高一物理力学专题提升专题17卫星变轨问题

合集下载

卫星变轨问题的解决方案

卫星变轨问题的解决方案
学 术 探 讨



÷ ; t
_ ◆ I
≯ ≯




r -。 一 一| 一 薯 : 』 j l j | : 亭
弘 0
在 高 中物 理 的 万有 引 力 部 分 . 常 会 涉及 到卫 星 的 轨 道变 常 化 问题 学生 在 解 决这 部 分 问 题 的 时候 容 易 思 维 混乱 . 从 下 无 手, 或者 胡 乱 带公 式 . 成 错 解 。其 实 在 解 决 这类 问题 时 , 造 我们
小 , 以本题 正 确 答 案 应为 B、 所 D
D 飞船 的重 力 势 能逐 渐 减 小 . . 动能 逐 渐 增 大 . 械 能 逐 渐 机
减 小
由于 解 题 思路 的不 同 .得到 的是 完 全 不 同 的 两个 结论 . 可 见一 个 正 确 的解 题 思路 对 解 翘 是 多 么 的重 要
( 由G . ) 3 = ) m( z 可得: 2 V 7 M , T  ̄ 9g r =r 越小, 越小。
r 』
综 上 可知 : 速 度 增 大 , 速 度增 大 , 线 角 周期 减 小 , 能增 大 。 动
势 能 减 小 。此 外 . 于 存 在 阻 力做 负 功 . 成 飞船 的机 械 能 减 由 造
究 》 2 0 ,0 1
来 讲 的不 同范 围 , 即不 同的 语 言环 境 中表 现 } 的 “ ” 使 用 情 { { 们 的
况 及语 义 的 不 同
3陈 小荷 ,主观 量 问题 初 探 》J ,世界 汉语 教 学》 19 . 《 []《 ,94
4 吕叔 湘 , 现 代 汉 语 八 百词 》 M ] 商务 印书 馆 , 9 1 . 《 [ , 1 8

高中物理卫星变轨问题

高中物理卫星变轨问题

作业:
C 卫星在轨道1上经过Q点时的加速度
大于它在轨道2上经过Q点时的加速度 D 卫星在轨道2上经过P点时的加速度 等于它在轨道3上经过P点时的加速度
p
1 23 Q
❖ 卫星变轨
练习如图所示;a b c是在地球大气层外圆形轨道上运行的3颗
人造卫星;下列说法正确的是:
A b c的线速度大小相等;且大于a的线速度 B b c的向心加速度大小相等;且大于a的向心加速度 C c加速可追上同一轨道上的b;b减速可等到同一轨道上的c D a卫星由于某种原因;轨道半径缓慢减小;其线速度将变小
卫星在圆轨 道运行速度
V1
R
1
2
V2
mv12 r
G
Mm r2
F引
θ>900
v 减小
卫星变轨原理
r
v3
F引
椭圆mv32 r
GMr2m
使



v4


v3






运 动
使卫星 v4, 加m 使 速 r42v到 GM r2 m
卫 星 的 回 收
❖ 卫星变轨
卫星如何变轨 以发射同步卫星为例;先进入一
专题 万有引力定律的应用
1 卫星比较问题 2 卫星变轨 问题
两颗人造地球卫星;都在圆形轨道上运行;它 们的质量相等;轨道半径不同;比较它们的向心加 速度an 线速度v 角速度ω 周期T
地球
计算中心天体的质量M 密度ρ
1某星体m围绕中心天体M做圆 周运动的周期为T;圆周运动
的轨道半径为r
M
4 2r3
练习发射地球同步卫星时;先将卫星发射至近地圆轨道1;然后

高中物理卫星变轨问题分析

高中物理卫星变轨问题分析

高中物理卫星变轨问题分析高中物理卫星变轨问题分析1.如图1所示,“嫦娥三号”探测器发射到月球上要经过多次变轨,最终降落到月球表面上,其中轨道Ⅰ为圆形轨道,轨道Ⅱ为椭圆轨道.下列说法正确的是( )图1A .探测器在轨道Ⅰ运行时的加速度大于月球表面的重力加速度B .探测器在轨道Ⅰ经过P 点时的加速度小于在轨道Ⅱ经过P 点时的加速度C .探测器在轨道Ⅰ的运行周期大于在轨道Ⅱ的运行周期D .探测器在P 点由轨道Ⅰ进入轨道Ⅱ必须点火加速答案 C解析探测器在轨道Ⅰ运行时的万有引力小于在月球表面时的万有引力,根据牛顿第二定律,探测器在轨道Ⅰ运行时的加速度小于月球表面的重力加速度,故A 错误;根据万有引力提供向心力有GMm r 2=ma ,距地心距离相同,则加速度相同,故探测器在轨道Ⅰ经过P 点时的加速度等于在轨道Ⅱ经过P 点时的加速度,故B 错误;轨道Ⅰ的半径大于轨道Ⅱ的半长轴,根据开普勒第三定律,探测器在轨道Ⅰ的运行周期大于在轨道Ⅱ的运行周期,故C 正确;探测器在P 点由轨道Ⅰ进入轨道Ⅱ必须减速,故D 错误.2.(多选)2012年6月18日,神舟九号飞船与天宫一号目标飞行器在离地面343 km 的近圆轨道上成功进行了我国首次载人空间交会对接.对接轨道所处的空间存在极其稀薄的大气,下面说法正确的是( )A .为实现对接,两者运行速度的大小都应介于第一宇宙速度和第二宇宙速度之间B .如不加干预,在运行一段时间后,天宫一号的动能可能会增加C .如不加干预,天宫一号的轨道高度将缓慢降低D .航天员在天宫一号中处于失重状态,说明航天员不受地球引力作用答案 BC解析地球所有卫星的运行速度都小于第一宇宙速度,故A 错误.轨道处的稀薄大气会对天宫一号产生阻力,如不加干预,其轨道会缓慢降低,天宫一号的重力势能一部分转化为动能,故天宫一号的动能可能会增加,B 、C 正确;航天员受到地球引力作用,此时引力充当向心力,产生向心加速度,航天员处于失重状态,D错误.。

