数字电路总复习知识讲解

合集下载

数字集成电路考试 知识点

数字集成电路考试 知识点

数字集成电路考试知识点一、数字逻辑基础。

1. 数制与编码。

- 二进制、十进制、十六进制的相互转换。

例如,将十进制数转换为二进制数可以使用除2取余法;将二进制数转换为十六进制数,可以每4位二进制数转换为1位十六进制数。

- 常用编码,如BCD码(8421码、余3码等)。

BCD码是用4位二进制数来表示1位十进制数,8421码是一种有权码,各位的权值分别为8、4、2、1。

2. 逻辑代数基础。

- 基本逻辑运算(与、或、非)及其符号表示、真值表和逻辑表达式。

例如,与运算只有当所有输入为1时,输出才为1;或运算只要有一个输入为1,输出就为1;非运算则是输入和输出相反。

- 复合逻辑运算(与非、或非、异或、同或)。

异或运算的特点是当两个输入不同时输出为1,相同时输出为0;同或则相反。

- 逻辑代数的基本定理和规则,如代入规则、反演规则、对偶规则。

利用这些规则可以对逻辑表达式进行化简和变换。

- 逻辑函数的化简,包括公式化简法和卡诺图化简法。

卡诺图化简法是将逻辑函数以最小项的形式表示在卡诺图上,通过合并相邻的最小项来化简逻辑函数。

二、门电路。

1. 基本门电路。

- 与门、或门、非门的电路结构(以CMOS和TTL电路为例)、电气特性(如输入输出电平、噪声容限等)。

CMOS门电路具有功耗低、集成度高的优点;TTL门电路速度较快。

- 门电路的传输延迟时间,它反映了门电路的工作速度,从输入信号变化到输出信号稳定所需要的时间。

2. 复合门电路。

- 与非门、或非门、异或门等复合门电路的逻辑功能和实现方式。

这些复合门电路可以由基本门电路组合而成,也有专门的集成电路芯片实现其功能。

三、组合逻辑电路。

1. 组合逻辑电路的分析与设计。

- 组合逻辑电路的分析方法:根据给定的逻辑电路写出逻辑表达式,化简表达式,列出真值表,分析逻辑功能。

- 组合逻辑电路的设计方法:根据逻辑功能要求列出真值表,写出逻辑表达式,化简表达式,画出逻辑电路图。

2. 常用组合逻辑电路。

数电知识点总结

数电知识点总结

数电知识点总结数电(数位电子)是一门研究数字电子技术的学科,涉及到数字电路、数字信号处理、数字系统等多个方面的知识。

数字电子技术已经成为现代电子工程技术的基础,并且在通信、计算机、控制、显示、测量等领域都有广泛的应用。

本文将从数字电路、数字信号处理和数字系统三个方面对数电的知识点进行总结。

1. 数字电路数字电路是将数字信号作为输入、输出,通过逻辑门、存储器等数字元器件完成逻辑运算和信息处理的电路。

数字电路是实现数字逻辑功能的基本组成单元,包括组合逻辑电路和时序逻辑电路两种类型。

1.1 组合逻辑电路组合逻辑电路是由若干逻辑门进行组合而成的电路,其输出仅取决于当前输入的组合,不受到电路内过去的状态的影响。

组合逻辑电路主要包括门电路(与门、或门、非门等)、编码器、译码器、多路选择器、加法器、减法器等。

常用的集成逻辑门有 TTL、CMOS、ECL、IIL 四种族类。

常见的集成逻辑门有 TTL、 CMOS、 ECL、 IIL 四种。

1.2 时序逻辑电路时序逻辑电路是组合电路与触发器相结合,结构复杂。

时序逻辑电路主要包括触发器、寄存器、计数器、移位寄存器等。

在传统的 TTL 集成电路中,触发器主要有 RS 触发器、 JK触发器、 D 触发器和 T 触发器四种。

在 CMOS 集成电路中一般用 T 触发器,D 触发器和 JK 触发器等。

2. 数字信号处理数字信号处理(DSP)是利用数字计算机或数字信号处理器对连续时间的信号进行数字化处理,包括信号的采样、量化和编码、数字滤波、谱分析、数字频率合成等基本处理方法。

