56﹣8a.答:第四条边长的式子是56﹣8a.(2)当a=7cm时不是四边形,因为此时第四边56﹣8a=0,只剩下三条边,三边长为:a=7cm,3a﹣5=16cm,4a﹣5=23,由于7+16=23,所以,图形是线段.答:当a=7cm不能得到四边形,此时的图形是线段.【点评】首先根据第一条边长表示出第二条边,然后表示出第三条边,最后根据周长表示出第四条边.其中要注意合并同类项法则.(2)中,只需根据(1)中所求的代数式,把字母的值代入计算,然后进行分析图形的形状.【变式6-3】已知正n边形的周长为60,边长为a(1)当n=3时,请直接写出a的值;(2)把正n边形的周长与边数同时增加7后,假设得到的仍是正多边形,它的边数为n+7,周长为67,边长为b.有人分别取n等于3,20,120,再求出相应的a与b,然后断言:“无论n取任何大于2的正整数,a与b一定不相等.”你认为这种说法对吗?若不对,请求出不符合这一说法的n的值.【分析】(1)边长=周长÷边数;(2)分别表示出a和b的代数式,让其相等,看是否有相应的值.【解答】解:(1)a=20;(2)此说法不正确.理由如下:尽管当n=3、20、120时,a>b或a<b,但可令a=b,得60=60+7r7,即60=67r7.∴60n+420=67n,解得n=60,经检验n=60是方程的根.∴当n=60时,a=b,即不符合这一说法的n的值为60.【点评】读懂题意,找到相应量的等量关系是解决问题的关键.。

人教版八年级数学上册第11章3多边形及其内角和

人教版八年级数学上册第11章3多边形及其内角和
第十一章 三角形
11.3 多边形及其内角和
1 课时讲解 多边形及其相关概念
多边形的内角和 多边形的外角和
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
知识点 1 多边形及其相关概念
知1-讲
1. 多边形的定义:在平面内,由一些线段首尾顺次相接组 成的封闭图形叫做多边形. 如果一个多边形由n 条线段组 成,那么这个多边形就叫做n 边形.
多边形
定义
内角 内角和


对角线

正多边形
外角 外角和
知2-练
2-1. 如图,已知六边形ABCDEF 的每个内角都相等,连接 AD.若∠ 1=48°,求∠ 2 的度数.
解:∵六边形 ABCDEF 的各内角相等, 知2-练
∴一个内角的大小为(6-26)×180°=120°. ∴∠E=∠F=∠BAF=120°. ∵∠FAB=120°,∠1=48°, ∴∠FAD=∠FAB-∠1=120°-48°=72°. ∵四边形 ADEF 的内角和为 360°, ∴∠2=360°-∠FAD-∠F-∠E= 360°-72°-120°-120°=48°.
2. 多边形的相关概念
概念
定义
边 组成多边形的各条线段
顶点 相邻两条边的公共端点
内角 多边形相邻两边组成的角
外角
多边形的边与它的邻边的 延长线组成的角
对角线
连接多边形不相邻的两个 顶点的线段
图形
知1-讲
3. 凸多边形与凹多边形(本节只讨论凸多边形)
知1-讲
画出多边形的任何一条边所在直线,如果整个多边
知2-练
知2-练
(2) 若n 边形变为(n+x)边形,发现内角和增加了360°,用列 方程的方法求出x 的值. 解:依题意有(n+x-2)×180°-(n-2)×180°=360°, 解得x=2.

人教版八年级上册数学 多边形的相关概念及练习题

人教版八年级上册数学  多边形的相关概念及练习题

多边形的相关概念及练习题知识点一:多边形及有关概念1、多边形的定义:在同一平面内,由一些线段首尾顺次相接组成的图形叫做多边形.多边形通常以边数命名,多边形有n条边就叫做n边形.三角形、四边形都属于多边形,其中三角形是边数最少的多边形.(1)多边形的一些要素:边:组成多边形的各条线段叫做多边形的边.顶点:每相邻两条边的公共端点叫做多边形的顶点.内角:多边形相邻两边组成的角叫多边形的内角,一个n边形有n个内角。

外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角。

对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.(2)在定义中应注意:①一些线段(多边形的边数是大于等于3的正整数);②首尾顺次相连,二者缺一不可;③理解时要特别注意“在同一平面内”这个条件,其目的是为了排除几个点不共面的情况,即空间多边形.例1:下面图形是多边形的是( )A. B. C. D.例2:如图,下列图形是多边形的有______ (填序号,按数字从小到大的顺序,并用逗号隔开各个数字).例3:如图,∠ABC是五边形ABCDE的一个______(填写“边”或“内角”或“外角”或“对角线”)例4:如图,在四边形ABCD中,线段BD是四边形ABCD的______(填写“边”或“内角”或“外角”或“对角线”)2、多边形的分类:多边形可分为凸多边形和凹多边形,画出多边形的任何一条边所在的直线,如果整个多边形都在这条直线的同一侧,则此多边形为凸多边形,反之为凹多边形。

本章所讲的多边形都是指凸多边形.凸多边形凹多边形例1:判断题:下面的图形是凸多边形______.(填入“对”或“错”)例2:如图,不是凸多边形的是( )A. B. C. D.例3:下列图中不是凸多边形的有______个知识点二:正多边形各个角都相等、各个边都相等的多边形叫做正多边形。

如正三角形、正方形、正五边形等。

正三角形正方形正五边形正六边形正十二边形要点诠释:各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形例1:下列图形中,是正多边形的是( )A.圆锥B. 圆柱C. 正方形D. 球例2:判断:每个内角都相等的多边形是正多边形.______(填“对”或“错”)例3:下列关于正八边形的说法错误的是( )A.边都相等B. 对角线都相等C. 内角都相等D. 外角都相等知识点三:多边形的对角线多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线. 如图2,BD为四边形ABCD的一条对角线。

