分子标记技术PPT课件

合集下载

《分子标记SSR标记》课件

《分子标记SSR标记》课件
《分子标记ssr标记》ppt课 件
contents
目录
• SSR标记介绍 • SSR标记技术原理 • SSR标记实验操作 • SSR标记在遗传育种中的应用 • SSR标记研究展望
01
SSR标记介绍
SSR标记定义
SSR标记,即简单序列重复标 记,是一种基于PCR技术的 DNA分子标记。
它由2-6个碱基组成的重复单位 串联而成,具有高度多态性, 可应用于基因组遗传分析。
04
分子标记辅助选择
通过SSR标记与目标性状关联,实 现分子标记辅助选择,加速育种
进程。
SSR标记在动物遗传育种中的应用
动物资源保护与利用
SSR标记用于评估动物的遗传多样性, 有助于动物资源的保护和合理利用。
基因定位与疾病关联研究
SSR标记用于基因定位和疾病关联研 究,为动物疾病防控和动物育种提供
疾病易感性分析
02
通过SSR标记分析某些疾病的易感性,有助于疾病的预防和早期
干预。
个体识别与亲子鉴定
03
SSR标记还可用于个体识别和亲子鉴定,为法医学和人类学等领
域提供技术支持。
05
SSR标记研究展望
SSR标记技术的发展趋势
自动化与高通量
随着技术的发展,SSR标记将更加自动化和高通量,提高检测效 率和准确性。
基因组DNA提取
从生物样本中提取基因组DNA 。
PCR扩增
使用设计的引物进行PCR扩增 ,得到SSR片段。
数据分析
对电泳结果进行统计分析,评 估遗传差异和多样性。
SSR标记技术优缺点
01 优点
02 操作简便,检测结果稳定可靠。
03
可用于检测微卫星序列的长度多态性,反映基因组

分子标记技术20091ppt课件

分子标记技术20091ppt课件

分子标记
是以生物大分子的多态性为基础的一种遗传标记 (广义的) 指可遗传的、且可检测到的DNA序列 或蛋白质序列(大小) (狭义的) 指基于DNA分子序列的标记
分子标记是能反映生物个体或种群间基因组中某些 差异特征的DNA片段
分子标记技术
* DNA或cDNA等分子水平上的多态性检测技术 * 能提供分子标记的分子生物学技术
Molecular Marker Technology
分子标记技术
一、分子标记技术概述
遗传标记 (genetic markers)
形态标记 (morphological markers) 细胞学标记 (cytological markers) 生物化学标记 (biochemical markers) 分子标记 (molecular markers)
Expressed sequence tags are sequence tagged sites derived from cDNAs.
➢ 小寡核苷酸DNA分析(small oligo DNA analysis, SODA)
➢ DNA扩增指纹技术(DNA amplification fingerprinting, DAF)
网络资料
什么是STSs:即序列位置标签(Sequence Tagged Site)是指一小段DNA片段 (200-500个碱基对),它的精确位置和碱基顺序已经明确的。由于每个STS都 是唯一的,一对唯一的PCR引物对应一个STS,通过PCR反应中也可以检测出 STS来,STS适宜于作为人类基因组的一种地标,据此可以判定DNA的方向和特 定序列的相对位置。ETS是cDNA上的STS。 NCBI建有STS数据库,既可以查询STS,也可以提交,url: /dbSTS/index.html

