信号与系统 实验2

合集下载

信号与系统实验

信号与系统实验

实验一信号与系统认知一、实验目的1、了解实验室的规章制度、强化安全教育、说明考核方法。

2、学习示波器、实验箱的使用、操作知识;3、学习常用连续周期信号的波形以及常用系统的作用。

二、实验仪器1、信号与系统实验箱(本次实验使用其自带的简易信号源,以及实验箱上的“信号通过系统”部分。

)2、示波器三、实验原理1、滤波器滤波器是一种常用的系统,它的作用为阻止某些频率信号通过,或只允许某些频率的信号通过。

滤波器主要有四种:这是四种滤波器的理想状态,实际上的滤波器只能接近这些效果,因此通常的滤波器有一些常用的参数:如带宽、矩形系数等。

通带范围:与滤波器最低衰减处比,衰减在3dB以下的频率范围。

2、线性系统线性系统是现实中广泛应用的一种系统,线性也是之后课程中默认为系统都具有的一种系统性质。

系统的线性表现在可加性与齐次性上。

齐次性:输入信号增加为原来的a倍时,输出信号也增加到原来的a倍。

四、预习要求1、复习安全操作的知识。

2、学习或复习示波器的使用方法。

3、复习典型周期信号的波形及其性质。

4、复习线性系统、滤波器的性质。

5、撰写预习报告。

五、实验内容及步骤1、讲授实验室的规章制度、强化安全教育、说明考核方法2、通过示波器,读出实验箱自带信号源各种信号的频率范围(1)测试信号源1的各种信号参数,并填入表1-1。

(2)测试信号源2的各种信号参数,并填入表1-2。

3、测量滤波器根据相应测量方法,用双踪示波器测出实验箱自带的滤波器在各频率点的输入输出幅度(先把双踪示波器两个接口都接到所测系统的输入端,调节到都可以读出输入幅度值,并把两侧幅度档位调为一致,记录下这个幅度值;之后,将示波器的一侧改接入所测系统的输出端,再调节用于输入的信号源,将信号频率其调至表1-3中标示的值,并使输入信号幅度保持原幅度值不变。

观察输出波形幅度的变化,并与原来的幅度作比较,记录变化后的幅度值。

),并将相应数据计入表1-3中。

4、测量线性系统(1)齐次性的验证自选一个输入信号,观察输出信号的波形并记录输入输出信号的参数,将输入信号的幅度增强为原信号的一定倍数后,再对输入输出输出参数进行记录,对比变化前后的输出。

北理工信号与系统MATLAB实验

北理工信号与系统MATLAB实验

title('x(t)=cos(\pit)[u(t)-u(t-2)]','FontSize',36,'FontName','Vijaya'); xlabel('t(s)','fontsize',24,'FontName','Times New Roman'); set(gca,'FontSize',24,'FontName','Times New Roman'); 运行结果如下:
1
2. 连续时间信号的时域运算 包括两信号的相加(+) 、相乘(*) 、微分、积分,以及移位、反 转和尺度变换(尺度伸缩)等。 MATLAB 中用 diff 函数来计算差分 xk+1-xk,用 quad 函数来计算 定积分,调用格式为: quad('function_name',a,b) 其中,function_name 为被积函数名,a、b 为积分区间。 3. 离散时间信号的 MATLAB 实现 在 MATLAB 中离散时间信号需要使用两个向量来表示。例如对 于如下离散时间信号:


实验 1 实验 2 实验 3 实验 4 实验 5 实验 6 实验 7
信号的时域描述与运算· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·1 LTI 系统的时域分析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 21 信号的频域分析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 42 LTI 系统的频域分析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 67 连续时间系统的复频域分析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 85 离散时间系统的 Z 域分析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·101 连续时间系统的创建与仿真 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·115

信号与系统

信号与系统

《信号与系统》仿真作业实验一:连续信号的表示及可视化:f(t)=δ(t); f(t)=ε(t); f(t)=e at(分别取a>0与a<0);f(t)=R(t); f(t)=Sa(wt); f(t)=sin(2πft);(分别画出不同周期个数的波形)解:(1)f(t)=δ(t)的matlab表示:程序清单如下:》t=-5:0.01:5;k=(0-(-5))/0.01+1;y=zeros(size(t));y(k)=1/(0.01-(-0.01));plot(t,y);title('冲击函数f(t)=δ(t)')画出冲击函数的图形如下:冲击函数f(t)=δ(t)t(2) f(t)=ε(t )的matlab 表示及图形: 程序清单如下: 》t=-5:0.01:5; y=heaviside(t) plot(t,y)画出阶跃函数的图形如下:(3) f(t)=e at 的matlab 表示及图形: 程序清单如下: 》t=-10:0.01:10;y1=exp(0.1*t); y2=exp(-0.1*t); plot(t,y1,'r',t,y2,'b') 画出指数函数的图形如下:tf (t )=ε(t )(4) f(t)=R(t)的matlab 表示及图形: 程序清单如下: 》t=-5:0.01:5;y=heaviside(t+2)-heaviside(t-2); plot(t,y,'b') 画出窗函数的图形如下:(5) f(t)=Sa(wt) 的matlab 表示及图形: 程序清单如下:》ezplot('sin(t)./t',[-20,20]) grid ontf (t )=e atty =R 9t )画出抽样函数的图形如下:sin(t)/tt(6)f(t)=sin(2πft)的matlab表示及图形:程序清单如下:》ezplot('sin(2*pi*50*t)',[-.02,.02])grid on画出正弦函数的图形如下:实验二:离散信号的表示及可视化:f(t)=δ(n ); f(t)=ε(n ); f(t)=e an (分别取a>0与a<0); f(t)=R N (n ); f(t)=Sa(nw); f(t)=sin(nw );(分别取不同的w 值) 解:(1) 冲击序列f(n)=δ(n )的matlab 实现: 程序清单如下: 》n0=0; ns=-10; nf=10; n=[ns:nf];y=[zeros(1,n0-ns),1,zeros(1,nf-n0)];-0.02-0.015-0.01-0.00500.0050.010.0150.02-1-0.50.51tsin(2 50 t)stem(n,y);title('冲击序列f(n)=δ(n)')画出冲击序列的图形如下:冲击序列f(n)=δ(n)n(2)阶跃序列f(n)=ε(n)的matlab实现:程序清单如下:》n0=0;ns=-10;nf=10;n=[ns:nf];y=[zeros(1,n0-ns),ones(1,nf-n0+1)];stem(n,y);title('阶跃序列f(n)=ε(n)')阶跃序列的图形如下:(3) 指数序列f(t)=e an (分别取a>0与a<0)的matlab 实现: 程序清单如下: 》n=-10:10; y1=exp(0.1*n); y2=exp(-0.1*n); plot(n,y1,'ro',n,y2,'bo') 指数序列的图形如下:(4) 门序列f(n)=R N (n )的matlab 实现:程序清单如下: 》n1=-3;n2=3;ns=-15;nf=15;阶跃序列f(n)=ε(n)nnf (t )=e a nn=[ns:nf];y=[zeros(1,n1-ns),ones(1,n2-n1+1),zeros(1,nf-n2)]; stem(n,y);title('窗序列f(n)=R N (n )') 窗序列的图形如下:(5) 抽样序列f(t)=Sa(nw)的matlab 实现: 》n=-20:0.5:20; y=sin(n)./n; plot(n,y,'o'); title('f(t)=Sa(nw)')窗函数f(n)=R N (n)n抽样序列的图形如下:(6) 正弦序列f(t)=sin(nw )(分别取不同的w 值)的matlab 实现: 》n=-0.1:0.002:0.1 w=100 y=sin(w*n) plot(n,y,'o') grid on正弦序列的图形如下:f (t)=Sa(nw)nny =s i n (w *n )实验三:系统的时域求解1、设h(n)=(0.9)n u(n),x(n)=u(n)-u(n-10),求:y(n)=x(n)*h(n),并画出x(n),h(n),y(n)波形。