高一物理力学专题提升专题17卫星变轨问题

高一物理力学专题提升专题17卫星变轨问题

专题 17 卫星变轨问题【专题概括】当我们要从地球向天空发射不一样的卫星时,就牵涉到卫星的变轨问题,要想让卫星向高轨道运动,那 么我们就要让卫星加快做离心运动,使得卫星的运动轨道达到我们的要求,对于卫星的运动,我们第一需 要认识卫星在不一样轨道上运动的规律:卫星的向心加快度、线速度、角速度、周期与轨道半径的关系,依据万有引力供给卫星绕地球运动的 向心力,即有:GMm v 2 24π 2r2= ma n = m r = m ω r =m T 2 rGM(1) a n = r 2 , r 越大, a n 越小. (2) v =GMr ,r 越大, v 越小.GM(3) ω =r 3 ,r 越大, ω 越小.r 3 (4) T = 2π, r 越大, T 越大.GM卫星变轨:这是卫星变轨图:卫星先在较低的圆轨道1 上做圆周运动,当运动到近地址 A 时,经过点火加快,会使得卫星做离心运动,运动轨道变为了椭圆轨道2,在远地址在再次点火加快,上到预约轨道3,而后卫星绕地球再次做匀速圆周运动,这样就达到了发射卫星的目的,对于此类问题, A 和 B 的速度和加快度之间的关系:卫星在轨道 1 上经过 A 点到达轨道 2 上的 B 点时,引力做负功,所以动能减小,所以卫星在轨道1 上运转的速率大于在轨道2 上经过 B 点时的速率;因为 G心加快度大于在轨道2 上经过 B 点时的向心加快度,卫星在= ma 即 a = 卫星在轨道 2 上经过 A 点时的向 B点时,距离地球的距离同样,万有引力同样,依据牛顿第二定律,加快度同样对于地球的同步1.定义:相对于地面静止且与地球自转拥有同样周期的卫星叫地球同步卫星.2.“七个必定”的特色(1) 轨道平面必定:轨道平面与赤道平面共面. (2) 周期必定:与地球自转周期同样,即T = 24 h.(3) 角速度必定:与地球自转的角速度同样.(4) 高度必定:由G Mm2=4π 2( + ) 得地球同步卫星离地面的高度 h =3.6 ×10 7 m.R + h2m T R h速率必定: v =GM3 (5) R +h =3.1 ×10m/s.(6) 向心加快度必定:由 GMm2= ma 得 a =GM2,即同步卫星的向心加快度等+h +2=g h = 0.23 m/sRR h于轨道处的重力加快度.(7) 绕行方向必定:运转方向与地球自转方向同样.【典例精析】对于同步卫星典例 1利用三颗地点适合的地球同步卫星,可使地球赤道上随意两点之间保持无线电通信.当前,地球同步卫星的轨道半径约为地球半径的倍.假定地球的自转周期变小,若仍仅用三颗同步卫星来实现上述目的,则地球自转周期的最小值约为( )A . 1 hB . 4 hC. 8 hD. 16 h【答案】 BR卫星的轨道半径为r =sin 30 ° = 2Rr 1 3 r 23由T 1 2=T 2 2得R 3 R 324 2 =2.T2解得2≈4 h.T典例 2.( 多项选择 ) 据报导,北斗卫星导航系统利用其定位、导航等功能加入到马航MH370失联客机搜救工作,为指挥中心调动部署人力、物力供给决议依照,保证了搜救船只正确到达有关海疆,帮助搜救船只规划搜救航线,防止搜救出现遗漏海疆,当前北斗卫星导航定位系统由高度均约为36 000 km 的 5颗静止轨道卫星和 5 颗倾斜地球同步轨道卫星以及高度约为21 500 km 的 4 颗中轨道卫星组网运转,以下说法正确的是( )A.中轨道卫星的周期比同步卫星的周期大B.全部卫星均位于以地心为中心的圆形轨道上C.同步卫星和中轨道卫星的线速度均小于第一宇宙速度D.赤道上随处球自转的物体的向心加快度比同步卫星的向心加快度大【答案】 BC对于卫星的变轨典例 3:2013 年 5 月 2 日清晨 0 时 06 分,我国“中星11 号”通信卫星发射成功.“中星11 号”是一颗地球同步卫星,它主要用于为亚太地域等地区用户供给商业通服气务.图为发射过程的表示图,先将卫星发射至近地圆轨道1,而后经点火,使其沿椭圆轨道 2 运转,最后再一次点火,将卫星送入同步圆轨道3. 轨道 1、 2 相切于 Q点,轨道2、 3 相切于 P 点,则当卫星分别在1、 2、 3 轨道上正常运转时,以下说法正确的选项是( )A.卫星在轨道 3 上的速率大于在轨道 1 上的速率B.卫星在轨道 3 上的角速度大于在轨道 1 上的角速度C.卫星在轨道 1 上经过 Q点时的速度大于它在轨道2 上经过 Q点时的速度D.卫星在轨道 2 上经过 P 点时的速度小于它在轨道 3 上经过 P 点时的速度【答案】 D典例 4:发射地球同步卫星时,先将卫星发射至近地圆轨道1,而后点火,使其沿椭圆轨道 2 运转,最后再次点火,将卫星送入同步圆轨道 3. 轨道 1、 2 相切于 Q点,轨道2、 3 相切于 P 点,如下图.当卫星分别在 1、2、 3 轨道上正常运转时,设卫星在 1 轨道和 3 轨道正常运转的速度和加快度分别为v1、v3和 a1、a3,在 2 轨道经过 P 点时的速度和加快度为v2和 a2,且当卫星分别在1、2、3 轨道上正常运转时周期分别为T1、 T2、 T3,以下说法正确的选项是( )A.v1> v2> v3 B .v1> v3> v2C.a1> a2> a3 D .T1> T2> T3【答案】 B选项选项【分析】卫星在1 轨道运转速度大于卫星在 3 轨道运转速度,在 2 A 错误B 正确;卫星在 1 轨道和 3 轨道正常运转加快度 a1> a3,在C 错误.依据开普勒定律,卫星在 1、 2、 3 轨道上正常运转时周期轨道经过 P 点时的速度 v2小于 v3, 2轨道经过 P 点时的加快度 a2= a3,T1<T2<T3,选项 D错误【总结提高】( 1)变轨原由:当卫星因为某种原由速度忽然改变时(开启或封闭发动机或空气阻力作用),万有引力不再等于向心力,卫星将变轨运转。

高中物理人造卫星变轨问题专题

高中物理人造卫星变轨问题专题

高中物理人造卫星变轨问题专题(总3页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除2人造卫星变轨问题专题(一) 人造卫星基本原理绕地球做匀速圆周运动的人造卫星所需向心力由万有引力提供。

轨道半径r 确定后,与之对应的卫星线速度r GM v =、周期GM r T 32π=、向心加速度2r GM a =也都是唯一确定的。

如果卫星的质量是确定的,那么与轨道半径r 对应的卫星的动能E k 、重力势能E p 和总机械能E 机也是唯一确定的。

一旦卫星发生了变轨,即轨道半径r 发生变化,上述所有物理量都将随之变化(E k 由线速度变化决定、E p 由卫星高度变化决定、E 机不守恒,其增减由该过程的能量转换情况决定)。

同理,只要上述七个物理量之一发生变化,另外六个也必将随之变化。

(二) 常涉及的人造卫星的两种变轨问题1. 渐变由于某个因素的影响使原来做匀速圆周运动的卫星的轨道半径发生缓慢的变化(逐渐增大或逐渐减小),由于半径变化缓慢,卫星每一周的运动仍可以看做是匀速圆周运动。

解决此类问题,首先要判断这种变轨是离心还是向心,即轨道半径r 是增大还是减小,然后再判断卫星的其他相关物理量如何变化。

1) 人造卫星绕地球做匀速圆周运动,无论轨道多高,都会受到稀薄大气的阻力作用。

如果不及时进行轨道维持(即通过启动星上小型发动机,将化学能转化为机械能,保持卫星应具有的状态),卫星就会自动变轨,偏离原来的圆周轨道,从而引起各个物理量的变化。

这种变轨的起因是阻力。

阻力对卫星做负功,使卫星速度减小,卫星所需要的向心力r mv 2减小了,而万有引力2r GMm的大小没有变,因此卫星将做向心运动,即轨道半径r 将减小。

由基本原理中的结论可知:卫星线速度v 将增大,周期T 将减小,向心加速度a 将增大,动能E k 将增大,势能E p 将减小,有部分机械能转化为内能(摩擦生热),卫星机械能E 机将减小。