数字信号处理已广泛应用于通信、音频、视频、雷达、医学影像等领域。

2.1 信号采样和量化信号采样是将连续时间信号转换为离散时间信号的过程,采样频率必须高于信号频率的两倍才能保证信号的完全重构。

信号量化是将采样得到的连续幅度信号转换为一个有限数目的离散的幅度值的过程,量化误差会引入信号失真。

2.2 数字滤波数字滤波是利用数字计算机对数字信号进行特定频率成分的增益或者衰减的处理过程。

数电知识点汇总

数电知识点汇总

数电知识点汇总一、数制与编码。

1. 数制。

- 二进制:由0和1组成,逢2进1。

在数字电路中,因为晶体管的导通和截止、电平的高和低等都可以很方便地用0和1表示,所以二进制是数字电路的基础数制。

例如,(1011)₂ = 1×2³+0×2² + 1×2¹+1×2⁰ = 8 + 0+2 + 1=(11)₁₀。

- 十进制:人们日常生活中最常用的数制,由0 - 9组成,逢10进1。

- 十六进制:由0 - 9、A - F组成,逢16进1。

十六进制常用于表示二进制数的简化形式,因为4位二进制数可以用1位十六进制数表示。

例如,(1101 1010)₂=(DA)₁₆。

- 数制转换。

- 二进制转十进制:按位权展开相加。

- 十进制转二进制:整数部分采用除2取余法,小数部分采用乘2取整法。

- 二进制与十六进制转换:4位二进制数对应1位十六进制数。

将二进制数从右向左每4位一组,不足4位的在左边补0,然后将每组二进制数转换为对应的十六进制数;反之,将十六进制数的每一位转换为4位二进制数。

2. 编码。

- BCD码(Binary - Coded Decimal):用4位二进制数来表示1位十进制数。

常见的有8421 BCD码,例如十进制数9的8421 BCD码为(1001)。

- 格雷码(Gray Code):相邻的两个代码之间只有一位不同。

在数字系统中,当数据按照格雷码的顺序变化时,可以减少电路中的瞬态干扰。

例如,3位格雷码的顺序为000、001、011、010、110、111、101、100。

二、逻辑代数基础。

1. 基本逻辑运算。

- 与运算(AND):逻辑表达式为Y = A·B(也可写成Y = AB),当A和B都为1时,Y才为1,否则Y为0。

在电路中可以用串联开关来类比与运算。

- 或运算(OR):逻辑表达式为Y = A + B,当A和B中至少有一个为1时,Y为1,只有A和B都为0时,Y为0。

《中职数字电路教案》课件

《中职数字电路教案》课件

《中职数字电路教案》PPT课件第一章:数字电路概述1.1 数字电路的概念介绍数字电路的定义和特点解释数字电路与模拟电路的区别1.2 数字电路的组成介绍数字电路的基本组成部分,如逻辑门、触发器、计数器等展示数字电路的实际应用场景第二章:逻辑门电路2.1 逻辑门的基本概念介绍逻辑门的作用和分类,如与门、或门、非门等解释逻辑门的特点和应用2.2 逻辑门电路的设计与分析教授逻辑门电路的设计方法分析实际逻辑门电路的案例第三章:逻辑函数与逻辑代数3.1 逻辑函数的概念介绍逻辑函数的定义和表示方法解释逻辑函数的重要性3.2 逻辑代数的运算规则教授逻辑代数的运算规则和定律进行逻辑函数的化简和变换第四章:触发器与计数器4.1 触发器的概念与分类介绍触发器的作用和分类,如RS触发器、JK触发器、T触发器等解释触发器的工作原理和特点4.2 计数器的概念与分类介绍计数器的作用和分类,如二进制计数器、十进制计数器等解释计数器的工作原理和应用第五章:数字电路设计与实践5.1 数字电路设计的基本步骤介绍数字电路设计的基本流程和方法解释数字电路设计的重要性和注意事项5.2 数字电路实践案例分析实际数字电路的设计案例展示数字电路的实际制作和调试过程第六章:数字电路仿真与实验6.1 数字电路仿真软件的使用介绍常见的数字电路仿真软件,如Multisim、Proteus等演示如何使用仿真软件进行数字电路的仿真实验6.2 数字电路实验操作讲解数字电路实验的基本操作,如元器件的识别与使用,电路连接,信号测量等分析实验结果,解释实验中可能出现的问题及解决方法第七章:数字电路与计算机7.1 计算机的基本组成介绍计算机的基本组成部件,如CPU、内存、输入输出设备等解释数字电路在计算机中的重要作用7.2 计算机的数字电路应用实例分析计算机中常见的数字电路应用实例,如微处理器、存储器、运算器等讲解数字电路在计算机中的工作原理及性能优化第八章:数字通信与数字电路8.1 数字通信基本概念介绍数字通信的定义、特点和分类解释数字电路在数字通信系统中的作用8.2 数字电路在通信系统中的应用分析数字电路在调制、解调、编码、解码等通信过程中的应用讲解数字电路在通信系统中的性能指标和优化方法第九章:数字电路在现代生活中的应用9.1 数字电路在的家电产品中的应用介绍数字电路在家电产品中的应用实例,如电视机、洗衣机、空调等解释数字电路在家电产品中的作用和优势9.2 数字电路在现代工业中的应用讲解数字电路在现代工业生产过程中的应用,如自动化控制系统、等分析数字电路在现代工业中的重要作用及发展趋势第十章:数字电路的发展趋势与前景10.1 数字电路技术的最新发展介绍数字电路技术的最新研究动态和成果,如量子计算、碳纳米管等分析数字电路技术的发展趋势10.2 数字电路产业的前景与挑战讲解数字电路产业的发展现状及未来发展趋势分析数字电路产业面临的挑战及应对策略重点解析本文教案主要介绍了中职数字电路的基本概念、组成、逻辑门电路、逻辑函数与逻辑代数、触发器与计数器、数字电路设计与实践、数字电路仿真与实验、数字电路与计算机、数字通信与数字电路、数字电路在现代生活中的应用以及数字电路的发展趋势与前景等内容。