人教版八年级数学上册《多边形》同步练习

人教版八年级数学上册《多边形》同步练习

《多边形》同步练习、选择题(每小题6分,共30分)2. 一个多边形从一个顶点最多能引出三条对角线,这个多边形是(角线的条数是()m 、n 的值分别为(5.如图所示,把一张矩形纸片对折,折痕为 AB ,在把以AB 的中点O 为顶点的平角∠AoB 三等分,沿平角的三等分线折叠, 将折叠后的图形剪出一个以 O 为顶点的等腰三角形,形分割成2017个三角形,那么此多边形的边数为班级:姓名: 得分:1.从n 边形一个顶点出发,可以作()条对角线. A. nB. n — 1C. n — 2D.n — 3A. 三角形B. 四边形C. 五边形D. 六边形3.多边形的一个顶点处的所有对角线把多边形分成了11个三角形,则经过这一点的对A. 8B. 9C. 10D. 114.从六边形的一个顶点出发,可以画出 m 条对角线,它们将六边形分成n 个三角形.则A. 4, 3B. 3, 3C. 3, 4D.4, 4那么剪出的等腰三角形全部展开平铺后得到的平面图形一定是B'A.正三角形二、填空题(每小题6分, 6.如果从一个多边形的一个顶点出发,共30分)分别连接这个顶点和其余各顶点, 可将这个多边7.五边形从一个顶点出发, 能引出 条对角线, 一共有 条对角线.8.过m 边形的顶点能作7条对角线,n 边形没有对角线, -k ) n =.k 边形有k 条对角线,则(m9. 试在表格空白处写出下列正多边形的所有对角线条数,正多边形的边数3456对角线的条数0210. 若一个多边形对角线的条数恰好为边数的 _ 3倍,则这个多边形的边数为三、解答题(每小题20分,共40分)如图,在直角坐标系中,四边形ABCD各个顶点的坐标分别是 A ( 0, 0)、B(3, 6)、我们知道计算n边形的对角线条数公式为,如果有一个n边形的对角线一共有20条,则可以得到方程==20 ,去分母得n (n- 3) =40;∙∙∙ n为大于等于3的整数,且n比n- 3的值大3,•••满足积为40且相差3的因数只有8和5,符合方程n (n - 3) =40的整数n=8,即多边形是八边形•根据以上内容,问:(1)若有一个多边形的对角线一共有14条,求这个多边形的边数;(2)A同学说:“我求得一个多边形的对角线一共有30条•”你认为A同学说地正确吗?为什么?参考答案1. D【解析】根据多边形的对角线的方法,不相邻的两个定点之间的连线就是对角线,在n边形中与一个定点不相邻的顶点有n-3个.11.C( 10, 8)、D( 13,0),确定这个四边形的面积。

多边形-八年级数学上册(人教版)

多边形-八年级数学上册(人教版)
4.从n边形的一个顶点出发引(n-3)条对角线;n
边形的对角线有 n(n 上册
1.若一个多边形从一个顶点可以引4条对角线,则它是( C )
A.五边形
B.六边形
C.七边形
D.八边形
2.过多边形的一个顶点的对角线把多边形分成7个三角形,那
么这个多边形的边数为( B )
角形木板上锯出一正六边形木块,那么正
六边形木板的边长为( B ).
A. 28 cm
B. 30 cm
C. 32 cm
D. 24 cm
拓展训练
人教版数学八年级上册
1.六边形纸片剪去一个角后,得到的多边形的边数可能
是多少?画出图形说明.
还有其他 的剪法吗?
解:如图所示,剪去一个角后,六
边形的边数增加一条,此时新的多
长为45,且各边长是连续的自然数,求这个多边形的各边长.
解:由n-3=2得n=5, 设边长为x-2,x-1,x,x+1,x+2, 则5x=45, 解得x=9. 答:各边之长为7,8,9,10,11.
课堂小结
人教版数学八年级上册
今天我们学了什么呢?
1.多边形及有关概念. 2.区别凸多边形和凹多边形. 3.正多边形的概念.
人教版数学八年级上册
人教版数学八年级上册
第11.3.1多边形
学习目标
人教版数学八年级上册
1.了解并掌握多边形的定义及有关概念,能区分凸凹多边形. 2.理解正多边形及其有关概念. 3.掌握对角线条数与多边形的边数之间的关系.
情境引入
人教版数学八年级上册
问题1.观察图片,你能找到由一些线段围成的你图能形说吗一?说什
C.十二边形
D.十三边形
3.一个多边形有14条对角线,那么这个多边形的边数是

人教版2023-2024学年八年级上册数学《多边形及其内角》同步练习(含答案)

人教版2023-2024学年八年级上册数学《多边形及其内角》同步练习(含答案)

人教版2023-2024学年八年级上册数学《多边形及其内角》同步练习一、单选题1.一个多边形的每个外角都等于与它相邻的内角,这个多边形是( )边形A .四B .五C .六D .八2.若一个多边形的每个内角都是,那么它的边数是( )140︒A .5B .7C .9D .113.中国古代建筑具有悠久的历史传统和光辉的成就,其建筑艺术也是美术鉴赏的重要对象.如图是中国古代建筑中的一个正八边形的窗户,则它的内角和为( )A .B .C .D .1080︒900︒720︒540︒4.如图,一束平行太阳光照射到正五边形上,若∠1=46°,则∠2的度数为( )A .46°B .108°C .26°D .134°5.如图1是一个2×5长方形方格,用图2所示的1×2的黑色长方形(允许只用一种)去填满,共有( )种不同的方法.A .7B .8C .9D .106.如图,四边形中,与相邻的两外角平分线交ABCD 90,ADC ABC ∠=∠=︒ADC ABC ∠∠、于点若则的度数为( ),E 60,A ∠=︒E ∠A .B .C .D .60 50 40 307.如图,要使一个七边形木架不变形,至少要再钉上木条的根数是( )A .1根B .2根C .3根D .4根8.七边形中,、的延长线相交于点.若图中、、、的ABCDEFG AB ED O 1∠2∠3∠4∠外角的角度和为,则的度数为( )220︒BOD ∠A .B .C .D .30︒35︒40︒45︒9.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是( )A .B .C .D .240︒220︒180︒330︒10.如图,直线,将一个含角的直角三角尺按图中方式放置,点E 在AB CD ∥60︒EGF 上,边、分别交于点H 、K ,若,则等于( ).AB GF EF CD 64BEF ∠=︒GHC ∠三、解答题21.若一个多边形的内角和等于它的外角和的24.已知一个正n边形的内角和是正三角形内角和的4倍.(1)求n;(2)用边长相等的正n 边形和正三角形两种地板镶嵌地面,则一个公共顶点处需要正n边形和正三角形的个数分别为x、y,求x和y的关系式.25.如图,小明从点A出发,前进10m后向右转30°,再前进10m后又向右转30°,……,如此反复下去,直到她第一次回到出发点A,他所走的路径构成了一个正多边形.(1)求小明一共走了多少米;(2)求这个正多边形的内角和.答案:1.A2.C3.A4.C5.B6.D7.D8.C9.A10.B11.512.③④13.50°或130°14. 15 60°15.18/十八16. 2 817./36度36︒18./度 144︒1443519. 144 10 144020./度180︒18021.这个多边形是十边形22.(1)15;(2)1523.(1)8(2)360︒24.(1)6n =(2)26x y +=25.(1)小明一共走了120米1800 (2)这个多边形的内角和是.。