高中物理人教版《必修第二册》教案讲义:卫星的变轨问题及宇宙航行的几个问题辨析

高中物理人教版《必修第二册》教案讲义:卫星的变轨问题及宇宙航行的几个问题辨析

人造卫星的发射过程要经过多次变轨方可到达预定轨道,在赤道上顺着地球自转方向发射卫星到圆点点火加速,速度变大,进入椭圆轨道Ⅱ再次点火加速进入圆轨道Ⅲ卫星变轨问题分析方法速度大小的分析方法.①卫星做匀速圆周运动经过某一点时,其速度满足以此为依据可分析卫星在两个不同圆轨道上的②卫星做椭圆运动经过近地点时,卫星做离心运动,m v2.以此为依据可分析卫星沿椭圆轨r道和沿圆轨道通过近地点时的速度大小(即加速离心.发射“嫦娥三号”的速度必须达到第三宇宙速度.在绕月圆轨道上,卫星周期与卫星质量有关.卫星受月球的引力与它到月球中心距离的平方成反比.在绕月轨道上,卫星受地球的引力大于受月球的引力明白第三宇宙速度是指被发射物体能够脱离太阳系的最小发射速度,而“嫦娥三号”没有脱离太阳的引力范要熟记万有引力的表达式并清楚是万有引力提供卫星做圆如图所示,发射同步卫星的一般程序是:先让卫星进入一个近地的圆轨道,然后在P点变轨,进入椭圆形转移轨道椭圆轨道的近地点为近地圆轨道上的P点,远地点为同步卫星圆,到达远地点Q时再次变轨,进入同步卫星轨设卫星在近地圆轨道上运行的速率为v1,在椭圆形转移轨道点的速率为v2,沿转移轨道刚到达远地点,在同步卫星轨道上的速率为v4,则下列说法正确的是点变轨时需要加速,Q点变轨时要减速点变轨时需要减速,Q点变轨时要加速D.v2>v1>v4>v3练2发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火使其沿椭圆轨道2运行,最后再次点火将卫星送入同步圆轨道3,轨道1、2相切于Q点,轨道2、3相切于P点,如图所示,卫星分别在1、2、3轨道上正常运行时,以下说法正确的是()A.卫星在轨道3上的运行速率大于在轨道1上的运行速率B.卫星在轨道3上的角速度大于在轨道1上的角速度C.卫星在轨道1上运动一周的时间大于它在轨道2上运动一周的时间D.卫星在轨道2上经过P点时的加速度等于它在轨道3上经过P点时的加速度反思总结卫星变轨问题关键词转化二、有关宇宙航行的几个问题辨析辨析1.发射速度与运行速度的比较(1)发射速度在地面以某一速度发射一个物体,发射后不再对物体提供动力,在地面离开发射装置时的速度称为发射速度,三个宇宙速度都是指发射速度.(2)运行速度运行速度是指做圆周运动的人造卫星稳定飞行时的线速度,对于人造地球卫星,轨道半径越大,则运行速度越小.(3)有的同学这样认为:沿轨道半径较大的圆轨道运行的卫星的发射速度大,发射较为困难;而轨道半径较小的卫星发射速度小,发射较为容易.这种观点是片面的.因为高轨卫星的发射难易程度与发射速度没有多大关系,如果我们在地面上以7.9km/s 的速度水平发射一个物体,则这个物体可以贴着地面做圆周运动而不落到地面;如果速度增大,则会沿一个椭圆轨道运动.速度越大,椭圆轨道的半长轴就越大;如果这个速度达到11.2km/s,则这个物体可以摆脱地球的引力.可见,无论以多大速度发射一个物体或卫星,都不会使之成为沿较大的圆轨道做圆周运动的人造卫星,高轨卫星的发射过程是一个不断加速变轨的过程,并不是在地面上给一个发射速度就可以的.【典例2】(多选)如图所示,在发射地球同步卫星的过程中,卫星首先进入椭圆轨道Ⅰ,然后在Q点通过改变卫星速度,让卫星进入地球同步轨道Ⅱ,则()A.该卫星的发射速度必定大于11.2km/sB.卫星在同步轨道Ⅱ上的运行速度大于7.9km/sC.在椭圆轨道上,卫星在P点的速度大于在Q点的速度D.卫星在Q点通过加速实现由轨道Ⅰ进入轨道Ⅱ辨析2.分清三个不同(1)重力和万有引力的向心加速度等于重力加速度g 的运动周期有可能是20小时如图所示,地球赤道上的山丘e,近地资源卫星均在赤道平面上绕地心做匀速圆周运动.设、v3,向心加速度分别为v2<v33<a2已知地球赤道上的物体随地球自转的线速度大小为近地卫星线速度大小为,地球同步卫星线速度大小为设近地卫星距地面高度不计,同步卫星距地面高度约为地倍.则下列结论正确的是(。

卫星变轨问题(附知识点及相关习题的答案)

卫星变轨问题(附知识点及相关习题的答案)

人造卫星变轨问题专题一、人造卫星基本原理绕地球做匀速圆周运动的人造卫星所需向心力由万有引力提供。

轨道半径r 确定后,与之对GM、周期T 2r 3、向心加速度 a GM应的卫星线速度 v 也都是确定的。

如果卫星r 2rGM的质量也确定,一旦卫星发生变轨,即轨道半径r 发生变化,上述物理量都将随之变化。

同理,只要上述物理量之一发生变化,另外几个也必将随之变化。

在高中物理中,会涉及到人造卫星的两种变轨问题。

二、渐变由于某个因素的影响使卫星的轨道半径发生缓慢的变化(逐渐增大或逐渐减小) ,由于半径变化缓慢,卫星每一周的运动仍可以看做是匀速圆周运动。

解决此类问题,首先要判断这种变轨是离心还是向心,即轨道半径是增大还是减小,然后再判断卫星的其他相关物理量如何变化。

如:人造卫星绕地球做匀速圆周运动,无论轨道多高,都会受到稀薄大气的阻力作用。

如果不及时进行轨道维持(即通过启动星上小型火箭,将化学能转化为机械能,保持卫星应具有的速度),卫星就会自动变轨,偏离原来的圆周轨道,从而引起各个物理量的变化。

由于这种变轨的起因是阻力,阻力对卫星做负功, 使卫星速度减小, 所需要的向心力m v 2减r小了,而万有引力大小GMm没有变,因此卫星将做向心运动,即半径r 将减小。

r 2由㈠中结论可知:卫星线速度 v 将增大,周期 T 将减小,向心加速度三、突变由于技术上的需要,有时要在适当的位置短时间启动飞行器上的发动机,使飞行器轨道发生突变,使其到达预定的目标。

如:发射同步卫星时,通常先将卫星发送到近地轨道Ⅰ,使其绕地球做匀速圆周运动,速率为v 1,第一次在 P 点点火加速,在短时间内将速率由 v 1 增加到 v 2,使卫星进入椭圆形的转移轨道Ⅱ;卫星运行到远地点 Q 时的速率为 v 3,此时进行第二次点火加速, 在短时间内将速率由 v 3 增加到 v 4,使卫星进入同步轨道Ⅲ, 绕地球做匀速圆周运动。

a 将增大。

v 3ⅢQ v 4v 1 Ⅱ Ⅰ Pv 2第一次加速:卫星需要的向心力mv 2 增大了,但万有引力 GMm 没变,因此卫星将开始做rr 2离心运动,进入椭圆形的转移轨道Ⅱ。

