概率论典型例题第4章

合集下载

《概率论与数理统计》典型例题 第四章 大数定律与中心极限定理

《概率论与数理统计》典型例题 第四章 大数定律与中心极限定理

= 0.15,
µn 为
5000
户中收视
该节目的户数,所以可应用棣莫弗-拉普拉斯中心极限定理,即二项分布以正态 分布为极限定理。
解 : 设 µn 为 5000 户 中 收 视 该 节 目 的 户 数 , 则 µn ~ B(n, p) , 其 中
n = 5000, p = 0.15 。 由棣莫弗-拉普拉斯中心极限定理, µn − np 近似服从 np(1− p)
显然需用到前一不等式,则只需算出 E(X + Y ) 与 D(X + Y ) 即可。
解:由于 E(X + Y ) = 0 ,
D( X + Y ) = DX + DY + 2Cov( X , Y ) = DX + DY + 2ρ XY DX DY = 1+ 4 + 2×1× 2× (−0.5) = 3 ,
( D )服从同一离散型分布。
分析:林德伯格-列维中心极限定理要求的条件是 X 1, X 2,", X n,"相互独
立、同分布、方差存在,这时,当 n 充分大时, Sn 才近似服从正态分布。 根据 条件分析选项即可。
解:显然选项 A 与 B 不能保证 X 1, X 2 , ", X n 同分布,可排除。 选项 C 给出了指数分布,此时独立同分布显然满足,而且由于是指数分布, 方差肯定存在,故满足定理条件。 选项 D 只给出其离散型的描述,此时独立同分布显然满足。 但却不能保证 方差一定存在,因此也应排除。 故选 C 。 注:本例重在考察中心极限定理的条件。
P{ X
− EX
≥ ε}≤
E[g( X − EX )] 。 g(ε )
分析:证明的结论形式与切比雪夫不等式非常相似,利用切比雪夫不等式的 证明思想试试看。

概率论与数理统计第四章习题及答案

概率论与数理统计第四章习题及答案

概率论与数理统计习题 第四章 随机变量的数字特征习题4-1 某产品的次品率为,检验员每天检验4次,每次随机地取10件产品进行检验,如发现其中的次品数多于1个,就去调整设备,以X 表示一天中调整设备的次数,试求)(X E (设诸产品是否为次品是相互独立的).解:设表示一次抽检的10件产品的次品数为ξP =P (调整设备)=P (ξ>1)=1-P (ξ≤1)= 1-[P (ξ=0)+ P (ξ=1)]查二项分布表1-=.因此X 表示一天调整设备的次数时X ~B (4, . P (X =0)=⎪⎪⎭⎫ ⎝⎛04××=.P (X =1)=⎪⎪⎭⎫ ⎝⎛14××=, P (X =2)= ⎪⎪⎭⎫⎝⎛24××=.P (X =3)=⎪⎪⎭⎫ ⎝⎛34××=, P (X =4)= ⎪⎪⎭⎫ ⎝⎛44××=. 从而E (X )=np =4×=习题4-2 设随机变量X 的分布律为Λ,2,1,323)1(1==⎭⎬⎫⎩⎨⎧-=+j j X P jjj ,说明X的数学期望不存在.解: 由于1111133322(1)((1))3j j j j j j j j j P X j j j j ∞∞∞++===-=-==∑∑∑,而级数112j j ∞=∑发散,故级数11133(1)((1))j jj j j P X j j∞++=-=-∑不绝对收敛,由数学期望的定义知,X 的数学期望不存在. 习题X-2 0 2 k p求)53(),(),(22+X E X E X E .解 E (X )=(-2)+0+2=由关于随机变量函数的数学期望的定理,知E (X 2)=(-2)2+02+22=E (3X 2+5)=[3 (-2)2+5]+[3 02+5]+[322+5]=如利用数学期望的性质,则有E (3X 2+5)=3E (X 2)+5=3+5=4.135)(3)53(,8.23.04.0)(,2.03.023.004.02)(222222)2(=+=+=⨯+⨯=-=⨯+⨯+⨯-=-X E X E X E X E习题4-4 设随机变量X 的概率密度为⎩⎨⎧≤>=-0,0,0,)(x x e x f x 求XeY X Y 2)2(;2)1(-==的数学期望.解22)(2)0(2)(2)2()()(00=-=+-=+⋅===∞-∞+-∞-+∞-∞-+∞∞-⎰⎰⎰⎰xx xx e dx e xe dx xe dx x dx x xf X E Y E I3131)()()(0303022=-==⋅==∞-∞+-∞+---⎰⎰xx x x X edx e dx e e e E Y E II 习题4-5 设),(Y X 的概率密度为⎩⎨⎧≤≤≤=其它,0,10,12),(2x y y y x f求)(),(),(),(22Y X E XY E Y E X E +.解 各数学期望均可按照⎰⎰+∞∞-+∞∞-=dxdy y x f y x g Y X g E ),(),()],([计算。

概率论第4章习题参考解答

概率论第4章习题参考解答

概率论第4章习题参考解答 1. 若每次射击中靶的概率为0.7, 求射击10炮, 命中3炮的概率, 至少命中3炮的概率, 最可能命中几炮. 解: 设ξ为射击10炮命中的炮数, 则ξ~B (10,0.7), 命中3炮的概率为 =⨯⨯==733103.07.0}3{C P ξ0.0090至少命中3炮的概率, 为1减去命中不到3炮的概率, 为=⨯⨯-=<-=≥∑=-2010103.07.01}3{1}3{i i i i C P P ξξ0.9984因np +p =10×0.7+0.7=7.7不是整数, 因此最可能命中[7.7]=7炮. 2. 在一定条件下生产某种产品的废品率为0.01, 求生产10件产品中废品数不超过2个的概率. 解: 设ξ为10件产品中的废品数, 则ξ~B (10,0.01), 则废品数不超过2个的概率为=⨯⨯=≤∑=-20101099.001.0}2{i i i iC P ξ0.99993. 某车间有20部同型号机床, 每部机床开动的概率为0.8, 若假定各机床是否开动彼此独立, 每部机床开动时所消耗的电能为15个单位, 求这个车间消耗电能不少于270个单位的概率. 解: 设每时刻机床开动的数目为ξ, 则ξ~B (20,0.8), 假设这个车间消耗的电能为η个单位, 则η=15ξ, 因此2061.02.08.0}18{}15270{}27015{}270{20182020=⨯⨯==≥=≥=≥=≥∑=-i i i iC P P P P ξξξη4. 从一批废品率为0.1的产品中, 重复抽取20个进行检查, 求这20个产品中废品率不大于0.15的概率. 解: 设这20个产品中的废品数为ξ, 则ξ~B (20,0.1), 假设这20个产品中的废品率为η, 则η=ξ/20. 因此∑=-⨯⨯=≤=≤=≤320209.01.0}3{}15.020{}15.0{i i i iC P P P ξξη=0.8675. 生产某种产品的废品率为0.1, 抽取20件产品, 初步检查已发现有2件废品, 问这20件中, 废品不少于3件的概率. 解: 设ξ为这20件产品中的废品数, 则ξ~B (20,0.1), 又通过检查已经知道ξ定不少于2件的条件, 则要求的是条件概率}2{}23{}2|3{≥≥⋂≥=≥≥ξξξξξP P P因事件}3{}2{≥⊃≥ξξ, 因此2}23{≥=≥⋂≥ξξξ因此5312.06083.02852.019.01.0209.019.01.01}{1}2{1}{}2{1}{}2{}{}{}{}2{}3{}2|3{192018222010202202202202203=-=⨯⨯--⨯⨯-==-=-===-===-=====≥≥=≥≥∑∑∑∑∑∑======C i P P i P P i P P i P i P i P P P P i i i i i i ξξξξξξξξξξξξξ6. 抛掷4颗骰子, ξ为出现1点的骰子数目, 求ξ的概率分布, 分布函数, 以及出现1点的骰子数目的最可能值. 解: 因掷一次骰子出现一点的概率为1/6, 则ξ~B (4,1/6), 因此有⎪⎪⎩⎪⎪⎨⎧≥<≤⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛<==⎪⎭⎫ ⎝⎛⨯⨯==∑≤--4140656100)(),4,3,2,1,0(6561}{4444x x C x x F k C k P x k kk k kk kξ或者算出具体的值如下所示: ξ 0 1 2 3 4 P0.48230.38580.11570.01540.0008⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<≤<=41439992.0329838.0218681.0104823.000)(x x x x x x x F从分布表可以看出最可能值为0, 或者np +p =(4/6)+1/6=5/6小于1且不为整数, 因此最可能值为[5/6]=0. 7. 事件A 在每次试验中出现的概率为0.3, 进行19次独立试验, 求(1)出现次数的平均值和标准差; (2)最可能出现的次数. 解: 设19次试验中事件A 出现次数为ξ, 则ξ~B (19,0.3), 因此 (1)ξ的数学期望为E ξ=np =19×0.3=5.7 方差为Dξ=np (1-p )=19×0.3×0.7=3.99标准差为997.199.3===ξσξD(2)因np +p =5.7+0.3=6为整数, 因此最可能值为5和6. 8. 已知随机变量ξ服从二项分布, E ξ=12, D ξ=8, 求p 和n . 解: 由E ξ=np =12 (1) 和D ξ=np (1-p )=8 (2) 由(1)得n =12/p , 代入到(2)得 12(1-p )=8, 解出p =(12-8)/12=1/3=0.3333 代回到(1)式得n =12/p =12×3=36 9. 某柜台上有4个售货员, 并预备了两个台秤, 若每个售货员在一小时内平均有15分钟时间使用台秤, 求一天10小时内, 平均有多少时间台秤不够用. 解: 每个时刻构成一n =4的贝努里试验, 且p =15/60=0.25, 因此, 设ξ为每个时刻要用秤的售货员数, 则ξ~B (4, 0.25), 当ξ>2时, 台秤不够用. 因此每时刻台秤不够用的概率为=+⨯⨯=>433425.075.025.0)2(C P ξ0.0508因此10个小时内平均有0.0508×10=0.508个小时台秤不够用. 10. 已知试验的成功率为p , 进行4重贝努里试验, 计算在没有全部失败的情况下, 试验成功不止一次的概率. 解: 设ξ为4次试验中的成功数, 则ξ~B (4,p ), 事件"没有全部失败"即事件{ξ>0}, 而事件"试验成功不止一次"即事件{ξ>1}, 因此要求的是条件概率P {ξ>1|ξ>0}, 又因事件{ξ>1}被事件{ξ>0}包含, 因此这两个事件的交仍然是{ξ>1}, 因此434141}0{1}1{}0{1}0{}1{}0|1{q pq q P P P P P P ---===-=-=-=>>=>>ξξξξξξξ其中q =1-p 11. ξ服从参数为2,p 的二项分布, 已知P (ξ≥1)=5/9, 那么成功率为p 的4重贝努里试验中至少有一次成功的概率是多少?解: 因ξ~B (2,p ), 则必有9/5)1(1)0(1)1(2=--==-=≥p P P ξξ, 解得3/13/213/219/49/51)1(2=-==-=-=-p p p 则假设η为成功率为1/3的4重贝努里试验的成功次数, η~B (4,1/3), 则802.081161321)1(1)0(1)1(44=-=⎪⎭⎫⎝⎛-=--==-=≥p P P ηη12. 一批产品20个中有5个废品, 任意抽取4个, 求废品数不多于2个的概率解: 设ξ为抽取4个中的废品数, 则ξ服从超几何分布, 且有==≤∑=-204204155}2{i i i C C C P ξ0.968 13. 如果产品是大批的, 从中抽取的数目不大时, 则废品数的分布可以近似用二项分布公式计算. 试将下例用两个公式计算, 并比较其结果. 产品的废品率为0.1, 从1000个产品中任意抽取3个, 求废品数为1的概率. 解: 设任抽3个中的废品数为ξ, 则ξ服从超几何分布, 废品数为0.1×1000=100 ===3100029001100}1{C C C P ξ0.2435 而如果用二项分布近似计算, n =3, p =0.1, ξ~B (3,0.1)=⨯⨯≈=2139.01.0}1{C P ξ0.2430近似误差为0.0005, 是非常准确的.14. 从一副朴克牌(52张)中发出5张, 求其中黑桃张数的概率分布. 解: 设ξ为发出的5张中黑桃的张数, 则ξ服从超几何分布, 则)5,4,3,2,1,0(}{5525135213===--i C C C i P i i ξ则按上式计算出概率分布如下表所示: ξ 0 1 2 3 4 5 P0.22150.41140.27430.08150.01070.000515. 从大批发芽率为0.8的种子中, 任取10粒, 求发芽粒数不小于8粒的概率. 解: 设ξ为10粒种子中发芽的粒数, 则ξ服从超几何分布, 但可以用二项分布近似, 其中p =0.8, n =10, 则∑=-⨯⨯=≥10810102.08.0}8{i i i iC P ξ=0.677816. 一批产品的废品率为0.001, 用普哇松分布公式求800件产品中废品为2件的概率, 以及不超过2件的概率. 解: 设ξ为800件产品中的废品数, 则ξ服从超几何分布, 可以用二项分布近似, 则ξ~B (800, 0.001), 而因为试验次数很大废品率则很小, 可以用普阿松分布近似, 参数为 λ=np =800×0.001=0.89526.0!8.0}2{1438.028.0}2{28.08.02=≈≤=≈=∑=--i i e i P e P ξξ 17. 某种产品表面上的疵点数服从普哇松分布, 平均一件上有0.8个疵点, 若规定疵点数不超过1个为一等品, 价值10元, 疵点数大于1不多于4为二等品, 价值8元, 4个以上为废品, 求产品为废品的概率以及产品的平均价值. 解: 设ξ为产品表面上的疵点数, 则ξ服从普哇松分布, λ=0.8, 设η为产品的价值, 是ξ的函数. 则产品为废品的概率为0014.0!8.01}4{1}4{408.0=-=≤-=>∑=-i i e i P P ξξ==≤==∑=-18.0!8.0}1{}10{i i e i P P ξη0.8088==≤<==∑=-428.0!8.0}41{}8{i i e i P P ξη0.1898则产品的平均价值为 Eη = 10×P {η=10}+8×P {η=8}=10×0.8088+8×0.1898=9.6064(元) 18. 一个合订本共100页, 平均每页上有两个印刷错误, 假定每页上印刷错误的数目服从普哇松分布, 计算该合订本中各页的印刷错误都不超过4个的概率. 解: 设ξ为每页上的印刷错误数目, 则ξ服从普哇松分布, λ=2, 则1页印刷错误都不超过4个的概率为 ==≤∑=-402!2}4{i i e i P ξ0.9473而100页上的印刷错误都不超过4个的概率为[]=≤100}4{ξP 0.00445419. 某型号电子管的“寿命”ξ服从指数分布, 如果它的平均寿命E ξ=1000小时, 写出ξ的概率密度, 并计算P (1000<ξ≤1200). 解: 因Eξ=1000=1/λ, 其概率密度为⎪⎩⎪⎨⎧≤>=-0010001)(1000x x ex xϕ0667.0)12001000(2.111000120010001000=-=-=≤<----e e ee P ξ20. ξ~N (0,1), Φ0(x )是它的分布函数, φ0(x )是它的概率密度, Φ0(0), φ0(0), P (ξ=0)各是什么值? 解: 因有 20221)(x ex -=πϕ, ⎰∞--=Φxt dt ex 20221)(π, 因此φ0(x )为偶函数, 由对称性可知Φ0(0)=0.5, 并有πϕ21)0(0=,因ξ为连续型随机变量, 取任何值的概率都为0, 即P (ξ=0)=0.21. 求出19题中的电子管在使用500小时没坏的条件下, 还可以继续使用100小时而不坏的概率?解: 要求的概率为P (ξ>600|ξ>500), 因此905.0}500{}600{}500|600{1.010005001000600===>>=>>---e e eP P P ξξξξ22. 若ξ服从具有n 个自由度的χ2-分布, 证明ξ的概率密度为⎪⎪⎩⎪⎪⎨⎧<≥⎪⎭⎫ ⎝⎛Γ=---022)(21212x x e n x x x nn ϕ称此分为为具有n 个自由度的χ-分布 证: 设ξη=, 则因ξ的概率密度函数为⎪⎪⎩⎪⎪⎨⎧≤>⎪⎭⎫ ⎝⎛Γ=--0221)(2122x x e x n x xn nξϕη的分布函数为)0()()()()()(22>=≤=≤=≤=x x F x P x P x P x F ξηξξη对两边求导得)0(22222)(2)(2121222222>⎪⎭⎫ ⎝⎛Γ=⎪⎭⎫ ⎝⎛Γ==-----x en x en x xx x x x n n x n n ξηϕϕ23. ξ~N (0,1), 求P {ξ≥0}, P {|ξ|<3}, P {0<ξ≤5}, P {ξ>3}, P {-1<ξ<3} 解: 根据ξ的对称性质及查表得: P {ξ≥0}=1-Φ0(0)=0.5 P {|ξ|<3}=2Φ0(3)-1=2×0.99865-1=0.9973 P {0<ξ≤5}=Φ0(5)-0.5=0.5P {ξ>3}=1-Φ0(3)=1-0.99865=0.00135P {-1<ξ<3}=Φ0(3)-Φ0(-1)=Φ0(3)+Φ0(1)-1=0.99865+0.8413-1=0.83995 24. ξ~N (μ,σ2), 为什么说事件"|ξ-μ|<2σ"在一次试验中几乎必然出现?解: 因为)1,0(~N σμξ- 19545.0197725.021)2(2}2{}2|{|0≈=-⨯=-Φ=<-=<-σμξσμξP P因此在一次试验中几乎必然出现.25. ξ~N (10,22), 求P (10<ξ<13), P (ξ>13), P (|ξ-10|<2). 解: 因为)1,0(~210N -ξ6826.018413.021)1(2}1210{}2|10{|0.0668193319.01)5.1(1}5.1210{}13{43319.05.093319.0)0()5.1(}5.12100{}1310{0000=-⨯=-Φ=<-=<-=-=Φ-=>-=>=-=Φ-Φ=<-<=<<ξξξξξξP P P P P P26. 若上题中已知P {|ξ-10|<c }=0.95, P {ξ<d }=0.0668, 分别求c 和d .解: 因为)1,0(~210N -ξ, 则有95.01)2(2}2210{}|10{|0=-Φ=<-=<-cc P c P ξξ 解得975.0295.01)2(0=+=Φc, 查表得,96.12=c得c =3.92 再由5.00668.0)210(}210210{}{0<=-Φ=-<-=<d d P d P ξξ知,0210<-d 因此0668.0)210(1)210(00=-Φ-=-Φdd 即9332.00668.01)210(0=-=-Φd, 查表得5.1210=-d, 解得7310=-=d 27. 若ξ~N (μ,σ2), 对于P {μ-kσ<ξ<μ+kσ}=0.90, 或0.95, 或0.99, 分别查表找出相应的k值.解: 先求P {μ-kσ<ξ<μ+kσ}=0.90对应的k 值. 因)1,0(~N σμξ-, 因此 90.01)(2}{}{0=-Φ=<-=+<<-k k P k k P σμξσμξσμ 即95.0290.01)(0=+=Φk , 查表得k =1.64 同理, 由975.0295.01)(0=+=Φk , 查表得k =1.96 由995.0299.01)(0=+=Φk , 查表得k =2.57 28. 某批产品长度按N (50, 0.252)分布, 求产品长度在49.5cm 和50.5cm 之间的概率, 长度小于49.2cm 的概率.解: 设ξ为产品长度, 则ξ~N (50, 0.252), 且有)1,0(~25.050N -ξ, 则9545.0197725.021)2(2}225.050{}225.0502{}5.505.49{0=-⨯=-Φ=<-=<-<-=<<ξξξP P P0006871.09993129.01)2.3(1)2.3(}25.0502.4925.050{}2.49{00=-=Φ-=-Φ=-<-=<ξξP P29. ξi ~N (0,1)(i =1,2,3), 并且ξ1,ξ2,ξ3相互独立, ∑==3131i i ξξ,∑=-=312)(i i ξξη, 求),cov(,),,cov(1ηξηξξE解: 此题要用到, 两个独立的服从正态分布的随机变量相加后得到的随机变量仍然服从正态分布. 因此, 因为3131,031=⎪⎭⎫ ⎝⎛==∑=i i D D E ξξξ, 则)31,0(~N ξ313131)()cov(2131111==⎪⎭⎫ ⎝⎛==∑=ξξξξξξξE E E i i32313121)cov(2)2()(22222=+⨯-=+-=+-=-ξξξξξξξξξξE E E E i i i i i因此2323)()(312312=⨯=-=⎪⎭⎫ ⎝⎛-=∑∑==i i i i E E E ξξξξη ξξ-i 也服从正态分布, 且有03131)]([),cov(2=-=-=-=-ξξξξξξξξξE E E i i i即ξ与ξξ-i 不相关, 而因为它们服从正态分布, 因此也就是ξ与ξξ-i 相互独立,则ξ与2)(ξξ-i 也相互独立, 则ξ与η中的加和中的每一项相互独立, 当然也与η相互独立, 因此有0),cov(=ηξ, 因为相互独立的随机变量一定不相关.30. (ξ,η)有联合概率密度22)(21,2122ηξζπ+=+-y x e , 求ζ的概率密度.解: 由联合概率密度看出, ξ与η相互独立服从标准正态分布, 则有 ξ2与η2也相互独立且服从自由度为1的χ2-分布, 即ξ2~χ2(1), η2~χ2(1), 因此ζ=ξ2+η2~χ2(2), 即它的概率密度为⎪⎩⎪⎨⎧<>=-00212x x exζϕ即ζ服从λ=1/2的指数分布.。