人教版八年级数学上册《多边形及其内角和》测试题

人教版八年级数学上册《多边形及其内角和》测试题

《多边形及其内角和》测试题一.选择题(共10小题)1.正八边形的每个外角为()A.45°B.55°C.135°D.145°2.一个正多边形的外角与其相邻的内角之比为1:3,那么这个多边形的边数为()A.8 B.9 C.10 D.123.将四边形纸片ABCD按如图的方式折叠使C′P∥AB.若∠B=120°,∠C=90°,则∠CPR等于()A.30°B.45°C.60°D.90°4.如果一个正多边形的内角和是外角和的3倍,那么这个正多边形的边数为()A.5 B.6 C.7 D.85.如果n边形的每一个内角都等于与它相邻外角的2倍,那么n的值是()A.7 B.6 C.5 D.46.如图,五边形ABCDE的一个内角∠A=110°,则∠1+∠2+∠3+∠4等于()A.360°B.290°C.270°D.250°7.如图,∠1,∠2,∠3,∠4是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=68°,则∠AED的度数是()A.88°B.98°C.92°D.112°8.如图,在四边形ABCD中,DE平分∠ADC交BC于点E,AF⊥DE,垂足为点F,若∠DAF=50°,则∠EDC=()A.40°B.50°C.80°D.100°9.已知一个多边形的外角和比它的内角和少540°,则该多边形的边数为()A.7 B.8 C.9 D.1010.小磊利用最近学习的数学知识,给同伴出了这样一道题:假如从点A出发,沿直线走5米后向左转θ,接着沿直线前进5米后,再向左转……如此下去,当他第一次回到A点时,发现自己走了60米,θ的度数为()A.28°B.30°C.33°D.36°二.填空题(共5小题)11.已知一个正n边形的每个内角都为144°,则边数n为.12.如图,六边形ABCDEF的各角都相等,若m∥n,则∠1+∠2=°.13.如图,已知BC与DE交于点M,则∠A+∠B+∠C+∠D+∠E+∠F的度数为.14.如果一个正多边形的每个外角都等于72°,那么它是正边形.15.如图,在正五边形ABCDE中,DM是边CD的延长线,连接BD,则∠BDM的度数是.三.解答题(共5小题)16.如图所示:求∠A+∠D+∠B+∠E+∠C+∠F的度数.17.如图,五边形ABCDE的各内角相等.(1)求每个内角的度数;(2)连接AC,AD,∠1=∠2,∠3=∠4,求∠CAD的度数.18.探索题:(1)如图,已知任意三角形的内角和为180°,试利用过多边形一个顶点引对角线把多边形分割成三角形的办法,寻求多边形内角和的公式.根据上图所示,填空:一个四边形可以分成个三角形,于是四边形的内角和为;一个五边形可以分成个三角形,于是五边形的内角和为…按此规律,一个n边形可以分成个三角形,于是n边形的内角和为.(2)计算下列各题:6×7=;66×67=;666×667=;6666×6667=.观察上述的结果,利用你发现的规律,直接写出:=.19.如图,四边形ABCD中,∠B=∠D=90°,点G,A,B在同一条直线上,点H,C,D在同一条直线上.(1)图①中,AE,CF分别是∠BAD和∠DCB的平分线,则AE与CF的位置关系?(2)图②中,AE,CF分别是∠GAD和∠HCB的平分线,则AE与CF的位置关系?(3)图③中,AE,CF分别是∠BAD和∠HCB的平分线,则AE与CF的位置关系?(4)请从(1)(2)(3)题中任选一个,证明你得出的结论.20.(1)图(1)中AB和AC相交于点A,BD和CD相交于点D,探究∠BDC与∠B、∠C、∠BAC的关系小明是这样做的:解:以点A为端点作射线AD∵∠1是△ABD的外角∴∠1=∠B+∠BAD同理∠2=∠C+∠CAD∴∠1+∠2=∠B+∠BAD+∠C+∠CAD即∠BDC=∠B+∠C+∠BAC小英的思路是:延长BD交AC于点E.1小英的思路完成∠BDC=∠B+∠C+∠BAC这一结论.(2)按照上面的思路解决如下问题:如图(2):在△ABC中,BE、CD分别是∠ABC ∠ACB的角平分线,交AC于E,交AB于D.BE、CD相交于点O,∠A=60°.求∠BOC的度数.(3)如图(3):△ABC中,BO、CO分别是∠ABC与∠ACB的角平分线,且BO、CO 相交于点O.猜想∠BOC与∠A有怎样的关系,并加以证明.参考答案一.选择题1.解:360°÷8=45°.故选:A.2.解:设每个内角与它相邻的外角的度数分别为3x、x,∴x+3x=180°,∴x=45°,故这个多边形的边数=.故选:A.3.解:∵C′P∥AB,∴∠BPC′=180°﹣∠B=60°,∴∠CPC′=180°﹣∠BPC′=120°,∴∠CPR==60°.故选:C.4.解:设正多边形的边数为n,由题意得:(n﹣2)•180°=3×360°,解得:n=8,故选:D.5.解:设外角为x,则相邻的内角为2x,由题意得2x+x=180°,解得x=60°,360÷60°=6.故n的值是6.故选:B.6.解:∵∠A=110°,∴∠A的外角为180°﹣110°=70°,∴∠1+∠2+∠3+∠4=360°﹣70°=290°,故选:B.7.解:根据多边形外角和定理得到:∠1+∠2+∠3+∠4+∠5=360°,∴∠5=360°﹣4×68°=88°,∴∠AED=180°﹣∠5=180°﹣88°=92°.故选:C.8.解:由AF⊥DE可得∠AFD=90°,∴得∠ADF=90°﹣∠DAF=90°﹣50°=40°,∵DE平分∠ADC,∴∠EDC=∠ADF=40°,故选:A.9.解:设多边形的边数是n,根据题意得,(n﹣2)•180°﹣360°=540°,解得n=7.故选:A.10.解:∵第一次回到出发点A时,所经过的路线正好构成一个正多边形,∴正多边形的边数为:60÷5=12,根据多边形的外角和为360°,∴则他每次转动θ的角度为:360°÷12=30°,故选:B.二.填空题(共5小题)11.解:由题意得,(n﹣2)•180°=144°•n,解得n=10.故答案为:十.12.解:延长DC,交直线n于点G,∵六边形ABCDEF的各角都相等,∴AF∥DC,∴∠2=∠3,又∵m∥n,∴∠3+∠4=180°,∵∠4=∠1,∴∠1+∠2=180°,故答案为:180.13.解:连接BE.∵△CDM和△BEM中,∠DMC=∠BME,∴∠C+∠D=∠MBE+∠BEM,∴∠A+∠B+∠C+∠D+∠E+∠F=∠A+∠B+∠MBE+∠BEM+∠E+∠F=∠A+∠F+∠ABE+∠BEF=360°.故答案为:360°.14.解:这个正多边形的边数:360°÷72°=5.故答案为:515.解:因为五边形ABCDE是正五边形,所以∠C==108°,BC=DC,所以∠BDC==36°,所以∠BDM=180°﹣36°=144°,故答案为:144°.三.解答题(共5小题)16.解:由图可得,∠A+∠D+∠B+∠E+∠C+∠F的和正好是中间小三角形的三个外角之和,∵三角形的外角和是360°,∴∠A+∠D+∠B+∠E+∠C+∠F=360°.17.解:(1)∵五边形的内角和是(5﹣2)×180°=540°,∴每个内角为540°÷5=108°,(2)∵∠E=∠B=∠BAE=108°,又∵∠1=∠2,∠3=∠4,∴∠1=∠2=∠3=∠4=(180°﹣108°)÷2=36°,∴∠CAD=∠BAE﹣∠1﹣∠3=108°﹣36°﹣36°=36°.18.解:(1)2,360°,3,540°,n﹣2,(n﹣2)•180°;(2)42,4422,444222,44442222,19.解:(1)图1中AE∥FC;(2)图2中AE∥FC;(3)图3中AE⊥FC.(4)选择图1证明.如图1:∵∠BAD+∠BCD=∠1+∠2+∠3+∠4=360°﹣(∠B+∠D)=360°﹣180°=180°,又∵AE、CF分别是∠BAD和∠DCB的内角平分线,∴∠1+∠3=∠BAD+∠BCD=(∠BAD+∠BCD)=×180°=90°.又∵∠B=90°,∴∠1+∠5=90°,∴∠3=∠5,∴AE∥FC;选择图2证明,如图2,∵∠B=∠D=90°,∴∠BAD+∠BCD=360°﹣2×90°=180°,∴∠BAD+∠BCD=90°,∴∠GAD=∠BCD,∵AE是∠GAD的角平分线,∴∠1=∠GAD=∠BCD,同理可得:∠2=∠BAD,∴∠1+∠BAD=90°,延长CD交AE于点P,∠ADC=90°,∴∠1+∠P=90°,∴∠P=∠BAD,即∠P=∠2,∴AE∥FC(同位角相等,两直线平行);选择图3证明.如图3:∵∠B+∠BAD+∠D+∠DCB=360°,又∵∠B=∠D=90°,∴∠BAD+∠DCB=180°,∵∠DCB+∠BCE=180°,∴∠BAD=∠BCE,∵AE、AF分别是∠BAD和∠DCB的内角平分线和外角平分线,∴∠1=∠BAD,∠2=∠BCE,∴∠1=∠2,∵∠3=∠4,∠1+∠B+∠4=180°,∠2+∠CMA+∠3=180°,∵∠B=90°∠1+∠4=∠2+∠3,∴∠CMA=∠B=90.∴AE⊥CF.20.(1)证明:延长BD交AC于E,∵∠BDC=∠C+∠CED,又∵∠CED=∠BAC+∠B,∴∠BDC=∠C+∠B+∠BAC;(2)解:∵由(1)知∠BOC=∠ABE+∠ACD+∠A,又∵∠ABE=∠ABC,∠ACD=∠ACB,∴∠ABE+∠ACD=(∠ABC+∠ACB)=(180﹣∠A)=×120=60°,∴∠BOC=120°;(3)∠BOC与∠A的关系:∠BOC=90°+∠A.理由如下:由(2)得∠BOC=(180°﹣∠A)+∠A=90°+∠A.。