信号与系统仿真作业

信号与系统仿真作业

nGDOU-B—11—112广东海洋大学学生实验报告书(学生用表)课程名称课程号学院(系)信息学院专业班级学生姓名学号实验地点04002 实验日期实验一连时间信号的MATLAB表示和连续时间LTI系统的时域分析一、实验目的1.掌握MA TLAB产生常用连续时间信号的编程方法,并熟悉常用连续时间信号的波形和特性;2.运用MATLAB符号求解连续系统的零输入响应和零状态响应;3.运用MATLAB数值求解连续系统的零状态响应;4.运用MATLAB求解连续系统的冲激响应和阶跃响应;5.运用MATLAB卷积积分法求解系统的零状态响应。

二、实验原理1. 连续信号MATLAB实现原理从严格意义上讲,MA TLAB数值计算的方法并不能处理连续时间信号.然而,可用连续信号在等时间间隔点的取样值来近似表示连续信号,即当取样时间间隔足够小时,这些离散样值能够被MATLAB处理,并且能较好地近似表示连续信号.MATLAB提供了大量生成基本信号的函数.比如常用的指数信号、正余弦信号等都是MATLAB的内部函数。

为了表示连续时间信号,需定义某一时间或自变量的范围和取样时间间隔,然后调用该函数计算这些点的函数值,最后画出其波形图.三、实验内容1.实例分析与验证根据以上典型信号的MA TLAB函数,分析与验证下列典型信号MA TLAB程序,并实现各信号波形图的显示,连续信号的图形显示使用连续二维图函数plot().(1)正弦信号:用MA TLAB命令产生正弦信号2sin(2/4)ππ+,并会出时间0≤t≤3的波形图。

程序如下:K=2;w=2*pi ;phi=pi/4;t=0:0.01:3;ft=K*sin (w*t+phi );plot(t,ft ),grid on ;axis ([0,3,-2。

2,2.2])title (’正弦信号’)(2) 抽样信号:用MA TLAB 中的sinc(t)函数命令产生抽样信号Sa(t),并会出时间为66t ππ-≤≤的波形图。

西工大信号和系统_实验

西工大信号和系统_实验

西北工业大学
《信号与系统》实验报告
西北工业大学
.
上图分别是0<n<2N-1,M=4,5,7,10时,Xm[n]的图像。

由上图可看出,当M=4时,基波周期T=3;M=5时,基波周期T=12 M=10时,基波周期T=6;所以当M=4时,得到的最小整数周期为
Xm(n)=sin(2πMn/N)的频率w=2πM/N,由公式得周期T=2k k=1,2,...)。

当N/M为正整数时,最小周期T=N/M;当N/M为有理数时,都有最小周期T=N;当N/M为无理数时,该序列不是周期序列
b.
以上是代码,下图是运行结果
可得出结论:如果2*pi/w0不是有理数,则该信号不是周期的 1.3离散时间信号时间变量的变换
b. 代码如下:x=zeros(1,11); x(4)=2;
x(6)=1;
x(7)=-1;
x(8)=3;
n=-3:7;
n1=n-2;
n2=n+1;
n3=-n;
n4=-n+1;
y1=x;
X超前2得到y1,;x延时1得到y2;x倒置再延时1得到y3;x倒置再延时2得到y4.
发现了课本中的一个错误
和书上的图1.2是一致的。

b:正余弦函数分别定义如下:
T=4
a:。

电路、信号与系统(2)实验指导书

电路、信号与系统(2)实验指导书
[问题]
描述线性时不变离散系统的差分方程为
编写求解上述方程的通用程序。
[建模]
将方程变形可得(用MATLAB语言表示)
a(1)*y(n)= b(1)*u(n)+…+ b(nb)*u(n-nb+1)- a(2)*y(n-1)-…- a(na)*y(n-na+1)
令us== [u(n),…, u(n-nb+1)]; ys=[y(n-1),…, y(n-na+1)]
x(n)={2,1,-1,3,1,4,3,7}(其中加下划线的元素为第0个采样点)在MATLAB中表示为:
n=[-3,-2,-1,0,1,2,3,4]; x=[2,1,-1,3,1,4,3,7];
当不需要采样位置信息或这个信息是多余的时候,可以只用x向量来表示。
(一)离散信号的MATLAB表述
[问题]
实验一连续时间信号与系统分析
一、实验目的
1、了解连续时间信号的特点;
2、掌握连续时间信号的MATLAB描述;
3、掌握连续LTI系统单位冲激响应的求解方法;
4、掌握连续LTI系统的零状态响应的求解方法。
二、实验内容
严格说来,只有用符号推理的方法才能分析连续系统,用数值方法是不能表示连续信号的,因为它给出的是各个样点的数据。只有当样本点取得很密时才可看成连续信号。所谓很密,是相对于信号变化的快慢而言的。以下均假定相对于采样点密度而言,信号变化足够慢。
elseif lu<lh nh=0; nu=lh-lu;
else nu=0; nh=0;
end
dt=0.1;
lt=lmax;
u=[zeros(1, lt), uls, zeros(1, nu), zeros(1, lt)];