分子标记辅助选择PPT课件

分子标记辅助选择PPT课件

.
32
DNA
5’ TGAACTGTATCCGACAT ….3’
3’ t g a c a t A gg c t g t a g
Primer(p15.7)
t g a c a t C gg c t g t a g t g a c a t G gg c t g t a g t g a c a t T gg c t g t a g
.
31
单核苷酸多型性
SNP (single nucleotide polymorphism)
总DNA(DNA片段)序列测定 例: 人线粒体DNA片段 16569 bp 探针合成 p15.7 p20.11 p25.13
p15.7 ATCCTGATCGGGTAG ATCCTGTTCGGGTAG ATCCTGCTCGGGTAG ATCCTGGTCGGGTAG
.
29
SNP(单核苷酸多型性)
• single nucleotide polymorphism
• 是指在单个核苷酸上的突变所引起的多态。
• SNP标记技术是九十年代末发展起来的第三代分子 标记。
• 采用SNP技术可将不同试材等位DNA分子区段间 的任一点突变序列检测出来。
• 由于这一技术要求的仪器设备昂贵,合成的探针数 量大,成本高,目前难以广泛应用。
• 与PCR-RFLP相比,PCR-SSCP可以检测所有的点突
变,包括PCR-RFLP能够检测的酶切位点的突变。
.
35
SSCP原理. 图解
36
影响SSCP显示的因素
• PCR扩增的特异性要强。设计引物时要使引物能 与DNA模板特异性结合,而且引物之间不能形 成二聚体,引物内最好不要存在发夹结构,还要 选择一个合适的退火温度。

分子标记技术原理方法及应用-图文

分子标记技术原理方法及应用-图文

分子标记技术原理方法及应用-图文一、遗传标记的类型及发展遗传标记(geneticmarker):指可追踪染色体、染色体某一节段、某个基因座在家系中传递的任何一种遗传特性。

它具有两个基本特征,即可遗传性和可识别性;因此生物的任何有差异表型的基因突变型均可作为遗传标记。

包括形态学标记、细胞学标记、生化标记和分子标记四种类型。

形态学标记:主要包括肉眼可见的外部形态特征,如:矮秆、紫鞘、卷叶等;也包括色素、生理特性、生殖特性、抗病虫性等有关的一些特性。

优点:形态学标记简单直观、经济方便。

缺点:(1)数量在多数植物中是很有限的;(2)多态性较差,表现易受环境影响;(3)有一些标记与不良性状连锁;(4)形态标记的获得需要通过诱变、分离纯合的过程,周期较长细胞学标记:植物细胞染色体的变异:包括染色体核型(染色体数目、结构、随体有无、着丝粒位置等)和带型(C带、N带、G带等)的变化。

优点:能进行一些重要基因的染色体或染色体区域定位。

缺点:(1)材料需要花费较大的人力和较长时间来培育,难度很大;(2)有些变异难以用细胞学方法进行检测生化标记:主要包括同工酶和等位酶标记。

分析方法是从组织蛋白粗提物中通过电泳和组织化学染色法将酶的多种形式转变成肉眼可辩的酶谱带型。

优点:直接反映了基因产物差异,受环境影响较小。

缺点:(1)目前可使用的生化标记数量还相当有限;(2)有些酶的染色方法和电泳技术有一定难度分子标记:主要指能反映生物个体或种群间基因组中某种差异特征的DNA片段,它直接反映基因组DNA间的差异,也叫DNA标记。

(1)数量多,高多态性,信息量大(2)与生长发育无关,取材不受限制(3)能明确辨别等位基因(4)均匀分布于整个基因组(5)选择中性,不影响目标性状的表达(6)检测手段简单、快速(7)成本低廉(8)稳定,重复性好(9)共显性遗传在遗传学研究中广泛应用的DNA分子标记已经发展了很多种,一般依其所用的分子生物学技术大致可以分为三大类:第一类是以分子杂交为核心的分子标记,包括RFLP、DNA指纹技术等,这类分子标记被称为第一代分子标记;几种主要的DNA分子标记二、几种常见分子标记的原理及方法1.RFLP2.RAPD3.AFLP4.SSR5.ISSR6.SNP1.RFLP:RetrictionFragmentLengthPolymorphimbyBottein(1980)基本原理:物种的基因组DNA在限制性内切酶作用下,产生相当多的大小不等的片段,用放射性同位素标记的DNA作探针,把与被标记DNA相关的片段检测出来,从而构建出多态性图谱。