概率论习题及解答-第四章特征函数

概率论习题及解答-第四章特征函数

ξ = a min{Y, x} − bx.
从而平均利润
∫∞ E(ξ) = aE(min{Y, x}) − bx = a min{y, x}λe−λydy − bx
(∫ x
∫∞ 0
)
=a
yλe−λydy +
xλe−λydy − bx
(0
∫x x
)
= a − xe−λx + e−λydy + xe−λx − bx
∑ ∞
∑ ∞ ∑i
E(η) = iP(η = i) =
P(η = i)
i=1
i=1 k=1
∑ ∞ ∑ ∞
∑ ∞
=
P(η = i) = P(η k).
注意到
P(min{ξ1, ξ2, · · · , ξn}
k=1 i=k
k) = P(ξ1 k, ξ2
k=1
k, · · · , ξn
( ∑ )n
k) =
记 µk = p0 + p1 + · · · + pk−1, νk = 1 − µk, 试证明
∑ ∞ E(min{ξ1, ξ2, · · · , ξn}) = νkn,
k=1
∑ ∞ E(max(ξ1, ξ2, · · · , ξn)) = (1 − µnk ).
k=1
4
证明: 若 η 为取非负整值随机变量, 则

∑ ∞
∑ ∞
E(max{ξ1, ξ2, · · · , ξn}) = P(max{ξ1, ξ2, · · · , ξn} k) = (1 − µnk ).
k=1
k=1
练习4.1.11 设随机变量 ξ, η 独立同分布, ξ ∼ N (a, σ2), 试证明

概率论与数理统计 第四章 随机变量的数字特征 练习题与答案详解

概率论与数理统计 第四章 随机变量的数字特征 练习题与答案详解

概率论与数理统计 第四章 随机变量的数字特征练习题与答案详解(答案在最后)1.假定每个人生日在各个月份的机会是相同的,求三个人中生日在第一季度的人数的平均.2.100个产品中有5个次品,任取10个,求次品个数的数学期望与方差.3.设随机变量X 的概率密度为)(,e 21)(∞<<-∞=-x x p x试求数学期望EX 及方差DX .4.已知随机变量X 的分布函数为⎪⎪⎩⎪⎪⎨⎧>≤<≤=,,,,,,4140400)(x x x x x F 试求X 的数学期望EX 方差DX .5.对圆的直径作近似测量,设其值均匀地分布在[]b a ,内,求圆面积的数学期望.6.设随机变量X 概率密度为⎪⎩⎪⎨⎧≤≤=其它,,,,020cos )(πx x x f X试求随机变量DY X Y 的方差2=.7.设随机变量ξ只取非负整数值,其概率为{}0)1(1>+==+a a a k P k k,ξ是常数, 试求ξE 及ξD .8.设独立试验序列中,首次成功所需要的次数ξ服从的分布列为:其中q =9.若事件A 在第i 次试验中出现的概率为,i p 设μ是事件A 在起初n 次独立试验中的出现次数,试求μE 及μD .10.随机变量n ξξξ,,,21 独立,并服从同一分布,数学期望为,μ方差为2σ,求这些随机变量的算术平均值∑==ni i n 11ξξ的数学期望与方差.11.设μ是事件A 在n 次独立试验中的出现次数,在每次试验中,)(p A P =再设随机变量η视μ取偶数或奇数而取数值0及1,试求ηE 及ηD .12.设随机变数ξ之概率分布如下:求: (1) ; ]]1[2[2+ξE (2) ])[(2ξξE E -.13.随机变量,)(~x f X⎪⎩⎪⎨⎧<<-≤≤=其它,,,,,,021210)(x x x x x f试计算n EX n (为正整数).14.随机变量aX Y p n B X e ),,(~=,求随机变量Y 的期望和方差. 15.某种产品每件表面上的疵点数服从泊松分布,平均每件上有8.0个疵点.规定疵点数不超过1个为一等品,价值10元,疵点数大于1不多于4为二等品,价值为8元,4个以上者为废品,求:)1( 产品的废品率;)2( 产品的平均价值.16.一个靶面由五个同心圆组成,半径分别为25,20,15,10,5厘米,假定射击时弹着点的位置为Z Y Z ,),(为弹着点到靶心的距离,且),(Y Z 服从二维正态分布,其密度为200222001),(y x ey x f +-=π,现规定弹着点落入最小的圆域为5分,落入其他各圆域(从小到大)的得分依次为4分,3分,2分,1分,求:)1( 一次射击的平均得分;)2( 弹着点到靶心的平均距离.17.若ξ的密度函数是偶函数,且∞<2ξE ,试证ξ与ξ不相关,但它们不相互独立.18.若ξ与η都是只能取两个值的随机变量,试证如果它们不相关,则独立.答案详解1.每个生日在第一季度的概率是41=p .设X 表示三个人中生日在第一季度的人数,则X 服从二项分布,,⎪⎭⎫⎝⎛B 413从而X 的平均为43413)(=⨯=X E2.5.0=EX ,11045=DX3.x -e 21为偶函数,⋅x x-e 21为奇函数,所以,由积分性质知0d e 21=⋅=-∞∞-⎰x x EX x(奇函数在对称区间上的积分值为零)=DX x x P X E x X d )()]([2⎰∞∞--=⨯=-∞∞-⎰x x xd e 212x x x d e 02-∞⎰)(d )(202x x x x --∞-=-=⎰ x x x d e 200⎰∞-+∞2d e 20==⎰∞-x x x 4.342==DX EX ,5.设圆的直径为随机变量X ,圆的面积为随机变量,Y 则24)(X X f Y π==,随机变量X 的概率密度为⎪⎩⎪⎨⎧≤≤-=其它,,,,01)(b x a ab x p X , 于是)(12112 d 14d )()())(()(2232b ab a a b x ab x ab x x x p x f X f E Y E b aX ++=⋅-⋅=-⋅===⎰⎰∞∞-πππ6.2220π-=DY7.⎥⎦⎤⎢⎣⎡++=+⋅=∑∑∞=∞=+101)1(11)1(k k k k k a a k a a a k E ξ, 令,且,则10)1(<<=+p p a a ,211)1()1()(p p p p p p p kp k k kk -='-='=∑∑∞=∞= 故a aa a aaE =+-+⋅+=2)11(111ξ.采用同样的方法并利用a E =ξ得⎥⎦⎤⎢⎣⎡++=∑∞=k k a a k a E )1(11122ξ[]k k p k k a ∑∞=+-+=11)1(11 ∑∑∞=∞=-+++=11)1(1111k k k k p k k a kp a ,2322122)1(21)1(1)(1a a p a p a p p a p a p a p a k k +=-⋅++="⎥⎦⎤⎢⎣⎡-++=''++=∑∞=故)1()2()(2222a a a a a D +=-+=E -E =ξξξ 8.21pqD pE ==ξξ,9.设,21n μμμμ+++= 其中⎩⎨⎧=出现次试验若第出现次试验若第A i A i i ,0,1μ,则∑∑===E =ni i ni i p E 11μμ,由试验独立得诸i μ相互独立,从而知=μD )1(11i ni i ni i p p D -=∑∑==μ10.nD E 2,σξμξ== 11.事件A 出现奇数次的概率记为b ,出现偶数次的概率记为a ,则.,++=++=---3331122200n n n n n n n n q p C pq C b q p C q p C a 利用,,n n p q b a q p b a )(1)(-=-=+=+可解得事件A 出现奇数次的概率为 n n p p q b )21(2121])(1[21--=--=,顺便得到,事件A 出现偶数次的概率为n p a )21(2121-+=.η服从两点分布,由此得,{}{}===出现奇数次事件A P P 1ηn p )21(2121--, {}{}===出现偶数次事件A P P 0ηn p )21(2121-+, 所以,=ηE n p )21(2121--,=ηD ][)21(2121[n p --])21(2121n p -+n p 2)21(4141--=.12.(1) 117; (2) 46513.x x f x EX n n d )(⎰∞∞-=x x x x x x n n d )2(d 2110-⋅+⋅=⎰⎰12)212(012212+-+⋅++=+++n x n x n x n n n)21122212(2122+++-+-+++=++n n n n n n n )2)(1(222++-=+n n n 14.n a n a n a p q p q DY p q EY 22)e ()e ()e (+-+=+=, 15.(1) 0.0014; (2) 9.616.(1) 007.3; (2) π2517.设)(x f 是ξ的密度函数,则)()(x f x f =-,由)(x xf 是奇函数可得,0=ξE 从而0=ξξE E .又由于)(x f x x 是奇函数及,2∞<ξE 得ξξξξE E x x f x x E ===⎰∞∞-0d )(,故ξ与ξ不相关.由于ξ的密度函数是偶函数,故可选0>c 使得当{}10<<P <c ξ时,也有{}10<<P <c ξ,从而可得 {}{}{}{}c c P c P c P c P <<=<≠<<ξξξξξ,,其中等式成立是由于{}{}c c <⊂<ξξ,由此得不独立与ξξ.18.设⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛2,2,1, , 1q p d c p b a q :,:ηξ.作两个随机变量 ⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛--=**2211,0, ,0, q p d c d q p b a b :,:ηηξξ, 由ξ与η不相关即ηξξηE E E ⋅=得)(bd d b E E +--=**ξηξηηξbd dE bE E E +--=ξηηξ**=--=ηξηξE E d E b E ))((,而,,,}{)(}{)(} {))((d c P d c b a P b a E E d c b a P d c b a E -=-⋅-=-=-=-=--=********ηξηξηξηξ由上两式值相等,再由0))((≠--d c b a 得,,}{}{}{d c P b a P d c b a P -=-==-=-=****ηξηξ 即}{}{}{c P a P c a P =⋅====ηξηξ,. 同理可证}{}{}{d P a P d a P =⋅====ηξηξ,, }{}{}{c P b P c b P =⋅====ηξηξ,, }{}{}{d P b P d b P =⋅====ηξηξ,,从而ξ与η独立.。