《信号与系统》课程实验报告

《信号与系统》课程实验报告

《信号与系统》课程实验报告《信号与系统》课程实验报告一图1-1 向量表示法仿真图形2.符号运算表示法若一个连续时间信号可用一个符号表达式来表示,则可用ezplot命令来画出该信号的时域波形。

上例可用下面的命令来实现(在命令窗口中输入,每行结束按回车键)。

t=-10:0.5:10;f=sym('sin((pi/4)*t)');ezplot(f,[-16,16]);仿真图形如下:图1-2 符号运算表示法仿真图形三、实验内容利用MATLAB实现信号的时域表示。

三、实验步骤该仿真提供了7种典型连续时间信号。

用鼠标点击图0-3目录界面中的“仿真一”按钮,进入图1-3。

图1-3 “信号的时域表示”仿真界面图1-3所示的是“信号的时域表示”仿真界面。

界面的主体分为两部分:1) 两个轴组成的坐标平面(横轴是时间,纵轴是信号值);2) 界面右侧的控制框。

控制框里主要有波形选择按钮和“返回目录”按钮,点击各波形选择按钮可选择波形,点击“返回目录”按钮可直接回到目录界面。

图1-4 峰值为8V,频率为0.5Hz,相位为180°的正弦信号图1-4所示的是正弦波的参数设置及显示界面。

在这个界面内提供了三个滑动条,改变滑块的位置,滑块上方实时显示滑块位置代表的数值,对应正弦波的三个参数:幅度、频率、相位;坐标平面内实时地显示随参数变化后的波形。

在七种信号中,除抽样函数信号外,对其它六种波形均提供了参数设置。

矩形波信号、指数函数信号、斜坡信号、阶跃信号、锯齿波信号和抽样函数信号的波形分别如图1-5~图1-10所示。

图1-5 峰值为8V,频率为1Hz,占空比为50%的矩形波信号图1-6 衰减指数为2的指数函数信号图1-7 斜率=1的斜坡信号图1-8 幅度为5V,滞后时间为5秒的阶跃信号图1-9 峰值为8V,频率为0.5Hz的锯齿波信号图1-10 抽样函数信号仿真途中,通过对滑动块的控制修改信号的幅度、频率、相位,观察波形的变化。

信号与系统实验报告

信号与系统实验报告

电气学科大类2012 级《信号与控制综合实验》课程实验报告(基本实验一:信号与系统基本实验)姓名丁玮学号U201216149 专业班号水电1204 同组者1 余冬晴学号U201216150 专业班号水电1204 同组者2 学号专业班号指导教师日期实验成绩评阅人实验评分表基本实验实验编号名称/内容实验分值评分实验一常用信号的观察实验二零输入响应、零状态相应及完全响应实验五无源滤波器与有源滤波器实验六LPF、HPF、BPF、BEF间的变换实验七信号的采样与恢复实验八调制与解调设计性实验实验名称/内容实验分值评分创新性实验实验名称/内容实验分值评分教师评价意见总分目录1.实验一常用信号的观察 (1)2.实验二零输入响应、零状态响应及完全响应 (4)3.实验五无源滤波器与有源滤波器 (7)4.实验六 LPF、HPF、BPF、BEF间的转换 (14)5.实验七信号的采样与恢复 (19)6.实验八调制与解调 (29)7.实验心得与自我评价 (33)8.参考文献 (34)实验一常用信号的观察一.任务与目标1.了解常见信号的波形和特点;2.了解常见信号有关参数的测量,学会观察常见信号组合函数的波形;3.学会使用函数发生器和示波器,了解所用仪器原理与所观察信号的关系;4.掌握基本的误差观察与分析方法。

二.总体方案设计1.实验原理描述信号的方法有许多种,可以用数学表达式(时间的函数),也可以使用函数图形(信号的波形)。

信号可以分为周期信号和非周期信号两种。

普通示波器可以观察周期信号,具有暂态拍摄功能的示波器可以观察到非周期信号的波形。

目前,常用的数字示波器可以方便地观察周期信号及非周期信号的波形。

2.总体设计⑴观察常用的正弦波、方波、三角波、锯齿波等信号及一些组合函数的波形,如y=sin(nx)+cos(mx)。

⑵用示波器测量信号,读取信号的幅值与频率。

三.方案实现与具体设计1.用函数发生器产生正弦波,并且设定波形的峰值及频率,用示波器观察并记录波形,测量和读取信号的幅值与频率;2.用函数发生器产生方波,并且设定波形的峰值及频率,用示波器观察并记录波形,测量和读取信号的幅值与频率;3.用函数发生器产生三角波,并且设定波形的峰值及频率,用示波器观察并记录波形,测量和读取信号的幅值与频率;4.用函数发生器产生锯齿波,并且设定波形的峰值及频率,用示波器观察并记录波形,测量和读取信号的幅值与频率;5.用函数发生器产生两个不同频率的正弦波,分别设定波形的峰值及频率,用示波器叠加波形,并观察组合函数的波形。