人教版八年级上册数学《多边形》单元测试卷(含答案)

人教版八年级上册数学《多边形》单元测试卷(含答案)

人教版八年级上册数学《多边形》单元测试卷(含答案)第一部分:选择题(每小题2分,共30分)请在括号内选择正确的答案,并将其序号填写在题前的括号内。

1. 一个多边形的内角和为:A. 180°B. 360°C. 90°D. 270°2. 平行四边形的对角线互相平分,对角线的交点是:A. 中线B. 垂直平分线C. 对角线中点D. 不确定3. 一个凸多边形的对角线个数是:A. n(n-3)/2B. n(n-1)/2C. n(n-2)/2D. 2n...第二部分:填空题(每小题3分,共30分)请在横线上填入适当的内容,使得等式成立。

1. 正方形的每个角是_90_度。

2. 具有相等边长的正多边形是_正_多边形。

3. 一个五边形的内角和等于_540_度。

...第三部分:解答题(每小题10分,共40分)根据题目要求,写下解答过程和答案。

1. 求一条边长为8cm的正五边形的内角和。

解答过程:由于正五边形的每个内角相等,先求出其中一个内角的大小。

一个内角的大小为180° * (5 - 2) / 5 = 108°正五边形的内角和等于5 * 108° = 540°答案:540°2. 证明平行四边形的对角线相等。

解答过程:根据平行四边形的性质,对角线互相平分。

设平行四边形的对角线为AC和BD,交点为O。

由于对角线平分,所以AO = OC,BO = OD。

根据三角形的SAS相似定理,可以得出△ABO ~ △CDO。

根据相似三角形的性质,可以得出AO/OC = BO/OD,即AO/BO = OC/OD。

因此,平行四边形的对角线相等。

答案:证明完毕。

...第四部分:应用题(每小题15分,共60分)根据题目要求,完成下列应用题。

1. 若平行四边形的一边长为6cm,另一边长为8cm,计算它的面积。

解答过程:设平行四边形的一边长为a,另一边长为b。

数学人教版八年级上册多边形及其内角和练习题(含答案)

数学人教版八年级上册多边形及其内角和练习题(含答案)

数学人教版八年级上册多边形及其内角和练习题(含答案)11.3 多边形及其内角和基础过关作业1.四边形 ABCD 中,如果∠A + ∠C + ∠D = 280°,则∠B 的度数是()A。