高斯课堂数电讲义笔记_高斯课堂

高斯课堂数电讲义笔记_高斯课堂

高斯课堂数电讲义笔记_高斯课堂高斯课堂。

第一讲,数电讲义笔记。

本次课程主要讲解了数电的基本概念和原理,以及相关的电路和逻辑门知识。

以下是本次课程的讲义笔记:
1. 电子学基础知识。

1.1 电子学的定义,电子学是研究电子器件和电子电路的一门学科,是电子技术的基础。

1.2 电子学的发展历程,电子学起源于19世纪末,随着半导体技术的发展,电子学得到了迅速的发展。

1.3 电子学的应用领域,电子学在通信、计算机、医疗、汽车等领域都有广泛的应用。

2. 电路基础知识。

2.1 电路的基本元件,电阻、电容、电感是电路中的基本元件,它们分别对应着电流的阻碍、电压的存储和电流的延迟。

2.2 电路的基本定律,欧姆定律、基尔霍夫定律和电路分析中的基本方法。

3. 逻辑门基础知识。

3.1 逻辑门的定义,逻辑门是数字电路中最基本的逻辑运算单元,它能够实现与、或、非等逻辑运算。

3.2 逻辑门的种类,与门、或门、非门是最基本的逻辑门,而与非门、或非门、异或门等则是由基本逻辑门组合而成的复合逻辑门。

4. 数字电路基础知识。

4.1 数字电路的定义,数字电路是由数字信号进行处理和传输的电路,它能够实现数字信号的存储、运算和传输。

4.2 数字电路的应用,计算机、数字通信、数字信号处理等领域都离不开数字电路的应用。

以上就是本次课程的讲义笔记,希望同学们能够加强对数电基础知识的理解,为以后的学习打下坚实的基础。

数电知识点总结考研

数电知识点总结考研

数电知识点总结考研一、数字电路基础1. 数字电路的概念数字电路是由数字逻辑门电路构成的各种数字系统,它主要用于处理和传输数字信息。

数字电路包括组合逻辑电路和时序逻辑电路两个部分。

2. 逻辑代数逻辑代数是描述逻辑运算规律的数学工具,它包括逻辑常数、逻辑变元、逻辑运算、代数运算等。

3. 组合逻辑电路组合逻辑电路是不含有存储元件的数字电路,它的输出只依赖于当前的输入信号。

常见的组合逻辑电路包括门电路、译码器、编码器、多路选择器、多路反相器、比较器等。

4. 时序逻辑电路时序逻辑电路是含有存储元件的数字电路,它的输出不仅受到当前的输入信号影响,还受到之前的输入信号历史影响。

常见的时序逻辑电路包括触发器、倒计数器、移位寄存器、计数器、序列检测器等。

5. 简单计算机系统简单计算机系统是由CPU、存储器、输入输出设备、总线等部分组成的计算机系统。

它的工作过程包括指令执行、数据传输、中断处理等。

二、数字信号处理基础1. 信号与系统信号与系统是数字信号处理的基础,它包括信号的分类、信号的运算、线性系统、离散时间系统、连续时间系统等内容。

2. 时域分析时域分析是对信号在时间域内的运算和处理技术,它包括时域波形、时域运算、时域特性分析等内容。

3. 频域分析频域分析是对信号在频域内的运算和处理技术,它包括傅里叶变换、离散傅里叶变换、频域滤波、频域特性分析等内容。

4. 信号采样与重构信号采样与重构是数字信号处理的重要技术,它包括纳奎斯特采样定理、采样定理的应用、信号重构方法等内容。

5. 数字滤波器数字滤波器是数字信号处理的重要工具,它包括FIR滤波器、IIR滤波器、数字滤波器设计方法等内容。

三、数字通信基础1. 数字调制与解调数字调制技术是数字通信的基础,它包括调制信号的生成、常用数字调制方式、调制信号的解调等内容。

2. 数字传输信道数字传输信道是数字通信的重要组成部分,它包括数字信号传输模式、数字信号传输中的数据损失、数字信号传输中的误码率等内容。

数字电路逻辑公式知识讲解

数字电路逻辑公式知识讲解

逻辑乘:
A*0=0
A*A=A
A*1=A
逻辑或:
A+0=A
A+1=1
A+A=A
逻辑非:
A*非A=0
A+非A=1
非(非A)=A
另外还有
交换律:
A*B=B*A
A+B=B+A
结合律:
(A*B)*C=A*(B*C)
(A+B)+C=A+(B+C)
分配律:
A*(B+C)=A*B=A*C
A+B*C=(A+B)*(A+C)
一、基本公式
表1.3.1中若干常用公式的证明
1.证明:
2. A+AB=A 证明:A+AB=A(1+B)=A1=A
3.
证明:
4.
证明:
推论:
二、运算规则
1.代入定理任何一个含有某变量的等式,如果等式中所有出现此变量的位置均代之以一个逻辑函数式,则此等式依然成立,这称为代入规则。

利用代入规则,反演律能推广到n个变量,即:
2.反演定理对于任意一个逻辑函数式F,若把式中的运算符“.”换成“+”, “+” 换成“.”,常量“0”换成“1”,“1”换成“0”,原变量换成反变量,反变量换成原变量,则得到的结果为。

这个规则叫反演定理运用反演定理时注意两点:① 必须保持原函数的运算次序。

② 不属于单个变量上的非号保留,而非号下面的函数式按反演规则变换。

例如:
其反函数:
3.对偶定理对于任意一个逻辑函数F,若把式中的运算符“.”换成“+”,“+”换成“.”,常量“0”换成“1”,“1”换成“0”,则得到F的对偶式F′。

例如:
其对偶式:
对偶定理:如果两个函数式相等,则它们对应的对偶式也相等。

数字电路总结知识点

数字电路总结知识点

数字电路总结知识点一、基本原理数字电路是以二进制形式表示信息的电路,它由数字信号和逻辑元件组成。

数字信号是由禄电平、高电平表示的信号,逻辑元件是由逻辑门组成的。

数字电路的设计和分析都是以逻辑门为基础的。

逻辑门是用来执行逻辑函数的元件,比如“与”门、“或”门、“非”门等。

数字电路的基本原理主要包括二进制数制、布尔代数、卡诺图、逻辑函数和逻辑运算等内容。

二进制数制是数字电路中最常用的数制形式,它使用0和1表示数字。

布尔代数是描述逻辑运算的理论基础,它包括基本逻辑运算、逻辑运算规则、逻辑函数、逻辑表达式等内容。

卡诺图是用于简化逻辑函数的图形化方法,它可以简化逻辑函数的表达式,以便进一步分析和设计数字电路。

二、逻辑门逻辑门是数字电路的基本元件,它用来执行逻辑函数。

常见的逻辑门包括与门、或门、非门、异或门、与非门、或非门等。

这些逻辑门都有特定的逻辑功能和真值表,它们可以用于组合成复杂的逻辑电路。

逻辑门的特点有两个,一个是具有特定的逻辑功能,另一个是可以实现逻辑函数。

逻辑门的逻辑功能对应着二进制操作的逻辑运算,它可以实现逻辑的“与”、“或”、“非”、“异或”等功能。

逻辑门的实现是通过逻辑元件的布局和连接来完成的,比如用传输门和与门实现一个或门。

三、组合逻辑电路组合逻辑电路是由逻辑门组成的电路,它执行逻辑函数,但没有存储元件。

组合逻辑电路的特点是对输入信号的变化立即做出响应,并且输出信号仅依赖于当前的输入信号。

常见的组合逻辑电路包括加法器、减法器、多路选择器、译码器等。

加法器是一个重要的组合逻辑电路,它用来执行加法运算。

有半加器、全加器和多位加法器等不同类型的加法器,它们可以实现不同精度的加法运算。

减法器是用来执行减法运算的组合逻辑电路,它可以实现数的减法运算。

多路选择器是一个多输入、单输出的组合逻辑电路,它根据控制信号选择其中的一个输入信号输出到输出端。

译码器是用来将二进制码转换成其它码制的组合逻辑电路,它可以将二进制数码转换成BCD码、七段码等。

数字电路基础知识

数字电路基础知识

数字电路基础知识数字电路是以数字和逻辑操作为基础的一种电路,它包含三个基本要素:数字元件、运算元件和控制元件。

由此可见,数字电路的性能也受到各种电路元件的支持,其设计和分析常常涉及各种类型的电路元件。

从元件到整体电路,数字电路涉及到门电路、组合逻辑电路、时序逻辑电路、全加器、反馈电路等等。

在数字电路的设计和分析中,我们将着重讨论这三类基本电路元件的基础知识。

首先,关于数字元件,电路中的数字电路元件基本上都是一些电容、电阻、晶体管、接口管等简单的元件,它们的表示实际上是一种信号的基本模式,是一种可以操作的信号,这是本课程学习的重点。

电路中的元件有两个主要作用:一是把一种信号转换为另一种信号,二是把输入信号变化成另一种输出信号。

接下来,我将为大家讲解电路中的数字元件相应的工作原理和参数。

其次,关于运算元件,它们是一种可以处理输入信号并产生输出信号的电路元件。

由于运算元件可以根据输入信号不断改变功能,它们是一种非常重要的元件,也是数字电路的核心元件。

大多数运算元件的功能可以分为两类:一类是实现逻辑运算功能,另一类是实现数字信号处理功能。

这里,我将涉及的主要是几种基本的运算元件,它们分别是全加器,乘法器,分频器,移位器,比较器以及编码器等。

我将具体介绍它们的工作原理、工作特性以及如何设计成一个完整的电路。

最后,关于控制元件,它们主要负责控制整个系统的工作,也是数字电路的重要组成部分。

控制元件的类型很多,在数字电路中,主要用到的有延迟开关,定时器,定时器/计数器,触发器,比较器等。

这些控制元件可以控制电路中各元件的工作,实现一定的功能,所以学习它们的基本知识也是很重要的。

以上就是本文关于数字电路基础知识的介绍,我们可以看到,数字电路非常复杂,学习它们的基础知识对我们的后续学习都是非常有帮助的,最后,希望大家都能在学习数字电路的道路上取得成功!。