信号与系统实验实验报告

信号与系统实验实验报告

信号与系统实验实验报告一、实验目的本次信号与系统实验的主要目的是通过实际操作和观察,深入理解信号与系统的基本概念、原理和分析方法。

具体而言,包括以下几个方面:1、掌握常见信号的产生和表示方法,如正弦信号、方波信号、脉冲信号等。

2、熟悉线性时不变系统的特性,如叠加性、时不变性等,并通过实验进行验证。

3、学会使用基本的信号处理工具和仪器,如示波器、信号发生器等,进行信号的观测和分析。

4、理解卷积运算在信号处理中的作用,并通过实验计算和观察卷积结果。

二、实验设备1、信号发生器:用于产生各种类型的信号,如正弦波、方波、脉冲等。

2、示波器:用于观测输入和输出信号的波形、幅度、频率等参数。

3、计算机及相关软件:用于进行数据处理和分析。

三、实验原理1、信号的分类信号可以分为连续时间信号和离散时间信号。

连续时间信号在时间上是连续的,其数学表示通常为函数形式;离散时间信号在时间上是离散的,通常用序列来表示。

常见的信号类型包括正弦信号、方波信号、脉冲信号等。

2、线性时不变系统线性时不变系统具有叠加性和时不变性。

叠加性意味着多个输入信号的线性组合产生的输出等于各个输入单独作用产生的输出的线性组合;时不变性表示系统的特性不随时间变化,即输入信号的时移对应输出信号的相同时移。

3、卷积运算卷积是信号处理中一种重要的运算,用于描述线性时不变系统对输入信号的作用。

对于两个信号 f(t) 和 g(t),它们的卷积定义为:\(f g)(t) =\int_{\infty}^{\infty} f(\tau) g(t \tau) d\tau \在离散时间情况下,卷积运算为:\(f g)n =\sum_{m =\infty}^{\infty} fm gn m \四、实验内容及步骤实验一:常见信号的产生与观测1、连接信号发生器和示波器。

2、设置信号发生器分别产生正弦波、方波和脉冲信号,调整频率、幅度和占空比等参数。

3、在示波器上观察并记录不同信号的波形、频率和幅度。

信号实验报告 2

信号实验报告 2

信号与系统实验报告实验一信号与系统的时域分析一、实验目的1、熟悉和掌握常用的用于信号与系统时域仿真分析的MA TLAB函数;2、学会用MA TLAB进行信号基本运算的方法;3、掌握连续时间和离散时间信号的MA TLAB产生,掌握用周期延拓的方法将一个非周期信号进行周期信号延拓形成一个周期信号的MATLAB编程。

二、实验内容Q1-1:修改程序Program1_1,将dt改为0.2,再执行该程序,保存图形,看看所得图形的效果如何?dt = 0.01时的程序clear, % Clear all variablesclose all, % Close all figure windowsdt = 0.01; % Specify the step of time variablet = -2:dt:2; % Specify the interval of timex = sin(2*pi*t); % Generate the signalplot(t,x) % Open a figure window and draw the plot of x(t)title('Sinusoidal signal x(t)')xlabel('Time t (sec)')dt = 0.2时的程序clear, % Clear all variablesclose all, % Close all figure windowsdt = 0.2; % Specify the step of time variablet = -2:dt:2; % Specify the interval of timex = sin(2*pi*t); % Generate the signalplot(t,x) % Open a figure window and draw the plot of x(t)title('Sinusoidal signal x(t)')xlabel('Time t (sec)')dt = 0.01时的信号波形dt = 0.2时的信号波形这两幅图形有什么区别,哪一幅图形看起来与实际信号波形更像?答:dt = 0.01的图形比dt = 0.2的图形光滑,dt = 0.01看起来与实际信号波形更像。

信号系统MATLAB实验报告

信号系统MATLAB实验报告

信号与系统实验报告桂林理工大学信息科学与工程学院 电子信息工程实验二 信号及其表示【实验目的】了解各种常用信号的表达方式掌握部分绘图函数【实验内容】一、绘出连续时间信号x(t)=t e 707.0 sin 32t 关于t 的曲线,t 的范围为 0~30s ,并以递增。

MATLAB 源程序为:t=0::30; %对时间变量赋值x=exp*t).*sin(2/3.*t); %计算变量所对应得函数值 plot(t,x);grid; %绘制函数曲线ylabel('x(t)');xlabel('Time(sec)')二、产生周期为的方波。

MATLAB源程序为:Fs=100000;t=0:1/Fs:1;x1=square(2*pi*50*t,20);x2=square(2*pi*50*t,80);subplot(2,1,1),plot(t,x1),axis([0,,,]); subplot(2,1,2),plot(t,x2),axis([0,,,]);三、产生sinc(x)函数波形。

MATLAB源程序为:x=linspace(-4,4);y=sinc(x);plot(x,y)四、绘制离散时间信号的棒状图。

其中x(-1)=-1,x(0)=1,x(1)=2,x(2)=1,x(3)=0,x(4)=-1,其他时间x(n)=0。

MATLAB源程序为:n=-3:5; %定位时间变量x=[0,0,-1,1,2,1,-1,0,0];stem(n,x);grid; %绘制棒状图line([-3,5],[0,0]); %画X轴线xlabel('n');ylabel('x[n]')五、单位脉冲序列δ(n-0n )={00...1...0n n n n =≠直接实现:x=zeros(1,N);x(1,n0)=1;函数实现:利用单位脉冲序列)(0n n -δ的生成函数impseq,即 function[x,n]=impseq(n0,ns,nf)n=[ns:nf];x=[(n-n0)==0];plot(n,x);stem(n,x);输入参数:impseq(0,0,9)——连续图形012345678900.10.20.30.40.50.60.70.80.91输入参数:impseq(0,0,9)——离散图形六、单位阶跃序列ε(n-0n )={00...1...0n n n n ≥<直接实现:n=[ns:nf];x=[(n-n0)>=0];函数实现:利用单位阶跃序列)(0n n -ε的生成函数stepseq ,即 Function[x,n]=stepseq(n0,ns,nf)n=[ns:nf];x=[(n-n0)>=0];plot(n,x);七、实指数序列=,∀)(x n∈,Ranna直接实现:n=[ns:nf]:x=a.^n;函数实现:利用实指数序列n a(的生成函数rexpseq,即n)x=Function[x,n]=rexpseq(a,ns,nf)n=[ns:nf];x=a,^n:八、复指数序列n e n x n j ∀=+,)()(ωδ直接实现:n=[ns:nf];x=exp((sigema+jw)*n);函数实现:利用复指数序列n j e n x )()(ωδ+=的生成函数cexpseq,即 Function[x,n]=cexpseq(sigema,w,ns,nf)n=[ns:nf];x=exp((sigema+j*w)*n);0123456789-3000-2000-1000100020003000400050006000九、正(余)弦序列n wn n x ∀+=),cos()(θ直接实现:n=[ns:nf];x=cos(w*n+sita);函数实现:利用正(余)弦序列x(n)=cos(wn+θ)的生成函数cosswq,即Function[x,n]=cosseq(w,ns,nf,sita)n=[ns:nf];x=cos(w*n+sita);输入参数:cosseq,0,9,30)——连续信号0123456789-0.2-0.15-0.1-0.0500.050.10.150.2输入参数:cosseq,0,9,30)——离散信号0123456789实验三信号的运算【实验目的】了解信号处理的基本操作。