80° B。

90° C。

170° D。

20°2.一个多边形的内角和等于 1080°,这个多边形的边数是()A。

9 B。

8 C。

7 D。

63.内角和等于外角和 2 倍的多边形是()A。

五边形 B。

六边形 C。

七边形 D。

八边形4.六边形的内角和等于 XXX 度。

5.正十边形的每一个内角的度数等于 144°,每一个外角的度数等于 36°。

6.如图,你能数出多少个不同的四边形?7.四边形的四个内角不可能都是锐角,也不可能都是钝角,但可以都是直角。

因为四个直角相加等于 XXX 度。

8.求下列图形中 x 的值:综合创新作业9.(综合题)已知:如图,在四边形 ABCD 中,∠A =∠C = 90°,BE 平分∠ABC,DF 平分∠ADC。

BE 与 DF 交于点 E。

因为∠A = ∠C = 90°,所以 AC 是矩形的一条对角线,即 AC 的中点是矩形的重心。

由于 BE 平分∠ABC,所以∠EBD = ∠EBC,而∠EBC = ∠ABD,所以∠EBD = ∠ABD。

同理可证∠FDC = ∠ACD = ∠ADB。

因此,BE 与 DF 是平行的,且 DE = EF。

10.(应用题)有 10 个城市进行篮球比赛,每个城市均派3 个代表队参加比赛,规定同一城市间代表队不进行比赛,其他代表队都要比赛一场。

按此规定,所有代表队要打 135 场比赛。

11.(创新题)如图,以五边形的每个顶点为圆心,以 1 为半径画圆,求圆与五边形重合的面积。

12.(1)(2005 年,南通)已知一个多边形的内角和为540°,则这个多边形为三角形。

2)(2005 年,福建泉州)五边形的内角和等于 540 度。

人教版八年级数学上册《多边形》同步训练习题

人教版八年级数学上册《多边形》同步训练习题

人教版八年级数学上册《多边形》同步训练习题11.3.1《多边形》同步训练习题一.选择题(共7小题)1.(2015秋•克什克腾旗校级月考)下列图中不是凸多边形的是()A.B.C.D.2.(2015秋•克什克腾旗校级月考)下列图形中,是正多边形的是()A.直角三角形 B.等腰三角形 C.长方形D.正方形3.n边形的内角的和等于()A.(n﹣1)×180°B.(n﹣2)×180°C.(n﹣3)×180°D.(n﹣4)×180°4.(2015秋•三亚校级月考)一个四边形截去一个内角后变为()A.三角形B.四边形C.五边形D.以上均有可能5.(2014秋•朝阳区期末)在六边形内任取一点,把这个点与六边形的各顶点分别连接可以得到()A.4个三角形B.5个三角形C.6个三角形D.7个三角形6.(2012秋•渝中区校级期末)从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成()个三角形.A.6 B.5 C.8 D.77.从多边形一条边上的一点(不是顶点)出发,连接各个顶点得到200 3个三角形,则这个多边形的边数为()A.2001 B.2005 C.2004 D.2006二.填空题(共7小题)8.(2014春•邵阳期末)能伸缩的校门,它利用了四边形的一个性质是.9.(2013秋•景泰县校级月考)在平面内,,的多边形叫正多边形.10.多边形相邻两边组成的角叫做它的;多边形的边与它的邻边的延长线组成的角叫做多边形的;连接多边形不相邻的两个顶点的线段叫做多边形的.11.若一个多边形截去一个角后,变成六边形,则原来多边形的边数可能是.12.若一个六边形的各条边都相等,当边长为3cm时,它的周长为cm.13.如图所示,将多边形分割成三角形﹨图(1)中可分割出2个三角形;图(2)中可分割出3个三角形;图(3)中可分割出4个三角形;由此你能猜测出,n边形可以分割出个三角形.14.(2011•肇庆)如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是.三.解答题(共4小题)15.用两个一样大小的含30°角的三角板可以拼成多少个形状不同的四边形?请画图说明.16.(2012春•西城区校级期中)把一个多边形沿着几条直线剪开,分割成若干个多边形.分割后的多边形的边数总和比原多边形的边数多13条,内角和是原多边形内角和的1.3倍.求:(1)原来的多边形是几边形?(2)把原来的多边形分割成了多少个多边形?17.已知线段AC=8,BD=6.(1)已知线段AC垂直于线段BD.设图1,图2和图3中的四边形ABCD的面积分别为S1﹨S2和S3,则S1= ,S2= ,S3= ;(2)如图4,对于线段AC与线段BD垂直相交(垂足O不与点A,C,B ,D重合)的任意情形,请你就四边形ABCD面积的大小提出猜想,并证明你的猜想;(3)当线段BD与AC(或CA)的延长线垂直相交时,猜想顺次连接点A,B,C,D,A所围成的封闭图形的面积是多少?18.已知正n边形的周长为60,边长为a(1)当n=3时,请直接写出a的值;(2)把正n边形的周长与边数同时增加7后,假设得到的仍是正多边形,它的边数为n+7,周长为67,边长为b.有人分别取n等于3,20,120,再求出相应的a与b,然后断言:“无论n取任何大于2的正整数,a与b一定不相等.”你认为这种说法对吗?若不对,请求出不符合这一说法的n的值.人教版八年级数学上册11.3.1《多边形》同步训练习题参考答案一.选择题(共7小题)1.(2015秋•克什克腾旗校级月考)下列图中不是凸多边形的是()A.B.C.D.选A2.(2015秋•克什克腾旗校级月考)下列图形中,是正多边形的是()A.直角三角形 B.等腰三角形 C.长方形D.正方形【考点】多边形.【分析】根据正多边形的定义;各个角都相等,各条边都相等的多边形叫做正多边形可得答案.【解答】解:正方形四个角相等,四条边都相等,故选:D.【点评】此题主要考查了正多边形,关键是掌握正多边形的定义.3.n边形的内角的和等于()A.(n﹣1)×180°B.(n﹣2)×180°C.(n﹣3)×180°D.(n﹣4)×180°【考点】多边形;多边形内角与外角.【分析】从四边形的一个顶点出发可以画1条对角线,把四边形分成两个三角形,所以四边形内角和为:(4﹣2)×180°,从五边形的一个顶点出发可以画2条对角线,把五边形分成三个三角形,所以四边形内角和为:(5﹣2)×180°,从n边形的一个顶点出发可以画(n﹣3)条对角线,把四边形分成(n﹣2)个三角形,所以n边形内角和为:(n﹣2)×180°.【解答】解:因为三角形的内角和是180°,四边形的内角和是360°,五边形的内角和是540°,∴n边形的内角的和公式:(n﹣2)×180°,故选:B.【点评】此题主要考查了多边形内角和公式.正确的记忆多边形内角和公式是解决问题的关键.4.(2015秋•三亚校级月考)一个四边形截去一个内角后变为()A.三角形B.四边形C.五边形D.以上均有可能【考点】多边形.【分析】一个四边形截去一个角是指可以截去两条边,而新增一条边,得到三角形;也可以截去一条边,而新增一条边,得到四边形;也可以直接新增一条边,变为五边形.可动手画一画,具体操作一下.【解答】解:如图可知,一个四边形截去一个角后变成三角形或四边形或五边形.故选:D.【点评】本题考查了多边形,解决此类问题的关键是动手画一画准确性高,注意不要漏掉情况.5.(2014秋•朝阳区期末)在六边形内任取一点,把这个点与六边形的各顶点分别连接可以得到()A.4个三角形B.5个三角形C.6个三角形D.7个三角形【考点】多边形.【分析】根据六边形有六个顶点,连接六个顶点,可得六个三角形.【解答】解:在六边形内任取一点,把这个点与六边形的各顶点分别连接可以得到六个三角形,故选:C.【点评】本题考查了多边形,利用了图形的分割:六个顶点可分割成六个三角形.6.(2012秋•渝中区校级期末)从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成()个三角形.A.6 B.5 C.8 D.7【考点】多边形.【专题】规律型.【分析】从n边形的一个顶点出发,连接这个点与其余各顶点,可以把一个四边形分割成(n﹣2)个三角形.【解答】解:从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成7﹣2=5个三角形.故选:B.