概率论第四章 习题答案

概率论第四章 习题答案

1 ⎛2⎞ 1 DX = EX − ( EX ) = − ⎜ ⎟ = . 2 ⎝ 3 ⎠ 18 1 2 DZ = 4 DX = 4 × = . 18 9
【解毕】
9.在一次拍卖中,两人竞买一幅名画,拍卖以暗标的形式进行,并以最高价成交.设两人 的出价相互独立且均服从(1,2)上的均匀分布,求这幅画的期望成交价. 解:设两人的出价分别为随机变量 X , Y ,则这幅画的期望成交价为 Z = max { X , Y } 由题意知, X 与Y 独立,且 X ∼ U (1, 2); Y ∼ U (1, 2) 先求 Z 的分布函数 当 1 < z < 2 时, F ( z ) = P ( Z £ z ) = P (max { X , Y } £ z ) = P ( X £ z ,Y £ z )
= P( X £ z ) P (Y £ z ) = ( z -1)2
当 z £ 1 时, F ( z ) = 0 ;当 z ³ 2 时, F ( z ) = 1 于是 Z 的密度函数为 f ( z ) = ï í
ì2( z -1),1 < z < 2 ï ï 0, 其它 ï î 5 3
EZ = ò

3 X .求: ( 1)常数 a, b, c; (2) Ee . 4
【解】 (1)由概率密度的性质知,有
+∞ 2 4
1=
又因为
−∞

f ( x )dx = ∫ axdx + ∫ ( cx + b )dx = 2a + 6c + 2b.
0 2
+∞
2
4
2 = EX =
−∞
∫ xf ( x )dx = ∫ xiaxdx + ∫ x ( cx + b )dx

《概率论与数理统计》第04章习题解答

《概率论与数理统计》第04章习题解答

第四章 正态分布1、解:(0,1)ZN(1){ 1.24}(1.24)0.8925P Z ∴≤=Φ={1.24 2.37}(2.37)(1.24)0.99110.89250.0986P Z <≤=Φ-Φ==-= {2.37 1.24}( 1.24)( 2.37)(1.24)(2.37)0.89250.99110.0986P Z -<≤-=Φ--Φ-=-Φ+Φ=-+=(2){}0.9147()0.9147 1.37{}0.05261()0.0526()0.9474 1.62P Z a a a P Z b b b b ≤=∴Φ==≥=-Φ=Φ==,,得,,,得2、解:(3,16)XN8343{48}()()(1.25)(0.25)0.89440.59870.295744P X --∴<≤=Φ-Φ=Φ-Φ=-= 5303{05}()()(0.5)(0.75)44(0.5)1(0.75)0.691510.77340.4649P X --<≤=Φ-Φ=Φ-Φ-=Φ-+Φ=-+= 31(25,36){25}0.95442(3,4){}0.95X N C P X C X N C P X C -≤=>≥、()设,试确定,使;()设,试确定,使解:(1)(25,36){25}0.9544X N P X C -≤=,{2525}0.9544P C X C ∴-≤≤+=25252525()()0.954466()()2()10.9544666()0.9772,21266C C C C CC CC +---Φ-Φ=-Φ-Φ=Φ-=Φ=∴==即, (2)(3,4){}0.95XN P X C >≥,331()0.95()0.952231.6450.292C CCC ---Φ≥Φ≥-≥≤-即,,4、解:(1)2(3315,575)XN4390.2533152584.753315{2584.754390.25}()()575575(1.87)( 1.27)(1.87)1(1.27)0.969310.89800.8673P X --∴≤≤=Φ-Φ=Φ-Φ-=Φ-+Φ=-+= (2)27193315{2719}()( 1.04)1(1.04)10.85080.1492575P X -≤=Φ=Φ-=-Φ=-=(25,0.1492)YB ∴4440{4}(0.1492)(10.1492)0.6664ii i i P Y C -=∴≤=-=∑5、解:(6.4,2.3)X N{}{}1()81(1.055)10.85540.14462.3(85}0.17615 6.451(0.923)(0.923)0.82121()2.3P X P X X P X -Φ>-Φ-∴>>======->-Φ-Φ-Φ6、解:(1)2(11.9,(0.2))XN12.311.911.711.9{11.712.3}()()(2)(1)(2)1(1)0.20.20.977210.84130.8185P X --∴<<=Φ-Φ=Φ-Φ-=Φ-+Φ=-+= 设A ={两只电阻器的电阻值都在欧和欧之间} 则2()(0.8185)0.6699P A ==(2)设X , Y 分别是两只电阻器的电阻值,则22(11.9,(0.2))(11.9,(0.2))X N Y N ,,且X , Y 相互独立[]22212.411.9{(12.4)(12.4)}1{12.4}{12.4)}1()0.21(2.5)1(0.9938)0.0124P X Y P X P Y -⎡⎤∴>>=-≤⋅≤=-Φ⎢⎥⎣⎦=-Φ=-=7、一工厂生产的某种元件的寿命X (以小时计)服从均值160μ=,均方差为的正态分布,若要求{120200}0.80P X <<≥,允许最大为多少解:因为2(160,)XN σ由2001601201600.80{120200}()()P X σσ--≤<<=Φ-Φ从而 40402()10.80()0.9σσΦ-≥Φ≥,即,查表得401.282σ≥,故σ≤8、解:(1)2(90,(0.5))XN8990{89}()(2)1(2)10.97720.02280.5P X -∴<=Φ=Φ-=-Φ=-= (2)设2(,(0.5))X N d由808080{80}0.991()0.99()0.99 2.330.50.50.5d d d P X ---≥≥∴-Φ≥Φ≥≥,,,即 从而d ≥ 9、解:22~(150,3),~(100,4)X Y X N Y N 与相互独立,且则(1)2221~(150(100,3)4)(250,5)W X Y N N =+++=()222222~2150100,(2)314(200,52)W X Y N N =+-⨯+-⨯+⨯=-22325~(125,)(125,(2.5))22X Y W N N +== (2)242.6250{242.6}()( 1.48)1(1.48)10.93060.06945P X Y -+<=Φ=Φ-=-Φ=-= 12551255125522212551251255125()1()(2)1(2)2.5 2.522(2)220.97720.0456X Y X Y X Y P P P ⎧+⎫++⎧⎫⎧⎫->=<-+>+⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭--+-=Φ+-Φ=Φ-+-Φ=-Φ=-⨯=10、解:(1)22~(10,(0.2)),~(10.5,(0.2))X N Y N X Y ,且与相互独立22~(0.5,2(0.2))(0.5,(0.282))X Y N N ∴--⨯=-0(0.5){0}()(1.77)0.96160.282P X Y ---<=Φ=Φ=(2)22~(10,(0.2)),~(10.5,)X N Y N X Y σ设,且与相互独立222~(0.5,2(0.2))(0.5,(0.2))X Y N N σ∴--⨯=-+0.90{0}P X Y ≤-<=Φ=Φ由1.28≥,故σ≤11、设某地区女子的身高(以m 计)2(1.63,(0.025))WN ,男子身高(以m 计)2(1.73,(0.05))MN ,设各人身高相互独立。

概率论与数理统计第4章例题

概率论与数理统计第4章例题

则=)(X E DA. 0.96B. 0.3C. 1.4D. 2.6 2.的概率密度为设随机变量X ⎩⎨⎧≤≤=其它102)(x xx f ,=)(X E 则 C2.A 1.B 32.C3.D3.设随机变量X ,其概率密度为 ()1101010x x f x xx +-≤≤⎧⎪=-<<⎨⎪⎩其它,求()E X . 解()()()()011011E Xx fx dx x x dx x x dx +∞-∞-==++-⎰⎰⎰=04. 设连续型随机变量X 的分布函数为30,0(),011,1x F x x x x <⎧⎪=≤≤⎨⎪>⎩求()E X解()23010x x f x ⎧≤≤=⎨⎩其它()13334E X x dx ==⎰5.设随机变量X 的分布列为(1) 试计算常数a ; (2)求随机变量()21-=X Y 的期望. 解、(1)由14126131=++++a a,得121=a(2)随机变量Y 的所有可能取值4,1,41,0,Y的分布律为所以()=Y E 2441方差部分1.方差的计算公式为C A.22)(EX EXDX -= B. 22)(EX EX DX -= C. 2)(EX EX DX -=D. EX EX DX -=22.某牌号手表日走时误差()()X E X ,D X ,求.解 010*******=⨯+⨯+⨯-=...)()(X E2010********222....)()(=⨯+⨯+⨯-=X E 20.)(=x D3. 设随机变量)(~x f X =⎩⎨⎧≤≤其它102x Ax ,求: )(),(X D X E . 解⎰==101,12A Axdx 32210=⋅=⎰xdx x EX2121022=⋅=⎰xdx x EX181)(22=-=EX EX DX4. 设随机变量)(~x f X =⎩⎨⎧≤≤其它20x kx ,求: )(),(X D X E .解2/1,12⎰==k kxdx342120=⋅=⎰xdx x EX2212022=⋅=⎰xdx x EX9/2)(22=-=EX EXDX5.设随机变量X f(x)x x ≤≤⎧=⎨⎩201的概率密度为0其它, 求E(X),D(X). 解()E X x dx =⎰1202= 32 ()E X x dx ==⎰123122, D (X )=1186.设随机变量X 的概率密度为,,020,121)(⎪⎩⎪⎨⎧≤≤+-=其它x x x f求),(X E 数学期望)(X D 方差. 解:,32)21()(22=+-=⎰dx x x X E ,32)21()(20332=+-=⎰dx x x X E 92)()()(22=-=X E X E X D7.设相互独立的随机变量X 和Y ,方差分别为4和2,则)(Y X D +=BA .2 B. 6 C. 1 D. 128.两个相互独立的随机变量X 和Y,D(X)=4,D(Y)=2,则D(3X+2Y)=DA .8 B. 16 C. 28 D. 449.=+==)2(,3)(,6)(,Y X D Y D X D Y X 则独立与设随机变量 C9.A 15.B 27.C 21.D10.设两个相互独立的随机变量X 和Y 的方差各为4和2,则3X-2Y 的方差为DA. 8B. 16C. 28D. 44 11.=+==)34(,100)5(,4)2(2X D X E X E 则已知____________. 256, 12.=+==)13(,8)4(,20)2(2X D X E X E 求设__________________54常见分布1.某电话交换台在时间[0,t]内接到的电话呼唤次数服从参数为5的泊松分布, 则在[0,t]内接到的平均呼唤次数为 A A. 5 B. 25 C. 0.2 D. 0.252.设随机变量X 服从泊松分布()P λ,则()D X =BA. 2λB.λC.12λD.1λ3.设随机变量X 服从泊松分布(3)P ,则()D X =BA. 6B. 3C. 1D. 134.设随机变量X 服从参数为λ 的泊松分布,则(12)D X +=B A .2λ B .4λ C .12λ+ D .14λ+5.设随机变量X ~(,)B n p ,且().,().,E X D X ==04032则,n p 的值为A A. n ,p .==202 B. n ,p .==401 C. n ,p .==40001 D. n ,p .==200026.设随机变量X ~(,)B n p ,且().,().,E X D X ==24144则,n p 的值为A A. n ,p .==604 B. n ,p .==406 C. n ,p .==803 D. n ,p .==4067.设一次试验成功的概率为p ,进行100次独立重复试验,试验成功的次数为X ,(1)求D(X). (2)p 为多大时,D(X)最大.解 (1)() D X 100p (1-p)X =服从二项分布,(2)()()()122211100120022p dD X d D Xp p p dpdp==-==<=时方差最大8.设X 是一个随机变量,其概率密度为()1,;0,.a x b f x b a⎧≤≤⎪=-⎨⎪ ⎩其他则()E X =2b a +9.=-)34(),9,3(~,]6,2[Y X E N Y X 则上的均匀分布服从区间设随机变量7,11.=+)32(,]2,0[Y X E Y X 则上的均匀分布均服从区间与设随机变量__512.设顾客在某银行的窗口等待服务的时间X (以分为单位)服从参数为1/5 指数分布,则顾客等待服务的平均时间 DA. 0.25B. 25C. 0.2 D . 513.设23),(~-=X Z e X λ,则=)(Z E 231--λ14.已知随机变量X 的数学期望为E(X),标准差为σ(X)>0,设随机变量()()X X E X X *σ-=,则E(*X )=__________ 015.设随机变量X ~N(-1,5),Y ~N(1,2),且X 与Y 相互独立,则D(X +Y)= D A. 2 B. 5 C. 3 D. 716.设X 服从正态分布,其密度函数为()()21x f x--=,则()D X =______1/217.设随机变量X ~()2,1σN ,若EX 2=1,则σ=CA. 1B. 2C. 0D. 318.设随机变量()~0,1X N ,则()2E X =___________ 1 19.已知连续随机变量X 的概率密度为()()2112x x ϕ--=,则D (X )为AA .1 B. 2 C. 0.5 D. 0.2520.设随机变量X ~N(-1,4),Y ~N(2,6),且X 与Y 相互独立,则D(X +Y)= A A.10 B. 4 C. 6 D. 021.设随机变量(1,2),(0,3)X N Y N ~~,,X Y 相互独立,则X Y + ~CA. (),N 111B. (),N 11C. (),N 15D. (),N 111 22.设随机变量X ~()2,1σN ,若()2X E =2,则σ=__________ 123. 设()22,2~N X ,12--=X Y ,则 Y 服从的分布为AA. )16,5(-NB. )15,5(-NC. )16,4(-ND. )15,4(-N24.设随机变量(0,2),(1,3)X N Y N ~~,,X Y 相互独立,则2X Y + ~CA. (),N 15B. (),N 11C. (),N 111D. (),N 111 25.=-)34(),9,3(~,]6,2[Y X E N Y X 则上的均匀分布服从区间设随机变量726.设~(5,9)X N , 则 =)(X D _______ 9 27.设()22,2~N X ,121-=X Y ,则 Y服从的分布为 CA. )2,1(NB. )4,2(NC. )1,0(ND. )2,0(N 28.=+)32(,]2,0[Y X E Y X 则上的均匀分布均服从区间与设随机变量_____.529.设随机变量Y X ,相互独立,)1,0(~),2,1(~N Y N X求随机变量Y X Z -=概率密度函数. 解、由题意, 服从正态分布Y X Z -=,3)()(;1)()(=-==-=Y X D Z D Y X E Z E 又6)1(261)(--=z ez f Z π的概率密度函数所以30.设随机变量Y X ,相互独立,)1,0(~),1,0(~N Y N X求随机变量Y X Z +=概率密度函数. 解: 由题意, 服从正态分布Y X Z +=2)()(,0)()(=+==+=Y X D Z D Y X E Z E 又4221)(zez f Z -=π的概率密度函数所以。