实验二 模拟和数字信号光纤传输系统实验

实验二 模拟和数字信号光纤传输系统实验

输入序列
D
加扰输出
D
D
D
D
解扰器的框图如下:
输入加扰序列
D
加扰输出
D
D
D
D
解扰输出
6. PCM 编译码原理及数字电话光纤传输系统 PCM 主要包括抽样、 量化与编码三个过程。 抽样是把连续时间模拟信号转换成离散时间连续幅度的抽 样信号;量化是把离散时间连续幅度的抽样信号转换成离散幅度的数字信号;编码是将量化后的信号编码 形成一个二进制码组输出。国际标准化的 PCM 码组(电话语音)是八为码组代表一个抽样值。从通信中 的调制概念,可以认为 PCM 编码过程是模拟信号调制一个二进制脉冲序列,载波是脉冲序列,调制改变 脉冲序列的有无“1”、“0”,所以 PCM 编码称为脉冲编码调制。国际上存在 A 律和 μ 律两种 PCM 编译码标 准系列。脉码调制的过程如下图所示: 模拟信源
一路挂机后另一路将送忙音,当两部电话都挂机后通话结束。 电话接口芯片采用的是 AM79R70,电路原理如下:
AM79R70 应用电路图 AM79R70 的工作状态说明如下表: /DET 输出 状态 0 1 2 3 4 5 6 7 C3 0 0 0 0 1 1 1 1 C2 0 0 1 1 0 0 1 1 C1 0 1 0 1 0 1 0 1 两线状态 E1=1 开路 振铃 通话状态 挂机传输 Tip 开路 候机(备用) 接通极性反转 挂机极性反转 振铃回路 振铃回路 环路检测 环路检测 环路检测 环路检测 环路检测 环路检测 E1=0 振铃回路 振铃回路 B2EN 接地键 接地键 接地键 接地键 接地键 B2EN 接地键 B2EN=1** VBAT1 馈电选择
二、实验内容
1.通过不同频率的正弦波、方波、三角波信号进行光传输实验。 2.电话语音通过光纤的模拟信道进行传输。 3.PN 序列的光纤传输。 4.CMI 码的光纤传输。 5.扰码的光纤传输。 6.用示波器观察两路音频信号的编码结果,改变音频信号的幅度,观察和测试译码器输出信号的信噪 比变化情况,改变音频信号的频率,观察和测试译码器输出信号幅度变化情况。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告目录1. 内容概要 (2)1.1 研究背景 (3)1.2 研究目的 (4)1.3 研究意义 (4)2. 实验原理 (5)2.1 信号与系统基本概念 (7)2.2 信号的分类与表示 (8)2.3 系统的分类与表示 (9)2.4 信号与系统的运算法则 (11)3. 实验内容及步骤 (12)3.1 实验一 (13)3.1.1 实验目的 (14)3.1.2 实验仪器和设备 (15)3.1.4 实验数据记录与分析 (16)3.2 实验二 (16)3.2.1 实验目的 (17)3.2.2 实验仪器和设备 (18)3.2.3 实验步骤 (19)3.2.4 实验数据记录与分析 (19)3.3 实验三 (20)3.3.1 实验目的 (21)3.3.2 实验仪器和设备 (22)3.3.3 实验步骤 (23)3.3.4 实验数据记录与分析 (24)3.4 实验四 (26)3.4.1 实验目的 (27)3.4.2 实验仪器和设备 (27)3.4.4 实验数据记录与分析 (29)4. 结果与讨论 (29)4.1 实验结果汇总 (31)4.2 结果分析与讨论 (32)4.3 结果与理论知识的对比与验证 (33)1. 内容概要本实验报告旨在总结和回顾在信号与系统课程中所进行的实验内容,通过实践操作加深对理论知识的理解和应用能力。

实验涵盖了信号分析、信号处理方法以及系统响应等多个方面。

实验一:信号的基本特性与运算。

学生掌握了信号的表示方法,包括连续时间信号和离散时间信号,以及信号的基本运算规则,如加法、减法、乘法和除法。

实验二:信号的时间域分析。

在本实验中,学生学习了信号的波形变换、信号的卷积以及信号的频谱分析等基本概念和方法,利用MATLAB工具进行了实际的信号处理。

实验三:系统的时域分析。

学生了解了线性时不变系统的动态响应特性,包括零状态响应、阶跃响应以及脉冲响应,并学会了利用MATLAB进行系统响应的计算和分析。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告一、信号的时域基本运算1.连续时间信号的时域基本运算两实验之一实验分析:输出信号值就等于两输入信号相加(乘)。

由于b=2,故平移量为2时,实际是右移1,符合平移性质。

两实验之二心得体会:时域中的基本运算具有连续性,当输入信号为连续时,输出信号也为连续。

平移,伸缩变化都会导致输出结果相对应的平移伸缩。

2.离散时间信号的时域基本运算两实验之一实验分析:输出信号的值是对应输入信号在每个n值所对应的运算值,当进行拉伸变化后,n值数量不会变,但范围会拉伸所输入的拉伸系数。

两实验之二心得体会:离散时间信号可以看做对连续时间信号的采样,而得到的输出信号值,也可以看成是连续信号所得之后的采样值。

二、连续信号卷积与系统的时域分析1.连续信号卷积积分两实验之一实验分析:当两相互卷积函数为冲激函数时,所卷积得到的也是一个冲激函数,且该函数的冲激t值为函数x,函数y冲激t值之和。