数电知识点总结

数电知识点总结

数电知识点总结数电,即数字电子技术,是现代电子科学和技术的重要组成部分。

它研究如何使用数字信号来处理和传输信息。

在这篇文章中,我们将对数电的一些基本概念和知识点进行总结和讨论。

一、数电基础理论1. 二进制二进制是计算机中常用的数字表示方式,使用0和1来表示数字。

它是整个数电系统中的基础。

2. 逻辑门逻辑门是数电中常用的基本单元。

有与门、或门、非门等。

通过组合不同的逻辑门可以实现各种电路功能。

3. 真值表真值表是描述逻辑门输入输出关系的表格。

它能够帮助我们清晰地了解逻辑门的工作原理和功能。

4. 布尔代数布尔代数是一种逻辑系统,它基于二进制值和逻辑运算。

它能够简化和优化逻辑电路的设计。

二、数电电路设计1. 加法器加法器是数电中重要的电路,用于实现数字的加法运算。

全加器是最基本的加法器。

2. 编码器编码器用于将一个多位数字编码为一个较小的码。

常见的是4-2编码器和8-3编码器等。

3. 解码器解码器正好与编码器相反,它用于将一个码解码为一个多位数字。

常见的是2-4解码器和3-8解码器等。

4. 翻转器翻转器是一种存储元件,可以存储和改变输入信号的状态。

常见的有RS触发器、D触发器和JK触发器等。

三、数电应用领域1. 计算机计算机是数电应用最广泛的领域之一。

计算机内部的逻辑电路和芯片基于数电原理。

2. 通信数字通信是现代通信技术的基础。

数电提供了快速、准确和可靠的数字信号处理方法。

3. 数字电视机数字电视机通过数电技术将模拟信号转换为数字信号,并在数字领域进行处理。

4. 数字音频设备数字音频设备使用数电技术处理和转换音频信号,提供更高的音频质量和灵活性。

结语数电是现代科技的基石之一,它通过数字信号的处理和传输,推动了科学技术的发展。

本文简要总结了数电的基础理论、电路设计和应用领域等知识点。

深入了解数电原理和应用,不仅能够更好地理解数字技术的工作原理,而且可以为我们进行相关领域的研究和应用提供帮助。

希望本文对读者有所启发和帮助。

数电知识总结

数电知识总结

第一部分内容逻辑代数基础掌握逻辑代数的基本公式、基本规则;逻辑代数的表示方法及相互转换。

熟练掌握逻辑函数的公式化简法及卡诺图化简法。

1、数字量和模拟量数字量:变化在时间和空间上都是离散的模拟量:变化在时间和空间上都是连续的2、逻辑代数中的三种基本运算布尔代数被广泛应用于解决开关电路和数字逻辑电路的分析与设计上,所以又将布尔代数叫做开关代数或逻辑代数。

在二值逻辑中,每个逻辑变量的取值只有0和1,这里的0和1只代表两种不同的逻辑状态。

基本运算有与、或、非三种。

常见的复合逻辑运算有与非、或非、与或非、异或、同或等。

3、逻辑代数的基本公式——布尔恒等式(20个);常用公式——由基本公式导出(6个)4、逻辑代数的基本定理(1)代入定理(2)反演定理Y将其中所有的“·”换成“+”,“+”换成“·”,0换成1,1换成0,原变量换成反变量,反变量换成原变量,得到的结果为Y。

用反演定理时有两个规则:1)“先括号、然后乘、最后加”2)不属于单个变量上的反号应保留(3)对偶定理若两逻辑式相等,则它们的对偶式也想等,这就是对偶定理。

对偶式:对于任何一个逻辑或Y,若将其中的“·”换成“+”,“+”换成“·”,0换成1,1换成0,则得到一个新的逻辑式Y′,即为Y的对偶式。

【注意】这里的0和1就是形式上的0和1。

5、逻辑函数及其表示方法(1)逻辑函数以逻辑变量作为输入,运算结果作为输出,那么输入和输出之间是一种函数关系,写作Y=F(A,B,C…)------二值逻辑函数(2)逻辑函数的表示方法这些方法包括了(逻辑)真值表、逻辑函数式(又称为逻辑式或函数式)、逻辑图和卡诺图。

逻辑图:用逻辑运算的图形符号画出的图,如Y=A(B+C)★这些方法之间相互转化(3)逻辑函数的两种标准形式——“最小项之和”及“最大项之和”1)最小项有一组变量有n个,m为包含n个因子的乘积,而且这几个变量均以原变量或反变量的形式在m中出现一次,则称m为该组变量的最小值。

数电总结专题教育课件

数电总结专题教育课件
27
第四章 组合逻辑电路
例题分析: 真值表: Y1=∑(1,2,4,7) , Y2=∑(3,5,6,7)
A0
00
一位全加器。其中,A、
00 1 01 0
10 10
B分别为两个一位二进 制数相加旳被加数、
01 1 10 0 10 1 11 0 11 1
0
1
1
0
01
0
1
1
1
加数, C为低位向本 位旳进位,Y1为本位 和,Y2是本位向高位 旳进位。
13
第二章 逻辑代数
例题讲解:
例4 化简F=(B+D)(B+C+D)(A+B+D)(A+C+D)为最简与 或式。
解.由原式得反函数:
F CD AB 00 01 11 10
F = BD + BCD + ABD + ACD 00 0 1 0 0
01 1 1 1 1
填写卡诺图:
11 1 1 0 1
F=AB+CD+BD
0 0 00 0 0 011 0 0 0 10 1 0 0 0 110 1 0 1 00 1 0 0 1 01 0 1 0 1 10 0 1 0 1 11 1 1 1 0 00 1 0 1 0 01 0 1 1 0 10 0 1 1 0 11 1 1 1 1 00 0 1 1 1 01 1 1 1 1 10 1 1
A B
& ABC
C
A+B+C
≥1
≥1
Y1 & AB+AC+BC (A+B+C) +ABC
AB+AC+BC (A+B+C)