【点评】本题考查的知识点为:从n边形的一个顶点出发,可把n边形分成(n﹣2)个三角形.7.(2010秋•毕节市校级期中)从多边形一条边上的一点(不是顶点)出发,连接各个顶点得到2003个三角形,则这个多边形的边数为()A.2001 B.2005 C.2004 D.2006【考点】多边形.【分析】可根据多边形的一点(不是顶点)出发,连接各个顶点得到的三角形个数与多边形的边数的关系求解.【解答】解:多边形一条边上的一点(不是顶点)出发,连接各个顶点得到2003个三角形,则这个多边形的边数为2003+1=2004.故选C.【点评】多边形一条边上的一点(不是顶点)出发,连接各个顶点得到的三角形个数=多边形的边数﹣1.二.填空题(共7小题)8.(2014春•邵阳期末)能伸缩的校门,它利用了四边形的一个性质是四边形的不稳定性.【考点】多边形.【分析】由四边形的特性可知,四边形具有不稳定性,所以容易变形,伸缩门的运用了四边形易变形的特性.【解答】解:伸缩门做成四边形的形状,是利用四边形的易变形的特性.故答案为:四边形的不稳定性.【点评】此题主要考查了四边形的特性是容易变形.9.(2013秋•景泰县校级月考)在平面内,各边都相等,各内角也相等的多边形叫正多边形.【考点】多边形.【分析】利用正多边形的定义直接填空得出即可.【解答】解:如果多边形的各边都相等,各内角也相等,那么就称它为正多边形.故答案为:各边都相等,各内角也相等.【点评】此题主要考查了掌握正多边形概念.如果多边形的各边都相等,各内角也相等,那么就称它为正多边形.10.多边形相邻两边组成的角叫做它的内角;多边形的边与它的邻边的延长线组成的角叫做多边形的外角;连接多边形不相邻的两个顶点的线段叫做多边形的对角线.【考点】多边形.【分析】根据多边形的定义以及外角的定义和对角线的定义分别分析得出即可.【解答】解:多边形相邻两边组成的角叫做它的内角;多边形的边与它的邻边的延长线组成的角叫做多边形的外角;连接多边形不相邻的两个顶点的线段叫做多边形的对角线.故答案为:内角,外角,对角线.【点评】此题主要考查了多边形有关定义,熟练掌握相关概念是解题关键.11.(2011春•郯城县期中)若一个多边形截去一个角后,变成六边形,则原来多边形的边数可能是5,6,7 .【考点】多边形.【分析】实际画图,动手操作一下,可知六边形可以是五边形﹨六边形﹨七边形截去一个角后得到.【解答】解:如图可知,原来多边形的边数可能是5,6,7.【点评】此类问题要从多方面考虑,注意不能漏掉其中的任何一种情况.12.若一个六边形的各条边都相等,当边长为3cm时,它的周长为18cm.【考点】多边形.【专题】计算题.【分析】由于六边形的各条边都相等,则六边形的周长=各条边的长×6.【解答】解:六边形的周长为:3×6=18cm.故这个六边形的周长为18cm.故答案为:18.【点评】本题考查了多边形的周长计算,是基础题型,比较简单.13.(2008秋•高碑店市期中)如图所示,将多边形分割成三角形﹨图(1)中可分割出2个三角形;图(2)中可分割出3个三角形;图(3)中可分割出4个三角形;由此你能猜测出,n边形可以分割出(n﹣1)个三角形.【考点】多边形.【分析】(1)三角形分割成了两个三角形;(2)四边形分割成了三个三角形;(3)以此类推,n边形分割成了(n﹣1)个三角形.【解答】解:n边形可以分割出(n﹣1)个三角形.【点评】此题注意观察:是连接n边形的其中一边上的点.根据具体数值进行分析找规律.n边形分割成了(n﹣1)个三角形.14.(2011•肇庆)如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是n2+2n .【考点】多边形.【专题】压轴题;规律型.【分析】第1个图形是2×3﹣3,第2个图形是3×4﹣4,第3个图形是4×5﹣5,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是(n+1)(n+2)﹣(n+2)=n2+2n.【解答】解:第n个图形需要黑色棋子的个数是n2+2n.故答案为:n2+2n.【点评】首先计算几个特殊图形,发现:数出每边上的个数,乘以边数,但各个顶点的重复了一次,应再减去.三.解答题(共4小题)15.用两个一样大小的含30°角的三角板可以拼成多少个形状不同的四边形?请画图说明.【考点】多边形.【专题】作图题.【分析】若让它们的斜边重合,则可以拼出矩形或一组对角是直角的四边形;若让它们的直角边重合,则可以拼出两种不同的平行四边形.【解答】解:四个.如图所示:【点评】能够让它们的边分别重合进行不同的拼图.考查了学生的实践能力.16.(2012春•西城区校级期中)把一个多边形沿着几条直线剪开,分割成若干个多边形.分割后的多边形的边数总和比原多边形的边数多13条,内角和是原多边形内角和的1.3倍.求:(1)原来的多边形是几边形?(2)把原来的多边形分割成了多少个多边形?【考点】多边形;规律型:图形的变化类.【分析】把多边形沿直线剪开,每增加一个多边形,边数的增加会出现以下三种情况:①当直线经过两个顶点时,增加两条边;②当直线经过一个顶点时,增加三条边;③当直线不经过顶点时,增加四条边.于是,当将原多边形分割成4个小多边形,最多可以增加4×3=12条边,当将原多边形分割成8个小多边形,最少可以增加2×7=14条边.所以分割后的多边形的个数是5,6,7中的一个.设原多边形的边数是n,分割成边数为a1,a2,…,a m的m个多边形,则m 个多边形的总边数为a1+a2+…+a m由题意,可得方程a1+a2+…+a m=n+13,180(a1﹣2)+180(a2﹣2)+…+180(a m﹣2)=1.3×180(n﹣2),再整理可得3n+20m=156,再讨论出二元一次方程的整数解即可.【解答】解:设原多边形的边数是n,分割成边数为a1,a2,…,a m的m 个多边形,则m个多边形的总边数为a1+a2+…+a m,由题意有a1+a2+…+a m=n+13,180(a1﹣2)+180(a2﹣2)+…+180(a m﹣2)=1.3×180(n﹣2),则3n+20m=156,解得:m=6,n=12.故原来的多边形是12边形,把原来的多边形分割成了6个小多边形.【点评】此题主要考查了多边形,关键是掌握多边形内角和公式180°(n﹣2).17.已知线段AC=8,BD=6.(1)已知线段AC垂直于线段BD.设图1,图2和图3中的四边形ABCD的面积分别为S1﹨S2和S3,则S1= 24 ,S2= 24 ,S3= 24 ;(2)如图4,对于线段AC与线段BD垂直相交(垂足O不与点A,C,B ,D重合)的任意情形,请你就四边形ABCD面积的大小提出猜想,并证明你的猜想;(3)当线段BD与AC(或CA)的延长线垂直相交时,猜想顺次连接点A,B,C,D,A所围成的封闭图形的面积是多少?【考点】多边形;三角形的面积.【专题】探究型.【分析】(1)根据三角形的面积公式进行计算;(2)根据(1)中的计算结果,发现三个图形的面积都是24.根据三角形的面积公式进行证明;(3)仍然把四边形的面积分割成两个三角形,按三角形的面积公式进行证明.【解答】解:(1)S1=24,S2=24,S3=24;(2)对于线段AC与线段BD垂直相交(垂足O不与点A,C,B,D重合)的任意情形,四边形ABCD的面积为定值24.证明如下:∵AC⊥BD,∴S△BAC=AC•OB,S△DAC=AC•OD,∴S四边形ABCD=AC•OB+AC•OD=AC•(OB+OD)=AC•BD=24.(3)顺次连接点A,B,C,D,A所围成的封闭图形的面积仍为24.证明:∵AC⊥BD,∴S△ABD=AO•BD,S△BCD=CO•BD,∴S四边形ABCD=S△ABD+S△BCD=AO•BD+CO•BD=BD(AO+CO)=BD•AC=24.【点评】此题注意发现:对角线互相垂直的四边形的面积总等于对角线乘积的一半.18.已知正n边形的周长为60,边长为a(1)当n=3时,请直接写出a的值;(2)把正n边形的周长与边数同时增加7后,假设得到的仍是正多边形,它的边数为n+7,周长为67,边长为b.有人分别取n等于3,20,120,再求出相应的a与b,然后断言:“无论n取任何大于2的正整数,a与b一定不相等.”你认为这种说法对吗?若不对,请求出不符合这一说法的n的值.【点评】读懂题意,找到相应量的等量关系是解决问题的关键.。

