因式分解公式法(完全平方公式)PPT课件
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
我们把a²+2ab+b²和a²-2ab+b²这样的式子叫作完全
平方式. 观察这两个式子:
a2+2ab+b2
a2-2ab+b2
(1)每个多项式有几项? 三项 (2)每个多项式的第一项和第三项有什么特征? 这两项都是数或式的平方,并且符号相同 (3)中间项和第一项,第三项有什么关系? 是第一项和第三项底数的积的±2倍
课堂小结
公式
a2±2ab+b2=(a±b)2
完全平方
公式分解
因
式
特点
(1)要求多项式有三项. (2)其中两项同号,且都可以写 成某数或式的平方,另一项则是这 两数或式的乘积的2倍,符号可正 可负.
下列各式是不是完全平方式?
(1)a2-4a+4; 是
(2)1+4a²; 不是
(3)4b2+4b-1; 不是 (4)a2+ab+b2; 不是 (5)x2+x+0.25. 是
分析: (2)因为它只有两项;
(3)4b²与-1的符号不统一;
(4)因为ab不是a与b的积的2倍.
典例精析
例1 如果x2-6x+N是一个完全平方式,那么N是( B )
讲授新课
一 用完全平方公式分解因式 你能把下面4个图形拼成一个正方形并求出你拼 成的图形的面积吗?
a a² a
ab a ab a b²b
b
b
b
同学们拼出图形为:
b ab b²
a a² ab
a
b
这个大正方形的面积可以怎么求?
(a+b)2
= a2+2ab+b2
将上面的等式倒过来看,能得到:
a2+2ab+b2 = (a+b)2
解:∵x2-4x+y2-10y+29=0,
∴(x-2)2+(y-5)2=0.
∵(x-2)2≥0,(y-5)2≥0, ∴x-2=0,y-5=0, ∴x=2,y=5,
几个非负数的和为 0,则这几个非负 数都为0.
∴x2y2+2xy+1=(xy+1)2
=112=121.
方法总结:此类问题一般情况是通过配方将原 式转化为非负数的和的形式,然后利用非负数 性质解答问题.
(20142013)2
1.
5.(1)已知a-b=3,求a(a-2b)+b2的值; (2)已知ab=2,a+b=5,求a3b+2a2b2+ab3的值. 解:(1)原式=a2-2ab+b2=(a-b)2. 当a-b=3时,原式=32=9. (2)原式=ab(a2+2ab+b2)=ab(a+b)2.
当ab=2,a+b=5时, 原式=2×52=50.
例2 分解因式: (1)16x2+24x+9;
(2)-x2+4xy-4y2.
分析:(1)中, 16x2=(4x)2, 9=3²,24x=2·4x·3, 所以16x2+24x +9是一个完全平方式,即16x2 + 24x +9= (4x)2+ 2·4x·3 + (3)2.
a2 2ab +b2
(2)中首项有负号,一 般先利用添括号法则, 将其变形为-(x2-4xy +4y2),然后再利用公式 分解因式.
例4 把下列完全平方公式分解因式:
(1)1002-2×100×99+99²;
本题利用完全平ຫໍສະໝຸດ Baidu公 式分解因式,可以简
(2)342+34×32+162.
化计算,
解:(1)原式=(100-99)² =1.
(2)原式=(34+16)2
=2500.
例5 已知x2-4x+y2-10y+29=0,求x2y2+2xy+1 的值.
例6 已知a,b,c分别是△ABC三边的长,且a2+2b2+ c2-2b(a+c)=0,请判断△ABC的形状,并说明理由.
解:由a2+2b2+c2-2b(a+c)=0,得 a2-2ab+b2+b2-2bc+c2=0, 即(a-b)2+(b-c)2=0,
∴a-b=0,b-c=0,∴a=b=c, ∴△ABC是等边三角形.
当堂练习
1.下列四个多项式中,能因式分解的是( B )
A.a2+1
B.a2-6a+9
C.x2+5y D.x2-5y
2.把多项式4x2y-4xy2-x3分解因式的结果是( B ) A.4xy(x-y)-x3 B.-x(x-2y)2
C.x(4xy-4y2-x2) D.-x(-4xy+4y2+x2)
3.若m=2n+1,则m2-4mn+4n2的值是__1______. 4.若关于x的多项式x2-8x+m2是完全平方式,则m的 值为____±__4_____ .
首2 ±2× +尾2 首×尾
的2倍,等于这两个数 (首±尾)2 的和(或差)的平方.
对照 a²±2ab+b²=(a±b)²,填空: 1. x²+4x+4= ( x )²+2·(x )·(2 )+( 2 )²=(x + 2 )² 2.m²-6m+9=( m )²- 2·(m ) ·(3 )+(3 )²=(m - 3 )² 3.a²+4ab+4b²=( a )²+2·( a ) ·( 2b )+(2b )²=(a + 2b )²
第十四章 整式的乘法与因式分解
14.3.2 公式法
第2课时 运用完全平方公式因式分解
学习目标
1.理解并掌握用完全平方公式分解因式.(重点) 2.灵活应用各种方法分解因式,并能利用因式分解
进行计算.(难点)
导入新课
复习引入
1.因式分解: 把一个多项式转化为几个整式的积的形式.
2.我们已经学过哪些因式分解的方法? 1.提公因式法 2.平方差公式 a2-b2=(a+b)(a-b)
完全平方式: a22abb2
完全平方式的特点: 1.必须是三项式(或可以看成三项的); 2.有两个同号的数或式的平方; 3.中间有两底数之积的±2倍.
简记口诀: 首平方,尾平方,首尾两倍在中央.
凡具备这些特点的三项式,就是完全平方式, 将它写成完全平方形式,便实现了因式分解.
两个数的平方和加上
a2 ± 2ab +b2 =(a ± b)² (或减去)这两个数的积
解: (1)16x2+ 24x +9 = (4x)2 + 2·4x·3 + (3)2 = (4x + 3)2;
(2)-x2+ 4xy-4y2 =-(x2-4xy+4y2) =-(x-2y)2.
例3 把下列各式分解因式: (1)3ax2+6axy+3ay2 ;(2)(a+b)2-12(a+b)+36.
分析:(1)中有公因式3a,应先提出公因式,再进一 步分解因式; (2)中将a+b看成一个整体,设a+b=m,则原式化为 m2-12m+36.
解: (1)原式=3a(x2+2xy+y2)
=3a(x+y)2; (2)原式=(a+b)2-2·(a+b) ·6+62
=(a+b-6)2.
利用公式把某些具有特殊形式(如平方差 式,完全平方式等)的多项式分解因式, 这种分解因式的方法叫做公式法.
4.计算:(1)38.92-2×38.9×48.9+48.92.
(2 )2 0 1 4 2 2 0 1 4 4 0 2 6 2 0 1 3 2 .
解:(1)原式=(38.9-48.9)2 =100.
(2)原式 (2 0 1 4 )2 2 2 0 1 4 2 0 1 3 (2 0 1 3 )2
A . 11
B. 9 C. -11 D. -9
解析:根据完全平方式的特征,中间项-6x=2x×(-3), 故可知N=(-3)2=9.
变式训练 如果x2-mx+16是一个完全平方式,那么m的值为 _____±__8_.
解析:∵16=(±4)2,故-m=2×(±4),m=±8.
方法总结:本题要熟练掌握完全平方公式的结构特 征, 根据参数所在位置,结合公式,找出参数与已 知项之间的数量关系,从而求出参数的值.计算过程 中,要注意积的2倍的符号,避免漏解.