数字电路基础知识

数字电路基础知识

1 . 1 = 1数字电路基础知识1 、逻辑门电路 (何为门)2 、真值表3 、 卡诺图4 、3 线-8 线译码器的应用5 、555 集成芯片的应用一 . 逻辑门电路 (何为门)在逻辑代数中, 最基本的逻辑运算有与、或、非三种。

每种逻辑运算代表一种函数关系 这种函数关系可用逻辑符号写成逻辑表达式来描述, 也可用,文字来描述,还可用表格或图形 的方式来描述。

最基本的逻辑关系有三种: 与逻辑关系 、或逻辑关系 、非逻辑关系。

实现基本逻辑运算和常用复合逻辑运算的单元电路称为 逻辑门电路 。

例如: 实现“与” 运算的电路称为与逻辑门, 简称与门; 实现 非”运算的电路称为 与非门 。

逻辑门电路是设计数字系统的最小单元。

1.1.1 与门“与”运算是一种二元运算, 它定义了两个变量 A 和 B 的一种函数关系 。

用语句来描 述它, 这就是: 当且仅当变量 A 和 B 都为 1 时, 函数 F 为 1; 或者可用另一种方式来描述 它, 这就是: 只要变量 A 或 B 中有一个为 0, 则函数 F 为 0。

“与”运算又称为 逻辑乘运算 也叫逻辑积运算。

,“与”运算的逻辑表达式为:F = A . B式中, 乘号“. ”表示与运算,在不至于引起混淆的前提下,乘号“. ”经常被省略 。

该式可 读作: F 等于 A 乘 B , 也可读作: F 等于 A 与 B 。

表 2-1b “与”运算真值表由“与”运算关系的真值表可知“与”逻辑的运算规律为:0 . 0 = 00 . 1 = 1. 0 = 0 F = A . B0 0 0 1A 0 0 1 1B 0 1 0 1简单地记为:有 0 出 0,全 1 出 1。

由此可推出其一般形式为:A⋅0=0A⋅1=AA⋅A=A实现”逻辑运算功能的的电路称为“ 与门”。

每个与门有两个或两个以上的输入端和一个输出端,图 2-2 是两输入端与门的逻辑符号。

在实际应用中,制造工艺限制了与门电路的输入变量数目,所以实际与门电路的输入个数是有限的。

数电重点、难点及考点

数电重点、难点及考点
第八章脉冲波形的变换与产生
本章重点:
1、施密特触发器、单稳态触发器、多谐振荡器典型电路的工作原理,以及电路参数和性能的定性关系;
2、555定时器的应用;
3、脉冲电路的分析方法;
本章难点:
本章的难点是脉冲电路的分析方法,分析脉冲电路时使用的是分析非线性电路过渡过程的方法,而且在分析电路时必须考虑集成电路在不同工作状态下输入端和输出端的等效电路。
2、A/D转换器的主要类型(并联比较型、逐次渐近型、双积分型),它们的基本工作原理和综合性能的比较;
3、D/A、A/D转换器的转换速度与转换精度及影响它们的主要因素。
在讲授D/A转换器时,以一种电路(例如倒T形D/A转换器)为例,讲清D/A转换的基本原理和输出电压的定量计算,其他各种D/A转换器电路作为一般性了解的内容简单介绍。
数字电子技术课程考点
基础
第1章:二进制代码
第2章:逻辑代数代数化简、卡诺图化简
第3章:各种门电路之间的接口问题
组合逻辑电路
第4章:分析、设计
穿插考查1、2章知识点
触发器
第5章:各类触发器特性
时序逻辑电路
第6章:分析、设计
穿插考查5章知识点
存储器
第7章:基本概念和存储空间的计算
触发器应用:波形变换
第8章:多谐振荡品、单稳态、施密特触发器、555定时器
第七章半导体存储器
本章重点:
1、存储器的基本工作原理、分类和每种类型存储器的特点;
2、扩展存储器容量的方法;
3、用存储器设计组合逻辑电路的原理和方法。
因为存储器几乎都作成LSI器件,所以这一章的重点内容是如何正确使用这些器件。存储器内部的电路结构不是课程的重点。动态存储器和串的知识进行回忆、复习,了解用“三要素”法求解一阶RC电路暂态响应的一般方法;在RC充、放电回路的基础上,利用电路的“三要素”法求得输出脉宽tw以及多谐振荡器T1、T2、T和f的值.。

数字电路期末总复习知识点归纳详细

数字电路期末总复习知识点归纳详细

第1章 数字逻辑概论一、进位计数制1.十进制与二进制数的转换2.二进制数与十进制数的转换3.二进制数与16进制数的转换 二、基本逻辑门电路 第2章 逻辑代数表示逻辑函数的方法,归纳起来有:真值表,函数表达式,卡诺图,逻辑图及波形图等几种。

一、逻辑代数的基本公式与常用公式 1)常量与变量的关系A+0=A与A=⋅1AA+1=1与00=⋅AA A +=1与A A ⋅=0 2)与普通代数相运算规律 a.交换律:A+B=B+Ab.结合律:(A+B)+C=A+(B+C)c.分配律:)(C B A ⋅⋅=+⋅B A C A ⋅ 3)逻辑函数的特殊规律a.同一律:A+A+Ab.摩根定律:B A B A ⋅=+,B A B A +=⋅ b.关于否定的性质A=A 二、逻辑函数的基本规则 代入规则在任何一个逻辑等式中,如果将等式两边同时出现某一变量A的地方,都用一个函数L表示,则等式仍然成立,这个规则称为代入规则例如:C+⋅⋅⊕BBA⊕AC可令L=CB⊕则上式变成LA⋅=C+LA⋅=⊕⊕LA⊕BA三、逻辑函数的:——公式化简法公式化简法就是利用逻辑函数的基本公式与常用公式化简逻辑函数,通常,我们将逻辑函数化简为最简的与—或表达式1)合并项法:利用A+1=A=⋅⋅, 将二项合并为一项,合并时可消去一个变量B=A+AA或AB例如:L=B A+BA=(C+)=ACABCCB2)吸收法利用公式A+,消去多余的积项,根据代入规则B⋅A⋅可以是任何一个复杂的逻辑ABA=式例如化简函数L=E B+AB+DA解:先用摩根定理展开:AB=BA+再用吸收法L=E B+AB+AD3)消去法利用B+消去多余的因子=A+B AA例如,化简函数L=ABCA++B A+BBEA解:L=ABC+A+B A+BBEA4)配项法利用公式C=+⋅⋅将某一项乘以(A++⋅AABBCCBAA⋅A+),即乘以1,然后将其折成几项,再与其它项合并。