人教版八年级数学上册 多边形及其内角和同步练习题精选(附答案)

人教版八年级数学上册 多边形及其内角和同步练习题精选(附答案)

人教版八年级数学上册 多边形及其内角和同步练习题精选一、选择题。

1.下列图形中具有稳定性的有( )A .正方形B .长方形C .梯形D .直角三角形2.四边形没有稳定性,当四边形形状改变时,发生变化的是( )A .四边形的边长B .四边形的周长C .四边形的某些角的大小D .四边形的内角和3.九边形的对角线有( )A .25条B .31条C .27条D .30条4.下列图中不是凸多边形的是( )5.把一张形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,则这张纸片原来的形状不可能是( )A . 六边形B .五边形C .四边形D .三角形6.如图,木工师傅从边长为90cm 的正三角形木板上锯出一正六边形木块,那么正六边形木板的边长为( )A . 34cmB .32cmC .30cmD .28cm7.六边形内角和为( )A .360°B .540°C .720°D .1080°8.某学生在计算四个多边形的内角和时,得到下列四个答案,其中错误的是( )A .180°B .540°C .1900°D .1080°9.下列多边形中,内角和与外角和相等的是( )A . 四边形B .五边形C .六边形D .八边形10.当一个多边形的边数增加时,其外角和( )A .增加B .减少C .不变D .不能确定11.如果一个多边形的内角和是720°,那么这个多边形的对角线的条数是( )A .6B .9C .14D .2012.已知正n 边形的一个内角为135°,则边数n 的值是( )A .6B .7C .8D .1013.如图,一个60°角的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2的度数为( )A .120°B .180°C .240°D .300°ABCD14.一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为( )A .5B .5或6C .5或7D .5或6或715.一个多边形截去一个角(不过顶点)后,形成的多边形的内角和是2520°,那么原多边形的边数是( )A .13B .14C .15D .13或1516.如图,过正五边形ABCDE 的顶点A 作直线l ∥BE ,则∠1的度数为( )A .30°B .36°C .38°D .45°17.若一个多边形的内角和小于其外角和,则这个多边形的边数是( )A .3B .4C .5D .618.如果一个多边形的内角和是它的外角和的n 倍,则这个多边形的边数是( )A .nB .2n-2C .2nD .2n+2二、填空题。

多边形及其内角和—数学人教版八年级上册随堂小练

多边形及其内角和—数学人教版八年级上册随堂小练

多边形及其内角和—数学人教版八年级上册随堂小练1.如图所示的蜂巢由许多六边形构成,每个六边形至少可以分割成三角形的个数为()A.6B.5C.4D.32.从多边形的一个顶点出发可引出7条对角线,则该多边形是()A.七边形B.八边形C.九边形D.十边形3.七边形内角和的度数为()A.360︒B.900︒C.1080︒D.1260︒4.已知多边形的每一个内角都等于150°,则这个多边形的边数是()A.9B.10C.11D.125.若一个多边形的内角和是外角和的3倍,则该多边形的边数为()A.5B.6C.7D.86.正十二边形的外角和为______.7.已知一个多边形的外角和与内角和的比为1:3,则这个多边形的边数为______.8.(1)根据图中的相关数据,求出x的值:(2)一个多边形内角和的度数比外角和的度数的4倍多180度,求多边形的边数.答案以及解析1.答案:C解析:一个六边形至少可以分割成624-=个三角形.故选C.2.答案:D解析:任意n 边形,从一个顶点出发可引出的对角线的条数为(3)n -条.所以37n -=.所以10n =.所以这个多边形是十边形.3.答案:B解析:七边形内角和的度数为()72180900-⨯︒=︒.故选:B.4.答案:D解析:∵多边形的每一个内角都等于150°,∴多边形的每一个外角都等于18015030︒-︒=︒,∴边数3603012n =︒÷︒=.故选:D.5.答案:D解析:设多边形的边数是n ,根据题意得,()21803360n -⋅︒=⨯︒,解得8n =,∴这个多边形的边数为8.故选:D.6.答案:360︒解析:正十二边形的外角和是:360︒,故答案是:360︒.7.答案:8解析:∵多边形的外角和为360°,外角和:内角和1:3=,∴多边形的内角和为36031080︒⨯=︒,设多边形的边数为n ,∴()18021080n ︒-=︒,∴8n =,故答案为:8.8.答案:(1)73x =(2)多边形的边数为11解析:(1)()(9)1159042180x x ︒︒︒︒++++=-⨯︒,解得:73x =.(2)设多边形的边数为n ,多边形的外角和是360︒,内角和的度数比外角和的度数的4倍多180度,∴可得方程()21804360180n -︒=⨯︒+︒,解得11n =,多边形的边数为11.。