《概率论与数理统计》第4章作业题

《概率论与数理统计》第4章作业题
第四章
补充作业
设 X 的方差为2.5, 试估计 P{ | X- E(X) | 7.5 } 的值.

利用切比雪夫不等式
P{| X E( X ) | 7.5} 2 7.5 1 22.5 0.0444.
2.5
第四章
第四章
Z 2 ~ N (80, 1525) , Z1 ~ N (2080, 652) ,
P{X Y } 0.9793, X Y ~ N (1360, 1525) , P{X Y 1400} 1 P{X Y 1400}
1400 1360 1 Φ 1525
X~N(720,302),Y~N(640,252), 求Z1=2X+Y, Z2=X-Y
的分布,并求概率P{X>Y},P{X+Y>1400}.
第四章
由数学期望的性质知,
1 E(Y) E(2X1 - X 2 3X 3 - X 4 ) 2
1 2E(X1 ) - E(X) 2 3E(X 3 ) - E(X 4 ) 2 1 2 1 - 2 3 3 - 4 7 2 又因为 X1 , X 2 , X3 , X 4 , 相互独立,则由方差的性质知 1 D(Y) D(2X1 - X 2 3X 3 - X 4 ) 4D(X1 ) D(X2 ) 2 1 9D(X3 ) D(X4 ) 37.25 4


12(b a)
x
3
|
b a


12
(b 2 ab a 2 )
第四章
4-22 (1)设随机变量X1, X2, X3, X4 相互独立,
且有E(Xi)=i,D(Xi)=5-i,i=1,2,3,4. 设Y=

概率论第四章习题解答(全)

概率论第四章习题解答(全)

(0.9)10 (0.9)9 3486 0.3874 0.7361
则需要调整设备的概率
P{Y 1} 1 P{Y } 1 0.7361 0.2639
(3)求一天中调整设备的次数 X 的分布律 由于 X 取值为 0,1,2,3,4。 p 0.2369 ,则 X B (4, 0.2369) 于是
个随机变量,其概率密度为
1 x, 0 x 1500, 15002 1 f ( x) ( x 3000),1500 x 3000, 2 1500 0, 其它
求 E( X ) 解 按连续型随机变量的数学期望的定义有
0 1500
E ( X ) xf ( x)dx xf ( x)dx
X p
2
3
4
9
1 8
5 8
1 8
1 8
所以
1 5 1 1 15 E( X ) 2 3 4 9 。 8 8 8 8 4
(2)因为 Y 的取值为 2,3,4,9 当 Y 2 时,包含的字母为“O”,“N”,故
P{Y 2}
1 C2 1 ; 30 15
当 Y 3 时,包含的 3 个字母的单词共有 5 个,故
P (Ck ) P ( Ak | A1 A2 Ak 1 ) P ( Ak 1 | A1 A2 Ak 2 ) P ( A2 | A1 ) P ( A1 )

P{ X 1} P ( A1 )
1 2
1 1 P{ X 2} P ( A1 A2 ) P ( A2 | A1 ) P ( A1 ) 3 2 1 2 1 1 1 P ( A2 | A1 A2 ) P ( A2 | A1 ) P ( A1 ) , 4 3 2 4 3 一般地,若当 X k 时,盒中共有 k 1 只球,其中只有一只白球,故 P ( X k ) P ( A1 A2 Ak 1 Ak ) P ( Ak | A1 A2 Ak 1 ) P ( Ak 1 | A1 A2 Ak 2 ) P ( A2 | A1 ) P ( A1 ) 1 k 1 k 2 1 2 1 1 1 k 1 k k 1 4 3 2 k k

概率论与数理统计 第4章偶数

概率论与数理统计 第4章偶数


cov ( X i , X j ) +
k
k
i = n0 +1 j = n0 +1
∑ ∑
cov ( X i , X j ) +
i = n0 +1 j = k +1
∑ ∑ cov ( X , X )
i j
k
n0 + k
=
i = n0 +1 k

DX i = k − n0 ,
DSk = ∑ DX i = k ,
故 ρ = 0 ,即 X 和 Y 不相关。 又 FX 2 ,Y 2 ( x, y ) = p X 2 ≤ x, Y 2 ≤ y
1
−1 −1

1
x2 y 2 ⋅
1 1 (1 + xy ) dxdy − = 0 4 9
(
)
y
= p − x ≤ X ≤ x,− y ≤ Y ≤ =∫
y
(
)
− y

x
− x
f ( t , v ) dtdv = xy
8 fX ( x) =

x
0
f ( x, y )dy = ∫
x
0
10 X ∼ U ( 8,9 ) , Y ∼ U ( 8,9 )
E X −Y = ∫
9
8

9
8
x − y f ( x, y ) dxdy =
1 (小时) 3
即先到的人等待的平均时间为 20 分钟。 12 f (t ) = ⎨
⎧λ e− λt , t > 0, t ≤ 0. ⎩ 0,
p ( X = 0, Y = 0 ) ≠ p ( X = 0 ) p ( Y = 0 ) ,故 X 和 Y 不独立。

概率论第四章习题解答

概率论第四章习题解答

X9
EX 9
9
9
8 9
20
2024年8月31日7时4分
P104 练习4.2 题1 SD 1
1,1
f XY
x,
y
1 0
0 x 1, x y x 其它
yx
DZ D2X 1 4DX
EX xf x, ydxdy
0D
y x 1
1 0
x x
xdy
dx
1 2x2dx 2
P113 习题四 一 填空题 7 X与Y相互独立
f
X
x
2x
0
0
x 其它
1,fY
y
x y t
FT t PT t P X Y t fXY x, y dxdy
x yt
1当t 0时:FT t 0dxdy 0
0
x yt
2 当0 t时:FT
t
t
dx
tx 25e5x5 ydy
0
0
1 e5t 5te5t
t,0
x
FT
t
1
e5t
0
5te5t
t0 t0
33
2 EX 2
xi2 pij
i1 j1
20.1 30.3 30.1 2
33
3 EY 2
yi2 pij
12 0.212 0.112 0.1 22 0.1
22 0.132 0.332 0.1 4.8
i1 j1
12 0.2 12 0.1 12 0.1
12 0.1 12 0.1 0.6
2024年8月31日7时4分
P100 练习4.1 题12
2
f XY
x,
y
x