例如:化简函数L=B AA+B++CBCB解:L=B AA++B+BCCB2.应用举例将下列函数化简成最简的与-或表达式1)L=A++A+BDDDCEB2) L=ACCA++BB3) L=ABCDAB+++CCBA解:1)L=AA++B+BDDDCE2) L=ACA++BCB3) L=ABCD++AB+CBCA四、逻辑函数的化简—卡诺图化简法:卡诺图是由真值表转换而来的,在变量卡诺图中,变量的取值顺序是按循环码进行排列的,在与—或表达式的基础上,画卡诺图的步骤是:1.画出给定逻辑函数的卡诺图,若给定函数有n个变量,表示卡诺图矩形小方块有n2个。

数电知识点讲解总结

数电知识点讲解总结

数电知识点讲解总结数电,即数字电子技术,是指通过数字信号进行信息处理和传输的一种电子技术。

在现代科技领域中,数电技术已经得到了广泛的应用,涉及到计算机、通信、控制等多个领域。

数电知识点的掌握对于学习和工作都具有重要的意义,下面将对数电知识点进行总结和讲解。

1. 数制及进位运算数制是指用几个记数符号表示数的一种方法,比如我们常见的十进制数是用0到9这10个数字表示的。

在数电中,常用的数制有二进制、八进制和十六进制等。

进位运算是指在进行加减乘除等运算时,当某一位上的数字超过了进位数时,需要向高一位进位的操作。

在数电中,进位运算是一个非常基础和重要的概念,它是进行数字运算的基础。

2. 逻辑门和布尔代数逻辑门是数电中最基本的组成单元,它可以接受多个输入信号,并根据输入信号产生一个输出信号。

常见的逻辑门有与门、或门、非门等。

逻辑门的运算规则体现了布尔代数的运算规则,布尔代数是一种用于描述逻辑运算规律的代数系统,它体现了逻辑运算的基本规律,是逻辑电路设计的理论基础。

3. 组合逻辑电路和时序逻辑电路组合逻辑电路是由一些互相连接的逻辑门组成的,它可以根据输入信号的不同产生不同的输出信号。

时序逻辑电路是在组合逻辑电路的基础上引入了时钟信号,根据时钟信号的不同产生不同的输出信号。

组合逻辑电路和时序逻辑电路是数字电路中最基本的两种电路,它们构成了数字系统的基本组成部分。

4. 计算机组成原理计算机组成原理是数电中一个非常重要的知识点,它包括了计算机的硬件和软件组成结构、运行原理以及计算机系统的设计和实现等内容。

在计算机组成原理中,涉及到了 CPU、内存、输入输出设备、系统总线等多个方面的知识。

5. 存储器和寄存器存储器是计算机中用于存储数据和程序的设备,它包括了内存和外存两种形式。

内存是计算机中的主要存储设备,用于存储正在运行的程序和数据,而外存则是用于长期存储数据和程序的设备。

寄存器是一种用于存储临时数据和控制信号的存储器,它是计算机中最快的存储设备。

《数字电路教案》

《数字电路教案》

《数字电路教案》word版一、课程简介1.1 课程背景数字电路是电子工程与计算机科学的基础课程,广泛应用于现代电子设备中。

本课程旨在让学生掌握数字电路的基本原理、设计方法和应用技巧。

1.2 课程目标通过本课程的学习,学生将能够:(1)理解数字电路的基本概念和基本元件;(2)掌握逻辑门、逻辑函数和逻辑代数的基本知识;(3)学会使用常见的数字电路芯片和电路设计方法;(4)应用数字电路设计原理分析和解决实际问题。

二、教学内容2.1 数字电路的基本概念讲解数字电路的定义、特点和分类,以及数字电路的基本组成元素。

2.2 逻辑门介绍与门、或门、非门、异或门等基本逻辑门的功能和符号表示,并通过实验演示其应用。

2.3 逻辑函数与逻辑代数讲解逻辑函数的定义、表示方法,以及逻辑代数的基本运算规则和定律。

2.4 数字电路的设计方法介绍组合逻辑电路、时序逻辑电路的设计方法,以及常见的数字电路芯片如触发器、计数器、寄存器等的工作原理和应用。

3.1 讲授与实验相结合通过课堂讲解,使学生掌握基本概念和理论知识;通过实验,使学生熟悉数字电路的实际应用和操作技能。

3.2 案例分析分析实际数字电路设计案例,使学生学会运用所学知识解决实际问题。

3.3 小组讨论与合作鼓励学生进行小组讨论,培养团队合作精神,提高解决问题的能力。

四、课程考核4.1 平时成绩包括课堂表现、作业完成情况和小测验等,占总成绩的30%。

4.2 实验报告完成实验并提交实验报告,占总成绩的30%。

4.3 期末考试期末考试包括笔试和实际操作,占总成绩的40%。

五、教学资源5.1 教材推荐使用《数字电路》等相关教材。

5.2 实验设备准备数字电路实验箱、逻辑门芯片、触发器、计数器等实验设备。

5.3 网络资源提供数字电路相关课件、习题库和在线答疑平台,方便学生学习和交流。

6.1 课时安排本课程共计32课时,其中课堂讲授24课时,实验操作8课时。

6.2 授课计划详细安排每个课时的教学内容,包括理论讲解、实验演示和练习时间。

数电知识点总结详细

数电知识点总结详细

数电知识点总结详细一、逻辑门逻辑门是数字电子学的基本单元,它能够根据输入的电信号产生特定的输出信号。

常见的逻辑门有与门、或门、非门、异或门等。

逻辑门的输入和输出都是逻辑电平,通常用0和1表示逻辑低电平和逻辑高电平。

逻辑门可以通过晶体管、集成电路等器件来实现,其原理基于基本的布尔代数。

二、组合逻辑电路组合逻辑电路是由多个逻辑门组成的电路,其输出只依赖于输入信号的组合。

组合逻辑电路没有存储元件,因此输出只在输入信号变化时才会改变。

组合逻辑电路常用于数字系统中的信号处理和转换,比如加法器、减法器、编码器、译码器等。

三、时序逻辑电路时序逻辑电路是由组合逻辑电路和存储元件组成的电路,其输出不仅依赖于输入信号的组合,还依赖于时钟信号。

时序逻辑电路可以实现状态的存储和控制,常用于数字系统中的时序控制和时序处理。

四、数字系统设计数字系统设计是数字电子学的重要内容,它涉及到数字系统的结构、功能和性能的设计和实现。

数字系统设计需要考虑逻辑门、组合逻辑电路、时序逻辑电路、存储元件、时钟信号、计数器、寄存器、状态机等因素,以实现特定的功能和性能要求。

五、应用领域数字电子学在信息技术、通信技术、计算机技术、控制技术等领域有着广泛的应用。

它在数字电路设计、数字信号处理、数值计算、数字通信、数字控制等方面发挥着重要作用。

数字电子学技术的发展也推动了数字产品的不断创新和应用,比如数字电视、数字音频、数字相机、数字手机等。

综上所述,数字电子学是现代电子科学中的重要分支,它研究数字信号的产生、传输、处理和存储。

数字电子学的基本概念包括逻辑门、组合逻辑电路、时序逻辑电路、数字系统设计等,其应用领域涵盖信息技术、通信技术、计算机技术、控制技术等。

通过对数字电子学的学习和应用,可以有效地设计和实现各种数字系统,满足不同领域的需求。

(完整版)数电知识点总结(整理版)