分子标记ppt课件

分子标记ppt课件
设计出各种能与SSR序列结合的PCR引物,这些引物 的3‘端或5’端加上2-4个随机核苷酸,通过PCR反应,对 两个相距较近,方向相反的重复序列之间的DNA序列进 行扩增。所扩增的inter SSR区域的多个条带通过聚丙烯 酰胺凝胶电泳或者琼脂糖凝胶电泳得以分辩,扩增带多 为显性表现。
5’锚定引物
• 分子标记
( molecular marker )
分子标记 广义的分子标记是指可遗传的、可检测的、与生物的表性性状连锁的
DNA序列或蛋白质。 狭义的分子标记只是指DNA标记。
DNA分子标记有其独特的优势: (1) 直接以DNA的形式表现,在生物体的各个组织、各个发 育阶段均可检测到,不受季节、环境限制,不存在表达与否等 问题; (2) 自然界存在许多等位变异,无需人为创造,多态性高 ; (3) 遍布整个基因组,可检测的基因座位是无限的。
一个基因组的所有碱基中一般只有大约2%的碱基来 组成编码蛋白质的基因,因此测序基因组已不再是一种创 建基因目录的有效途径。大量的实验证明,cDNA的大规 模测序才是了解基因组的先驱。
EST标记技术的原理是将mRNA反转‘端或3’端进行一步法测序,一般长度为300- 500bp,平均长度为360±120bp。所获得序列与基因数 据库已知序列比较,从而获得对生物体T标记技术也是一种相对简便和快捷鉴定大批基 因表达的技术。
M
…ACCGAATGCGC…
2 常用分子标记方法
2.1 限制性片段长度多态性标记
(Restriction Fragment Length Polymorphism,RFLP) RFLP标记是用限制性内切酶酶解具有相对性状的两个群
体的DNA,然后通过电泳和Southern杂交技术在酶切后形成的 DNA片段中发现这种不同。这种不同就是目的性状的RFLP标 记。

《分子标记的应用》课件

《分子标记的应用》课件
犯罪现场调查
通过检测犯罪现场遗留的生物样本中的分子标记,为犯罪调查提供 证据和线索。
遗传疾病研究
利用分子标记研究遗传性疾病的发病机制和家族遗传规律,为法医学 中的遗传疾病分析提供支持。
THANKS
分子标记技术的种类
01
限制性片段长度多态性(RFLP)
利用限制性内切酶切割基因组DNA,产生不同长度的片段,再通过电
泳和 Southern 杂交技术检测多态性。
02
微卫星标记
利用串联重复的DNA序列在不同个体间的变异来标记基因组,具有高
度多态性和遗传稳定性。
03
单核苷酸多态性(SNP)
检测单个核苷酸位点的变异,是最常见和应用最广泛的分子标记之一。
通过分子标记技术,可以鉴定 家禽品种间的遗传差异,为品
种选育提供依据。
分子标记还可以用于研究家禽 繁殖和生长等重要经济性状的 遗传基础,为育种提供理论支
持。
通过分子标记辅助选择,可以 快速准确地选择具有优良性状 的个体,提高家禽生产效益。
分子标记在兽医学中的应用
分子标记在兽医学中主要用于动物疾病诊断、抗病育种 和药物研发等方面。
利用分子标记技术快速筛选具有潜在活性的药物候选物,提高药 物研发效率。
药物靶点发现
通过研究分子标记与药物反应的关系,发现新的药物作用靶点, 为新药研发提供方向。
药物疗效评估
利用分子标记监测药物治疗过程中的生物标志物变化,评估药物 疗效和安全性。
分子标记在法医学中的应用
身份鉴定
利用DNA分子标记进行个体身份鉴定,在法医鉴定、亲子鉴定等领 域具有重要应用。
种群遗传多样性分析
分子标记可以揭示种群内的遗传变异,了解种群的遗传结构、变 异水平和进化历史。