(完整版)概率论第四章答案

(完整版)概率论第四章答案

习题4-11. 设随机变量X求()E X ;E (2-3 X );2()E X ;2(35)E X +.解 由定义和数学期望的性质知2.03.023.004.0)2()(-=⨯+⨯+⨯-=X E ; (23)23()23(0.2) 2.6E X E X -=-=-⨯-=; 8.23.023.004.0)2()(2222=⨯+⨯+⨯-=X E ; 4.1358.235)(3)53(22=+⨯=+=+X E X E . 2. 设随机变量X 的概率密度为,0,()0,0.xe xf x x -⎧>⎪=⎨⎪⎩≤求Xe Z X Y 22-==和的数学期望.解()(2)2()22x E Y E X E X x x ∞-====⎰e d ,2201()()3Xx x E Z E ee e dx ∞---==⋅=⎰. 3. 游客乘电梯从底层到电视塔顶观光, 电梯于每个整点的第5分钟、第25分钟和第55分钟从底层起行. 假设一游客在早八点的第X 分钟到达底层侯梯处, 且X 在区间[0, 60]上服从均匀分布. 求该游客等候电梯时间的数学期望. 解已知X 在[0,60]上服从均匀分布, 其概率密度为1,060,()600,.x f x =⎧⎪⎨⎪⎩≤≤其它记Y 为游客等候电梯的时间,则5,05,25,525,()55,2555,65,5560.X X X X Y g X X X X X -<-<==-<-<⎧⎪⎪⎨⎪⎪⎩≤≤≤≤因此, 6001()[()]()()()60E Y E g X g x f x dx g x dx ∞-∞===⎰⎰()5255560525551(5)(25)(55)(65)60x dx x dx x dx x dx =-+-+-+-⎰⎰⎰⎰=11.67(分钟)..14. 某保险公司规定, 如果在一年内顾客的投保事件A 发生, 该公司就赔偿顾客a 元. 若一年内事件A 发生的概率为p , 为使该公司受益的期望值等于a 的10%, 该公司应该要求顾客交多少保险费?解 设保险公司要求顾客交保费c 元. 引入随机变量⎩⎨⎧=.A ,0,A 1不发生事件发生事件,X 则{1},{0}1P X p P X p ====-. 保险公司的受益值1,,0.c a X Y c X -=⎧=⎨=⎩, 于是 ()(){1}{0}E Y c a P X c P X ap c =-⨯=+⨯==-+. 据题意有10%ap c a -+=⨯, 因此应要求顾客角保费(0.1)c p a =+.习题4-21. 选择题(1) 已知(1,(3))E D X X =-= 则2[3(2)]()E X-=.(A) 9. (B) 6. (C) 30. (D) 36. 解22[3(2)]3(44)E X E X X -=-+23[()4()4]E X E X =-+23{()[()]4()4}D X E X E X =+-+ 3(3144)36=⨯+++=.可见,应选(D).(2) 设~(,),(6,( 3.6))B n p E D X X X ==, 则有( ).(A)10, 0.6n p ==. (B) 20, 0.3n p ==. (C) 15, 0.4n p ==. (D) 12, 0.5n p ==.解 因为~(,),B n p X 所以E (X )=n p,D (X )=np (1-p ), 得到np =6, np (1-p )=3.6 . 解之,n=15 , p =0.4 . 可见,应选(C).(3) 设X 与Y 相互独立,且都服从2(,)N μσ, 则有( ).(A) ()()()E X Y E X E Y -=+. (B) ()2E X Y μ-=.(C)()()()D X Y D X D Y -=-. (D) 2()2D X Y σ-=.解 注意到0)()()(=-=-Y E X E Y XE .由于X 与Y 相互独立,所以22)()()(σ=+=-Y D X D Y X D . 选(D).(4) 在下列结论中, 错误的是( ).(A) 若~(,),().X B n p E X np =则(B) 若()~1,1X U -,则()0D X =. (C) 若X 服从泊松分布, 则()()D X E X =.(D) 若2~(,),X N μσ 则~(0,1)X N μσ-.解)1,1(~-U X , 则3112212)()(22==-=a b X D . 选(B). 2. 已知X , Y 独立, E (X )= E (Y )=2, E (X 2)= E (Y 2)=5, 求E (3X -2Y ),D (3X -2Y ).解 由数学期望和方差的性质有E (3X -2Y )= 3E (X )-2 E (Y )=3×2-2×2=2,(32)9()4()D X Y D X D Y -=+})]([)({4})]([)({92222Y E Y E X E X E -⨯+-⨯=13)45(4)45(9=-⨯+-⨯=.3. 设随机变量X 1, X 2, X 3相互独立, 其中X 1服从区间[0, 6]上的均匀分布,22~0,2X N (), 3~3X P (), 记12323Y X X X =-+, 求E (Y )和D (Y ) .解 由题设知21122(60)()3,()3,()0,()4,12E X D X E X D X -=====3321111(),()39E X D X λλ====.由期望的性质可得123123()(23)()2()3()13203 4.3E Y E X X X E X E X E X =-+=-+=-⨯+⨯=又123,,X X X 相互独立, 所以123123()(23)()4()9()1344920.9D Y D X X X D X D X D X =-+=++=+⨯+⨯=4. 设两个随机变量X 和Y 相互独立, 且都服从均值为0, 方差为12的正态分布, 求||X Y -的的期望和方差.解 记UX Y =-. 由于11~(0,),~(0,)22X N Y N , 所以()()()0,E U E X E Y =-= ()()()1D U D X D Y =+=.由此~(0,1)U N . 进而2222220 (||)(||)||x x xE X Y E U x dx xe dx e+∞---+∞+∞-∞-====⎰2222(||)()()[()]101E U E U D U E U==+=+=.故而2222 (||)(||)(||)[(||)]11D X Y D UE U E Uπ-==-=-=-.5. 设随机变量]2,1[~-UX, 随机变量⎪⎩⎪⎨⎧<-=>=.0,1,0,0,0,1XXXY求期望()E Y和方差)(YD.解因为X的概率密度为1,12,()30,.Xxf x-=⎧⎪⎨⎪⎩≤≤其它于是Y的分布率为00--11{1}{0}31()d d3XP Y P X f x x x∞=-=<===⎰⎰,{0}{0}0P Y P X====,+2002{1}{0}31()d d3XP Y P X f x x x∞==>===⎰⎰.因此121()1001333E Y=-⨯+⨯+⨯=,222212()(1)001133E Y=-⨯+⨯+⨯=.故有2218()()[()]199D YE Y E Y=-=-=.6. 设随机变量U在区间[-2, 2]上服从均匀分布, 随机变量1,1,1, 1.UXU--=>-⎧⎨⎩若≤若1,1,1, 1.UYU-=>⎧⎨⎩若≤若求E(X+Y), D(X+Y).解(1) 随机变量(X, Y)的可能取值为(-1,-1),(-1,1),(1,-1),(1,1).{1,1}{P X Y P U =-=-=≤1,U -≤-1-211}{1}41d 4P U x =-==⋅⎰≤, {1,1}{P X Y P U =-==≤1,U -1}0>=, {1,1}{1P X Y P U ==-=>-,U ≤1111}21d 4x -==⋅⎰, 211{1,1}{1,1}41d 4P X Y P U U x ===>->==⋅⎰.于是得X 和Y 的联合密度分布为(2) Y X +和)(Y X +的概率分布分别为由此可见22()044E X Y +=-+=;2()[()]2D X Y E X Y +=+=.习题4-31. 选择题(1) 在下列结论中, ( )不是随机变量X 与Y 不相关的充分必要条件(A) E (XY )=E (X )E (Y ). (B) D (X +Y )=D (X )+D (Y ). (C) Cov(X ,Y )=0. (D) X 与 Y 相互独立.解 X 与 Y 相互独立是随机变量X 与Y 不相关的充分条件,而非必要条件. 选(D).(2) 设随机变量X 和Y 都服从正态分布, 且它们不相关, 则下列结论中不正确的是( ).(A) X 与Y 一定独立. (B) (X , Y )服从二维正态分布. (C) X 与Y 未必独立. (D) X +Y 服从一维正态分布.解 对于正态分布不相关和独立是等价的. 选(A).(3) 设(X , Y )服从二元正态分布, 则下列说法中错误的是( ).(A) (X , Y )的边缘分布仍然是正态分布.(B) X 与Y 相互独立等价于X 与Y 不相关. (C) (X , Y )是二维连续型随机变量.(D)由(X , Y )的边缘分布可完全确定(X , Y )的联合分布. 解 仅仅由(X , Y )的边缘分布不能完全确定(X , Y )的联合分布. 选(D)2 设D (X )=4, D (Y )=6, ρXY =0.6, 求D (3X -2Y ) .解(32)9()4()12Cov(,)D X Y D X D Y X Y -=+-)()(126449Y D X D XY ⨯⨯-⨯+⨯=ρ727.24626.0122436≈⨯⨯⨯-+=.3. 设随机变量X , Y 的相关系数为5.0, ,0)()(==Y E X E 22()()2E X E Y ==,求2[()]E XY +.解222[()]()2()()42[Cov(,)()()]E X Y E X E XY E Y X Y E X E Y +=++=++42420.526.ρ=+=+⨯⨯=4. 设随机变量(X , Y )若E (XY )=0.8, 求常数a ,b 解 首先由∑∑∞=∞==111i j ijp得4.0=+b a . 其次由0.8()100.420110.2210.22E XY a b b ==⨯⨯+⨯⨯+⨯⨯+⨯⨯=+ 得3.0=b . 进而1.0=a . 由此可得边缘分布律于是 , . 故 Cov(,)()()()0.8 1.40.50.1X Y E XY E X E Y =-=-⨯=.5. 已知随机变量(,)~(0.5,4;0.1,9;0)X Y N , Z =2X -Y , 试求方差D (Z ), 协方差Cov(,)X Z , 相关系数ρXZ .解 由于X ,Y 的相关系数为零, 所以X 和Y 相互独立(因X 和Y 服从正态分布). 因此25944)()(4)2()(=+⨯=+=-=Y D X D Y X D Z D ,Cov(,)Cov(,2)2Cov(,)Cov(,)2()08X Z X X Y X X X Y D X =-=-=-=.因此80.825XZ ρ===⨯. 6. 设随机变量(X , Y )服从二维正态分布: 2~(1,3)X N , 2~(0,4)Y N ; X 与Y 的相关系数1,232XYX YZ ρ=-=+. 求: (1) E (Z ), D (Z ); (2) X 与Z 的相关系数ρXZ ; (3)问X 与Z 是否相互独立?为什么?解 (1) 由于)3,1(~2N X , )4,0(~2N Y , 所以16)(,0)(,9)(,1)(====Y D Y E X D X E ,而1Cov(,)3462XY X Y ρ==-⨯⨯=-.因此 31021131)(21)(31)23()(=⨯+⨯=+=+=Y E X E Y X E Z E ,1111()()()()2Cov(,)329432X Y D Z D D X D Y X Y =+=++111916Cov(,)943X Y =⨯+⨯+3)6(3141=-⨯++=.(2) 由于1111Cov(,)Cov(,)()Cov(,)9(6)0,323232XY X Z X D X X Y =+=+=⨯+⨯-= 所以0XZ ρ==.(3) 由0=XZ ρ知X 与Z 不相关, 又X 与Z 均服从正态分布, 故知X 与Z 相互独立.7.证明: 对随机变量(X , Y ), E (XY )=E (X )E (Y )或者D (X ±Y )=D (X )+D (Y )的充要条件是X与Y 不相关.证 首先我们来证明)()()(Y E X E XY E =和()()()D X Y D X D Y ±=+是等价的.事实上, 注意到()()()2Cov(,)D X Y D X D Y X Y ±=+±.因此()()()D X Y D X D Y ±=+Cov(,)0()()()X Y E XY E X E Y ⇔=⇔=.其次证明必要性. 假设E (XY )=E (X )E (Y ), 则Cov(,)()()()0X Y E XY E X E Y =-=.进而0XYρ==, 即X 与Y 不相关.最后证明充分性. 假设X 与Y 不相关, 即0=XYρ, 则Cov(,)0X Y =. 由此知)()()(Y E X E XY E =.总习题四1. 设X 和Y 是相互独立且服从同一分布的两个随机变量, 已知X 的分布律为1{},1,2,33P X i i ===. 又设max{,},min{,}U X Y V X Y ==.(1) 写出二维随机变量(U , V )的分布律; (2) 求()E U .解 (1) 下面实际计算一下{1,3}P UV ==.注意到max{,},min{,}U X Y V X Y ==, 因此{1,3}{1,3}{3,1}P U V P X Y P X Y =====+=={1}{3}{3}{1}P X P Y P X P Y ===+==9231313131=⨯+⨯=.(2) 由(,)U V 的分布律可得关于U 的边缘分布律所以13522()1239999E U =⨯+⨯+⨯=. 2. 从学校乘汽车到火车站的途中有3个交通岗. 假设在各个交通岗遇到红灯的事件是相互独立的, 并且概率是25. 设X 为途中遇到红灯的次数, 求随机变量X 的分布律、分布函数和数学期望.解 令X 表示途中遇到红灯的次数, 由题设知2~(3,)XB . 即X 的分布律为从而3127543686(){}01231251251251255k E X kP X k ====⨯+⨯+⨯+⨯=∑. 3. 设随机变量),(Y X 的概率密度为212,01,(,)0,.y y x f x y ⎧⎪=⎨⎪⎩≤≤≤其它求22(),(),(),()E X E Y E XY E X Y +.解 112404()(,)1245xE X xf x y dxdy dx x y dy x dx ∞∞-∞-∞==⋅==⎰⎰⎰⎰⎰. 11240003()(,)1235xE X yf x y dxdy dx y y dy x dx ∞∞-∞-∞==⋅==⎰⎰⎰⎰⎰.112500031()(,)12362x E XY xyf x y dxdy dx xy y dy x dx ∞∞-∞-∞==⋅===⎰⎰⎰⎰⎰.122222220()()(,)()12xE X Y x y f x y dxdy dx x y y dy ∞∞-∞-∞+=+=+⋅⎰⎰⎰⎰155012423216(4)5653015x x dx =+=+==⎰. 4. 设随机变量(X ,Y )的概率密度为1sin(),0,0,222(,)0,.≤≤≤≤其它ππx y x y f x y ⎧+⎪=⎨⎪⎩求E (X ),D (X ),E (Y ),D (Y ),E (XY )和 Cov(X ,Y ).解22001()(,)sin()24E X xf x y dxdy x x y dxdy πππ+∞+∞-∞-∞==+=⎰⎰⎰⎰.22222200()(,)1sin() 2.282E X x f x y dxdyx x y dxdy ππππ+∞+∞-∞-∞==+=+-⎰⎰⎰⎰于是有2216)]([)()(222-+=-=ππX E X E X D . 利用对称性,有2216)(,4)(2-+==πππY D Y E .又()(,)E XY xyf x y dxdy +∞+∞-∞-∞=⎰⎰22001sin()2xy x y dxdy ππ=+⎰⎰220022001sin()21[sin cos cos sin ]2xdx y x y dyxdx y x y x y dyππππ=+=+⎰⎰⎰⎰12-=π.所以协方差2Cov(,)()()()1216X Y E XY E X E Y ππ=-=--.5. 设随机变量X 与Y 独立, 同服从正态分布1(0,)2N , 求(1)();()E X Y D X Y --;(2) (max{,});(min{,})E X Y E X Y .解 (1) 记Y X -=ξ.由于)21,0(~),21,0(~N Y N X ,所以,0)()()(=-=Y E X E E ξ 1)()()(=+=Y D X D D ξ.由此)1,0(~N ξ. 所以2222(||)(||)||x x E X Y E x dx xedx ξ+∞+∞---∞-==⎰22x e+∞-==101)]([)()()|(|2222=+=+==ξξξξE D E E .故而ππξξξ2121|)](|[)|(||)(||)(|222-=⎪⎪⎭⎫ ⎝⎛-=-==-E E D Y X D .(2) 注意到2||)(),max(Y X Y X Y X -++=, 2||),min(Y X Y X Y X --+=.所以ππ21221|]}[|)()({21)],[max(==-++=Y X E Y E X E Y X E ,ππ21221|]}[|)()({21)],[min(-=-=--+=Y X E Y E X E Y X E .6. 设随机变量),(Y X 的联合概率密度为,02,02,8(,)0,.x yx y f x y +⎧⎪=⎨⎪⎩≤≤≤≤其它求: E (X ), E (Y ), Cov(X ,Y ), ρXY , D (X+Y ).解 注意到),(y x f 只在区域2≤≤0,2≤≤0:y x G 上不为零, 所以()(,)8Gx yE X xf x y dxdy x x y ∞∞-∞-∞+==⎰⎰⎰⎰d d222000117()(1)846dx x x y dy x x dx =+=+=⎰⎰⎰,22()(,)E Xx f x y dxdy ∞∞-∞-∞=⎰⎰222232000115()()843dx x x y dy x x dx =+=+=⎰⎰⎰, 因而 36116735)]([)()(2222=-=-=X E X E X D .又()(,)E XY xyf x y dxdy ∞∞-∞-∞=⎰⎰22220001144()()8433dx xy x y dy x x dx =+=+=⎰⎰⎰. 由对称性知2275()(),()()63E Y E X E Y E X ====, 3611)()(==X D Y D . 这样,4491Cov(,)()()()33636X Y E XY E X E Y =-=-=-, 111XY ρ==-,5()()()2Cov(,)9D X Y D X D Y X Y +=++=.7. 设A , B 为随机事件, 且111(),(|),(|)432P A P B A P A B ===, 令 10A X A =⎧⎨⎩,发生,,不发生, 10B Y B =⎧⎨⎩,发生,,不发生.求: (1) 二维随机变量(X , Y )的概率分布; (2) X 与Y 的相关系数XY ρ.解 由1()(|)3()P AB P B A P A ==得1111()()33412P AB P A ==⨯=, 进而由1(|)2P A B = ()()P AB P B =得1()2()6P B P AB ==. 在此基础上可以求得(1)1{1,1}()12P X Y P AB ====,111{0,1}()()()61212P X Y P AB P B P AB ====-=-=,111{1,0}()()()4126P X Y P AB P A P AB ====-=-=,{0,0}()1()1[()()()]P X Y P AB P A B P A P B P AB ====-=-+-U 11121[]46123=-+-=.故(X , Y )的概率分布为(2) 由(1)因此211(),(),44E X E X ==22113()()[()]41616D XE X E X =-=-=, 22211115(),(),()()[()]6663636E Y E Y D Y E Y E Y ===-=-=. 又由(X , Y )的分布律可得21111()00011011312121212E XY =⨯⨯+⨯⨯+⨯⨯+⨯⨯=. 故11115XYρ-⨯===.。

概率论第四章

概率论第四章

一、选择题1.设二维随机变量(X,Y)满足E(XY)=EXEY,则X与Y(A)相关(B)不相关(C)独立(D)不独立2. 将一枚硬币重复掷n次,以X和Y分别表示正面向上和反面向上的次数,则X和Y的相关系数等于(A)-1 (B)0 (C)(D)13. 对于任意二维随机变量X和Y,与命题“X和Y不相关”不等价的是(A)EXY=EXEY (B)Cov(X,Y)=0(C)DXY=DXDY (D)D(X+Y)=DX+DY4. 假设随机变量X在区间【-1,1】上均匀分布,则U=arcsinX和V=arccosX的相关函数等于(A)-1 (B)0 (C)0.5 (D)15. 设随机变量X1,X2,…,Xn(n>1)独立同分布,且方差>0,记=,则~与的相关系数为(A)-1 (B)0 (C)(D)16. 设随机变量X的方差存在,并且满足不等式P||X-EX|3|,则一定有(A)DX=2 (B)P||X-EX|3|(C)DX2 (D)P||X-EX|3|7. 设随机变量,,…,相互独立同分布,其密度函数为偶函数,且D=1,…,n,则对任意,根据切比雪夫不等式直接可得(A)P{||<} (B)P{||<}(C)P{||<} (D)P{||<}二、填空题1. 两名射手个向自己的靶射击,直到有一次命中时该射手才(立即)停止射击,如果第i名射手每次命中概率为(0<,i=1,2),则两射手均停止射击时脱靶(未命中)总数的数学期望为。