(完整版)数电知识点总结(整理版)

数电复习知识点第一章1、了解任意进制数的一般表达式、2-8-10-16进制数之间的相互转换;2、了解码制相关的基本概念和常用二进制编码(8421BCD、格雷码等);第三章1、掌握与、或、非逻辑运算和常用组合逻辑运算(与非、或非、与或非、异或、同或)及其逻辑符号;2、掌握逻辑问题的描述、逻辑函数及其表达方式、真值表的建立;3、掌握逻辑代数的基本定律、基本公式、基本规则(对偶、反演等);4、掌握逻辑函数的常用化简法(代数法和卡诺图法);5、掌握最小项的定义以及逻辑函数的最小项表达式;掌握无关项的表示方法和化简原则;6、掌握逻辑表达式的转换方法(与或式、与非-与非式、与或非式的转换);第四章1、了解包括MOS在内的半导体元件的开关特性;2、掌握TTL门电路和MOS门电路的逻辑关系的简单分析;3、了解拉电流负载、灌电流负载的概念、噪声容限的概念;4、掌握OD门、OC门及其逻辑符号、使用方法;5、掌握三态门及其逻辑符号、使用方法;6、掌握CMOS传输门及其逻辑符号、使用方法;7、了解正逻辑与负逻辑的定义及其对应关系;8、掌握TTL与CMOS门电路的输入特性(输入端接高阻、接低阻、悬空等);第五章1、掌握组合逻辑电路的分析与设计方法;2、掌握产生竞争与冒险的原因、检查方法及常用消除方法;3、掌握常用的组合逻辑集成器件(编码器、译码器、数据选择器);4、掌握用集成译码器实现逻辑函数的方法;5、掌握用2n选一数据选择器实现n或者n+1个变量的逻辑函数的方法;第六章1、掌握各种触发器(RS、D、JK、T、T’)的功能、特性方程及其常用表达方式(状态转换表、状态转换图、波形图等);2、了解各种RS触发器的约束条件;3、掌握异步清零端Rd和异步置位端Sd的用法;2、了解不同功能触发器之间的相互转换;第七章1、了解时序逻辑电路的特点和分类;2、掌握时序逻辑电路的描述方法(状态转移表、状态转移图、波形图、驱动方程、状态方程、输出方程);3、掌握同步时序逻辑电路的分析与设计方法,掌握原始状态转移图的化简;4、了解异步时序逻辑电路的简单分析;5、掌握移位寄存器、计数器的功能、工作原理和实际应用等;6、掌握集成计数器实现任意进制计数器的方法;7、掌握用移位寄存器、计数器以及其他组合逻辑器件构成循环序列发生器的原理;第八章1、掌握门电路和分立元件构成的施密特触发器、单稳态触发器、多谐振荡器的电路组成及工作原理,掌握相关参数的计算方法;2、掌握用555电路构成施密特触发器、单稳态触发器、多谐振荡器的方法以及工作参数的计算或者改变方法;第九章1、了解ROM和RAM的基本概念;2、了解存储器容量的表示方法和扩展方法,了解存储容量与地址线、数据线的关系。

(完整版)数电知识点总结(整理版)

(完整版)数电知识点总结(整理版)