卫星变轨问题知识点

卫星变轨问题知识点

卫星变轨问题知识点一、知识概述《卫星变轨问题知识点》①基本定义:卫星变轨呢,简单说就是卫星在太空中改变自己运行的轨道。

卫星本来按照一定的轨道绕着地球之类的天体转,然后通过一些操作,就跑到另一个轨道上去了。

②重要程度:这在航天领域可是相当重要的。

要是没有卫星变轨技术,很多航天任务就没法完成啦。

像卫星要到特定的位置进行观测或者通讯,那就得变轨到合适的地方。

③前置知识:得先了解一些基本的圆周运动知识,比如向心力这些概念。

还得知道万有引力定律,就是那个任何两个物体之间都存在相互吸引力的定律,在卫星这个事情里,它就是卫星绕着天体转的关键力量。

④应用价值:在现实里用处超多。

例如,通信卫星有时候需要调整轨道来覆盖不同的地区,如果一个地区有特殊需求,像举办大型运动会之类的,就可以让卫星变轨来更好地提供通信服务。

还有,科研卫星要是想对某个特定星球区域进行探测,也得变轨过去。

二、知识体系①知识图谱:卫星变轨知识在航天物理学这个大学科里可是重要的一部分。

它和卫星的发射、运行等其他知识紧密相连。

比如说,发射卫星到预定轨道可能就涉及到一些初步的变轨操作。

②关联知识:和万有引力、圆周运动、天体力学这些知识联系密切。

万有引力是变轨的根源力量,圆周运动是卫星运行轨道的基本模式,天体力学则是研究这一系列问题的综合学科。

③重难点分析:- 掌握难度:这一块有点难度。

卫星变轨涉及到复杂的力与运动的关系,还有能量的变化。

比如说在变轨过程中,卫星的速度怎么变,这就得考虑多种因素了。

- 关键点:得搞明白卫星变轨时速度、高度、能量三者的关系。

当卫星要变到更高轨道的时候,得先加速,但是到了高轨道速度又会变小,这听起来有点拗口,但却是关键。

④考点分析:- 在考试中的重要性:在高中或者大学的物理学科里,这是个重点考查内容,特别是航天专题相关的考试。

- 考查方式:可能会让你计算卫星在变轨前后的速度、能量变化;也可能考查你变轨原理这种概念性的东西。

三、详细讲解【理论概念类】①概念辨析:卫星变轨核心就是卫星改变它原本的运行轨道。

高中物理-卫星变轨问题

高中物理-卫星变轨问题

G
Mm r2
m
v2 r
v
GM r
6.67
1011 5.89 6.37 106
1024
m/s
7.9km/s
二、自主合作 探究规律
思考:这个“足够大的速度”应该有多大呢?
方法二:由于卫星在地球附近环绕时, 卫星做圆周运动的向心力可看作由重力 提供,根据牛顿第二定律得
mg m v2 R
vgR6.3
英国科学家牛顿 (1643-1727)
在1687年出版的《自然哲学的数学原理》中, 牛顿设想抛出速度足够大时,物体就不会落回地面。
一、牛顿的设想 1、牛顿对人造卫星原理的描绘
二、自主合作 探究规律
思考:这个“足够大的速度”应该有多大呢?
方法一:卫星做圆周运动,由万有引 力提供向心力,根据牛顿第二定律得
第5节 宇 宙 航 行
一、宇宙速度
1、第一宇宙速度
物体在地面附近绕地球做匀速圆周运动的最
小发射速度(最大环绕速度),叫做第一宇宙
速度。
环绕速度
v7.9km /s
第5节 宇 宙 航 行
2、第二宇宙速度 当物体的速度等于或大于11.2km/s时,它
就会克服地球的引力,永远离开地球。我们把
11.2km/s叫做第二宇宙速度。
对于其他的星球以上三个宇宙速度是否 变化呢?
变化,不同星球的宇宙速度一般 是不一样的 例如:地球的第一宇宙速度是7.9km/s 金星的第一宇宙速度是7.3km/s
• 极地卫星和近地卫星
• (1)极地卫星运行时每圈都经过南北两极,由于地 球自转,极地卫星可以实现全球覆盖.
• (2)近地卫星是在地球表面附近环绕地球做匀速圆 周运动的卫星,其运行的轨道半径可近似认为等 于地球的半径,其运行线速度约为7.9 km/s.

专题讲解:卫星的变轨问题

专题讲解:卫星的变轨问题

卫星的变轨问题1.圆轨道上的稳定运行G Mm r 2=m v 2r =mrω2=mr (2πT)2 2.变轨运行分析(1)当v 增大时,所需向心力m v 2r增大,即万有引力缺乏以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大,但卫星一旦进入新的轨道运行,由v = GM r知其运行速度要减小,但重力势能、机械能均增加。

(2)当卫星的速度突然减小时,向心力mv 2r减小,即万有引力大于卫星所需的向心力,因此卫星将做向心运动,同样会脱离原来的圆轨道,轨道半径变小,进入新轨道运行时由v = GM r知运行速度将增大,但重力势能、机械能均减少。

典题分析12012年6月16日18时37分,执行我国首次载人交会对接任务的“神舟九号〞载人飞船发射升空,在距地面343公里的近圆轨道上,与等待已久的“天宫一号〞实现屡次交会对接、别离,于6月29日10时许成功返回地面,以下关于“神舟九号〞与“天宫一号〞的说确的是( )A .假设知道“天宫一号〞的绕行周期,再利用引力常量,就可算出地球的质量B .在对接前,“神舟九号〞轨道应稍低于“天宫一号〞的轨道,然后让“神舟九号〞加速追上“天宫一号〞并与之对接C .在对接前,应让“神舟九号〞和“天宫一号〞在同一轨道上绕地球做圆周运动,然后让“神舟九号〞加速追上“天宫一号〞并与之对接D .“神舟九号〞返回地面时应在绕行轨道上先减速2.(2021·高考)如图4-4-3所示,飞船从轨道1变轨至轨道2。

假设飞船在两轨道上都做匀速圆周运动,不考虑质量变化,相对于在轨道1上,飞船在轨道2上的( )图4-4-3A .动能大B .向心加速度大C .运行周期长D .角速度小解析:选CD 因为G Mm r 2=m v 2r =ma =mrω2=mr 4π2T2,解得v = GM r ,a =G M r 2,T =2 πr 3GM ,ω=GM r 3,因为r 增大,所以动能减小,加速度减小,运行周期变长,角速度减小,即只有C 、D 正确。