2. 将长度为L德邦随机折成两段,则较短段的数学期望为。

3. 设随机变量X和Y的相关系数为0.9,若Z=2X-1,则Y与Z的相关系数为。

4. 设随机变量X与Y的相关系数为0.5,EX=EY=0,E=E=2,则E= 。

5. 设随机变量X与Y相互独立,且X~B(5,0.8),Y~N(1,1),则P{0<X+Y<10}三、计算题与应用题1. 设某网络服务器首次失效时间服从E(λ),先随机购得4台,求下列事件的概率:(I)事件A:至少有一台的寿命(首次失效时间)等于此类服务器的平均寿命;(II)事件B:有且仅有一台寿命小于此类服务器期望寿命。

概率第四章答案

概率第四章答案

习题四1.设随机变量X 的分布律为X -1 0 1 2 P1/8 1/2 1/8 1/4求E (X ),E (X 2),E (2X +3). 【解】(1) 11111()(1)012;82842E X =-⨯+⨯+⨯+⨯= (2) 2222211115()(1)012;82844E X =-⨯+⨯+⨯+⨯=(3) 1(23)2()32342E X E X +=+=⨯+=2.已知100个产品中有10个次品,求任意取出的5个产品中的次品数的数学期望、方差. 【解】设任取出的5个产品中的次品数为X ,则X 的分布律为 X 0 12345P5905100C 0.583C = 1410905100C C 0.340C = 2310905100C C 0.070C = 3210905100C C 0.007C = 4110905100C C 0C = 5105100C 0C = 故 ()0.58300.34010.07020.00730405E X =⨯+⨯+⨯+⨯+⨯+⨯ 0.501,= 52()[()]iii D X x E X P ==-∑222(00.501)0.583(10.501)0.340(50.501)00.432.=-⨯+-⨯++-⨯=3.设随机变量X 的分布律为X -1 0 1 Pp 1 p 2 p 3且已知E (X )=0.1,E (X 2)=0.9,求P 1,P 2,P 3. 【解】因1231P P P ++=……①,又12331()(1)010.1E X P P P P P =-++=-=……②,222212313()(1)010.9E X P P P P P =-⋅+⋅+⋅=+=……③由①②③联立解得1230.4,0.1,0.5.P P P ===4.袋中有N 只球,其中的白球数X 为一随机变量,已知E (X )=n ,问从袋中任取1球为白球的概率是多少?【解】记A ={从袋中任取1球为白球},则(){|}{}Nk P A P A X k P X k ===∑全概率公式1{}{}1().NNk k k P X k kP X k N Nn E X N N========∑∑5.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤≤-<≤.,0,21,2,10,其他x x x x求E (X ),D (X ). 【解】1221()()d d (2)d E X xf x x x x x x x +∞-∞==+-⎰⎰⎰21332011 1.33x x x ⎡⎤⎡⎤=+-=⎢⎥⎢⎥⎣⎦⎣⎦122232017()()d d (2)d 6E X x f x x x x x x x +∞-∞==+-=⎰⎰⎰ 故 221()()[()].6D XE X E X =-=6.设随机变量X ,Y ,Z 相互独立,且E (X )=5,E (Y )=11,E (Z )=8,求下列随机变量的数学期望.(1) U =2X +3Y +1; (2) V =YZ -4X .【解】(1) [](231)2()3()1E U E X Y E X E Y =++=++ 25311144.=⨯+⨯+=(2) [][4][]4()E V E YZ X E YZ E X =-=- ,()()4()Y Z E Y E Z E X ⋅-因独立1184568.=⨯-⨯= 7.设随机变量X ,Y 相互独立,且E (X )=E (Y )=3,D (X )=12,D (Y )=16,求E (3X -2Y ),D (2X -3Y ). 【解】(1) (32)3()2()3323 3.E X Y E X E Y -=-=⨯-⨯=(2) 22(23)2()(3)412916192.D X Y D X DY -=+-=⨯+⨯= 8.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<<.,0,0,10,其他x y x k试确定常数k ,并求E (XY ). 【解】因1001(,)d d d d 1,2x f x y x y x k y k +∞+∞-∞-∞===⎰⎰⎰⎰故k =210()(,)d d d 2d 0.25xE XY xyf x y x y x x y y +∞+∞-∞-∞===⎰⎰⎰⎰.9.设X ,Y 是相互独立的随机变量,其概率密度分别为f X (x )=⎩⎨⎧≤≤;,0,10,2其他x x f Y (y )=(5)e ,5,0,.y y --⎧>⎨⎩其他求E (XY ).【解】方法一:先求X 与Y 的均值 12()2d ,3E X x x x ==⎰ 5(5)5()e d 5e d e d 51 6.z y y z z E Y y yz z z +∞+∞+∞=-----=+=+=⎰⎰⎰令由X 与Y 的独立性,得2()()()6 4.3E XY E X E Y ==⨯=方法二:利用随机变量函数的均值公式.因X 与Y 独立,故联合密度为(5)2e ,01,5,(,)()()0,,y X Y x x y f x y f x f y --⎧≤≤>==⎨⎩其他 于是11(5)2(5)552()2ed d 2de d 6 4.3y y E XY xy x x y x x y y +∞+∞----=⋅==⨯=⎰⎰⎰⎰10.设随机变量X ,Y 的概率密度分别为f X (x )=⎩⎨⎧≤>-;0,0,0,22x x x e f Y (y )=⎩⎨⎧≤>-.0,0,0,44y y y e 求(1) E (X +Y );(2) E (2X -3Y 2). 【解】22-200E()()d =2e d [e ]+e d x x x X X xf x x x x x x +∞+∞+∞--+∞-∞=⋅=-⎰⎰⎰201e d .2x x +∞-==⎰401()()d =4e dy .4y Y E Y yf y y y +∞+∞--∞=⋅=⎰⎰22242021()()d 4e d .48y Y E Y y f y y y y +∞+∞--∞==⋅==⎰⎰从而(1)113()()().244E X Y E X E Y +=+=+=(2)22115(23)2()3()23288E X Y E X E Y -=-=⨯-⨯= 11.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧<≥-.0,0,0,22x x cx xke求(1) 系数c ;(2) E (X );(3) D (X ).【解】(1) 由222()d ed 12k x cf x x cx x k+∞+∞--∞===⎰⎰得22c k =. (2) 2220()()d()2e d k x E X xf x x x k x x +∞+∞--∞==⋅⎰⎰22220π2e d .2k x k x x k+∞-==⎰(3) 22222221()()d()2e.k x E X x f x x x k x k +∞+∞--∞==⋅⎰⎰故 222221π4π()()[()].24D X E X E X k k k⎛⎫-=-=-= ⎪ ⎪⎝⎭ 12.袋中有12个零件,其中9个合格品,3个废品.安装机器时,从袋中一个一个地取出(取出后不放回),设在取出合格品之前已取出的废品数为随机变量X ,求E (X )和D (X ). 【解】设随机变量X 表示在取得合格品以前已取出的废品数,则X 的可能取值为0,1,2,3.为求其分布律,下面求取这些可能值的概率,易知9{0}0.750,12P X === 39{1}0.204,1211P X ==⨯= 329{2}0.041,121110P X ==⨯⨯= 3219{3}0.005.1211109P X ==⨯⨯⨯=于是,得到X 的概率分布表如下: X 0 1 2 3 P0.7500.2040.0410.005由此可得()00.75010.20420.04130.0050.301.E X =⨯+⨯+⨯+⨯=22222222()075010.20420.04130.0050.413()()[()]0.413(0.301)0.322.E X D X E X E X =⨯+⨯+⨯+⨯==-=-=13.一工厂生产某种设备的寿命X (以年计)服从指数分布,概率密度为f (x )=⎪⎩⎪⎨⎧≤>-.0,0,0,414x x xe为确保消费者的利益,工厂规定出售的设备若在一年内损坏可以调换.若售出一台设备,工厂获利100元,而调换一台则损失200元,试求工厂出售一台设备赢利的数学期望. 【解】厂方出售一台设备净盈利Y 只有两个值:100元和 -200元/41/411{100}{1}e d e 4x P Y P X x +∞--==≥==⎰1/4{200}{1}1e.P Y P X -=-=<=-故1/41/41/4()100e(200)(1e )300e 20033.64E Y ---=⨯+-⨯-=-= (元).14.设X 1,X 2,…,X n 是相互独立的随机变量,且有E (X i )=μ,D (X i )=σ2,i =1,2,…,n ,记∑==n i i S X n X 12,1,S 2=∑=--n i i X X n 12)(11. (1) 验证)(X E =μ,)(X D =n2σ;(2) 验证S 2=)(11122∑=--ni i X n X n ; (3) 验证E (S 2)=σ2.【证】(1) 1111111()()().n nn i i i i i i E X E X E X E X nu u n n n n ===⎛⎫===== ⎪⎝⎭∑∑∑22111111()()n nni i i ii i i D X D X D X X DXn nn ===⎛⎫== ⎪⎝⎭∑∑∑之间相互独立2221.n n nσσ==(2) 因222221111()(2)2nnnniii ii i i i i XX X X X X X nX X X ====-=+-=+-∑∑∑∑2222112nnii i i X nX X nX X nX ===+-=-∑∑故22211()1ni i S X nX n ==--∑. (3) 因2(),()i i E X u D X σ==,故2222()()().i i i E X D X EX u σ=+=+同理因2(),()E X u D X nσ==,故222()E X u nσ=+.从而222221111()()[()()]11n ni i i i E s E X nX E X nE X n n ==⎡⎤=-=-⎢⎥--⎣⎦∑∑221222221[()()]11().1ni i E X nE X n n u n u n n σσσ==--⎡⎤⎛⎫=+-+=⎢⎥ ⎪-⎝⎭⎣⎦∑15.对随机变量X 和Y ,已知D (X )=2,D (Y )=3,Cov(X ,Y )= -1,计算:Cov (3X -2Y +1,X +4Y -3). 【解】Cov(321,43)3()10Cov(,)8()X Y X Y D X X Y D Y -++-=+- 3210(1)8328=⨯+⨯--⨯=- (因常数与任一随机变量独立,故Cov(X ,3)=Cov(Y ,3)=0,其余类似). 16.设二维随机变量(X ,Y )的概率密度为f (x ,y )=221,1,π0,.x y ⎧+≤⎪⎨⎪⎩其他试验证X 和Y 是不相关的,但X 和Y 不是相互独立的. 【解】设22{(,)|1}D x y x y =+≤.2211()(,)d d d d πx y E X xf x y x y x x y +∞+∞-∞-∞+≤==⎰⎰⎰⎰ 2π1001=cos d d 0.πr r r θθ=⎰⎰同理E (Y )=0. 而 Cov(,)[()][()](,)d d X Y x E x y E Y f x y x y +∞+∞-∞-∞=--⎰⎰222π1200111d d sin cos d d 0ππx y xy x y r r r θθθ+≤===⎰⎰⎰⎰, 由此得0XY ρ=,故X 与Y 不相关. 下面讨论独立性,当|x |≤1时,2212112()1.ππx X x f x y x --- 当|y |≤1时,2212112()1ππy Y y f y x y ----显然()()(,).X Y f x f y f x y ≠故X和Y不是相互独立的.17.设随机变量(X,Y)的分布律为-1 0 1-1 0 1 1/8 1/8 1/8 1/8 0 1/8 1/8 1/8 1/8验证X和Y是不相关的,但X和Y不是相互独立的.【解】联合分布表中含有零元素,X与Y显然不独立,由联合分布律易求得X,Y及XY的分布律,其分布律如下表X -1 0 1P 382838Y -1 0 1P 382838XY -1 0 1P 284828由期望定义易得E(X)=E(Y)=E(XY)=0.从而E(XY)=E(X)·E(Y),再由相关系数性质知ρXY=0, 即X与Y的相关系数为0,从而X和Y是不相关的.又331{1}{1}{1,1}888P X P Y P X Y =-=-=⨯≠==-=-从而X与Y不是相互独立的.18.设二维随机变量(X,Y)在以(0,0),(0,1),(1,0)为顶点的三角形区域上服从均匀分布,求Cov(X,Y),ρXY.【解】如图,S D=12,故(X,Y)的概率密度为题18图2,(,),(,)0,x y Df x y∈⎧=⎨⎩其他.XY()(,)d d DE X xf x y x y =⎰⎰1101d 2d 3xx x y -==⎰⎰22()(,)d d DE X x f x y x y =⎰⎰11201d 2d 6xx x y -==⎰⎰从而222111()()[()].6318D XE X E X ⎛⎫=-=-= ⎪⎝⎭同理11(),().318E Y D Y == 而 1101()(,)d d 2d d d 2d .12xDDE XY xyf x y x y xy x y x xy y -====⎰⎰⎰⎰⎰⎰所以1111Cov(,)()()()123336X Y E XY E X E Y =-=-⨯=-. 从而1Cov(,)12)()XY X Y D Y ρ-===-19.设(X ,Y )的概率密度为f (x ,y )=1ππsin(),0,0,2220.x y x y ,⎧+≤≤≤≤⎪⎨⎪⎩其他求协方差Cov (X ,Y )和相关系数ρXY . 【解】π/2π/21π()(,)d d d sin()d .24E X xf x y x y x xx y y +∞+∞-∞-∞==+=⎰⎰⎰⎰ππ2222201ππ()d sin()d 2.282E X x x x y y =+=+-⎰⎰从而222ππ()()[()] 2.162D XE X E X =-=+-同理 2πππ(),() 2.4162E Y D Y ==+- 又 π/2π/2π()d sin()d d 1,2E XY x xy x y x y =+=-⎰⎰故 2ππππ4Cov(,)()()()1.2444X Y E XY E X E Y -⎛⎫⎛⎫=-=--⨯=- ⎪ ⎪⎝⎭⎝⎭222222π4Cov(,)(π4)π8π164.πππ8π32π8π32)()2162XY X Y D Y ρ-⎛⎫- ⎪--+⎝⎭===-=-+-+-+- 20.已知二维随机变量(X ,Y )的协方差矩阵为⎥⎦⎤⎢⎣⎡4111,试求Z 1=X -2Y 和Z 2=2X -Y 的相关系数.【解】由已知知:D (X )=1,D (Y )=4,Cov(X ,Y )=1.从而12()(2)()4()4Cov(,)1444113,()(2)4()()4Cov(,)414414,D Z D X Y D X D Y X Y D Z D X Y D X D Y X Y =-=+-=+⨯-⨯==-=+-=⨯+-⨯=12Cov(,)Cov(2,2)Z Z X Y X Y =--2Cov(,)4Cov(,)Cov(,)2Cov(,)2()5Cov(,)2()215124 5.X X Y X X YY Y D X XY D Y =--+=-+=⨯-⨯+⨯=故12Z Z ρ===21.对于两个随机变量V ,W ,若E (V 2),E (W 2)存在,证明:[E (VW )]2≤E (V 2)E (W 2).这一不等式称为柯西许瓦兹(Couchy -Schwarz )不等式. 