第六章 轴心受压构件

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

l
N
N
Ncr Ncr C 临 界 状F 态
Ncr
(1)弯曲失稳--只发生弯曲变形,截面只绕一个主
轴旋转,杆纵轴由直线变为曲线,是双轴对称截面常见 的失稳形式;
(2)扭转失稳--失稳时除杆件的支撑端外,各截面
均绕纵轴扭转,是某些双轴对称截面可能发生的失稳形 式;
(3)弯扭失稳—单轴对称截面绕对称轴屈曲时,杆
(2)切线模量理论
中和轴
Ncr,r
假定:
A、达到临界力Ncr,t时杆件 挺直;
σcr,t
l
B、杆微弯时,轴心力增加 △N,其产生的平均压
x
应力与弯曲拉应力相等。
y
Ncr,r
所以应力、应变全截面增加,无退降区,切线模量
Et通用于全截面。由于△N较Ncr,t小的多,近似取Ncr,t作 为临界力。因此以Et替代弹性屈曲理论临界力公式中的 E,即得该理论的临界力和临界应力:
理论来解决该问题,
即:
E
Ncr,r dσ dε
x
l
dσ2
形心轴 中和轴
dσ1
σcr
(1)双模量理论 0 1
ε
y
Ncr,r
该理论认为,轴压构件在微弯的中性平衡时,截面平均应力
(σcr)要叠加上弯曲应力,弯曲受压一侧应力增加遵循切线模量 Et规律(分布图形为曲线),由于是微弯,故其数值较σcr小的 多,可近似取直线。而弯曲受拉一侧应力发生退降,且应力退降
轴心受压构件的失稳形式分为:
6.3.2 无缺陷轴心受压构件的屈曲
1、弹性弯曲屈曲(理想ቤተ መጻሕፍቲ ባይዱ轴心压杆的临界屈曲力 )
理想的轴心受压构件(理想无限弹性,杆件挺直、 无初弯曲,荷载无偏心、无初始应力、无初偏心、截 面均匀等)
2.轴心受压杆件的弹性弯曲屈曲
N
N
A 稳 定 平F 衡 状 态
B 随 遇 平F 衡 状 态
6.3.3 力学缺陷对轴心受压构件弯曲屈曲的影响 1.残余应力产生的原因及其分布 A、产生的原因 ①焊接时的不均匀加热和冷却,如前所述; ②型钢热扎后的不均匀冷却; ③板边缘经火焰切割后的热塑性收缩; ④构件冷校正后产生的塑性变形。 实测的残余应力分布较复杂而离散,分析时常采用其
§6.3 轴心受压构件的整体稳定
6.3.1 轴心受压构件的整体失稳现象
轴心受压构件的整体失稳—轴心受压构件受外力作用后,当 截面上的平均应力远低于钢材的屈服点时,常由于内力和外力 间不能保持平衡的稳定性,些微的扰动即足以使构件产生很大 的的弯曲变形,或扭转变形或又弯又扭而丧失承载能力,这种 现象称为丧失整体稳定性。
第六章 轴心受压构件
2020年4月23日星期四
大纲要求
1、了解“轴心受力构件”的应用和截面形式; 2、掌握轴心受拉构件设计计算; 3、了解“轴心受压构件”稳定理论的基本概念和分析 方法; 4、掌握现行规范关于“轴心受压构件”设计计算方法 ,重点及难点是构件的整体稳定和局部稳定; 5、掌握格构式轴心受压构件设计方法。
考虑孔前传力50%得:
1-1截面的内力为:
1
拼接板的危险截面为2-2截面。 考虑孔前传力50%得:
2-2截面的内力为:
2
N
b1
2
t1t
N
b
B、高强度螺栓承压型连接的净截面验算与普通螺栓的净截面 验算完全相同。
6.2.2 刚度计算(正常使用极限状态) 保证构件在运输、安装、使用时不会产生过大
变形。
遵循弹性规律。又因为E>Et,且弯曲拉、压应力平衡,所以中 和轴向受拉一侧移动。
令: I1为弯曲受拉一侧截面(退降 Ncr,r 区)对中和轴的惯性矩;
I2为弯曲受压一侧截面对中 和轴的惯性矩; 且忽略剪切变形的影响,由 内、外弯矩平衡得:
l
x
y
Ncr,r
dσ2
形心轴 中和轴
dσ1
σcr
解此微分方程,即得理想的轴心压杆微弯状态下的弹 塑性临界力:
12.实格腹构式截面-截面由两个或多个型钢肢件通过缀材连接而成。
§6.2 轴心受力构件的强度和刚度
轴心受力构件
轴心受拉构件 轴心受压构件
强度 (承载能力极限状态) 刚度 (正常使用极限状态) 强度 (承载能力极限状态) 稳定
刚度 (正常使用极限状态)
6.2.1 强度计算(承载能力极限状态)
N—轴心拉力或压力设计值;
件发生弯曲变形的同时必然伴随着扭转。
下面推导临界力Ncr
设M作用下引起的变形为y1,剪力作用下引起的变形为 y2,总变形y=y1+y2。
由材料力学知:
Ncr
剪力V产生的轴线转角为:
l
y y1 y2
Ncr
M=Ncr·y
x
Ncr
Ncr
对于常系数线形二阶齐次方程: 其通解为:
Ncr
y y1 y2
Ncr
1’--1’截面:
N
b
N
c4 c1
c3 c2
1 1’
拼接板的危险截面为2--2和 2’--2’截面:
N
b1
2 2’
t1t
N
b
c4 c1
c3 c2 2 2’
高强度螺栓群轴心力作用下,为了防止板件被拉断尚应进行板
件的净截面验算. A、高强度螺栓摩擦型连接
主板的危险截面为1-1截面。
1
N
b1
t1t
N
b
§6.1 轴心受力构件的应用和截面形式
一、轴心受力构件的应用
桁架
网架
塔架
•轴力构件应用
桁架、网架、塔架
勇于开始,才能找到成 功的路
勇于开始,才能找到成 功的路
勇于开始,才能找到成 功的路
轴心受压柱
实腹式轴压柱与格构式轴压柱
二、轴心受压构件的截面形式 截面形式可分为:实腹式和格构式两大类。
An—构件的净截面面积; f—钢材的抗拉强度设计值。
普通螺栓群轴心力作用下,为了防止板件被拉断尚
应进行板件的净截面验算。 A、螺栓采用并列排列时: 主板的危险截面为1-1截面:
12
N
b1
t1t
N
b
12
拼接板的危险截面为2-2截面:
B、螺栓采用错列排列时:
主板的危险截面为1--1和
1 1’
t1t
M=Ncr·y
x
Ncr Ncr
l
通常剪切变形的影响较小,可忽略不计,即得欧 拉临界力和临界应力:
上述推导过程中,假定E为常量(材料满足虎克定 律),所以σcr不应大于材料的比例极限fp,即:
4.轴心受压杆件的弹塑性弯曲屈曲
当σcr大于fp后σ-ε
曲线为非线性,σcr难 σ
以确定。
σcr
历史上有两种 fp
(二)初始缺陷对压杆稳定的影响
如前所述,如果将钢材视为理想的弹塑性材料, 则压杆的临界力与长细比的关系曲线(柱子曲线)应为 :
σ
fy
fy=fp
1.0
欧拉临界曲线
0
ε
0
λ
但试验结果却常位于蓝色虚线位置,即试验值小于 理论值。这主要由于压杆初始缺陷的存在。
初始缺陷
力学缺陷:残余应力、材料不均匀等。
几何缺陷:初弯曲、初偏心等;
相关文档
最新文档