人教版-数学-八年级上册-例题解析:多边形及其内角和

人教版-数学-八年级上册-例题解析:多边形及其内角和

例题解析:多边形及其内角和【例1】一个多边形出一个内角外,其余个内角的和为20300,求这个多边形的边数.【点拨】本题在利用多边形的内角和计算公式得到方程后,又借助数的整除,通过讨论得这个内角的度数,这是解决有关多边形的内角和与外角和问题的一种常用的方法.【答案】设边数为n ,这个内角为x ,则00<x<1800根据题意,得(n-2)×1800=x+20300∵(n -2)×1800是1800的倍数∴x+20300必是1800的倍数∵20300÷1800=11 (50)∴x=1800-500=1300∴(n -2)×1800=1800×11+1800∴n -2=12 ∴n=14答:这个多边形的边数为14.【例2】已知∠ABC 的边BA 、BC 分别于∠DEF 的边ED 、EF 垂直,垂足分别是M 、N ,且∠ABC=700,求∠DEF 的度数.【点拨】本题已知了∠ABC、∠DEF 角和边的关系,没有给出图形,可先画出图形,再结合图形,利用相关知识求解.根据题意,符合条件的图形刻画出两个,要考虑周全,不能漏解,两个图形分别如图7-3-1(1),图7-3-1(2)在图7-3-1(1)中,求∠DEF,利用四边形内角和定理即可在图7-3-1(2)中,求∠DEF,利用三角形内角和等于1800,利用两个三角形中交的关系进行求解.【答案】(1) 如图7-3-1(1)∵DE⊥AB ∴∠BME=900∵EF⊥BC ∴∠BNE=900 ∵∠B+∠BME+∠BNE+∠DEF=3600A A F C E D M N图7-3-1(1) 图7-3-1(2) A E O B C D M N F又∵∠B=700∴∠DEF=1100(2) 如图7-3-1(2)∵DE⊥AB ∴∠BME=900∵EF⊥BC ∴∠BNE=900∴∠BME=∠BNE ∵∠DEF+∠BME+∠EOM=1800∴∠B+∠BME+∠EOM=1800∴∠DEF+∠BME+∠EOM=∠B+∠BME+∠EOM∴∠DEF+∠EOM=∠B+∠EOM∵∠EOM=∠BON ∴∠DEF=∠B∵∠B=700∴∠DEF=700答:∠DEF=700或1100【例3】已知一个多边形的内角和等于1440°,求此多边形对角线的条数.【点拨】先根据多边形的内角和公式(n-2)×180°求出该多边形的边数,再根据多边形对角线条数公式n(n−3)/2进行计算即可得解.【答案】解:设多边形的边数为n,由题意,得:(n-2)×180°=1440°,解得:n=10,所以,此多边形的对角线的条数为n(n−3)/2=35.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D
多边形的问题
1. 多边形的三角形剖分
用一个多边形的两两不内交(两条对角线不相交但交点不在对角线内部)的对角线,将这个多边形划分成若干个三角形,称为这个多边形的一个三角剖分。

例如下面的图形就是对同一个七边形的四个不同的三角形剖分。

围绕多边形的三角形剖分有个有趣的问题:n
边形的三角形剖分能得到多少个三角形?
不难发现,七边形的三角形剖分只能剖分出5个三角形。

一般的,n 边形的三角形剖分能且只能得到(n-2)个三角形。

证明如下:
n 边形的n 个内角之和就是剖分出的各三角形的
所有内角和,设剖分出的三角形的个数是N,
则有
N×1800 =(n-2)1800.
故N=n-2.
2. 多边形的对角线
以六边形ABCDEF 为例,从六边形的一个顶点A 可以引出(6-3)条对角线。

(6-3)是因为六边形共有6个顶点,从一个顶点出发,除了自己这个顶点和与自己相邻的两个顶点不能连成对角线,一共三条线,所以减去3,为(6-3)。

又因为从一个顶点出发可以引出(6-3)条对角线,而6边形共有6个顶点,所以为6(6-3),但其中又正好一半儿是重复的,再除以2,所以六边形的对角线条数为6(6-3)/2。

类似的,可推出n边形的对角线条数为n(n-3)/2.
3. 不规则多边形的角度和
学习了多边形的内角和计算公式:(n-2)·180°,不仅可以用来计算一些规则多边形的度数问题,而且还可以用来解决一些不规范的多边形的角度和的计算问题.所谓星角,就是有封闭的折线首尾相连,交错而成的图形.由于星形的各角比较分散,要求它们的和,就需要把这些分散的角集中到一起构成多边形,借助多边形内角和求解,请看几例.
例1 如图,求∠A+∠B+∠C+∠D+∠E+∠F的度数
分析:观察图形可知,图形中包含着四个三角形,我们可以借助三角形的内角和求解.
解: 因为∠A+∠B+∠1=180°,
∠C+∠D+∠3=180°,
∠E+∠F+∠5=180°,
所以∠A+∠B+∠1+∠C+∠D+∠3
+∠E+∠F+∠5=540°,
又因为∠1=∠2,∠3=∠4,∠5=∠6,
∠2+∠4+∠6=180°,
所以∠1+∠3+∠5=180°,
所以∠A+∠B+∠C+∠D+∠E+∠F
=540°-180°=360°.
例2 如图,求∠A+∠B+∠C+∠D+∠E+∠F+∠G的度数.
分析:观察已知图形为不规则的图形,学习了多边形的内角和,我们可试想将这7个角的和转化为一个多边形的内角和求解,如果连接BF,则可得到一个五边形,借助五边形的内角和解决问题.
解:如图,连接BF,则∠A+∠G+∠1=∠2+∠3+∠4,
因为∠1=∠2,所以∠A+∠G=∠3+∠4,
所以
∠A+∠B+∠C+∠D+∠E+∠F+∠G
=∠D+∠C+∠CBF+∠BFE+∠D
=(5-2)·180°=540°.
4.练习
(1)把一根12边形进行三角形剖分,能分成多少各三角形?
(2)求15边形的所有对角线地条数。

(3)如图:求A+B+C+D+E的度数。

(4)如图,求∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I的度数.
B
E。

相关文档
最新文档