【证】令2(){[]},.g t E V tW t R =+∈显然22220()[()][2]g t E V tW E V tVW t W ≤=+=++222[]2[][],.E V t E VW t E W t R =++∀∈可见此关于t 的二次式非负,故其判别式Δ≤0, 即2220[2()]4()()E VW E W E V ≥∆=- 2224{[()]()()}.E VW E V E W =-故222[()]()()}.E VW E V E W ≤22.假设一设备开机后无故障工作的时间X 服从参数λ=1/5的指数分布.设备定时开机,出现故障时自动关机,而在无故障的情况下工作2小时便关机.试求该设备每次开机无故障工作的时间Y 的分布函数F (y ).【解】设Y 表示每次开机后无故障的工作时间,由题设知设备首次发生故障的等待时间X ~E (λ),E (X )=1λ=5. 依题意Y =min(X ,2).对于y <0,f (y )=P {Y ≤y }=0. 对于y ≥2,F (y )=P (X ≤y )=1.对于0≤y <2,当x ≥0时,在(0,x )内无故障的概率分布为 P {X ≤x }=1 -e -λx ,所以F (y )=P {Y ≤y }=P {min(X ,2)≤y }=P {X ≤y }=1 -e -y/5.23.已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中仅装有3件合格品.从甲箱中任取3件产品放乙箱后,求:(1)乙箱中次品件数Z 的数学期望;(2)从乙箱中任取一件产品是次品的概率. 【解】(1) Z 的可能取值为0,1,2,3,Z 的概率分布为33336C C {}C k kP Z k -==, 0,1,2,3.k =因此,()0123.202020202E Z =⨯+⨯+⨯+⨯=(2) 设A 表示事件“从乙箱中任取出一件产品是次品”,根据全概率公式有30(){}{|}k P A P Z k P A Z k ====∑191921310.202062062064=⨯+⨯+⨯+⨯= 24.假设由自动线加工的某种零件的内径X (毫米)服从正态分布N (μ,1),内径小于10或大于12为不合格品,其余为合格品.销售每件合格品获利,销售每件不合格品亏损,已知销售利润T (单位:元)与销售零件的内径X 有如下关系T =⎪⎩⎪⎨⎧>-≤≤<-.12,5,1210,20,10,1X X X 若若若 问:平均直径μ取何值时,销售一个零件的平均利润最大?【解】(){10}20{1012}5{12}E T P X P X P X =-<+≤≤->{10}20{1012}5{12}(10)20[(12)(10)]5[1(12)]25(12)21(10) 5.P X u u P u X u u P X u u u u u u u u =--<-+-≤-≤--->-=-Φ-+Φ--Φ---Φ-=Φ--Φ--故2/2d ()25(12)(1)21(10)(1)0(()),d x E T u u x u ϕϕϕ-=-⨯---⨯-= 令这里得 22(12)/2(10)/225e 21eu u ----=两边取对数有2211ln 25(12)ln 21(10).22u u --=--解得 125111ln 11ln1.1910.91282212u =-=-≈(毫米)由此可得,当u =10.9毫米时,平均利润最大.25.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤≤.,0,0,2cos 21其他πx x 对X 独立地重复观察4次,用Y 表示观察值大于π/3的次数,求Y 2的数学期望.(2002研考)【解】令 π1,,3(1,2,3,4)π0,3i X Y i ⎧>⎪⎪==⎨⎪≤⎪⎩X .则41~(4,)i i Y Y B p ==∑.因为ππ{}1{}33p P X P X =>=-≤及π/30π11{}cos d 3222x P X x ≤==⎰,所以111(),(),()42,242i i E Y D Y E Y ===⨯=2211()41()()22D YE Y EY =⨯⨯==-,从而222()()[()]12 5.E Y D Y E Y =+=+=26.两台同样的自动记录仪,每台无故障工作的时间T i (i =1,2)服从参数为5的指数分布,首先开动其中一台,当其发生故障时停用而另一台自动开启.试求两台记录仪无故障工作的总时间T =T 1+T 2的概率密度f T (t ),数学期望E (T )及方差D (T ). 【解】由题意知:55e ,0,()0,0t i t f t t -⎧≥=⎨<⎩.因T 1,T 2独立,所以f T (t )=f 1(t )*f 2(t ).当t <0时,f T (t )=0;当t ≥0时,利用卷积公式得55()5120()()()d 5e 5e d 25e tx t x t T f t f x f t x x x t +∞-----∞=-==⎰⎰故得525e ,0,()0,0.t T t t f t t -⎧≥=⎨<⎩ 由于T i ~E (5),故知E (T i )=15,D (T i )=125(i =1,2)因此,有E (T )=E (T 1+T 2)=25.又因T 1,T 2独立,所以D (T )=D (T 1+T 2)=225. 27.设两个随机变量X ,Y 相互独立,且都服从均值为0,方差为1/2的正态分布,求随机变量|X -Y |的方差.【解】设Z =X -Y ,由于22~0,,~0,,22X N Y N ⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭且X 和Y 相互独立,故Z ~N (0,1).因22()()(||)[(||)]D X Y D Z E Z E Z -==-22()[()],E Z E Z =-而22/2()()1,(||)||e d 2πz E Z D Z E Z z z +∞--∞===⎰ 2/202e d π2πz z z +∞-==所以 2(||)1πD X Y -=-. 28.某流水生产线上每个产品不合格的概率为p (0<p <1),各产品合格与否相互独立,当出现一个不合格产品时,即停机检修.设开机后第一次停机时已生产了的产品个数为X ,求E (X )和D (X ).【解】记q =1 -p ,X 的概率分布为P {X =i }=q i -1p ,i =1,2,…,故12111()().1(1)i ii i q p E X iq p p q p q q p ∞∞-=='⎛⎫'===== ⎪--⎝⎭∑∑ 又221211121()()i i i i i i E X i qp i i q p iq p ∞∞∞---=====-+∑∑∑2232211()12112.(1)ii q pq q pq p q p pq q p q p p p∞=''⎛⎫''=+=+⎪-⎝⎭+-=+==-∑所以 22222211()()[()].p pD XE X E X p p p--=-=-=题29图29.设随机变量X 和Y 的联合分布在点(0,1),(1,0)及(1,1)为顶点的三角形区域上服从均匀分布.(如图),试求随机变量U =X +Y 的方差. 【解】D (U )=D (X +Y )=D (X )+D (Y )+2Cov(X ,Y )=D (X )+D (Y )+2[E (XY ) -E (X )·E (Y )]. 由条件知X 和Y 的联合密度为2,(,),(,)0,0.x y G f x y t ∈⎧=⎨<⎩ {(,)|01,01,1}.G x y x y x y =≤≤≤≤+≥ 从而11()(,)d 2d 2.X xf x f x y y y x +∞-∞-===⎰⎰因此11122300031()()d 2d ,()2d ,22X E X xf x x x x E X x x =====⎰⎰⎰22141()()[()].2918D XE X E X =-=-=同理可得 31(),().218E Y D Y ==1115()2d d 2d d ,12xGE XY xy x y x x y y -===⎰⎰⎰⎰541Cov(,)()()(),12936X Y E XY E X E Y =-=-=- 于是 1121()().18183618D U D X Y =+=+-=30.设随机变量U 在区间[ -2,2]上服从均匀分布,随机变量X =1,1,1,1,U U -≤-⎧⎨>-⎩ Y =1,1,1, 1.U U -≤⎧⎨>⎩若试求(1)X 和Y 的联合概率分布;(2)D (X +Y ).【解】(1) 为求X 和Y 的联合概率分布,就要计算(X ,Y )的4个可能取值( -1, -1),( -1,1),(1, -1)及(1,1)的概率.P {x = -1,Y = -1}=P {U ≤ -1,U ≤1}112d d 1{1}444x x P U ---∞-=≤-===⎰⎰P {X = -1,Y =1}=P {U ≤ -1,U >1}=P {∅}=0, P {X =1,Y = -1}=P {U > -1,U ≤1}11d 1{11}44x P U -=-<≤==⎰21d 1{1,1}{1,1}{1}44x P X Y P U U P U ===>->=>=⎰. 故得X 与Y 的联合概率分布为(1,1)(1,1)(1,1)(1,1)(,)~1110424X Y ----⎡⎤⎢⎥⎢⎥⎣⎦. (2) 因22()[()][()]D X Y E X Y E X Y +=+-+,而X +Y 及(X +Y )2的概率分布相应为202~111424X Y -⎡⎤⎢⎥+⎢⎥⎣⎦, 24()~1122X Y ⎡⎤⎢⎥+⎢⎥⎣⎦. 从而11()(2)20,44E X Y +=-⨯+⨯= 211[()]042,22E X Y +=⨯+⨯=所以22()[()][()] 2.D X Y E X Y E X Y +=+-+= 31.设随机变量X 的概率密度为f (x )=x-e 21,( -∞<x <+∞) (1) 求E (X )及D (X );(2) 求Cov(X ,|X |),并问X 与|X |是否不相关? (3) 问X 与|X |是否相互独立,为什么?【解】(1)||1()e d 0.2x E X xx +∞--∞==⎰ 2||201()(0)e d 0e d 2.2x x D X x x x x +∞+∞---∞=-==⎰⎰(2) Cov(,|)(||)()(||)(||)X X E X X E X E X E X X =-= ||1||e d 0,2x x x x +∞--∞==⎰所以X 与|X |互不相关.(3) 为判断|X |与X 的独立性,需依定义构造适当事件后再作出判断,为此,对定义域-∞<x <+∞中的子区间(0,+∞)上给出任意点x 0,则有0000{}{||}{}.x X x X x X x -<<=<⊂<所以000{||}{} 1.P X x P X x <<<<<故由00000{,||}{||}{||}{}P X x X x P X x P X x P X x <<=<><<得出X 与|X |不相互独立.32.已知随机变量X 和Y 分别服从正态分布N (1,32)和N (0,42),且X 与Y 的相关系数ρXY = -1/2,设Z =23YX +. (1) 求Z 的数学期望E (Z )和方差D (Z ); (2) 求X 与Z 的相关系数ρXZ ;(3) 问X 与Z 是否相互独立,为什么? 【解】(1) 1().323X Y E Z E ⎛⎫=+=⎪⎝⎭ ()2Cov ,3232XY X Y D Z D D ⎛⎫⎛⎫⎛⎫=++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11119162Cov(,),9432X Y =⨯+⨯+⨯⨯ 而1Cov(,))()3462XY X Y D Y ρ⎛⎫==-⨯⨯=- ⎪⎝⎭所以 1()146 3.3D Z =+-⨯= (2) 因()()11Cov(,)Cov ,Cov ,Cov ,3232X Y X Z X X X X Y ⎛⎫=+=+ ⎪⎝⎭ 119()(6)3=0,323D X =+⨯-=- 所以 Cov(,)0.)()XZ X Z D Z ρ==(3) 由0XZ ρ==,得X 与Z 不相关.又因1~,3,~(1,9)3Z N X N ⎛⎫ ⎪⎝⎭,所以X 与Z 也相互独立.33.将一枚硬币重复掷n 次,以X 和Y 表示正面向上和反面向上的次数.试求X 和Y 的相关系数XY ρ.【解】由条件知X +Y =n ,则有D (X +Y )=D (n )=0.再由X ~B (n ,p ),Y ~B (n ,q ),且p =q =12, 从而有 ()()4nD X npq D Y ===所以 0()()()2()()XY D X Y D X D Y D X D Y ρ=+=++2,24XY n nρ=+ 故XY ρ= -1. 34.设随机变量X 和Y 的联合概率分布为-1 0 10 10.07 0.18 0.15 0.08 0.32 0.20试求X 和Y 的相关系数ρ.【解】由已知知E (X )=0.6,E (Y )=0.2,而XY 的概率分布为YX -1 0 1 P 0.080.720.2所以E (XY )= -0.08+0.2=0.12Cov(X ,Y )=E (XY ) -E (X )·E (Y )=0.12 -0.6×0.2=0从而 XY ρ=035.对于任意两事件A 和B ,0<P (A )<1,0<P (B )<1,则称ρ=())()()()()()(B P A P B P A P B P A P AB P ⋅-为事件A 和B 的相关系数.试证:(1) 事件A 和B 独立的充分必要条件是ρ=0; (2) |ρ|≤1. 【证】(1)由ρ的定义知,ρ=0当且仅当P (AB ) -P (A )·P (B )=0.而这恰好是两事件A 、B 独立的定义,即ρ=0是A 和B 独立的充分必要条件. (2) 引入随机变量X 与Y 为1,,0,A X A ⎧⎪=⎨⎪⎩若发生若发生; 1,,0,B Y B ⎧⎪=⎨⎪⎩若发生若发生.由条件知,X 和Y 都服从0 -1分布,即01~1()()X P A P A ⎧⎨-⎩ 01~1()()Y P B P B ⎧⎨-⎩从而有E (X )=P (A ),E (Y )=P (B ),D (X )=P (A )·P (A ),D (Y )=P (B )·P (B ),Cov(X ,Y )=P (AB ) -P (A )·P (B )所以,事件A 和B 的相关系数就是随机变量X 和Y 的相关系数.于是由二元随机变量相关系数的基本性质可得|ρ|≤1. 36. 设随机变量X 的概率密度为YXf X (x )=⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<<-.,0,20,41,01,21其他x x令Y =X 2,F (x ,y )为二维随机变量(X ,Y )的分布函数,求:(1) Y 的概率密度f Y (y ); (2) Cov(X ,Y );(3)1(,4)2F -. 解: (1) Y 的分布函数为2(){}{}Y F y P Y y P X y =≤=≤.当y ≤0时, ()0Y F y =,()0Y f y =; 当0<y <1时,(){{0}{0Y F y P X P X P X =≤≤=≤<+≤≤=,()Y f y =;当1≤y <4时,1(){10}{02Y F y P X P X =-≤<+≤≤=()Y f y =;当y ≥4时,()1Y F y =,()0Y f y =. 故Y 的概率密度为1,()04,0,.Y y f y y <<=≤<⎪⎩其他(2) 0210111()()d d d 244+X E X =xf x x x x x x ∞∞=+=⎰⎰⎰--, 02222210115()()()d d d )246+X E Y =E X =x f x x x x x x ∞∞=+=⎰⎰⎰--, 02233310117()()()d d d 248+X E XY =E Y =x f x x x x x x ∞∞=+=⎰⎰⎰--, 故 Cov(X,Y ) =2()()()3E XY E X E Y =⋅-.(3) 2111(,4){,4}{,4}222F P X Y P X X -=≤-≤=≤-≤11{,22}{2}22P X X P X =≤--≤≤=-≤≤-11{1}24P X =-≤≤-=.37. 设随机变量X 服从参数为1的泊松分布,求P{X=E(X 2)}.解:因为其分布律为P{x=k}=1!e k -,k=0,1,2,…,12211011121111()!(1)!(1)!11(2)!(1)!() 2.k k k k k e k k E X k e e k k k e k k e e e -∞∞∞--===∞∞-==--+===--⎛⎫=+ ⎪--⎝⎭=+=∑∑∑∑∑所以211{()}{2}.2!2P x E X P X e e --=====所以。