第七章 分子标记辅助选择 PPT课件

第七章 分子标记辅助选择 PPT课件
第七章 分子标记辅助选择
一、质量性状的标记辅助选择 二、数量性状的标记辅助选择 三、标记辅助选择的应用研究 四、标记辅助选择的发展策略
➢选择是指在一个群体中选择符合要求的基因型。
➢传统育种通过表现型间接对基因型进行选择, 存在许多缺陷。
➢分子标记为实现对基因型的直接选择提供了可 能,通过对分子标记基因型的检测,就能获知目 标基因的基因型。
直接依据个体的基因型进行选择,即对每个 目标QTL利用其两侧相邻标记或单个紧密连锁 的标记进行选择,这是才真正的标记辅助选择。
数量性状QTL标记辅助选择的困难:初级定 位,效应小的QTL未被检测。
用3个相邻的连锁标记进行跟踪选择(保证QTL位于 目标区段内)
QTL位于染色体中部
QTL位于染色体末端
6、可提高回交育种效率
利用传统回交方法将一个野生种的优良基因转移 到栽培品种中,回交20代以上还有可能带有100个以 上的其它非期望基因。如果是数量性状位点(QTL) 的转移,由于上位效应问题和连锁累赘更为复杂,将 更加困难。
利用分子标记可以允许选择出那些含有重组染色 体(打破了连锁累赘)的个体,从而帮助减小不需要 的染色体片断,从而提高育种效率至少10倍以上。另 外,对隐性性状可以进行不间断的回交(传统回交中 是隔代回交),从而提高基因的回交转移速度。
2)、双标记选择
❖ 同时用两侧相邻的两个标记对目标基因
进行跟踪选择,可大大提高选择的正确
率。
M1 Q M2 ╳ m1 q m2
M1 Q M2 亲本型:比例高
M1 q M2 双交换型:比例低
在单交换间无干扰的情况下,在F2代通过选择 标记基因型MlM2/MlM2而获得目标基因型Q/Q的概 率为:
在两标记间的图距固定的情况下,r1=r2(亦即目标 基因正好位于两标记之间的中点)为最坏的情形,这 时的选择正确率为最小。 在实际情况中,单交换间一般总存在干扰,使得双交 换概率更小,因而双标记选择的正确率要比理论期望 值更高。

分子标记技术PPT课件

分子标记技术PPT课件
❖ DNA指纹分析研究是一种重要的分子标记技术, 它包括RFLP(restriction fragment length polymorphism)、RAPD(randomly amplified polymorphic DNA)、AFLP(amplified fragment length polymorphism)、SSR(simple sequence repeat)和ISSR(inter-simple sequence repeat)等 这些在PCR基础上发展起来的检测DNA多态性的 分子标记技术。
EDTA ( didodium ethylenediaminetetraacetate)即乙二胺四乙酸。
•15
电泳 电泳用的凝胶由琼脂糖(agarose)制备,
琼脂糖的浓度通常为0.9-1.0%。 酶切后的DNA样品通过电泳,使DNA片段
分离,并按分子量的大小排列。
•16
杂交膜的制备
DNA 从 凝 胶 转 移 到 特 制 的 杂 交 膜 上 , 常用Hybond N+(Amersham) 的尼龙膜。
(2)数量极多,遍布整个基因组,可检测座位 几乎无限;
(3)多态性高,自然界存在许多等位变异,无 须人为创造;
(4)表现为中性,不影响目标性状的表达; (5)许多标记表现为共显性的特点,能区别纯 合体和杂合体。
•8
五、常用的分子标记
第一类分子标记 以分子杂交为核心的分子标记技术
一)限制性片段长度多态性标记(Restriction fragment length polymorphism, RFLP)
•28
基本原理
采用随机合成的寡核苷酸(通常10bp)作 PCR反应的引物,对所研究生物基因组DNA进 行PCR扩增,经过30-40个循环,即可得到大 量的DNA片段,扩增产物经琼脂糖凝胶电泳、 EB染色、紫外下显示RAPD带纹。