2017-2018学年高一物理力学专题提升专题17卫星变轨问题

2017-2018学年高一物理力学专题提升专题17卫星变轨问题

专题17 卫星变轨问题【专题概述】当我们要从地球向天空发射不同的卫星时,就牵扯到卫星的变轨问题,要想让卫星向高轨道运动,那么我们就要让卫星加速做离心运动,使得卫星的运动轨道达到我们的要求,对于卫星的运动,我们首先需要了解卫星在不同轨道上运动的规律:卫星的向心加速度、线速度、角速度、周期与轨道半径的关系,根据万有引力提供卫星绕地球运动的向心力,即有:GMm r 2=ma n =m v 2r =m ω2r =m 4π2T2r (1)a n =GMr2,r 越大,a n 越小. (2)v = GMr,r 越大,v 越小. (3)ω= GMr 3,r 越大,ω越小. (4)T =2π r 3GM,r 越大,T 越大. 卫星变轨:这是卫星变轨图:卫星先在较低的圆轨道1上做圆周运动,当运动到近地点A 时,经过点火加速,会使得卫星做离心运动,运动轨道变成了椭圆轨道2,在远地点在再次点火加速,上到预定轨道3,然后卫星绕地球再次做匀速圆周运动,这样就达到了发射卫星的目的,对于此类问题,A 和B 的速度和加速度之间的关系:卫星在轨道1上经过A 点到达轨道2上的B 点时,引力做负功,所以动能减小,所以卫星在轨道1上运行的速率大于在轨道2上经过B 点时的速率;因为G=ma 即a =卫星在轨道2上经过A 点时的向心加速度大于在轨道2上经过B 点时的向心加速度,卫星在B 点时,距离地球的距离相同,万有引力相同,根据牛顿第二定律,加速度相同关于地球的同步1.定义:相对于地面静止且与地球自转具有相同周期的卫星叫地球同步卫星.2.“七个一定”的特点(1)轨道平面一定:轨道平面与赤道平面共面.(2)周期一定:与地球自转周期相同,即T=24 h.(3)角速度一定:与地球自转的角速度相同.(4)高度一定:由GMmR+h2=m4π2T2(R+h)得地球同步卫星离地面的高度h=3.6×107 m.(5)速率一定:v=GMR+h=3.1×103 m/s.(6)向心加速度一定:由GMmR+h2=ma得a=GMR+h2=g h=0.23 m/s2,即同步卫星的向心加速度等于轨道处的重力加速度.(7)绕行方向一定:运行方向与地球自转方向相同.【典例精析】关于同步卫星典例1利用三颗位置适当的地球同步卫星,可使地球赤道上任意两点之间保持无线电通讯.目前,地球同步卫星的轨道半径约为地球半径的6.6倍.假设地球的自转周期变小,若仍仅用三颗同步卫星来实现上述目的,则地球自转周期的最小值约为( )A.1 h B.4 h C.8 h D.16 h【答案】B卫星的轨道半径为r=Rsin 30°=2R由r31T21=r32T22得6.6R 3242=2R3T 22.解得T 2≈4 h.典例2.(多选) 据报道,北斗卫星导航系统利用其定位、导航等功能加入到马航MH370失联客机搜救工作,为指挥中心调度部署人力、物力提供决策依据,保证了搜救船只准确抵达相关海域,帮助搜救船只规划搜救航线,避免搜救出现遗漏海域,目前北斗卫星导航定位系统由高度均约为36 000 km 的5颗静止轨道卫星和5颗倾斜地球同步轨道卫星以及高度约为21 500 km 的4颗中轨道卫星组网运行,下列说法正确的是( )A .中轨道卫星的周期比同步卫星的周期大B .所有卫星均位于以地心为中心的圆形轨道上C .同步卫星和中轨道卫星的线速度均小于第一宇宙速度D .赤道上随地球自转的物体的向心加速度比同步卫星的向心加速度大 【答案】BC关于卫星的变轨典例3:2013年5月2日凌晨0时06分,我国“中星11号”通信卫星发射成功.“中星11号”是一颗地球同步卫星,它主要用于为亚太地区等区域用户提供商业通信服务.图为发射过程的示意图,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再一次点火,将卫星送入同步圆轨道3.轨道1、2相切于Q 点,轨道2、3相切于P 点,则当卫星分别在1、2、3轨道上正常运行时,以下说法正确的是( )A . 卫星在轨道3上的速率大于在轨道1上的速率B . 卫星在轨道3上的角速度大于在轨道1上的角速度C . 卫星在轨道1上经过Q 点时的速度大于它在轨道2上经过Q 点时的速度D . 卫星在轨道2上经过P 点时的速度小于它在轨道3上经过P 点时的速度【答案】D典例4:发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3.轨道1、2相切于Q点,轨道2、3相切于P点,如图所示.当卫星分别在1、2、3轨道上正常运行时,设卫星在1轨道和3轨道正常运行的速度和加速度分别为v1、v3和a1、a3,在2轨道经过P点时的速度和加速度为v2和a2,且当卫星分别在1、2、3轨道上正常运行时周期分别为T1、T2、T3,以下说法正确的是( )A.v1>v2>v3 B.v1>v3>v2C.a1>a2>a3 D.T1>T2>T3【答案】B【解析】卫星在1轨道运行速度大于卫星在3轨道运行速度,在2轨道经过P点时的速度v2小于v3,选项A错误B正确;卫星在1轨道和3轨道正常运行加速度a1>a3,在2轨道经过P点时的加速度a2=a3,选项C错误.根据开普勒定律,卫星在1、2、3轨道上正常运行时周期T1<T2<T3,选项D错误【总结提升】(1)变轨原因:当卫星由于某种原因速度突然改变时(开启或关闭发动机或空气阻力作用),万有引力不再等于向心力,卫星将变轨运行。

高一物理【人造卫星的发射、变轨问题】专题

高一物理【人造卫星的发射、变轨问题】专题

高一物理【人造卫星的发射、变轨问题】专题1.卫星发射及变轨过程概述人造卫星的发射过程要经过多次变轨方可到达预定轨道,如图所示。

(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上。

(2)在A点(近地点)点火加速,由于速度变大,万有引力不足以提供卫星在轨道Ⅰ上做匀速圆周运动的向心力,卫星做离心运动进入椭圆轨道Ⅱ。

(3)在B点(远地点)再次点火加速进入圆形轨道Ⅲ。

2.三个运行物理量的大小比较(1)速度:设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v1、v3,在轨道Ⅱ上过A点和B 点速率分别为v A、v B。

在A点加速,则v A>v1,在B点加速,则v3>v B,又因v1>v3,故有v A>v1>v3>v B。

(2)加速度:因为在A点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅱ上经过A点,卫星的加速度都相同,同理,经过B点加速度也相同。

(3)周期:设卫星在Ⅰ、Ⅱ、Ⅲ轨道上运行周期分别为T1、T2、T3,轨道半径分别为r1、r2(半长轴)、r3,由开普勒第三定律r3T2=k可知T1<T2<T3。

我国正在进行的探月工程是高新技术领域的一次重大科技活动,在探月工程中飞行器成功变轨至关重要。

如图所示,假设月球半径为R,月球表面的重力加速度为g0,飞行器在距月球表面高度为3R的圆形轨道Ⅰ上运动,到达轨道的A点点火变轨进入椭圆轨道Ⅱ,到达轨道的近月点B再次点火进入近月轨道Ⅲ绕月球做圆周运动,则()A.飞行器在B点处点火后,速度增加B.由已知条件不能求出飞行器在轨道Ⅱ上的运行周期C.在只有万有引力作用的情况下,飞行器在轨道Ⅱ上通过B点的加速度大于在轨道Ⅲ上通过B点的加速度D.飞行器在轨道Ⅲ上绕月球运行一周所需的时间为2πR g0[解析]在椭圆轨道近月点变轨成为圆轨道,要实现变轨应给飞行器点火减速,减小所需的向心力,故点火后速度减小,故A错误;设飞行器在近月轨道Ⅲ绕月球运行一周所需的时间为T 3,则mg 0=mR 4π2T 32,解得T 3=2π R g 0,根据几何关系可知,轨道Ⅱ的半长轴a =2.5R ,根据开普勒第三定律a 3T2=k 以及飞行器在轨道Ⅲ上的运行周期,可求出飞行器在轨道Ⅱ上的运行周期,故B 错误,D 正确;在只有万有引力作用的情况下,飞行器在轨道Ⅱ上通过B 点的加速度与在轨道Ⅲ上通过B 点的加速度相等,故C 错误。

高中物理天体运动热点难点重点卫星变轨问题深度解析(包教会)

高中物理天体运动热点难点重点卫星变轨问题深度解析(包教会)