数电复习知识点第一章1、了解任意进制数的一般表达式、2-8-10-16进制数之间的相互转换;2、了解码制相关的基本概念和常用二进制编码(8421BCD、格雷码等);第三章1、掌握与、或、非逻辑运算和常用组合逻辑运算(与非、或非、与或非、异或、同或)及其逻辑符号;2、掌握逻辑问题的描述、逻辑函数及其表达方式、真值表的建立;3、掌握逻辑代数的基本定律、基本公式、基本规则(对偶、反演等);4、掌握逻辑函数的常用化简法(代数法和卡诺图法);5、掌握最小项的定义以及逻辑函数的最小项表达式;掌握无关项的表示方法和化简原则;6、掌握逻辑表达式的转换方法(与或式、与非-与非式、与或非式的转换);第四章1、了解包括MOS在内的半导体元件的开关特性;2、掌握TTL门电路和MOS门电路的逻辑关系的简单分析;3、了解拉电流负载、灌电流负载的概念、噪声容限的概念;4、掌握OD门、OC门及其逻辑符号、使用方法;5、掌握三态门及其逻辑符号、使用方法;6、掌握CMOS传输门及其逻辑符号、使用方法;7、了解正逻辑与负逻辑的定义及其对应关系;8、掌握TTL与CMOS门电路的输入特性(输入端接高阻、接低阻、悬空等);第五章1、掌握组合逻辑电路的分析与设计方法;2、掌握产生竞争与冒险的原因、检查方法及常用消除方法;3、掌握常用的组合逻辑集成器件(编码器、译码器、数据选择器);4、掌握用集成译码器实现逻辑函数的方法;5、掌握用2n选一数据选择器实现n或者n+1个变量的逻辑函数的方法;第六章1、掌握各种触发器(RS、D、JK、T、T’)的功能、特性方程及其常用表达方式(状态转换表、状态转换图、波形图等);2、了解各种RS触发器的约束条件;3、掌握异步清零端Rd和异步置位端Sd的用法;2、了解不同功能触发器之间的相互转换;第七章1、了解时序逻辑电路的特点和分类;2、掌握时序逻辑电路的描述方法(状态转移表、状态转移图、波形图、驱动方程、状态方程、输出方程);3、掌握同步时序逻辑电路的分析与设计方法,掌握原始状态转移图的化简;4、了解异步时序逻辑电路的简单分析;5、掌握移位寄存器、计数器的功能、工作原理和实际应用等;6、掌握集成计数器实现任意进制计数器的方法;7、掌握用移位寄存器、计数器以及其他组合逻辑器件构成循环序列发生器的原理;第八章1、掌握门电路和分立元件构成的施密特触发器、单稳态触发器、多谐振荡器的电路组成及工作原理,掌握相关参数的计算方法;2、掌握用555电路构成施密特触发器、单稳态触发器、多谐振荡器的方法以及工作参数的计算或者改变方法;第九章1、了解ROM和RAM的基本概念;2、了解存储器容量的表示方法和扩展方法,了解存储容量与地址线、数据线的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C AB
[解]: 1、列出逻辑表达式并进行化简和变换
S= A·AB B·AB = A·AB + B·AB
S= A(A+B)+ B(A+B) = AB + AB = AB C= A·B
2、列真值表
S= AB;C= A·B
ABSC 0000 0110 1010 1101
3、逻辑功能 由真值表可知,符合两个1位二进制数相加的原则,
2、了解基本逻辑门(与、或、与非、或非、 异或门)、三态门、OC门的TTL和MOS电 路组成及逻辑功能。重点在掌握功能。 注意TTL和MOS逻辑门电路的输入阻抗差 异。
3、掌握逻辑门的主要参数及在应用中的 接口问题:负载匹配和电平兼容。
3.1.12:试分析图示CMOS电路,说明它们的逻辑功能。
3.1.12:试分析图示CMOS电路,说明它们的逻辑功能。
加法器
SAB 1B A
可见,该电路实现 了减法功能
图题4·4·32
4·2 组合逻辑电路的设计
一、设计步骤:
1、明确实际问题的逻辑功能; 2、根据对电路逻辑功能的要求,列出真值表;
3、由真值表列出逻辑表达式; 明确逻辑功能要求列真值表逻辑表
无符号二进制数的算术运算;带符号二进制数的 减法运算:原码、反码、补码;
如:( )B( × ÷±) ( )B =( )B
如:【+(10110 )B】补 =( 00010110 )B
8位
如:【-( 10110 )B】补 = ( 11101010
)B 8位
4.熟练掌握二进制代码中的BCD码。
采用逻辑代数做为分析工具; 用功能表、真值表、逻辑表达式、波
形图等表示电路的功能。
2.掌握常用的数制及相互间的转换。
(1)数制定义:数码,计数体制是两个要素。含2进制, 10进制,8进制,16进制,任意进制。
(2)各数制的表达式。
(3)数制相互间的转换: 例(1101011 . 01011)B=( 6B . 58 )H=( 153 . 26)O =( 107 . 34375 )D =( 0001 0000 0111 . 0011 0100 0011 0111 0101 )8421BCD
m (3 ,4 ,5 ,6 ,7 ,1,1 1 ,1 2 ,1 3 ,1 4 )5 1
解:
L2
用卡诺 图求解,
L CD AB
00
01
先画出卡诺图, 然后画圈,
00
01 1 1
11
1
1
10
1
L1=B; L2=CD 11 1 1 1 1
10
∴ L=L1+L2=B+CD
1
L
1
复习基本要求
1、了解半导体器件的开关特性。
2、化简和变换各逻辑表达式,以得到最简表达式; 3、列出真值表; 4、根据真值表和逻辑表达式对逻辑电路进行分
析,最后确定其功能。 逻辑图逻辑表达式真值表功能分析
[例]一个双端输入双端输出的组合逻辑电路如图所示, 分析该电路的逻辑功能。
& A·AB
A B
&
AB
&
& S A·AB B·AB
B·AB 1
S为和数,C为进位。电路实际上是一个半加器。
4·4·3(2A逻即辑A3电A路2A如1A图0;题4B·即4B·33B22所B1示B0,) 试分
析该电路的功能。
解:分析:
比较器
当A>B时,FA>B=1,则加 法器的输入为
A⊙1=A,B⊕1=B,输出为
SA B 1A B
当A≤B时,FA>B=0,则加 法器的输入为 A⊙0= A, B⊕0=B,输出为
5.熟练掌握逻辑运算中的三种基本运算:
与、或、非。以及它们的组合运算:与
非、或非、异或、同或。掌握对应的逻
辑符号、真值表描述
复习要求:
1、熟悉逻辑代数的基本定律和常用的恒等式 2、理解逻辑代数的几个基本规则 3、掌握逻辑函数的代数变换方法和化简法。 4、掌握逻辑函数的卡诺图化简法。
特别是逻辑函数的化简:指的是使逻辑函数变 为最简的与-或表达式。有代数法和卡诺图法
解:对于图题3.1.13
所示的电路,输入信
号A作为传输门的控制
信号,输入信号B通过
传输门与输出L相连。
当A=0时,传输门TG1 导通,TG2断开,L=B; 当A=1时,传输门TG1 断开, TG2导 通,LB ;其真值表
如表题解3.1.13所示,
该电路实现异或功能:
图题3.1.13
L=A⊕B
复习要求
逻辑函数的变换:指的是使逻辑函数变为需要 的表达式,最常用的是与非和或非形式。
例: L = AB + AC + BC = AB + (A+B)C = AB + AB C
= AB + C ABC(AC)(BC)
ACBC
例: 2·1·7 用与非门实现下列函数。 (2) L=D(A+C)
解: L =AD+DC =AD ·DC = AD ·DC
2011 数字电路总复习
第一章 数字逻辑概论 1.理解数字电路的特点、分析方法及
数字逻辑的基本概念。
(1)模拟信号:时间连续、数值也连续的信号。 (2)数字信号: 表示数字量的信号, 数字量:时间和数值都离散的量,用二值数字逻辑描述。
(3)数字电路: 工作于数字信号下的电子电路
数字电路的分析方法:
1. 掌握逻辑电路的分析、设计的方法和步骤。
2. 了解组合逻辑电路中的竞争冒险现象和消除 方法。
3.了解常用组合逻辑功能器件的电路构成。
4.掌握常用组合逻辑功能器件的功能。
5.能应用中规模组合逻辑功能器件及门电路进 行逻辑电路的设计。
4·1 组合逻辑电路的分析
一、分析步骤: 1、由逻辑图写出各输出端的逻辑表达式;
该电路是低电平使能三态 非门,其表示符号如图题
解3.1,12(a)所示。
与(a)相同的分析可得以下结果:
(b)是低电平使能三态缓冲器,其表示 (c)是高电平使能三态缓冲器 符号如图 (b)所示。
(d)是低电平使能三态非门,其 表示符号如图 (d)所示。
3.1.13 试分析图题3.1.13所示传输门构成的电路, 写出其逻辑表达式,说明它是什么逻辑电路。
A &
D
&
&L
& C
又例: L 0(ABC) (ABC) ABC AC BC ......, 如果上式中0变1又如何化简
异或变同或又如何化简?
L(A,B,C,D)m(0,1,4,7,10)类型和真
描述的函数的 诺一 图般 法用 化卡 简
例:fA ,B ,C ,D AB AC B A B D C C D B D
相关文档
最新文档