《分子标记技术》课件

《分子标记技术》课件
通过标记技术,我们可以深入了解分子的特性、功能和相互作用。
2 生物医学研究
分子标记技术在研究疾病机制、药物研发和医学诊断上扮演着重要用,帮助我们了解分子在自然环境中的传播和转化。
分子标记技术的原理
核酸标记技术
通过将标记物与DNA或RNA结合,用于追踪和 测量基因组和转录组的表达。
《分子标记技术》PPT课 件
分子标记技术是一种在生物科学中广泛应用的方法,通过给分子添加标记物, 帮助科学家们更好地研究和理解生物体内的各种分子过程。
什么是分子标记技术
分子标记技术是通过操纵生物分子并添加标记物,用于研究和追踪这些分子在生物体内的运动和相互作 用。
分子标记技术的意义和应用范围
1 深入了解分子
蛋白质标记技术
通过将标记物与蛋白质结合,用于研究蛋白质 结构、功能和相互作用。
常见的分子标记技术
荧光标记技术
通过给分子附加荧光染料,用 于可视化和追踪分子在细胞和 组织中的分布。
放射性标记技术
酶标记技术
通过给分子添加放射性同位素, 用于测量分子在生物体内的运 动和代谢。
通过将酶与分子结合,用于检 测和定量分子的存在和浓度。
标记物的引入可能会对分子的性质和功能 产生一定的影响。
分子标记技术在生物科学中的应用
基因工程中的应用
标记技术在基因克隆、基因表达和基因编辑 等方面起到关键作用。
蛋白质研究中的应用
通过标记技术,我们可以研究蛋白质的结构、 功能和相互作用。
分子标记技术的优缺点
1 优点:灵敏度高、特异性强
2 缺点:标记物对分子的影响
分子标记技术可以准确地追踪特定分子, 且具有高灵敏度和特异性。

snp分子标记的原理及应用解读课件_概述说明

snp分子标记的原理及应用解读课件_概述说明

snp分子标记的原理及应用解读课件概述说明1. 引言1.1 概述SNP(Single Nucleotide Polymorphism)是指基因组中存在的单核苷酸变异,是一种常见的遗传变异形式。