卫星变轨问题引例:飞船发射及运行过程:先由运载火箭将飞船送入椭圆轨道,然后在椭圆轨道的远地点A 实施变轨,进入预定圆轨道,如图所示,飞船变轨前后速度分别为v1、v2,变轨前后的运行周期分别为T1、T2,飞船变轨前后通过A 点时的加速度分别为a1、a2,则下列说法正确的是 A .T1<T2,v1<v2,a1<a2 B .T1<T2,v1<v2,a1=a2C .T1>T2,v1>v2,a1<a2D .T1>T2,v1=v2,a1=a2解答:首先,同样是A 点,到地心的距离相等,万有引力相等,由万有引力提供的向心力也相等,向心加速度相等。

如果对开普勒定律比较熟悉,从T 的角度分析:由开普勒定律知道,同样的中心体,k=a^3/T^2为一常数。

从图中很容易知道,圆轨道的半径R 大于椭圆轨道的半长轴a ,这样可得圆轨道上运行的周期T2大于椭圆轨道的周期T1。

如果对离心运动规律比较熟悉,从v 的角度分析:1、当合力[引力]不足以提供向心力(速度比维持圆轨道运动所需的速度大)时,物体偏离圆轨道向外运动,这一点可以说明椭圆轨道近地点天体的运动趋向。

2、当合力[引力]超过运动向心力(速度比维持圆轨道运动所需的速度小)时,物体偏离圆轨道向内运动,这一点可以说明椭圆轨道远地点天体的运动趋向。

对椭圆轨道,A 点为远地点,由上述第2条不难判断,在椭圆轨道上A 点的运行速度v1比圆轨道上时A 点的速度v2小。

综上,正确选项为B 。

注意:变轨的物理实质就是变速。

由低轨变向高轨是加速,由高轨变向低轨是减速。

其基本操作都是打开火箭发动机做功,但加速时做正功,减速时做负功。

一、人造卫星基本原理1、绕地球做匀速圆周运动的人造卫星所需向心力由万有引力提供。

2、轨道半径r 确定后,与之对应的卫星线速度r GM v =、周期GMr T 32π=、向心加速度2r GM a =也都是唯一确定的。

3、如果卫星的质量是确定的,那么与轨道半径r 对应的卫星的动能E k 、重力势能E p 和总机械能E 机也是唯一确定的。

(完整版)人造卫星变轨问题

(完整版)人造卫星变轨问题

人造卫星变轨问题一、人造卫星基本原理绕地球做匀速圆周运动的人造卫星所需向心力由万有引力提供。

轨道半径r 确定后,与之对应的卫星线速度r GM v =、周期GMr T 32π=、向心加速度2r GM a =也都是确定的。

如果卫星的质量也确定,一旦卫星发生变轨,即轨道半径r 发生变化,上述物理量都将随之变化。

同理,只要上述物理量之一发生变化,另外几个也必将随之变化。

在高中物理中,会涉及到人造卫星的两种变轨问题。

二、渐变由于某个因素的影响使卫星的轨道半径发生缓慢的变化(逐渐增大或逐渐减小),由于半径变化缓慢,卫星每一周的运动仍可以看做是匀速圆周运动。

解决此类问题,首先要判断这种变轨是离心还是向心,即轨道半径是增大还是减小,然后再判断卫星的其他相关物理量如何变化。

如:人造卫星绕地球做匀速圆周运动,无论轨道多高,都会受到稀薄大气的阻力作用。

如果不及时进行轨道维持(即通过启动星上小型火箭,将化学能转化为机械能,保持卫星应具有的速度),卫星就会自动变轨,偏离原来的圆周轨道,从而引起各个物理量的变化。

由于这种变轨的起因是阻力,阻力对卫星做负功,使卫星速度减小,所需要的向心力r mv 2减小了,而万有引力大小2r GMm 没有变,因此卫星将做向心运动,即半径r 将减小。

由㈠中结论可知:卫星线速度v 将增大,周期T 将减小,向心加速度a 将增大。

三、突变由于技术上的需要,有时要在适当的位置短时间启动飞行器上的发动机,使飞行器轨道发生突变,使其到达预定的目标。

如:发射同步卫星时,通常先将卫星发送到近地轨道Ⅰ,使其绕地球做匀速圆周运动,速率为v 1,第一次在P 点点火加速,在短时间内将速率由v 1增加到v 2,使卫星进入椭圆形的转移轨道Ⅱ;卫星运行到远地点Q 时的速率为v 3,此时进行第二次点火加速,在短时间内将速率由v 3增加到v 4,使卫星进入同步轨道Ⅲ,绕地球做匀速圆周运动。

第一次加速:卫星需要的向心力r mv 2增大了,但万有引力2rGMm 没变,因此卫星将开始做离心运动,进入椭圆形的转移轨道Ⅱ。

高一物理卫星变轨问题

高一物理卫星变轨问题
v 减小
卫星变轨原理
L
v3
F引
mv32 L
G
Mm L2
使



v4


v3






运 动
使卫星v4, 加使 m 速 L42v到 GM L2 m
卫 星 的 回 收
1、如图所示,发射同步卫星时,先将卫星发射至近地
圆轨道1,然后经点火使其沿椭圆轨道2运行;最后再次
点火将其送入同步圆轨道3。轨道1、2相切于P点,2、3

3. 2007年10月24日,“嫦娥一号”卫星星箭分离,卫星进入 绕
地轨道。在绕地运行时,要经过三次近地变轨:12小时椭圆轨
道①→24小时椭圆轨道②→48小时椭圆轨道③→修正轨道④→
地月转移轨道⑤。11月5日11时,当卫星经过距月球表面高度
为h的A点时,再经三次变轨:12小时椭圆轨道⑥→3.5小时椭圆
卫星发射至距地面高度为h1的近地轨道Ⅰ上.在卫星 经过A点时点火实施变轨,进入远地点为B的椭圆轨道 Ⅱ上,最后在B点再次点火,将卫星送入同步轨道Ⅲ. 已知地球表面重力加速度为g,地球自转周期为T,地 球的半径为R.求:
(1)近地轨道Ⅰ上的速度大小; (2)远地点B距地面的高度。
解:
“嫦娥奔月” 图
作业:
谢谢!
相切于Q点。当卫星分别在1、2、3上正常运行时,以下
说法正确的是( BD )
A、在轨道3上的速率大
3 2
于1上的速率 B、在轨道3上的角速度
1