两实验之二心得体会:连续卷积函数每个t值所对应的卷积和可以看成其中一个在k值取得的函数与另外一个函数相乘得到的一个分量函数,并一直移动k值直至最后,最后累和出来的最终函数便是所得到的卷积函数。

3.RC电路时域积分两实验之一实验分析:全响应结果正好等于零状态响应与零输入响应之和。

两实验之二心得体会:具体学习了零状态,零输入,全响应过程的状态及变化,与之前所学的电路知识联系在一起了。

三、离散信号卷积与系统的时域分析1.离散信号卷积求和两实验之一实验分析:输出结果的n值是输入结果的k号与另一个n-k的累和两实验之二心得体会:直观地观察到卷积和的产生,可以看成连续卷积的采样形式,从这个方面去想,更能深入地理解卷积以及采样的知识。

2.离散差分方程求解两实验之一实验分析:其零状态响应序列为0 0 4 5 7.5,零输入响应序列为2 4 5 5.5 5.75,全状态响应序列为2 4 9 10.5 13.25,即全状态=零输入+零状态。

两实验之二心得体会:求差分方程时,可以根据全状态响应是由零输入输入以及零状态相加所得,分开来求,同时也加深了自己对差分方程的求解问题的理解。

信号系统实验冲击响应与阶跃响应实验(有数据)

信号系统实验冲击响应与阶跃响应实验(有数据)

实验2 冲激响应与阶跃响应一、实验目的1.观察和测量RLC申联电路的阶跃响应与冲激响应的波形和有关参数,并研究其电路元件参数变化对响应状态的影响;2.掌握有关信号时域的测量方法。

二、实验原理说明冲激响应与阶跃响应有以下三种状态:(1)时,称过阻尼状态;(2)时,称临界状态;(3)时,称欠阻尼状态。

三、实验设备1.双踪示波器 1台2.信号系统实验箱 1台四、实验步骤1.阶跃响应波形观察与参数测量设激励信号为方波,其幅度为1.5V,频率为500HZ。

①链接P04与P914。

②调节信号源,使P04输出f=500HZ,占空比为50%的脉冲信号,幅度调节为1.5V。

③示波器CH1接TP906,调整W902,使电路分别工作于欠阻尼,临界和过阻尼三种状态,并观察三种状态的波形。

2.冲激响应的波形观察①连接P04与P912;②将示波器的CH1接TP913,观察冲激激励信号;③连接P913与P914;④将示波器CH2接TP906,调整W902,是电路分别工作于欠阻尼,临界和过阻尼三种状态,并观察三种状态的波形。

五、数据处理与分析1.阶跃响应其中根据实验原理可以计算得到 。

实验波形:① 欠阻尼状态:可以通过示波器的游标测量出上升时间,峰值时间,调节时间。

②临界状态:③过阻尼状态:2.冲激响应:①冲击信号波形:②欠阻尼状态:③临界状态:④过阻尼状态:六、实验总结从本次实验中,进一步熟悉了示波器的用法,更加理解掌握有关信号时域的测量方法。

①通过示波器看到了冲激信号的波形,更加理解了冲激信号是阶跃信号的导数的概念。

②通过示波器看到了阶跃响应和冲击响应在临界状态下的波形,与卷积性质的③零输入响应,是没有加激励信号的作用,只由起始状态所产生的响应。

零状态响应,不考虑原始时刻系统的作用,由系统外加激励信号产生的响应。

实验2 信号卷积实验

实验2 信号卷积实验

实验二 信号卷积实验一、实验目的1. 理解卷积的概念及物理意义;2. 通过实验的方法加深对卷积运算的图解方法及结果的理解。

二、实验设备1. 信号与系统实验箱 1台2. 双踪示波器1台3. 铆孔连接线 若干二、实验原理说明卷积积分的物理意义是将信号分解为冲激信号之和,借助系统的冲激响应,求解系统对任意激励信号的零状态响应。

设系统的激励信号为)t (x ,冲激响应为)t (h ,则系统的零状态响应为)(*)()(t h t x t y =()()x t h t d ττ∞-∞=-⎰。

对于任意两个信号)t (f 1和)t (f 2,两者做卷积运算定义为:()()()12f t f t f t d ττ∞-∞=-⎰=)t (f 1*)t (f 2=)t (f 2*)t (f 1。

1. 两个矩形脉冲信号的卷积过程两信号)t (x 与)t (h 都为矩形脉冲信号,如图10-1所示。

下面由图解的方法(图10-1)给出两个信号的卷积过程和结果,以便与实验结果进行比较。

0≤<∞-t210≤≤t 1≤≤t 41≤≤t ∞<≤t 2124τ(b)(a)(c)(d)(e)(f)(g)(h)(i)2卷积结果图10-1 两矩形脉冲的卷积积分的运算过程与结果2. 矩形脉冲信号与锯齿波信号的卷积信号)t(f1为矩形脉冲信号,)t(f2为锯齿波信号,如图10-2所示。

根据卷积积分的运算方法得到)t(f1和)t(f2的卷积积分结果)t(f,如图10-2(c)所示。

(a)(b)(c)图10-2 矩形脉冲信号与锯齿脉冲信号的卷积积分的结果3. 本实验进行的卷积运算的实现方法在本实验装置中采用了DSP数字信号处理芯片,因此在处理模拟信号的卷积积分运算时,是先通过A/D转换器把模拟信号转换为数字信号,利用所编写的相应程序控制DSP芯片实现数字信号的卷积运算,再把运算结果通过D/A转换为模拟信号输出。

结果与模拟信号的直接运算结果是一致的。

信号与系统课程实验报告

信号与系统课程实验报告

合肥工业大学宣城校区《信号与系统》课程实验报告专业班级学生姓名《信号与系统》课程实验报告一实验名称一阶系统的阶跃响应姓名系院专业班级学号实验日期指导教师成绩一、实验目的1.熟悉一阶系统的无源和有源电路;2.研究一阶系统时间常数T的变化对系统性能的影响;3.研究一阶系统的零点对系统响应的影响。