由于SNP在基因组中广泛存在且具有高度稳定性,因此被广泛应用于生物多样性研究、遗传疾病研究和农业育种等领域。

本文旨在介绍SNP分子标记的原理及其在生物学领域的应用。

首先,我们将详细解释SNP分子标记的原理,包括SNP的定义、形成原因以及检测方法概述。

随后,我们将探讨SNP分子标记在生物多样性研究、遗传疾病研究和农业育种中的应用。

最后,本文将通过实例分析与讨论来展示SNPs在人类进化研究、种子质量评估和作物抗性育种中的应用案例,并对未来SNP分子标记研究方向进行展望。

1.2 文章结构本文共包括五个主要部分。

除了本引言外,第二部分将介绍SNP分子标记的原理,包括对SNP的定义、形成原因以及检测方法的概述。

第三部分将探讨SNP 分子标记在生物多样性研究、遗传疾病研究和农业育种中的应用。

第四部分将通过具体案例分析来展示SNPs在人类进化研究、种子质量评估和作物抗性育种中的应用。

最后,第五部分将总结文章的主要观点,并对未来SNP分子标记研究方向进行展望。

1.3 目的本文旨在全面介绍SNP分子标记的原理及其在生物学领域的应用。

通过对SNP 的定义和形成原因的解析,读者可以深入了解SNP这一遗传变异形式。

接下来,我们将详细描述SNP检测方法以及其在生物多样性研究、遗传疾病研究和农业育种方面的应用。

通过具体案例分析,读者可以更好地理解SNPs在不同领域中的实际应用价值。

最后,我们将对当前SNP分子标记研究领域存在的问题进行剖析,并对未来可能出现的发展方向提出展望。

这样,读者可以完整而系统地了解SNP分子标记的原理及应用,并进一步探索其在生物学研究和实践中的潜力。

2. SNP分子标记的原理:2.1 SNP的定义:SNP(Single Nucleotide Polymorphism)指的是基因组中单个核苷酸发生变异的现象。

《分子标记技术》课件

《分子标记技术》课件

基因组选择
02
基于全基因组范围内的分子标记进行选择,能够更全面地评估
个体的遗传潜力和适应性。
基因编辑与基因组编辑
03
利用分子标记技术对目标基因进行精确编辑,实现定向改良和
创造新品种。
04
分子标记技术在生物多 样性研究中的应用
物种鉴定与系统分类
物种鉴定
利用分子标记技术对生物个体进行基因组分析,确定其物种归属,有助于解决形态学分 类上的难点。
基因定位
利用分子标记技术将基因定位到染色 体上,确定基因的位置和顺序,有助 于基因克隆和功能研究。
图谱构建
通过分子标记技术构建基因组图谱, 揭示基因组结构和变异,为基因组编 辑和基因治疗等应用提供基础。
分子标记辅助育种
标记辅助选择
01
利用分子标记技术检测个体的基因型,实现选择性繁殖,提高
育种效率和准确性。
生物多样性保护与利用
生物多样性保护
分子标记技术有助于监测生物种群动态,评 估生物多样性现状,为制定保护策略提供科 学依据。
生物多样性利用
通过分子标记技术,可以发掘具有重要价值 的生物资源,促进生物技术的研发和应用, 为人类社 展望
技术瓶颈与解决方案
技术瓶颈
特点
高分辨率、高灵敏度、遗传稳定性、 易于自动化等。
分子标记技术的应用领域
遗传育种
用于标记和选择具有优良性状的基因型,提 高育种效率。
亲缘关系鉴定
用于法医学、人类学等领域,鉴定个体间的 亲缘关系。
生物多样性研究
用于评估生物多样性、物种分类和系统发生 关系。
疾病诊断与预防
用于检测与遗传相关的疾病,为疾病预防和 治疗提供依据。
要点二
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
分子标记的类型
①基于杂交的分子标记,如RFLP(Restriction fragment length polymorphism,即限制性长度片段多态性)。
②基于 DNA序列和芯片的分子标记,如SNP(Single nucleotide polymorphism,单核苷酸多态性)。
4
③基于 PCR的分子标记,它又分为两类:
PCR
基 RAPD (Random amplified polymorphic DNA) 于
DAF(DNA amplification fingerprinting)
多 位 点
技 术 的
SSCP(Single strand confirmational polymorphism)


小卫星DNA(Minisatellite DNA)
13
PCR 产物需经电泳分离、染色显示后才能进行谱带观察、 统计。琼脂糖凝胶电泳和聚丙烯酰胺凝胶电泳是目前通用 的两种电泳技术。一般采用1.5%-2%的琼脂糖凝胶电泳或 5%-8%的聚丙烯酰胺凝胶电泳。前者EB 染色紫外光下观 察、拍照;后者经银染可见光下观察记录,拍照。一般当 琼脂糖电泳分离效果不理想时采用聚丙烯酰胺凝胶电泳。 谱带统计分析采用相关软件NTSYS 或PAUG。
狭义的分子标记概念只是指DNA标记,而这个界定现在被 广泛采纳: 能反映生物个体或种群间基因组中某种差异特征的DNA片 段,它直接反映基因组DNA间的差异。
2
分子标记的特点
(1)直接以DNA的形式表现,在生物体的各个组织、各个发 育阶段均可检测到,不受季节、环境限制,不存在表达与否 等问题;
(2)数量极多,遍布整个基因组,可检测座位几乎无限; (3)多态性高,自然界存在许多等位变异,无须人为创造; (4)表现为中性,不影响目标性状的表达; (5)许多标记表现为共显性的特点,能区别纯合体和杂合体。
位点特异的 PCR标记方法
STS (Sequence tagged site)
5
PCR
AFLP(Amplified fragment length polymorphism)