《概率论与数理统计》习题及答案第四章

《概率论与数理统计》习题及答案第四章

《概率论与数理统计》习题及答案第 四 章1.一个袋子中装有四个球,它们上面分别标有数字1,2,2,3,今从袋中任取一球后不放回,再从袋中任取一球,以,X Y 分别表示第一次,第二次取出的球上的标号,求(,)X Y 的分布列.解(,)X Y 的分布列为其中(1,1)(1)(1|1)0P X Y P X P Y X =======余者类推。

2.将一枚硬币连掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值,试写出(,)X Y 的分布列及边缘分布列。

解一枚硬币连掷三次相当于三重贝努里试验,故1~(3,).2X B 331()(),0,1,2,32k P X k C k ===,于是(,)X Y 的分布列和边缘分布为01013818i p ⋅其中(0,1)(0)(1|0)0P X Y P X P Y X =======,13313(1,1)(1)(1|1)()128P X Y P X P Y X C =======⨯=,余者类推。

3.设(,)X Y 的概率密度为又(1){(,)|1,3}D x y x y =<<;(2){(,)|3}D x y x y =+<。

求{(,)}P X Y D ∈ 解(1)1321{(,)}(6)8P x y D x y dxdxy ∈=--⎰=321(6)8x x y dxdy --- =)落在圆222()x y r r R +≤<内的概率. 解(1)22223201(R x y R CR dxdy C R C r drd ππθ+≤==-⎰⎰⎰⎰333233R R C R C πππ⎡⎤=-=⎢⎥⎣⎦, ∴33C R π=.(2)设222{(,)|}D x y x y r =+≤,所求概率为322323232133r r r Rr R R R πππ⎡⎤⎡⎤=-=-⎢⎥⎢⎥⎣⎦⎣⎦. 5.已知随机变量X 和Y 的联合概率密度为 求X 和Y 的联合分布函数.解1设(,)X Y 的分布函数为(,)F x y ,则解2由联合密度可见,,X Y 独立,边缘密度分别为 边缘分布函数分别为(),()X Y F x F y ,则 设(,)X Y 的分布函数为(,)F x y ,则6.设二维随机变量(,)X Y 在区域:0D x <<求边缘概率密度。

概率论与数理统计第四章测试题

概率论与数理统计第四章测试题

第4章 随机变量的数字特征一、选择题1.设两个相互独立的随机变量X 和Y 的方差分别为4和2,则随机变量3X-2Y 的方差是 (A) 8 (B) 16 (C) 28 (D) 442.若随机变量X 和Y 的协方差(),0Cov X Y =,则以下结论正确的是( )(A) X 与Y 相互独立 (B) D(X+Y)=DX+DY(C) D(X-Y)=DX-DY (D) D(XY)=DXDY 3.设随机变量X 和Y 相互独立,且()()221122,,,XN Y N μσμσ,则2Z X Y =+( ) (A) ()221212,2N μμσσ++ (B) ()221212,N μμσσ++(C) ()2212122,4N μμσσ++ (D) ()2212122,4N μμσσ--4.设二维随机变量(X,Y)服从二维正态分布,则随机变量ξ=X+Y 与η=X-Y 不相关的充要条件为(A) EX=EY (B) E(X 2)- (EX)2= E(Y 2)- (EY)2(C) E(X 2)= E(Y 2)(D) E(X 2)+(EX)2= E(Y 2)+ (EY)25.设X 、Y 是两个相互独立的随机变量且都服从于()0,1N ,则()max ,Z X Y =的数学 期望()E Z =( ) (A)(B) 0 (C) (D) 6.设X 、Y 是相互独立且在()0,θ上服从于均匀分布的随机变量,则()min ,E X Y =⎡⎤⎣⎦( )(A)2θ (B) θ (C) 3θ (D) 4θ7.设随机变量X 和Y 的方差存在且不等于0,则D(X+Y)=DX+DY 是X 和Y ( )(A) 不相关的充分条件,但不是必要条件 (B) 独立的充分条件,但不是必要条件 (C) 不相关的充分必要条件 (D) 独立的充分必要条件 8.若离散型随机变量X 的分布列为(){}()1121,2,2nnn P X n =-⋅==,则()E X =( ) (A) 2 (B) 0 (C) ln2 (D) 不存在9.将一枚硬币重复掷n 次,以X 和Y 分别表示正面向上和反面向上的次数,则X 和Y 的相关系数等于(A )-1 (B )0 (C )21 (D )110.设随机变量X 和Y 独立同分布,具有方差2σ>0,则随机变量U=X+Y 和V=X-Y (A )独立 (B) 不独立 (C ) 相关 (D) 不相关11.随机变量X 的方差存在,且E(X)=μ,则对于任意常数C ,必有 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 大数定律与中心极限定理例1.设随机变量X 和Y 的数学期望分别为-2和2,方差分别为1和4,而相关系数为-0.5,则根据切比雪夫不等式有≤≥+}6{Y X P 。

分析:切比雪夫不等式:2{}DXP X EX εε−≥≤或2{}1DX P X EX εε−<≥−,显然需用到前一不等式,则只需算出()E X Y +与()D X Y +即可。

解:由于 0)(=+Y X E ,()2(,)2XY D X Y DX DY Cov X Y DX DY ρ+=++=++14212(0.5)3=++×××−=,故由切比雪夫不等式 1216)(}6{2=+≤≥+Y X D Y X P 。

注:还是用到第三章数字特征的一些性质。

除了切比雪夫不等式本身,这也是另外的知识点。

例2.设()0(0)g x x ><<+∞,且为非降函数。

设X 为连续型随机变量且[()]E g X EX −存在。

试证对任意0ε>,有[()]{}()E g X EX P X EX g εε−−≥≤。

分析:证明的结论形式与切比雪夫不等式非常相似,利用切比雪夫不等式的证明思想试试看。

证明:设随机变量X 的概率密度为()f x ,则有{}()x EX P X EX f x dx εε−≥−≥=∫由于()0g x >,且非降,故当X EX ε−≥时,有()()g X EX g ε−≥,()1()g X EX g ε−≥,所以(){}()()()x EX x EX g X EX P X EX f x dx f x dx g εεεε−≥−≥−−≥=≤∫∫ 1()()()g X EX f x dx g ε+∞−∞≤−∫ [()]()E g X EX g ε−=。

注:这是切比雪夫不等式的推广。

当2()g x x =时,即为切比雪夫不等式。

例3.设随机变量序列12,,,n X X X L 相互独立,且都服从参数为2的指数分布,则当n →∞时,211nn i i Y X n ==∑依概率收敛于 。

(A ) 0 (B ) 12 (C ) 14(D ) 1 分析:出现依概率收敛就要考虑应用大数定律,题设给出的是一列独立同分布的随机变量序列,自然会想到辛钦大数定律。

解:由题设12,,,n X X X L 独立同分布于参数为2的指数分布,因此22212,,,n X X X L 也都独立同分布,且它们共同的期望值为222111()422i i i EX DX EX ⎛⎞=+=+=⎜⎟⎝⎠。

根据辛钦大数定律,当n →∞时,211nn i i Y X n ==∑依概率收敛于其期望值12,故应选择选项B 。

注:几个大数定律条件、结论都非常相似,下面对其条件进行一下比较: 伯努利大数定律和辛钦大数定律都要求随机变量序列有独立性、同分布和有限数学期望。

切比雪夫大数定律对条件有所放宽,不要求同分布,但要求有某种独立性。

但是只有辛钦大数定律不要求方差存在。

同时要注意大数定律中所给的假设条件都是大数定律成立的充分条件,切不要认为条件不满足的随机变量序列就一定不服从大数定律。

几个大数定律的适用场合:伯努利大数定律仅适用于伯努利试验,讲的是频率收敛于概率。

切比雪夫大数定律用于独立序列且具有有界方差,比伯努利大数定律应用范围大为扩展。

辛钦大数定律用于独立同分布场合,最适宜于在数理统计中应用。

显然,伯努利大数定律是辛钦大数定律的特殊情形,但是辛钦大数定律不是切比雪夫大数定律的推广,因为它要求同分布。

例4.设随机变量12,,,n X X X L 相互独立,12n n S X X X =+++L ,则根据林德伯格-列维中心极限定理,当n 充分大时,n S 近似服从正态分布,只要12,,,n X X X L 满足 。

(A )有相同的数学期望。

(B )有相同的方差。

(C )服从同一指数分布。

(D )服从同一离散型分布。

分析:林德伯格-列维中心极限定理要求的条件是12,,,,n X X X L L 相互独立、同分布、方差存在,这时,当n 充分大时,n S 才近似服从正态分布。

根据条件分析选项即可。

解:显然选项A 与B 不能保证12,,,n X X X L 同分布,可排除。

选项C 给出了指数分布,此时独立同分布显然满足,而且由于是指数分布,方差肯定存在,故满足定理条件。

选项D 只给出其离散型的描述,此时独立同分布显然满足。

但却不能保证方差一定存在,因此也应排除。

故选C 。

注:本例重在考察中心极限定理的条件。

例5.假定某电视节目在S 市的收视率为15%,在一次收视率调查中,从该市的居民中随机抽取5000户,并以收视频率作为收视率,试求两者之差小于1%的概率。

分析:这个抽样调查中的重要问题用伯努利概型作为数学模型是很自然的,所求的是0.01np n µ−<发生的概率,其中5000,0.15,n n p µ==为5000户中收视该节目的户数,所以可应用棣莫弗-拉普拉斯中心极限定理,即二项分布以正态分布为极限定理。

解:设n µ为5000户中收视该节目的户数,则~(,)n B n p µ,其中5000,0.15n p ==。

由棣莫弗-拉普拉斯中心极限定理,近似服从(0,1)N 分布,从而0.01n P p P n µ⎫⎧⎫−<=<⎨⎬⎩⎭212(1.98)1⎛≈Φ−=Φ−⎜⎜⎝20.9761510.9523=×−=。

注:在实际工作中当然关心这个概率。

这是典型应用之一,即棣莫弗-拉普拉斯中心极限定理直接用于二项分布的近似计算,也用于频率与概率误差的计算,体现在下式:21ˆn P p P n µεβ⎛⎧⎫−<=≈Φ−=⎜⎨⎬⎜⎩⎭⎝。

本例即应用了此式,解决的是三类常见问题之一:已知,,n p ε,求β。

例6.在例5中为使该节目收视频率与收视率之差小于1%的概率达到99%,则至少要抽多少户?分析:模型没变,所以还是要用棣莫弗-拉普拉斯中心极限定理,只不过是问题的变形。

解:由例5知1ˆP β−=,则得 12β⎛+Φ=⎜⎜⎝, 问题相当于已知0.01,0.15p ε==及0.99β=求n,即0.995⎛Φ=⎜⎜⎝。

反查标准正态分布表()1z ααΦ=−,得0.9950.01 2.58z ==。

因此 22580.150.858487n =××≈。

注:这是棣莫弗-拉普拉斯中心极限定理典型应用之二:已知,,p εβ,求最小n 。

例7.设在某种重复独立试验中,每次试验事件A 发生的概率为14,试问能以0.9997的概率保证在1000次试验中A 发生的频率与概率相差多少?此时发生的次数在哪个范围内?分析:贝努利概型下,求解事件发生的频率与概率的误差,用到棣莫弗-拉普拉斯中心极限定理。

解:设A µ为在1000次试验中A 发生的次数,同时其频率与概率的绝对偏差为ε,则10.999710004A P µε⎧⎫−<=⎨⎬⎩⎭。

由棣莫弗-拉普拉斯中心极限定理得1210.999710004A P µε⎛⎜⎧⎫−<≈Φ−=⎜⎨⎬⎩⎭⎜⎜⎝, 即(73.03)0.99985εΦ=,查标准正态分布表可得,73.03 3.62ε=,从而0.0496ε=。

此时事件A 发生的次数A µ满足10.0496,200.4299.610004AA µµ−<<<。

因此事件A 发生的次数在201到300次之间。

注:这是棣莫弗-拉普拉斯中心极限定理典型应用之三:已知,,n p β,求ε,在p 未知时,利用1(1)4p p −≤可得ε的估计式。

例8.据以往经验,某种电器元件的寿命服从均值为100小时的指数分布,现随机的抽取16只,设它们的寿命是相互独立的。

求这16只元件的寿命的总和大于1920小时的概率。

分析:题设为这16只元件的寿命独立且同为指数分布,典型的独立同分布场合,要求的是寿命总和的取值概率,这与林德伯格-列维中心极限定理的应用条件结论完全吻合。

解:设i X 表示第i 只元件的寿命(1,2,,16)i =L ,设T 为16只元件的寿命总和,则有161i i T X ==∑,由题设知2100,100i i EX DX ==,由林德伯格-列维中心(0,1)N分布,故所求概率为{1920}1{1920}11400P T P T P >=−≤⎧⎫=−≈−Φ⎝⎠=1-0.7881=0.2119。

注:林德伯格-列维中心极限定理同棣莫弗-拉普拉斯中心极限定理一样,可类似引出三类计算问题。

由定理可知在n足够大以后,有近似式()()ˆn i i X EX P x x p ⎧⎫−⎪⎪⎪<≈Φ=⎬⎪⎪⎩⎭∑。

第一类问题:求p ;第二类问题:求最小的n ; 第三类问题:求在一定概率下1ni i X =∑的取值范围。

本例即解决的第一类问题。

相关文档
最新文档