二、实验原理1.无零点的一阶系统无零点一阶系统的有源和无源电路图如图2-1的(a)和(b)所示。

它们的传递函数均为:10.2s1G(s)=+(a) 有源(b) 无源图2-1 无零点一阶系统有源、无源电路图2.有零点的一阶系统(|Z|<|P|)图2-2的(a)和(b)分别为有零点一阶系统的有源和无源电路图,它们的传递函数为:10.2s1)0.2(sG(s)++=,⎪⎪⎪⎪⎭⎫⎝⎛++=S611S161G(s)(a) 有源(b) 无源图2-2 有零点(|Z|<|P|)一阶系统有源、无源电路图3.有零点的一阶系统(|Z|>|P|)图2-3的(a)和(b)分别为有零点一阶系统的有源和无源电路图,它们的传递函数为:1s10.1sG(s)=++(a) 有源(b) 无源图2-3 有零点(|Z|>|P|)一阶系统有源、无源电路图三、实验步骤1.打开THKSS-A/B/C/D/E型信号与系统实验箱,将实验模块SS02插入实验箱的固定孔中,利用该模块上的单元组成图2-1(a)(或(b))所示的一阶系统模拟电路。

2.实验线路检查无误后,打开实验箱右侧总电源开关。

3.将“阶跃信号发生器”的输出拨到“正输出”,按下“阶跃按键”按钮,调节电位器RP1,使之输出电压幅值为1V,并将“阶跃信号发生器”的“输出”端与电路的输入端“Ui”相连,电路的输出端“Uo”接到双踪示波器的输入端,然后用示波器观测系统的阶跃响应,并由曲线实测一阶系统的时间常数T。

4.再依次利用实验模块上相关的单元分别组成图2-2(a)(或(b))、2-3(a)(或(b))所示的一阶系统模拟电路,重复实验步骤3,观察并记录实验曲线。

信号与系统的实验报告(2)

信号与系统的实验报告(2)

信号与系统实验报告——连续时间系统的复频域分析班级:05911101学号:**********姓名:***实验五连续时间系统的复频域分析——1120111487 信息工程(实验班)蒋志科一、实验目的①掌握拉普拉斯变换及其反变换的定义,并掌握MA TLAB 实现方法 ②学习和掌握连续时间系统系统函数的定义及其复频域分析方法③掌握系统零极点的定义,加深理解系统零极点分布与系统特性的关系。

二、实验原理与方法 1、拉普拉斯变换连续时间信号x(t)的拉普拉斯变换定义为:X s =x (t )e −st dt +∞−∞拉普拉斯反变换为:x t =12πj X (s )e st ds σ+j ∞σ−j ∞在MA TLAB 中可以采用符号数学工具箱中的laplace 函数和ilaplace 函数进行拉氏变换和拉氏反变换。

L=laplace(F)符号表达式F 的拉氏变换,F 中时间变量为t ,返回变量为s 的结果表达式。

L=laplace(F,t)用t 替换结果中的变量s 。

F=ilaplace(L)以s 为变量的符号表达式L 的拉氏反变换,返回时间变量t 的结果表达式。

F=ilaplace(L,x)用x 替换结果中的变量t 。

2、连续时间系统的系统函数连续时间系统的系统函数是系统单位冲激响应的拉氏变换H s =ℎ(t )e −st dt +∞−∞此外,连续时间系统的系统函数还可以由系统输入和输出信号的拉氏变换之比得到H s =Y(s)/X(s) 单位冲激响应h(t)反映了系统的固有性质,而H(s)从复频域反映了系统的固有性质。

对于H(s)描述的连续时间系统,其系统函数s 的有理函数H s =b M s M +b M−1s M−1+⋯+b 0a n s n +a n −1s M−1+⋯+a 03、连续时间系统的零极点分析系统的零点指使式H s 的分子多项式为零的点,极点指使分母多项式为零的点,零点使系统的值为零,极点使系统函数的值无穷大。

信号与系统期末试卷及答案

信号与系统期末试卷及答案

读书破万卷下笔如有神实验二利用DFT分析离散信号频谱一、实验目的应用离散傅里叶变换(DFT),分析离散信号的频谱。

深刻理解DFT分析离散信号频谱的原理,掌握改善分析过程中产生的误差的方法。

二、实验原理根据信号傅里叶变换建立的时域与频域之间的对应关系,可以得到有限长序列的离散傅里叶变换(DFT)与四种确定信号傅里叶变换之间的关系(见教材),实现由DFT分析其频谱。

三、实验内容?3的频谱;1.利用FFT分析信号x(310),nn?,1,...,n)?cos(8(1)、确定DFT计算的参数;N=32;n=0:N-1;x=cos(3*pi/8*n);X=fft(x,N);subplot(2,1,1);stem(n,abs(fftshift(X)));ylabel('Magnitude');xlabel('Frequency (rad)');title('朱艺星杨婕婕'); subplot(2,1,2);stem(n,angle(fftshift(X)));ylabel('Phase');xlabel('Frequency(rad)');读书破万卷下笔如有神进行理论值与计算值比较,讨论信号频谱分析过程中误差原因及改善2)(方法。

在频谱分析过程中由于取样频率过低或者由于信号的截取长度不当将会答:产生误差。

可以适当提高取样率,增加样点数,可能会产生混频现象,取样频率过低,来减少混叠对频谱分析所造成的误差。

对于连续周期信号,其时域取样必须kfo,即(其中K≥2*N+1N为最高谐波分量)其取样点数满足时域取样定理:2fm+fo。

≥≥2Nfo+fo;fs截取信号长度不当,会产生功率泄露,对周期序列进行频谱分析时,为避免泄露应做到:截取的长度应取一个基本周期或基本周期的整数倍,若待分析的周期信号事先不知道其确切的周期,则可截取较长时间长度的样点进行分析,以减少功率泄露误差。