酶 切
AFLP是先酶切,再用特殊设计的引物进行扩增



的 方
CAPS(Cleaved amplified polymorphic sequence)
ห้องสมุดไป่ตู้

微卫星DNA(Microsatellite DNA),又称SSR(Simple sequence repeat) 法
DNA
扩 ISSR(Inter simple sequence repeat)
增 方 法
AP-PCR(Arbitrary primer PCR)
它主要有SCAR(Sequence characterized amplified region)
ISSR (Inter-simple sequence repeat) 分子标记技术
主讲人:关 锰
1
分子标记的概念
广义的分子标记(molecular marker)是指可遗传的并可检 测的DNA序列或蛋白质。
蛋白质标记包括种子贮藏蛋白和同工酶(指由一个以上基 因位点编码的酶的不同分子形式)及等位酶(指由同一基 因位点的不同等位基因编码的酶的不同分子形式)。
10
特性 分布 遗传 多态性 等位检测 检测位点数 样品信息量 基因组区域 技术难度 重复性 DNA样品量 耗费时间 可靠性
RFLP 普遍存在 共显性 中 是 1~3 低~中 底拷贝编码 中等 高 2~30μg 慢 高
RAPD 普遍存在 多数显性 高 不是 1~10 高 整个基因组 简单 中等 1~100ng 快 中等
8
9
ISSR分子标记的特点
优点:ISSR 标记结合了RAPD 和SSR 的优点,所需DNA模 板的量少、多态性丰富, 无需试剂盒、结果记录方便、实 验成本低、操作简单、稳定性较高、呈孟德尔式遗传
缺点:是PCR 扩增时最适反应条件需要一定时间摸索, 其 标记大多为显性标记, 在解决交配系统、计算杂合度和父 系分析等问题时效果不佳
11
ISSR实验流程
DNA提取及检测 引物设计 PCR扩增 电泳检测
结果统计及分析
必须对扩增条件进行优化,包 括对Tag酶、引物浓度及其退 火温度、M g 2+浓度、模板浓 度等。
12
引物设计是 ISSR技术中最关键、最重要的一步。基因组中SSR 一般 为 2~6个寡聚核苷酸,用于ISSR的引物常为 5’或 3’端加锚定的二核 苷酸、三核苷 酸、四核苷酸重复序列,重复次数 一般为4~8 次,使 引物的总长度达到 16~18bp 。 5’或 3’端用于锚定的碱基数目一般为 1~4个,锚定的目的是引起特定位点退火, 使引物与相匹配 SSR的一 端而不是中间结合,从而对基因组中特定片段进行扩增、检测。由于 植物基因组中SSR最多的 是 (AT) n、(TA) n、(GA) n 、(CT) n等二核苷 酸重复序列 ,在选择 ISSR引物时,应以二核苷酸重复序列为主,少 选寡聚三核苷酸、四核苷酸引物。

CAPS是先扩增,再酶切扩增片段
6
微卫星DNA
Microsatellite,MS/Simple Sequence Repeat,SSR 短的,简单的串联重复序列; 基元是1-6个碱基(有的定义为1-5个碱基); 广泛存在于真核细胞整个基因组的不同位置上;
特点 高度多态性(微卫星DNA长度的多态性) ; 微卫星DNA两端多是高度保守的单拷贝序列; 共显性标记。
7
ISSR原理简介
ISSR(inter-simple sequence repeat)是Zietkeiwitcz等于1994 年在微卫星基础上发展起来的一种新的分子标记。其基本 原理是:用锚定的微卫星DNA为引物,即在SSR序列的3‘端 或5’端加上2-4个随机核昔酸,在PCR反应中,锚定引物可 引起特定位点退火,导致与锚定引物互补的间隔不太大的 重复序列间DNA片段进行PCR扩增。所扩增的两个SSR区 域之间的多个条带通过聚丙烯酞胺凝胶电泳得以分辨,扩 增谱带多为显性表现。由于微卫星在基因组中广泛分布, 且等位变异特别丰富,因而可以检测到高的多态性。
SSR 普遍存在 共显性 高 是 1~5 高 整个基因组 简单 高 50-100ng 快 高
ISSR 普遍存在 多数显性 高 不是 0~50~更多 高 整个基因组 简单 高 2~50ng 快 高
AFLP 普遍存在 多数显性 非常高 不是 20~100 非常高 整个基因组 中等 高 100ng 中等 高
相关文档
最新文档