Q
小于1上的角速度
C、在轨道2上经过Q点时
的速率等于在轨道3上经过Q点时的速率
D、在轨道1上经过P点时的加速度等于在轨道2上

卫星变轨问题

卫星变轨问题

卫星变轨问题1.变轨问题概述(1)稳定运行卫星绕天体稳定运行时,万有引力提供了卫星做圆周运动的向心力,即G Mm r 2=m v 2r. (2)变轨运行卫星变轨时,先是线速度大小v 发生变化导致需要的向心力发生变化,进而使轨道半径r 发生变化.①当卫星减速时,卫星所需的向心力F 向=m v 2r减小,万有引力大于所需的向心力,卫星将做近心运动,向低轨道变轨.①当卫星加速时,卫星所需的向心力F 向=m v 2r增大,万有引力不足以提供卫星所需的向心力,卫星将做离心运动,向高轨道变轨.2.实例分析(1)飞船对接问题①低轨道飞船与高轨道空间站对接时,让飞船合理地加速,使飞船沿椭圆轨道做离心运动,追上高轨道空间站完成对接(如图甲所示).①若飞船和空间站在同一轨道上,飞船加速时无法追上空间站,因为飞船加速时,将做离心运动,从而离开这个轨道.通常先使后面的飞船减速降低高度,再加速提升高度,通过适当控制,使飞船追上空间站时恰好具有相同的速度,如图乙所示.丙(2)卫星的发射、变轨问题 如图丙,发射卫星时,先将卫星发射至近地圆轨道1,在Q 点点火加速做离心运动进入椭圆轨道2,在P 点点火加速,使其满足GMm r 2=m v 2r,进入圆轨道3做圆周运动. 【题型1】如图所示为卫星发射过程的示意图,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再一次点火,将卫星送入同步圆轨道3.轨道1、2相切于Q 点,轨道2、3相切于P 点,则当卫星分别在1、2、3轨道上正常运行时,以下说法中正确的是( )A.卫星在轨道3上的速率大于在轨道1上的速率B.卫星在轨道3上的周期大于在轨道2上的周期C.卫星在轨道1上经过Q 点时的速率大于它在轨道2上经过Q 点时的速率D.卫星在轨道2上经过P 点时的加速度小于它在轨道3上经过P 点时的加速度【题型2】如图所示,我国发射“神舟十号”飞船时,先将飞船发送到一个椭圆轨道上,其近地点M距地面200 km,远地点N距地面340 km.进入该轨道正常运行时,通过M、N点时的速率分别是v1和v2,加速度大小分别为a1和a2.当某次飞船通过N点时,地面指挥部发出指令,点燃飞船上的发动机,使飞船在短时间内加速后进入离地面340 km的圆形轨道,开始绕地球做匀速圆周运动,这时飞船的速率为v 3,加速度大小为a3,比较飞船在M、N、P三点正常运行时(不包括点火加速阶段)的速率和加速度大小,下列结论正确的是()A.v1>v3>v2,a1>a3>a2B.v1>v2>v3,a1>a2=a3C.v1>v2=v3,a1>a2>a3D.v1>v3>v2,a1>a2=a3【题型3】我国已掌握“半弹道跳跃式高速再入返回技术”,为实现“嫦娥”飞船月地返回任务奠定基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题17 卫星变轨问题【专题概述】当我们要从地球向天空发射不同的卫星时,就牵扯到卫星的变轨问题,要想让卫星向高轨道运动,那么我们就要让卫星加速做离心运动,使得卫星的运动轨道达到我们的要求,对于卫星的运动,我们首先需要了解卫星在不同轨道上运动的规律:卫星的向心加速度、线速度、角速度、周期与轨道半径的关系,根据万有引力提供卫星绕地球运动的向心力,即有:GMm r 2=ma n =m v 2r =m ω2r =m 4π2T2r (1)a n =GMr2,r 越大,a n 越小. (2)v = GMr,r 越大,v 越小. (3)ω= GMr 3,r 越大,ω越小. (4)T =2π r 3GM,r 越大,T 越大. 卫星变轨:这是卫星变轨图:卫星先在较低的圆轨道1上做圆周运动,当运动到近地点A 时,经过点火加速,会使得卫星做离心运动,运动轨道变成了椭圆轨道2,在远地点在再次点火加速,上到预定轨道3,然后卫星绕地球再次做匀速圆周运动,这样就达到了发射卫星的目的,对于此类问题,A 和B 的速度和加速度之间的关系:卫星在轨道1上经过A 点到达轨道2上的B 点时,引力做负功,所以动能减小,所以卫星在轨道1上运行的速率大于在轨道2上经过B 点时的速率;因为G=ma 即a =卫星在轨道2上经过A 点时的向心加速度大于在轨道2上经过B 点时的向心加速度,卫星在B 点时,距离地球的距离相同,万有引力相同,根据牛顿第二定律,加速度相同关于地球的同步1.定义:相对于地面静止且与地球自转具有相同周期的卫星叫地球同步卫星.2.“七个一定”的特点(1)轨道平面一定:轨道平面与赤道平面共面.(2)周期一定:与地球自转周期相同,即T=24 h.(3)角速度一定:与地球自转的角速度相同.(4)高度一定:由GMmR +h2=m4π2T2(R+h)得地球同步卫星离地面的高度h=3.6×107 m.(5)速率一定:v=GMR+h=3.1×103 m/s.(6)向心加速度一定:由GMmR +h2=ma得a=GMR+h2=g h=0.23 m/s2,即同步卫星的向心加速度等于轨道处的重力加速度.(7)绕行方向一定:运行方向与地球自转方向相同.【典例精析】关于同步卫星典例1利用三颗位置适当的地球同步卫星,可使地球赤道上任意两点之间保持无线电通讯.目前,地球同步卫星的轨道半径约为地球半径的6.6倍.假设地球的自转周期变小,若仍仅用三颗同步卫星来实现上述目的,则地球自转周期的最小值约为( )A.1 h B.4 h C.8 h D.16 h【答案】B卫星的轨道半径为r=Rsin 30°=2R由r31T21=r32T22得R3242=R 3T 22.解得T 2≈4 h.典例2.(多选) 据报道,北斗卫星导航系统利用其定位、导航等功能加入到马航MH370失联客机搜救工作,为指挥中心调度部署人力、物力提供决策依据,保证了搜救船只准确抵达相关海域,帮助搜救船只规划搜救航线,避免搜救出现遗漏海域,目前北斗卫星导航定位系统由高度均约为36 000 km 的5颗静止轨道卫星和5颗倾斜地球同步轨道卫星以及高度约为21 500 km 的4颗中轨道卫星组网运行,下列说法正确的是( )A .中轨道卫星的周期比同步卫星的周期大B .所有卫星均位于以地心为中心的圆形轨道上C .同步卫星和中轨道卫星的线速度均小于第一宇宙速度D .赤道上随地球自转的物体的向心加速度比同步卫星的向心加速度大 【答案】BC关于卫星的变轨典例3:2013年5月2日凌晨0时06分,我国“中星11号”通信卫星发射成功.“中星11号”是一颗地球同步卫星,它主要用于为亚太地区等区域用户提供商业通信服务.图为发射过程的示意图,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再一次点火,将卫星送入同步圆轨道3.轨道1、2相切于Q 点,轨道2、3相切于P 点,则当卫星分别在1、2、3轨道上正常运行时,以下说法正确的是( )A . 卫星在轨道3上的速率大于在轨道1上的速率B . 卫星在轨道3上的角速度大于在轨道1上的角速度C . 卫星在轨道1上经过Q 点时的速度大于它在轨道2上经过Q 点时的速度D . 卫星在轨道2上经过P 点时的速度小于它在轨道3上经过P 点时的速度【答案】D典例4:发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3.轨道1、2相切于Q点,轨道2、3相切于P点,如图所示.当卫星分别在1、2、3轨道上正常运行时,设卫星在1轨道和3轨道正常运行的速度和加速度分别为v1、v3和a1、a3,在2轨道经过P点时的速度和加速度为v2和a2,且当卫星分别在1、2、3轨道上正常运行时周期分别为T1、T2、T3,以下说法正确的是( )A.v1>v2>v3 B.v1>v3>v2C.a1>a2>a3 D.T1>T2>T3【答案】B【解析】卫星在1轨道运行速度大于卫星在3轨道运行速度,在2轨道经过P点时的速度v2小于v3,选项A错误B正确;卫星在1轨道和3轨道正常运行加速度a1>a3,在2轨道经过P点时的加速度a2=a3,选项C错误.根据开普勒定律,卫星在1、2、3轨道上正常运行时周期T1<T2<T3,选项D错误【总结提升】(1)变轨原因:当卫星由于某种原因速度突然改变时(开启或关闭发动机或空气阻力作用),万有引力不再等于向心力,卫星将变轨运行。

(2)变轨分析:卫星在圆轨道上稳定时,222224 Mm vG m m r m rr r Tπω===①当卫星的速度突然增大时,22Mm vG mr r<即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大。