信号与系统实验一、二

信号与系统实验一、二

chapter1实验内容:1、画出以下连续时间信号的波形1-0)f(t)=cos(2πt)代码如下:pi=3.14159;t=0:0.01:8;fa=cos(2*pi*t);plot(t,fa);1-1)f (t)=sin(2πt)代码如下:pi=3.14159;t=0:0.01:8;fa=sin(2*t*pi); plot(t,fa);2-0)f (t)=Sa(t/π) 代码如下:pi=3.14159;t=0:0.01:8;fa=sinc(t/pi); plot(t,fa);3-0)f (t)=2[u(t 3)- u(t 5)] 代码如下:t=-1:0.01:10;ft=2*((t>=3)-(t>=5)); plot(t,ft);axis([-1,10,0,3]);4-1)f (t)=e t 代码如下:t=0:0.01:10; ft=exp(t);plot(t,ft);4-2)f (t)=e-t u(t) 代码如下:t=0:0.01:10;f1=(t>=0);f2=exp(-t);plot(t,f1.*f2);5-0)f(t)=2e j(π/4)t,画出实部、虚部、模和相角的波形代码如下:t=0:0.01:10;ft=2*exp(j*(pi/4)*t);h=real(ft); %实部g=imag(ft); %虚部r=abs(ft); %模a=angle(ft); %相角subplot(2,2,1),plot(t,h),title('实部') subplot(2,2,3),plot(t,g),title('虚部') subplot(2,2,2),plot(t,r),title('模')subplot(2,2,4),plot(t,a),title('相角')7)f (t) = u(t)代码如下:t=-1:0.01:5ft=(t>=0);plot(t,ft);axis([-1,5,0,1.5]);8)f (t) =δ(t)代码如下:t=-1:0.01:5;ft=(t>=0)-(t>=0.1); plot(t,ft);axis([-1,1,0,1.1]);9)f9为周期矩形信号,其幅度从-1 到1,占空比为75% 代码如下:pi=3.14159;t=-10:0.01/pi:10;ft=square(t,75);plot(t,ft);2、信号本身运算画出f1(t)为宽度是4,高为1,斜度为0.5 的三角脉冲,然后画出f1(-t),f1(2t),f1(2-2t)的波形以及f1(t)的微分和积分波形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

黄淮学院电子科学与工程系 《信号与系统》课程验证性实验报告
实验名称 实验二 LTI 系统的响应
实验时间 2013年05月22日
学生姓名 王茂胜 实验地点 070312 同组人员 无
专业班级
电技1001B
1、实验目的
1. 熟悉连续时间系统的单位冲激响应、阶跃响应的意义及求解方法
2. 熟悉连续(离散)时间系统在任意信号激励下响应的求解方法
3. 熟悉应用MATLAB 实现求解系统响应的方法
2、实验主要仪器设备和材料:
(1)计算机,方正,1台;
(2)MATLAB 仿真软件,7.0以上版本,1套。

3、实验内容和原理:
1.连续时间系统
对于连续的LTI 系统,当系统输入为f(t),输出为y(t),则输入与输出之间满足如下的线
性常系数微分方程:()
()0
()()
n
m
i j i
j i j a y
t b f t ===∑∑,当系统输入为单位冲激信号δ(t)时产生的零状
态响应称为系统的单位冲激响应,用h(t)表示。

若输入为单位阶跃信号ε(t)时,系统产生的零状态响应则称为系统的单位阶跃响应,记为g(t),如下图所示。

系统的单位冲激响应h(t)包含了系统的固有特性,它是由系统本身的结构及参数所决定的,与系统的输入无关。

我们只要知道了系统的冲激响应,即可求得系统在不同激励下产生的响应。

因此,求解系统的冲激响应h(t)对我们进行连续系统的分析具有非常重要的意义。

2.离散时间系统
LTI 离散系统中,其输入和输出的关系由差分方程描述:
00()()
n m
i j
i j a y k i b
f k j ==+=+∑∑ (前向差分方程)
()()
n
m
i j
i j a y k i b
f k n j ==-=-+∑∑ (后向差分方程)
当系统的输入为单位序列δ(k)时产生的零状态响应称为系统的单位函数响应,用h(k)表示。

当输入为 ε(k)时产生的零状态响应称为系统的单位阶跃应,记为:g(k),如下图所示。

如果系统输入为e(k),冲激响应为h(k),系统的零状态响应为y(k),则有:
()()()y k h k f k =*。

与连续系统的单位冲激响应h(t)相类似,离散系统的单位函数响应h(k)也
包含了系统的固有特性,与输入序列无关。

我们只要知道了系统的单位函数响应,即可求得系统在不同激励信号作用下产生的响应。

4、实验方法、步骤:
1. 已知描述系统的微分方程和激励信号e (t ) 分别如下,试用解析方法求系统的单位冲激响应h(t)和零状态响应r (t ),并用MATLAB 绘出系统单位冲激响应和系统零状态响应的波形,验证结果是否相同。

①''()4'()4()'()3()y t y t y t f t f t ++=+;()()t
f t e t ε-= ②''()2'()26()'()y t y t y t f t ++=;()()f t t ε= ③''()4'()3()()y t y t y t f t ++=;2()()t
f t e t ε-=
④如下图所示的电路中,已知1234()R R R ===Ω,121()L L H ==,且两电感上初始电流分别为12(0)2(),(0)0()i A i A ==,如果以电阻3R 上电压()y t 作为系统输出,请求出系统在激励
()12()f t t ε=(v )作用下的全响应。

2. 请用MATLAB 分别求出下列差分方程所描述的离散系统,在0~20时间范围内的单位函数响应、阶跃响应和系统零状态响应的数值解,并绘出其波形。

另外,请将理论值与MATLAB 仿真结果在对应点上的值作比较,并说出两者的区别和产生误差的原因。

① ()2(1)(2)()y k y k y k f k +-+-=;14()()f k k ε=
② (2)0.7(1)0.1()7(2)2(1)y k y k y k f k f k +-++=+-+;()()f k k ε=
③ 5166()(1)(2)()(2)y k y k y k f k f k --+-=--;()()f k k ε=
④一带通滤波器可由下列差分方程描述:()0.81(2)()(2)y k y k f k f k +-=--, 其中()f k 为系统输入, ()y k 为系统输出。

请求出当激励为[]()1010cos(/2)10cos()()f k kn kn k ε=++(选取适当的n 值)时滤波器的稳态输出。

相关文档
最新文档