当卫星进入新的轨道稳定运行时,由v=减小,但重力势能、机械能均增加;②当卫星的速度突然减小,22Mm vG mr r>于即万有引力大于所需要的向心力,卫星将做近心运动,脱离原来的圆轨道,轨道半径变小,当卫星进入新的轨道稳定运行时,由v=可知其运行速度比原轨道时增大,但重力势能、机械能均减小.【专练提升】1.如图所示,轨道Ⅰ是近地气象卫星轨道,轨道Ⅱ是地球同步卫星轨道,设卫星在轨道Ⅰ和轨道Ⅱ上都绕地心做匀速圆周运动,运行的速度大小分别是v1和v2,加速度大小分别是a1和a2,则( )A.v1>v2a1<a2 B.v1>v2a1>a2C.v1<v2a1<a2 D.v1<v2a1>a2【答案】B2 北斗导航系统中有“双星定位系统”,具有导航、定位等功能.有两颗工作卫星均绕地心O在同一轨道上做匀速圆周运动,轨道半径为r,某时刻,两颗工作卫星分别位于轨道上的A、B两位置,如图所示.若卫星均顺时针运行,地球表面处的重力加速度为g,地球半径为R,不计卫星间的相互作用力.下列说法中正确的是( )A.卫星1的线速度一定比卫星2的大B.卫星1向后喷气就一定能追上卫星2C.卫星1由位置A运动到位置B所需的时间为t=D.卫星1所需的向心力一定等于卫星2所需的向心力【答案】C3.如图是“嫦娥一号”奔月示意图,卫星发射后通过自带的小型火箭多次变轨,进入地月转移轨道,最终被月球引力捕获,成为绕月卫星,并开展对月球的探测.下列说法正确的是( )A.发射“嫦娥一号”的速度必须达到第三宇宙速度B.在绕月圆轨道上,卫星周期与卫星质量有关C.卫星受月球的引力与它到月球中心距离的平方成反比D.在绕月轨道上,卫星受地球的引力大于受月球的引力【答案】C4 、如图所示,“嫦娥一号”探月卫星被月球捕获后,首先稳定在椭圆轨道Ⅰ上运动,其中P、Q两点分别是轨道Ⅰ的近月点和远月点,Ⅱ是卫星绕月球做圆周运动的轨道,轨道Ⅰ和Ⅱ在P点相切,则( )A.卫星沿轨道Ⅰ运动,在P点的速度大于Q点的速度B.卫星沿轨道Ⅰ运动,在P点的加速度小于Q点的加速度C.卫星分别沿轨道Ⅰ、Ⅱ运动到P点的加速度不相等D.卫星要从轨道Ⅰ进入轨道Ⅱ,需在P点加速【答案】A【解析】在近日点速度较大,故A正确;在P点从轨道Ⅰ运动到轨道Ⅱ,卫星做向心运动,需减速,故D错误;根据牛顿第二定律,加速度大小取决于卫星受到的万有引力,在同一点加速度是相同的,故B、C均错误.5、如图所示是“嫦娥三号”环月变轨的示意图.在Ⅰ圆轨道运行的“嫦娥三号”通过变轨后绕Ⅱ圆轨道运行,则下列说法中正确的是( )A.“嫦娥三号”在Ⅰ轨道的线速度大于在Ⅱ轨道的线速度B.“嫦娥三号”在Ⅰ轨道的角速度大于在Ⅱ轨道的角速度C.“嫦娥三号”在Ⅰ轨道的运行周期大于在Ⅱ轨道的运行周期D.“嫦娥三号”由Ⅰ轨道通过加速才能变轨到Ⅱ轨道【答案】C6、我国某同步卫星在发射过程中经过四次变轨进入同步轨道.如图为第四次变轨的示意图,卫星先沿椭圆轨道Ⅰ飞行,后在远地点P处实现变轨,由椭圆轨道Ⅰ进入同步轨道Ⅱ,则该卫星( )A.在轨道Ⅱ上的周期比地球自转周期大B.在轨道Ⅱ上的加速度比在轨道Ⅰ上任意一点的加速度大C.在轨道Ⅰ上经过P点的速度比在轨道Ⅱ上经过P点的速度小D.在轨道Ⅱ上的速度比在轨道Ⅰ上任意一点的速度大【答案】C【解析】轨道Ⅱ是同步轨道,周期等于地球的自转周期,故A错误;在轨道Ⅰ和轨道Ⅱ上经过P点时所受的万有引力相等,所以加速度相等,故B错误.在轨道Ⅰ上的P点速度较小,万有引力大于所需的向心力,会做近心运动,要想进入圆轨道Ⅱ,需加速,使万有引力等于所需要的向心力.所以在轨道Ⅰ经过P 点的速度小于在轨道Ⅱ上经过P点时的速度,故C正确,D错误.7 、2013年6月13日13时18分,“神舟10号”载人飞船成功与“天宫一号”目标飞行器交会对接.如图所示,“天宫一号”对接前从圆轨道Ⅰ变至圆轨道Ⅱ,已知地球半径为R,轨道Ⅰ距地面高度h1,轨道Ⅱ距地面高度h2,则关于“天宫一号”的判断正确的是( )A.调整前后线速度大小的比值为B.调整前后周期的比值为C.调整前后向心加速度大小的比值为D.需加速才能从轨道Ⅰ变至轨道Ⅱ【答案】B8 、(多选)2013年12月6日17时47分,在北京飞控中心工作人员的精密控制下,嫦娥三号开始实施近月制动,进入100公里环月轨道Ⅰ,2013年12月10日晚21∶20分左右,嫦娥三号探测器将再次变轨,从100公里的环月圆轨道Ⅰ,降低到近月点(B点)15公里、远月点(A点)100公里的椭圆轨道Ⅱ,为下一步月面软着陆做准备.关于嫦娥三号卫星下列说法正确的是( )A.卫星在轨道Ⅱ上A点的加速度小于在B点的加速度B.卫星沿轨道Ⅰ运动的过程中,卫星中的科考仪器处于失重状态C.卫星从轨道Ⅰ变轨到轨道Ⅱ,在A点应加速D.卫星在轨道Ⅱ经过A点时的速度小于在轨道Ⅱ经过B点时的速度【答案】ABD【解析】根据G=ma可知,轨道半径越小加速度越大,因此A正确;卫星做匀速圆周运动时,所受到的万有引力完全来提供向心力,因此卫星内的所有物体都处于完全失重状态,B正确;在Ⅱ轨道上的A点,由于G>m,因此卫星做近心运动,而在Ⅰ轨道上的A点,由于G=m,因此卫星从轨道Ⅰ变轨到轨道Ⅱ,应在A点减速,C错误;从A到B的过程中,由开普勒第二定律得在轨道Ⅱ上B点的速度大于在轨道Ⅱ上A点的速度,D正确.9 、(多选)我国于2013年12月2日成功发射嫦娥三号探月卫星,并于12月14日在月面的虹湾区成功实现软着陆并释放出“玉兔”号月球车,这标志着中国的探月工程再次取得阶段性的胜利.如图所示,在月球椭圆轨道上的已关闭动力的探月卫星在月球引力作用下向月球靠近,并将在B处变轨进入半径为r、周期为T的环月轨道运行,已知万有引力常量为G.下列说法中正确的是( )A.图中探月卫星正减速飞向B处B.探月卫星在B处变轨进入环月轨道时必须点火减速C.由题中条件可以算出月球质量D.由题中条件可以算出探月卫星受到月球引力大小【答案】BC。

相关文档
最新文档